
International Review of Economics Education 49 (2025) 100310

Available online 11 March 2025
1477-3880/© 2025 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

Integrating programming into the modern undergraduate
economics curriculum☆

Nigar Hashimzade a, Oleg Kirsanov b, Tatiana Kirsanova b,*

a Department of Economics and Finance, Brunel University of London, United Kingdom
b Economics, Adam Smith Business School, Gilbert Scott Building, University of Glasgow, Glasgow G12 8QQ, UK

A B S T R A C T

The increasing demand for computational skills in economics necessitates the integration of programming into undergraduate economics curricula
in the UK. This paper argues for a systematic incorporation of programming courses tailored to economics students, addressing the limitations of
current approaches and highlighting the benefits of such integration. We propose a sequence of introductory and intermediate-level integrated
courses, and argue that this curriculum change will enhance students’ understanding of economic concepts, improve their employment prospects,
and better prepare them for postgraduate studies. This paper aims to initiate a discussion and exchange of ideas and experiences on this subject at
the national level.

1. Introduction

The rising demand for programming skills in economics has highlighted the necessity of integrating programming into under-
graduate economics curricula in the UK. Despite the increasing relevance of these skills in both the job market for economics graduates
and postgraduate education, a notable gap persists between the programming competencies expected at the graduate level and those
typically acquired during undergraduate studies. This gap, acknowledged by economics educators (Solis-Garcia, 2021; Neumuller
et al., 2018), is particularly evident in the inadequate technical training for solving complex optimization problems and dynamic
models that require numerical methods and programming expertise. Unfortunately, such skills are generally not developed within the
standard undergraduate economics curriculum, to the best of our knowledge.

We want to use this paper as an opportunity to initiate a discussion and exchange of ideas and experiences at the national level
about integration of programming in the undergraduate economics curriculum in the UK. We propose a sequence of two programming
courses (or modules) and describe how they can be integrated into otherwise standard curriculum, with macroeconomic and mi-
croeconomic modules at the introductory and intermediate levels, followed by optional courses at the advanced level. We argue that it
is time to introduce mandatory computer programming training in economics at the undergraduate level, in the same way mathe-
matics and data analysis became integrated into the curriculum over thirty years ago. In this paper, we discuss this proposal in detail,
outline the trade-offs and practical considerations involved, describe potential teaching and assessment methods, and give an illus-
tration for a three-year (England) and a four-year (Scotland) undergraduate economics courses.

This paper is structured as follows. Section 2 describes the evidence of the demand for programming skills in the modern job market

☆ The views expressed are those of the authors and do not necessarily reflect those of Brunel University of London and the University of
Glasgow. We thank the Editor and two anonymous referees for helpful comments and suggestions.

* Corresponding author.
E-mail addresses: nigar.hashimzade@brunel.ac.uk (N. Hashimzade), oleg.kirsanov@glasgow.ac.uk (O. Kirsanov), tatiana.kirsanova@glasgow.ac.

uk (T. Kirsanova).

Contents lists available at ScienceDirect

International Review of Economics Education

journal homepage: www.elsevier.com/locate/iree

https://doi.org/10.1016/j.iree.2025.100310

mailto:nigar.hashimzade@brunel.ac.uk
mailto:oleg.kirsanov@glasgow.ac.uk
mailto:tatiana.kirsanova@glasgow.ac.uk
mailto:tatiana.kirsanova@glasgow.ac.uk
www.sciencedirect.com/science/journal/14773880
https://www.elsevier.com/locate/iree
https://doi.org/10.1016/j.iree.2025.100310
https://doi.org/10.1016/j.iree.2025.100310
http://creativecommons.org/licenses/by/4.0/

International Review of Economics Education 49 (2025) 100310

2

for economics graduates, outlines the current limitations in economics education, and presents the insights from the relevant literature
on education in other subject areas. Section 3 outlines our proposed model of integration of programming courses into the under-
graduate economics program and explores the trade-offs and practical considerations in implementing these changes. The paper
concludes with a summary of the key arguments and implications.

2. The case for programming in undergraduate economics education

2.1. Programming skills and the modern job market

Employers increasingly seek economists – including those holding undergraduate degrees – who are adept in computational
methods. A diverse range of organisations expect their entry-level hires with undergraduate degree in economics to possess pro-
gramming skills for applications in both macroeconomic and microeconomic contexts. In the 2019 survey of employers of economics
graduates,1 conducted by the Economics Network, a prominent academic organization dedicated to enhancing the teaching and
learning of economics at universities, programming was mentioned in the answers to the question “Which skills (general and specific)
and knowledge do you believe most need to be developed further in economics degree courses?” Proficiency in programming tailored
for economic applications will significantly improve employability of economics graduates. This is reflected in the contemporary
career advice provided to undergraduate economics students, where the need for computational skills is increasingly emphasised.
According to a blog post (University of Sussex, 2024), economics graduates who possess advanced programming skills are in high
demand across various industries, including technology, finance, healthcare, and e-commerce. These skills enable them to apply
statistical techniques, leverage machine learning, and solve complex analytical problems. A blog post from LSE (Carrigan and Brooker,
2019) highlights the increasing demand for computer programming skills in the social sciences. Furthermore, there is evidence that the
wage premium for liberal arts graduates with computer programming skills exceeds that of graduates equipped solely with data
analysis skills – a traditional attribute of an economics graduate (Blumenstyk, 2016).

Central banks, such as the Bank of England, the European Central Bank, and the Bank of Japan, recruit economics graduates for
roles involving economic forecasting and policy analysis using Dynamic Stochastic General Equilibrium (DSGE) models. International
organisations like the International Monetary Fund, the World Bank, and the Organisation for Economic Co-operation and Develop-
ment employ undergraduate economics graduates to assist in macroeconomic analysis and policy evaluation, where programming
skills are essential. Private financial institutions – including Goldman Sachs, JP Morgan, and BlackRock – hire economics graduates to
work on integration of macroeconomic forecasts into financial strategies, necessitating strong programming abilities.

Moreover, technology firms such as Google, Amazon, Meta, and Microsoft recruit economics graduates for positions involving
market design, pricing algorithms, auctions, and platform economics – areas that demand proficiency in programming. E-commerce
platforms like Amazon and Alibaba employ economics graduates to optimise pricing strategies, analyse consumer behaviour, and
forecast demand through large-scale data analysis and machine learning. Competition authorities, including the Competition and
Markets Authority in the UK and the Directorate-General for Competition of the European Commission, hire economics graduates to
work on market dynamics, game-theoretic models of competition, and regulatory frameworks, where programming is instrumental for
simulations, cost-benefit analyses, and empirical studies. Similarly, healthcare firms and pharmaceutical companies employ economics
graduates to use microeconomic analysis for pricing models, policy impact assessments, and demand forecasting in response to
changing market conditions or regulatory environments, often involving programming for analysing multimodal data from clinical
trials or healthcare markets. These industry demands highlight the pressing need to re-evaluate and enhance the current economics
curriculum.

The following two examples illustrate the real-world applications of programming in economics: NHS England’s use of Discrete
Event Simulation and the forecasts produced by the UK Office for Budget Responsibility during COVID-19.

NHS England utilised a Discrete Event Simulation (DES) model to explore the impact of changing workforce allocations on surgery
waiting times (Harper et al., 2023). Developed to support capacity planning for elective orthopaedic surgeries, this model simulated
various scenarios, such as adjusting the number of beds and operating theatres and improving productivity by reducing lengths of stay
and delayed discharges. Using anonymised patient records from 2016 to 2019, the DES model demonstrated that increasing the
number of beds and reducing lengths of stay could significantly lower bed utilisation and allow for additional theatre activity. This
approach enabled NHS planners to identify the optimal balance of resources needed to meet new targets and reduce surgical backlogs.

Without programming, constructing such complex, dynamic models to simulate different allocation strategies would be nearly
impossible. Simulation allows economists to test and refine policies before implementation, visualise the impacts of allocation de-
cisions on key outcomes like waiting times and patient access, and handle complex data involving patient flows, hospital capacity, and
workforce constraints.

During the COVID-19 pandemic in 2020, the UK Office for Budget Responsibility (OBR) had to produce forecasts amidst significant
economic uncertainty.2 Economists working at the OBR were tasked with updating models to reflect the pandemic’s impact, including
forecasting the effects of government interventions like furlough schemes, public health expenditure, and changes in taxation. These
forecasts were essential for the UK government in planning its response to the crisis. Using DSGE models and other simulation tools, the
OBR was able to test different fiscal policies to understand their impact on debt, unemployment, and economic recovery.

1 https://www.economicsnetwork.ac.uk/projects/surveys/employers2019
2 https://obr.uk/coronavirus-analysis/

N. Hashimzade et al.

https://www.economicsnetwork.ac.uk/projects/surveys/employers2019
https://obr.uk/coronavirus-analysis/

International Review of Economics Education 49 (2025) 100310

3

Programming skills are crucial in this work, involving data analysis of large datasets, forecasting and simulating macroeconomic
models to predict future conditions, and visualising the results for effective communication of the outcomes in various scenarios to the
government and to the public.

These examples, while drawn from complex, real-world economic challenges, remain directly relevant to the skillset and career
paths of economists with undergraduate degrees. Teams at both the NHS and the OBR are typically composed of economists and
analysts with varying levels of academic and professional experience. The presence of individuals holding a bachelor’s degree in
economics, who often contribute to data collection, preliminary analysis, and the application of programming tools to routine model
building and calibration, attests to the practical nature of these tasks. Even though the conceptual frameworks, such as discrete event
simulations or the fiscal forecasts developed under high uncertainty, may appear advanced, the foundational coding skills and
analytical techniques we advocate can be meaningfully employed at the entry level. As these organizations routinely hire economics
graduates with bachelor’s degree, the ability to understand, adapt, and implement basic computational solutions and interpret their
results is not only beneficial but increasingly essential for their work. In this sense, the examples are not merely aspirational; they
illustrate the kind of work environments and tasks where programming-enhanced economic training is directly applicable for grad-
uates entering the workforce.

2.2. Current approaches and their limitations

Real-life economic applications rely increasingly on computer programmes in solving complex mathematical models, analysing
large multimodal datasets, and simulating the projected outcomes of changes in economic environment. Yet, in the UK’s under-
graduate economics curriculum, programming skills are rarely taught in a systematic way. Students typically conduct data analysis
using software packages like R, Stata, or EViews, which offer menu-driven interfaces that do not foster genuine coding proficiency.
Although this approach suffices for basic econometric assignments, it does not equip students to implement or simulate more advanced
structural economic models. As a result, economics graduates often lack the technical foundations needed to engage with modern
research and professional work in economics.

Without a dedicated computing component, the teaching of core economics subjects, especially those that rely on computationally
intensive models, can be rendered superficial. For example, in microeconomics courses students learn about optimisation and strategic
interaction, but without numerical computational techniques the analysis is necessarily restricted to a set of ‘toy models’. Similarly, in
macroeconomics, students encounter models aiming to explain growth, business cycles, or policy impacts, but these models are, again,
simplified to allow for pencil-and-paper solutions. While simple models are useful for introducing fundamental concepts and initial
exploration, students may perceive such models as overly abstract and disconnected from the real world. The absence of robust coding
practice leads to a gap between theoretical coursework and the empirical, data-driven realities of economic analysis.

In response to these challenges, some UK undergraduate programmes have begun offering stand-alone computational economics
courses at the advanced (honours) level. Institutions such as the London School of Economics, University College London, Univesities
of Southampton, St Andrews, and Glasgow offer methods-based computational economics courses. However, evidence from instructors
suggests that while these courses are valuable, they typically arrive too late in the curriculum to support earlier coursework, and they
devote significant time to teaching basic programming skills that students could have acquired beforehand.3

One example of such a course is provided by Jenkins (2022), who describes a 20-hour module taught at a US university but
comparable in scope and level to those found in the UK. Jenkins argues that computational methods are essential for solving and
simulating modern economic models, many of which do not admit paper-and-pencil closed-form solutions. His course allocates six
hours – nearly the one third of the total time – to teaching the basics of a programming language, a decision he acknowledges as a
difficult trade-off between time spent on foundational programming skills and time available to engage with economic applications.
We share this concern: dedicating one third of available time to learning a programming language limits the instructor’s ability to
cover a broad spectrum of topics, resulting in a rushed experience that may only skim the surface of economic applications.

Moreover, while Jenkins suggests that a ‘programming is like cooking’ approach, where students learn by doing and focus on
immediate applications, is sufficient to expose students to the necessary programming skills, we argue that this approach, while
practical, is insufficient for achieving deep and transferable learning outcomes. A short, methods-based course may enable students to
code simple models, but it does not provide the comprehensive programming foundation necessary for more advanced, independent
economic modelling and analysis. In addition, this approach risks omitting crucial elements of programming culture, such as code
efficiency, debugging strategies, and best practices in software development, which are essential for applying computational methods
across a wider range of economic models.

With limited instructional hours, it is also challenging for students to gain a solid grasp of both the computational techniques and
the economic theories they are intended to illuminate. This problem is exacerbated when the course must also introduce entirely new
economic topics, leaving insufficient time to explore the full potential of computational methods. The risk is that students will leave the
course with a fragmented understanding of how to apply these methods in other contexts, particularly in areas not explicitly covered in
the curriculum.

An alternative might be for economics students to take programming courses offered by the Computer Science (CS) department.
However, this option is not practical within the UK educational system for several reasons. CS courses are designed with a focus on

3 Two Glasgow-based authors who have taught such a stand-alone course share this view.

N. Hashimzade et al.

International Review of Economics Education 49 (2025) 100310

4

software development, computational theory, and programming languages that are often not directly applicable to economics. They
may cover languages like Java or C++, which are less commonly used in economic computations compared to MATLAB, Python, or R.
Furthermore, CS courses may emphasise topics like data structures, algorithms, and computer architecture, which, while valuable, do
not align with the immediate needs of economics students.

Economics students require knowledge of numerical methods specific to their field, such as root-finding algorithms, numerical
integration, optimisation techniques, and simulation of dynamic systems. CS courses typically do not cover these methods within the
context of economic applications. As a result, students may not acquire the specific computational tools necessary for their future work
or postgraduate studies. Furthermore, the apparent lack of relevance to economic applications may even demotivate students from
putting effort into learning.

In addition, the UK educational system is characterised by highly structured degree programmes with limited flexibility for
electives outside the prescribed curriculum. Economics students may find it impossible to enrol in CS courses due to prerequisites they
have not completed, scheduling conflicts with mandatory economics courses, and capacity constraints within CS departments that
prioritise their own students.

Taken together, these approaches of either relying on stand-alone advanced courses or referring students to CS courses do not
effectively integrate programming into the core of the undergraduate economics curriculum. Lacking a solid coding foundation, the
students cannot fully exploit computational techniques in their microeconomic and macroeconomic studies and may end up ill-
prepared for contemporary research, data-intensive policy roles, or postgraduate training. This underscores the need for earlier and
more systematic integration of programming into the economics curriculum.

2.3. Related literature

Economics education research has long recognized the need for more systematic programming skills in economics (Adams and
Kroch, 1989; Day, 1987; Motahar, 1994). Some authors argue that specialised advanced-level courses like ‘Computational Macro-
economics’ (Jenkins, 2022) or, for example, macroeconomics courses incorporating several lectures on programming to assist the
exposition of DSGE models (Solis-Garcia, 2021) could improve student understanding and reduce the skills gap. However, we are not
aware of any existing proposals of integrating programming in the undergraduate economics course, or, indeed, into other quantitative
social science or humanities curricula, even though the importance of adapting programming to each field’s needs has been
acknowledged elsewhere. For instance, Charlton and Birkett (1992) document an attempt to teach elementary programming to
accountancy students and concludes that, to be successful, a programming course must be relevant for both the vocational needs and
for the main subject. Similarly, Jeffcote (1997) uses a case study of an interdisciplinary Information Technology and Society under-
graduate programme to argue that IT competence, as a transferable skill, improves employability prospects of students whose first
choice was a social science or humanity subject.

There is, on the other hand, a literature on integration of programming in the undergraduate teaching of (non-computer) engi-
neering. The need in systematic teaching of programming skills to engineering students emerged decades ago, and integration of
programming in the undergraduate engineering curricula has become widely spread, although is still far from universally accepted. An
example of a set of curricula for electrical, mechanical, and manufacturing engineering courses with integrated programming is given
in Dunne et al. (2005). The authors outline similarities and differences in programming components across engineering disciplines and
emphasise the need to adapt the choice of teaching and assessment to the programming skills demanded in specific industries.

Integration of programming in the undergraduate Electrical (and Electronic) Engineering curriculum was advocated in Baldwin
et al. (1979), notably, by an ad hoc group of managers from five larger employers of electrical engineers at that time.4 Among more
recent work on pedagogical approaches to integrated programming in this discipline, Pejcinovic and Wong (2017) describe successful
use of hands-on projects combining problem-solving, programming, and hardware interfacing in the redesigned curriculum, and its
advantages over the earlier structure which included topics unrelated to electrical engineering. Integrated approach and its benefits for
students’ motivation and engagement, along with the students’ feedback, are described in Notaros et al. (2019) and Grindei et al.
(2023).

In a similar vein, dos Santos et al. (2018) note that in many Chemical Engineering programmes programming is taught at the
beginning, with examples often not related to the main subject. They argue for introducing an elective programming course for the
final year students, with applications specific to chemical engineering, and share their experience and learning outcomes based on
students’ survey. Arjmandi et al. (2023) note the challenges of integrating programming in the undergraduate engineering curriculum
and describe their experience of pedagogical approach to introducing weekly programming workshops complementing the lectures in
one of the core second-year courses in an undergraduate Chemical and Material Engineering programme.

In the undergraduate Civil Engineering teaching, Bowen (2004) argues for the use of programming in first-year structural design
group project, in order to motivate and retain students, as the U.S. system allow them to switch engineering major. da Silveira Monteiro
and da Silva Pitangueira (2018) describe how programming and numerical methods can be integrated in undergraduate Civil Engi-
neering course using a research-led teaching platform shared with other engineering courses.

While the principles are similar across different engineering subjects and sciences, there are variations in pedagogical approaches.
In the undergraduate Physics education, for example, Gould and Tobochnik (2001) is among early proposals for integration of

4 Bell Laboratories, General Electric Company, IBM, Magnavox, and Westinghouse Electric Corporation.

N. Hashimzade et al.

International Review of Economics Education 49 (2025) 100310

5

programming. Chonacky and Winch (2008) and, more recently, Caballero and Merner (2018), give an overview of the curriculum
reform, with examples of practices in structure and pedagogical approaches, as well as perceived barriers and difficulties. In a case
study of integrated programming for Chemistry and Biochemistry, Biochemistry, Fuchs et al. (2024) outline the challenges faced by the
students and provide recommendations on pedagogical approach for improvement of learning outcomes.

In this paper, we contribute to the education literature by proposing a systematic approach to developing programming skills
among undergraduate economics students, drawing on lessons from science and engineering courses with integrated programming.
Based on the UK educational system, with perspectives from authors in Scotland and England, we advocate for designing and inte-
grating a sequence of programming courses into the curriculum similarly to data analysis courses. This involves starting with an
introductory programming course, followed by an intermediate-level course, as described in the rest of the paper.

3. Proposed integrated programming curriculum

Integrating programming into the curriculum offers several advantages. First, it allows for the early development of computational
skills, enabling students to engage more deeply with economic models throughout their studies. Second, programming education
encourages active learning techniques such as hands-on coding exercises, pair programming, and project-based learning. These
methods enhance problem-solving skills and promote a deeper understanding of economic concepts. Last, but not least, economics
graduates with programming proficiency are more competitive in the job market, as employers increasingly value candidates who can
apply computational methods to economic analysis.

We propose a systematic integration of programming courses into the undergraduate economics curriculum through a two-course
sequence: Programming Principles for Economists at the introductory level, focusing on basic programming concepts, programming logic,
and an introduction to numerical methods relevant to economics, followed by Applied Programming for Economists, an intermediate-
level course that applies programming skills to complex economic models and real-world economic problems. This section focusses
on describing the content and structure of these proposed courses, demonstrating how they are designed to achieve the outlined
advantages. Additionally, we examine the broader curricular changes and trade-offs involved in implementing this two-course
sequence toward the end of the section.

3.1. Programming principles for economists

The introductory programming course is designed to provide economics students with essential programming skills tailored to their
field. It should be mandatory and taken during the first year, or one of the pre-honours years, similar to how mathematics and
introductory statistics are integrated into the curriculum. The course will consist of three key components: Programming Logic and
Computer Operations, Language-Specific Basics of Programming, and Introduction to Numerical Algorithms and Their Implementa-
tion. The integration of these methods with economic theory ensures that students gain relevant, practical skills that they can apply
directly to their studies and future careers in economics.

3.1.1. Course design

3.1.1.1. Programming logic and computer operations. The first component focuses on programming logic and a fundamental under-
standing of computer operations. This section aims to develop students’ understanding of the importance of structured code and the
basic principles of how computers execute instructions. In many stand-alone computational economics courses, this part is often
neglected due to time constraints. However, familiarity with programming logic makes subsequent learning more efficient and reduces
the number of errors students are likely to make – an essential consideration since economics students are often occasional pro-
grammers who are more prone to making mistakes in the code.

For instance, understanding how the system processes instructions and manages memory can significantly ease the debugging
process, turning what is often a frustrating experience into a more manageable and even enjoyable task. This skill is crucial, as effective
debugging is uncommon even among doctoral students who are exposed to programming primarily through their research rather than
formal training. By including a strong emphasis on programming logic, students will be better equipped to use programming as a tool
to enhance their understanding of economic models.

This part of the course may not require the use of a specific programming language and can instead rely on pseudocode and
flowchart symbols to teach the principles. This approach allows students to grasp the core concepts without being overwhelmed by
syntax or language-specific details. It is recommended that this component take up to six hours of the total course time but that these
hours be distributed throughout the course to reinforce relevant concepts as they arise. Teaching can be based on chapters of Farrell
(2012), though instructors may need to adapt certain chapters to better fit the course’s specific focus.

3.1.1.2. Language-specific basics of programming. The second component covers the basics of a specific programming language, where
the choice of the language and, subsequently, the choice of the textbook and other materials, will depend on instructor’s preferences.
Topics can include variables and data types, mathematical operations, functions and scripts, control flow commands, and basic input/
output operations. This part of the course is conventional and aligns with the content typically covered in computational economics
courses. Based on our own experiences and the structure of similar courses, six hours is a reasonable amount of time to dedicate to this
section, allowing for the introduction of some small economics-related examples to illustrate the concepts in a practical context.

N. Hashimzade et al.

International Review of Economics Education 49 (2025) 100310

6

3.1.1.3. Introduction to numerical algorithms and their implementation. The third component introduces students to key numerical al-
gorithms and their implementation in the chosen programming language. For example, a careful discussion of root-finding methods
will enable students to understand the differences between algorithms such as Newton’s method and the bisection method, and learn
when and how to simplify multivariate problems, visualise function behaviour, assess the existence or multiplicity of roots, and choose
the appropriate root-finding method. Additional topics could include spectral decomposition of matrices, numerical differentiation
and integration, polynomial fitting, and the use of symbolic operators.

In stand-alone computational economics courses, the focus on specific examples often leaves little time to discuss the broader
applicability of chosen numerical algorithms, such as the importance of solver options and their impact not only on the speed and
accuracy of results but also on the ability to obtain a solution at all. This section is vital because it teaches students how to make
algorithmic decisions based on the nature of the problem they are solving, a skill that is often underdeveloped in short, methods-
focused courses. By integrating this content into an introductory course and allocating six to eight hours to this section, students
will have sufficient time to engage with practical examples drawn from economics, leading to a more robust understanding of how to
apply these techniques across a wide range of economic problems. A possible textbook for this section is Lindfield and Penny (2018),
although the instructor may need to select specific algorithms most relevant to the course’s focus.

3.1.2. Course structure and assessment
The course should include regular homework assignments that can be automatically graded using tools,5 allowing for timely

feedback in large classes. Computer lab sessions should be organised as hands-on exercises where students work on new problems
based on the material covered in previous lectures. Instructors may choose to have students submit their work for assessment at the end
of each session, similar to the approach discussed by Jenkins (2022), depending on the feasibility and resources available.

Assessment for the introductory course can reflect the potentially large class sizes and the need for a scalable, objective evaluation
of basic programming proficiency. For a large cohort, an in-course (mid-term) test, possibly structured as an automatically graded quiz
or a series of coding tasks, can assess students’ ability to implement fundamental programming concepts and apply them to simple
economic problems. While project-based assessment is often beneficial in programming courses, at the introductory stage it may be
more practical to employ formats similar to those used in undergraduate computer science programmes, where basic coding exercises
and algorithmic questions can be efficiently auto-graded. This approach allows for consistent feedback and reliable measurement of
core skills without requiring an open-ended, research-style project.

A more substantial written exam at the end of the course could then include short essay-type questions on programming logic, good
coding practices, and their relevance to specific economic applications. If not all students plan to continue to more advanced eco-
nomics modules, this structure ensures that all learners acquire the essential computational foundations needed for further study or
immediate entry into the job market.

This is, of course, just one possible option for assessment. An instructor can use different assessment forms and structures, adapted
accordingly to the availability of resources, the needs of the department, and the students profile.6

3.2. Applied programming for economists

Building on the introductory course, the intermediate-level programming course aims to deepen students’ programming skills and
apply them to complex economic models. This intermediate-level course should be compulsory for students enrolled in the single-
honours Economics degree, whereas for students in related programmes (e.g., Business Economics) or joint degrees (e.g., Eco-
nomics and Management), the course could be offered as an elective. For the latter, this approach will allow flexibility in choosing
other electives, while still encouraging the development of valuable computational competencies.

3.2.1. Course design
While this course may share some similarities with stand-alone computational economics courses, there are important differences,

particularly in the choice and depth of topics. Our approach is informed by the Glasgow-based authors’ experience with the ‘Economic
Analysis with MATLAB’ course, taught at the University of Glasgow.7

The course builds on the introductory programming course, focusing on a range of economic applications that are both engaging
and relevant to students interested in various areas of macroeconomics and microeconomics. Since the basics of the programming
language should already be covered in the introductory course, this intermediate course can begin immediately with applying these
skills to real economic problems.

Given the structure of the UK educational calendar, instructors will have about 20 h to cover approximately five topics in depth.
Each topic should be largely self-contained, relying on material from introductory courses and general economic intuition, so that

5 Examples are MATLAB Grader and nbgrader for Python.
6 One consideration in choosing the form of assessment is the use of AI and issues of academic integrity. As pointed out by Liu (2023), current

capabilities of ChatGPT and similar tools are limited in debugging and data-driven numerical calculations. To that extent, typical applications in the
proposed courses are less vulnerable to the abuse. At the same time, an efficient appropriate use of AI can be demonstrated in class, as the means of
expediting simple coding tasks.

7 All examples in this section were used by the Glasgow-based authors in teaching ‘Economic Analysis with MATLAB’, ECON4101, at the Uni-
versity of Glasgow, between 2021 and 2024, unless stated otherwise.

N. Hashimzade et al.

International Review of Economics Education 49 (2025) 100310

7

students can follow along even if they haven’t covered the specific economic theory elsewhere. Importantly, each topic should have a
strong computational element, where programming is essential for understanding and visualising the results.

3.2.2. Proposed topics
We propose the following topics based on some of the existing courses and other ideas.

3.2.2.1. Solving and simulating linear dynamic systems. A Repeat Customer Model (based on an example presented in Karst, 2013)
works well in this topic. This model helps students understand how eigenvalues and eigenvectors explain the dynamics of a
non-stationary dynamic system. Homework might include modifying the model to incorporate a loyalty scheme, adding complexity to
the dynamics. Alternatively, a dynamic IS-LM model with Adaptive Expectations could be used, potentially linking with standard
macroeconomics courses.

3.2.2.2. Solving and Simulating Non-Linear Dynamic Systems. The SIR Model in Epidemiology (a discrete time version of, e.g., Hethcote,
2000) is particularly relevant given the interest in the economic and public health effects of the COVID-19 pandemic. This model serves
well as an example of a non-linear system, as we gradually introduce features like vaccination and quarantine, illustrating the complex
dynamics of such models. We discuss potential extensions to assess the welfare cost of epidemics. Other potential examples – which can
appear either in the course or in homework – include environmental economics, evolutionary games, and competition models, all
leading to the Lotka-Volterra equations. These systems often have non-trivial steady states, allowing to apply root-finding techniques
discussed in the Programming Principles course.

3.2.2.3. Markov chains. Markov chains are useful in many macroeconomic models, though they are rarely covered in standard
courses. We focus on transition matrices and absorbing states, with examples like demographic models and labour market models (an
excellent exposition and many examples that can be used in homework can be found in Bradley and Meeks, 1986). This topic also ties
back to the importance of eigenvalues in understanding economic dynamics. Additionally, the demographic example discussed in
Bradley and Meeks (1986) works well to build data visualisation skills.

3.2.2.4. Portfolio choice. This topic introduces the basics of risk and return, guiding students through the principles of constructing an
efficient portfolio (an accessible and self-contained treatment can be found in Bodie et al., 2024). It is an appealing introduction to
financial theory for economics students, providing a practical application of computational techniques and elementary probability
theory. An assignment can discuss the differences between different types of portfolios.

3.2.2.5. Social networks. Social networks offer intuitive concepts and real-life examples that students find engaging. They also provide
a rich ground to practise programming skills. For example, when computing betweenness centrality, we work with graphs. Instead of
using a ‘black box’ of a standard software package, such as the NodeXL plug-in in Excel, students can develop logical algorithms to
compute the number of paths with certain characteristics and code this efficiently.

Social network applications are diverse and always engaging. We have studied Florentine marriages (Padgett and Ansell, 1993), the
power of judges (an example from Bradley and Meeks, 1986), and internet page indexing (Jackson, 2008), highlighting the importance
of eigenvalues in understanding economic outcomes. A natural extension is to study simple examples of games on a network. We used
homework examples based on network representations of criminal gangs found in the literature.

3.2.2.6. Rational expectations in macroeconomics. While not currently included in our course, this topic could easily be added. It in-
volves explaining and coding the Blanchard-Kahn theorem (Blanchard and Kahn, 1980), applying it to simple monetary policy models.

3.2.2.7. Real business cycle model. Once students understand Rational Expectations, they can explore the Real Business Cycle model,
possibly using symbolic packages for linearisation. This would allow students to simulate and analyse this model within the course’s
timeframe (see Solis-Garcia, 2021, for a similar approach).

An instructor may choose to cover fewer topics but study them in greater depth. However, our own experience suggests that
students value the diversity of topics, the exposure to different fields, and the clear understanding of how skills developed through a
particular model are transferable to a much wider range of models.

3.2.3. Course structure and assessment
The course will include regular homework assignments. Unlike the introductory course, these assignments might be too complex

for automated grading due to the variety of possible solutions. Instead, we can use online learning platforms for submissions, with
deadlines set early enough to allow common mistakes to be discussed in weekly computer lab sessions. These labs should be hands-on,
with students working on new problems based on lecture material.

Given the likely large class sizes, assessments need to remain both rigorous and varied, allowing students to demonstrate their
strengths in multiple ways. A mid-term assessment (in-course exam), potentially using multiple-choice questions, can evaluate the
understanding of key concepts and programming skills at a more advanced level than the introductory course. For the final assessment,
we propose a substantial group project. Alternative methods, such as individual take-home exams or multiple smaller assignments, can
also be used. Issues to consider are the potential risk of overloading students during a busy teaching period and the need to address the

N. Hashimzade et al.

International Review of Economics Education 49 (2025) 100310

8

depth and realistic complexity of the tasks appropriate for advanced skills.
A final, project-based assessment carried out in the post-teaching period affords students the time and flexibility to engage

meaningfully with a complex economic problem. Project-based and team-based learning at this stage aligns well with best practices
observed in STEM disciplines, where such approaches help students develop not only technical expertise but also transferable skills like
teamwork, communication, and project management. The project could involve, for example, welfare analysis of strategic trade,
calibration and simulation of an endogenous growth model, effect of R& D subsidies on firms, or a comparison of different modeling
approaches for the same economic application (such as SIR models, Markov chains, and social networks in the cost-benefit analysis of
public health policies during an epidemic). This method ensures a more authentic learning experience, better mirrors the collaborative
nature of professional economic research, and serves as a natural complement to earlier assessments that focus on core theoretical and
computational competencies.

3.3. Teaching methods for programming courses

To maximise the effectiveness of both the introductory and intermediate-level programming courses, we employ teaching methods
grounded in constructivist learning theory, situated learning theory, and cognitive flexibility theory. These pedagogical approaches are
designed to enhance learning outcomes by fostering active engagement, contextual understanding, and adaptable problem-solving
skills.

Our teaching methods emphasise active learning through hands-on exercises, consistent with constructivist learning theory, which
posits that learners construct knowledge through experiences and reflections (Piaget, 1996). In both courses, students engage in coding
exercises during lab sessions, directly applying programming concepts to economic problems. This experiential approach allows
students to build their own knowledge structures by actively exploring and solving problems, leading to a deeper understanding of
both programming and economics.

We also incorporate contextual learning, drawing from situated learning theory, which suggests that knowledge is best acquired in
context (Lave and Wenger, 1991). By integrating programming tasks with real-world economic scenarios, we help students see the
relevance of programming to their field, enhancing motivation and retention. For instance, in the introductory course, students might
use programming to solve basic economic equations or visualise data, while in the intermediate course, they apply programming skills
to more complex models such as simulating the dynamics of an epidemic or optimising investment portfolios.

To develop cognitive flexibility, we encourage students to approach problems from multiple perspectives and adapt their strategies
accordingly, aligning with cognitive flexibility theory (Spiro et al., 1991). By exposing students to a range of numerical methods and
encouraging them to make algorithmic decisions based on the characteristics of the problems they are solving, we foster adaptability
and advanced problem-solving skills. This prepares them to navigate complex economic models and select appropriate computational
techniques as needed.

Collaborative learning and peer instruction are integral to our teaching methods, inspired by Vygotsky (1978) social construc-
tivism, which emphasises the social nature of learning. We utilise strategies such as pair programming and group projects, allowing
students to articulate their understanding, learn from different perspectives, and develop communication skills. In both courses,
students work together on assignments and projects, reinforcing concepts and correcting misconceptions through peer interaction.

Reflective practice is also incorporated into the courses, encouraging students to consider how their programming choices impact
the outcomes of economic models. Through discussion sessions and group processing after completing the projects, students internalise
what they have learned and understand its broader implications.8

By employing these teaching methods across both courses, we anticipate several enhanced learning outcomes. Students are ex-
pected to develop a deeper conceptual understanding of programming and economics, increased engagement and motivation,
improved problem-solving abilities, and better preparedness for advanced studies and careers requiring computational economics
expertise.

Integrating these pedagogical strategies not only aligns with established learning theories but also creates a cohesive learning
environment that supports the progression from foundational knowledge to complex application. By fostering active engagement and
contextual understanding, we aim to equip students with the skills necessary to navigate the increasingly rich computational landscape
of modern economics.

3.4. Integration with the economics curriculum

Integrating the proposed programming courses into the existing economics curriculum requires careful coordination with other
foundational subjects. The introductory Programming Principles for Economists (PPE) course should ideally run in parallel with
standard calculus and introductory econometrics modules. Because the concept of a root is introduced early in mathematics in-
struction, students can readily transfer this understanding to computational root-finding techniques covered in PPE. Similarly, because
eigenvalues and eigenvectors typically appear later in the mathematics sequence, so aligning their introduction with PPE lectures
ensures that programming builds naturally on these mathematical tools.

The subsequent Applied Programming for Economists (APE) course, offered at the honours level, can then be coordinated with core

8 See Johnson and Johnson (1999) on educational benefits of group processing.

N. Hashimzade et al.

International Review of Economics Education 49 (2025) 100310

9

macroeconomics and microeconomics modules. Instead of duplicating material, APE focuses on computational methods that deepen
students’ understanding of theoretical models taught elsewhere. As discussed in Section 3.4, integrating the timing of APE with key
topics in macro and micro courses allows students to apply their coding skills precisely when they encounter challenging models,
making those models more accessible and meaningful.

For instance, macroeconomic models in widely used textbooks such as like Carlin and Soskice (2015) often differentiate short-run,
medium-run, and long-run dynamics, yet students can struggle to connect these theoretical distinctions with real-world economic
processes. In an intermediate-level module, they might be asked to code the IS-LM-PC model and experiment with different policy
scenarios, thereby clarifying how short-run and medium-run effects unfold. Later, in a more advanced module, they could apply similar
computational techniques to the Solow growth model, observing how parameter changes shape long-run outcomes and gaining a
deeper grasp of macroeconomic growth theory and policy. By studying such models in parallel with a programming course, students
come to see them not as purely theoretical constructs but as tools they can use to explore real policy questions.9

Likewise, microeconomics offers numerous opportunities to benefit from programming. One especially relevant area involves
game-theoretic models of strategic interaction, which are often used in microeconomics to analyse competition, auctions, or bar-
gaining. For example, when studying Cournot equilibrium, students might be asked to wright a code that will produce characterisation
of the equilibrium, visualise strategies, and identify the equilibrium point. By investigating how changes in the parameter values or in
the modes of interaction, such as shifting from a Cournot duopoly to a Stackelberg duopoly, affects equilibrium quantities, prices, and
welfare, students gain a deeper intuition for how timing and first-mover advantages shape market outcomes, with implications that
extend to broader policy questions on market power and competitive dynamics. Moreover, once students can write basic code, in-
structors can introduce algorithms for identifying dominated strategies or computing mixed-strategy equilibria in n × 2 games
conceptually, then assign a coding exercise for practical exploration. Rather than guiding the class step-by-step through just one pen-
and-paper example, the instructor can explain the algorithm conceptually and then assign a coding exercise. Students will have an
opportunity to explore a range of scenarios by varying parameters, modifying payoffs, or experimenting with additional strategies, and
thus gain a more thorough understanding of the underlying logic. This approach frees class time for higher-level discussions of
theoretical insights or policy implications, making the application of game-theoretic concepts both more rigorous and more
engaging.10

By incorporating these programming-based activities into both macro and micro modules, the curriculum ensures that computa-
tional skills are reinforced at each step, rather than remaining isolated within stand-alone courses. Students repeatedly see how coding
deepens their understanding of key economic frameworks, making it clear that programming is not merely an extra skill but a tool
integral to modern economic inquiry and policy analysis.

One outcome of this repeated exposure is a broader range of potential dissertation topics – an important development, given that
dissertations are a central component in the vast majority of the undergraduate economics programmes in the UK. A typical disser-
tation requires formulating a research question, reviewing relevant literature, and conducting quantitative analysis. Students lacking
programming skills often default to simple regression-based methods, leaving much of modern economics research – particularly
involving dynamic or policy-oriented models – beyond their reach. By mastering a more powerful programming environment, un-
dergraduates gain the ability to tackle a variety of contemporary issues, including macroeconomic policy analysis with DSGE models
(Junior et al., 2022), life-cycle saving decisions (Findley, 2014), corporate strategy (Pezzino, 2016) and the links between inequality
and growth (Hanlon, 2013). By linking core mathematical and economic concepts with computer programming, students can handle a
broader set of research questions, producing richer and more original work in their undergraduate dissertations.

3.5. Trade-offs and practical considerations

Implementing new mandatory programming courses requires careful consideration of curriculum adjustments, resource allocation,
and support for diverse student backgrounds.

Introducing new mandatory courses into an already packed undergraduate curriculum requires careful consideration of trade-offs.
One practical challenge is determining which existing courses or content areas might be adjusted or reduced to make room for the
introductory programming course. Department might consider streamlining the components of their existing portfolios, including the
balance of mandatory and elective modules. An example of building in these two proposed courses, based on the 2024–25 curriculum
for BSc Economics at Brunel University London (UCAS L100 3-year undergraduate programme) and MA(Hons) Economics at the
University of Glasgow (UCAS L150 4-year undergraduate programme), is shown in the Appendix.11

An important consideration is the allocation of resources, including staffing and computational facilities. Providing adequate
support for students learning programming – especially those who may have only little or no prior experience – requires investment in
teaching assistants, computer labs, and access to software. Another challenge could be limited expertise in programming among

9 Examples of additional macroeconomic topics where computational methods significantly improve learning include Strulik (2004), Dalton et al.
(2012) and Bongers et al. (2020).
10 Illustrations of coding-based microeconomic topics can be found in Kochanski (2012), Cobb and Sen (2014), Gorry and Gilbert (2015), and

Kuroki (2021).
11 In Scottish universities, an honours-level undergraduate degree awarded upon completion of a standard 4-year undergraduate programme in

certain subjects, including economics, is traditionally called MA rather than BA or BSc. Thus, the MA(Hons) Economics programme at Glasgow is an
undergraduate degree, comparable to a BA/BSc Economics elsewhere.

N. Hashimzade et al.

International Review of Economics Education 49 (2025) 100310

10

economics instructors. In many instances, however, academic economists have at least some relevant experience acquired as ‘learning
by doing’ in their own research. Specifically tailored training for the instructors assigned to teach these courses can be provided if
necessary using internal resources. The level of specialisation in teaching these courses will be similar to that for teaching mathe-
matical methods.

It is also important to consider the differences in the backgrounds of students. Not all students may have the same level of comfort
with technical subjects. Therefore, the programming courses should be designed with accesibility and inclusivity in mind, with support
structures in place to assist students who may struggle initially. This could include supplementary tutoring sessions, online resources,
and collaborative learning opportunities.

4. Conclusion

The increasing reliance on quantitative methods and computational techniques in economics has made programming proficiency
indispensable for students aiming to effectively analyse complex economic phenomena and contribute to research and policy-making.
Including programming in economics education will enable students to use numerical solution methods, sophisticated analysis of
multimodal data, and scenario simulations. This hands-on approach allows them to solve and test complex economic models in active
ways that traditional teaching methods that rely on ‘toy models’ cannot offer. A deeper, project-based involvement with coding will
also help students improve their critical thinking and problem-solving abilities and to better their understanding of theoretical con-
cepts and how they apply in real life.

Integrating programming into the undergraduate economics curriculum is not merely an enhancement but a crucial step in
modernising economics education to meet the evolving demands of employers of economics graduates in the data-driven world.
Employers across various sectors – including central banks, international organisations, financial institutions, technology firms, in-
surance and healthcare companies – increasingly seek candidates who can apply computational methods to economic analysis,
forecasting, and data-driven decision-making. Equipped with these sought-after skills, the students enhance their competitiveness in
the job market for the roles in the industry and public sector that require analytical rigour and technological adeptness.

Programming proficiency also expands students’ research capabilities. With the computational tools to undertake sophisticated
analyses, students can explore a wider range of topics in their undergraduate dissertations and other research projects. They will be
better prepared to use advanced analytical methods, offer original ideas in economics, and explore today’s economic problems that
require advanced computer skills. This not only enriches their academic experience but also lays a strong foundation for those who
pursue postgraduate studies or research-oriented careers.

By systematically incorporating tailored programming courses – starting with an introductory course that focuses on programming
logic, computational languages, and basic numerical methods, followed by an intermediate-level course that applies these skills to real-
world economic problems – we as educators will address the existing significant technical skills gap. This integration not only improves
employability and bridges the divide between undergraduate and postgraduate studies but also enriches the overall educational
experience for economics students.

Authors’ contribution

Conceptualization: All three authors jointly formulated the research goals and aims.
Methodology: All three authors collaborated on the design of methodology, including models and pedagogical approaches.
Investigation: All three authors were involved in researching existing literature, collecting relevant data, and reviewing current

practices in economics education.
Resources: All three authors identified and provided necessary materials, references, and computing resources for the study.
Writing – Original Draft: All three authors drafted the manuscript text, incorporating ideas and feedback iteratively.
Writing – Review and Editing: All three authors critically reviewed, commented on, and revised all sections of the manuscript at

multiple stages.
Visualization: All three authors collaborated on figures, tables, and other illustrative materials to present the curriculum design and

supporting arguments.
All authors contributed equally and approved the final version of the manuscript.

CRediT authorship contribution statement

Nigar Hashimzade: Conceptualization, Methodology, Investigation, Resources, Writing - Original Draft, Writing - Review and
Editing, Visualization Oleg Kirsanov: Conceptualization, Methodology, Investigation, Resources, Writing - Original Draft, Writing -
Review and Editing, Visualization Tatiana Kirsanova: Conceptualization, Methodology, Investigation, Resources, Writing - Original
Draft, Writing - Review and Editing, Visualization

Declaration of Competing Interest

None.

N. Hashimzade et al.

International Review of Economics Education 49 (2025) 100310

11

Appendix A. Appendix

This Appendix shows two examples of building in these two proposed courses, based on the 2024–25 curriculum for BSc Economics
at Brunel University London (UCAS L100-type 3-year undergraduate programme) and MA(Hons) Economics at the University of
Glasgow (UCAS L150 4-year undergraduate programme).

We use PPE to denote Programming Principles for Economists and APE to denote Applied Programming for Economists course.

Table A1
An Example Based on BSc Economics Curriculum at Brunel University London.

Current Credits Proposed Credits

Year 1: Level 4
Mathematics for Economics and Finance 15 No changes 15
Microeconomic Principles 15 No changes 15
Macroeconomic Principles 15 No changes 15
Financial Markets 15 No changes 15
Introduction to Financial Accounting 30 Intro. to Fin. Acc.* 15
Statistics and Data analysis 30 No changes 30
 PPE 15
Year 2: Level 5
Microeconomics Principles II 30 Micro. Principles II 15
Macroeconomics Principles II 15 No changes 15
Mathematical Economics 15 No changes 15
Money and Banking 15 No changes 15
Introduction to Econometrics 30 No changes 30
Monetary Economics 15 No changes 15
 APE 15
Year 3: Level 6
Game Theory 15 No changes 15
Further Econometrics 15 No changes 15
Advanced Macroeconomics 15 No changes 15
Panel Data 15 No changes 15
2 optional modules 30 No changes 30
2 optional modules or Applied Research Project 30 No changes 30
* Note: Additional considerations may arise if the curriculum must comply with professional accreditation requirements (for

example, from accounting professional bodies).

Table A2
An Example Based on MA(Hons) Economics at the University of Glasgow.

Current Credits Proposed Credits

Year 1: Pre-Honours
Economics Level 1 Courses 40 No changes 40
Other Level 1 Courses 80 No changes 80
Year 2: Pre-Honours
Economics Level 2 Courses 40 No changes 40
Other Level 2 Courses 40 No changes 40
Intro Mathematics & Intro Statistics 20 No changes 20
Other Level 1 Courses 20 PPE 20
Years 3: Junior Honours
Microeconomic Analysis 15 No changes 15
Macroeconomic Analysis 15 No changes 15
Econometrics 1 15 No changes 15
Econometrics 2 15 No changes 15
4 Optional Courses 60 3 Optional Courses 45
 APE 15
Year 4: Senior Honours
Dissertation 30 No changes 30
6 optional courses 30 No changes 30

References

Adams, F.G., Kroch, E., 1989. The computer in the teaching of macroeconomics. J. Econ. Educ. 20 (3), 269–280.
Arjmandi, M., Woo, M.W., Mankelow, C., Loho, T., Shahbaz, K., Auckaili, A., Thambyah, A., 2023. Embedding computer programming into a chemical engineering

course: the impact on experiential learning. Educ. Chem. Eng. 43, 50–57.

N. Hashimzade et al.

http://refhub.elsevier.com/S1477-3880(25)00002-7/sbref1
http://refhub.elsevier.com/S1477-3880(25)00002-7/sbref2
http://refhub.elsevier.com/S1477-3880(25)00002-7/sbref2

International Review of Economics Education 49 (2025) 100310

12

Baldwin, C.J., Cahn, C.R., Forman, J.W., Lehmann, H., Wischmeyer, C.R., 1979. A model undergraduate electrical engineering curriculum. IEEE Trans. Educ. 22 (2),
63–68.

Blanchard, O.J., Kahn, C.M., 1980. The solution of linear difference models under rational expectations. Econometruca 48 (5), 1305–1311.
Blumenstyk, G., 2016.Liberal-Arts Majors Have Plenty of Job Prospects, if They Have Some Specific Skills, Too. The Chronicle of Higher Education, June 9.〈https://

www.chronicle.com/article/liberal-arts-majors-have-plenty-of-job-prospects-iftheyhave-some-specific-skills-too/〉.(accessed August 20, 2024).
Bodie, Z., Kane, A., Marcus, A.J., 2024. Essentials of Investments. McGraw Hill.
Bongers, A., Gomez, T., Torres, J.L., 2020. Teaching dynamic general equilibrium macroeconomics to undergraduates using a spreadsheet. Int. Rev. Econ. Educ. 35,

100197.
Bowen, J., 2004.Motivating civil engineering students to learn computer programming with a structural design project.In: 2004 Annual Conference, 9-931.
Bradley, I., Meeks, R.L., 1986. Matrices and Society. Princeton University Press.
Caballero, M.D., Merner, L., 2018. Prevalence and nature of computational instruction in undergraduate physics programs across the united states. Phys. Rev. Phys.

Educ. Res. 14 (2), 020129.
Carlin, W., Soskice, D., 2015. Macroeconomics: Institutions, Instability, and the Financial System. Oxford University Press.
Carrigan, M., Brooker, P., 2019.Coding for and as social science.〈https://blogs.lse.ac.uk/impactofsocialsciences/2019/07/12/coding-for-and-as-social-science〉

(accessed September 14, 2024).
Charlton, J., Birkett, P., 1992. Should undergraduates studying arts and social sciences be taught computer programming? some evidence. Vocat. Asp. Educ. 44 (1),

107–120.
Chonacky, N., Winch, D., 2008. Integrating computation into the undergraduate curriculum: A vision and guidelines for future developments. Am. J. Phys. 76 (4),

327–333.
Cobb, B.R., Sen, T., 2014. Finding mixed strategy Nash equilibria with decision trees. Int. Rev. Econ. Educ. 15, 43–50.
daSilveiraMonteiro, H.A., daSilvaPitangueira, R.L., 2018. An overview of the numerical modeling and computer programming disciplines of an undergraduate civil

engineering course and the insane project experience. Mecánica Computacional 36 (22), 1039–1048.
Dalton, T.R., Coats, R.M., Luccasen III, R.A., 2012. Exploring easter island economics with excel. Int. Rev. Econ. Educ. 11 (2), 102–114.
Day, E., 1987. A note on simulation models in the economics classroom. J. Econ. Educ. 18 (3), 351–356.
dosSantos, M.T., Vianna Jr, A.S., Le Roux, G.A., 2018. Programming skills in the industry 4.0: are chemical engineering students able to face new problems? Educ.

Chem. Eng. 22, 69–76.
Dunne, B., Blauch, A., Sterian, A., 2005.The case for computer programming instruction for all engineering disciplines. In: 2005 ASEE Annual Conference, 10-1265.
Farrell, J., 2012. Just Enough Programming Logic and Design. Course Technology.
Findley, T.S., 2014. Using MS excel to solve and simulate the life-cycle/permanent-income model of consumption and saving. Int. Rev. Econ. Educ. 16, 129–146.
Fuchs, W., McDonald, A.R., Gautam, A., Kazerouni, A.M., 2024. Recommendations for improving end-user programming education: a case study with undergraduate

chemistry students. J. Chem. Educ. 101 (8), 3085–3096.
Gorry, D., Gilbert, J., 2015. Numerical simulations of competition in quantities. Int. Rev. Econ. Educ. 18, 49–61.
Gould, H., Tobochnik, J., 2001. Integrating computation into the physics curriculum. International Conference on Computational Science. Springer, pp. 1031–1040.
Grindei, L., Constantinescu, C., Bojita, A., Holonec, R., Rapolti, L., 2023.Project-oriented approach in teaching programming to the first year undergraduate students

in electrical engineering. In: 2023 10th International Conference on Modern Power Systems (MPS), 1-4.
Hanlon, M., 2013. Inequality and growth: understanding the link through a simulation. Int. Rev. Econ. Educ. 13, 44–49.
Harper, A., Monks, T., Wilson, R., Redaniel, M.T., Eyles, E., Jones, T., Penfold, C., Elliott, A., Keen, T., Pitt, M., Blom, A., Whitehouse, M.R., Judge, A., 2023.

Development and application of simulation modelling for orthopaedic elective resource planning in England. BMJ Open 13 (12), 1–7.
Hethcote, H.W., 2000. The mathematics of infectious diseases. SIAM Rev. 42 (4), 599–653.
Jackson, M.O., 2008. Social and Economic Networks. Princeton University Press.
Jeffcote, R., 1997. Vocational computing skills and social science students–do they mix? some evidence from an interdisciplinary degree programme. J. Vocat. Educ.

Train. 49 (2), 253–265.
Jenkins, B.C., 2022. A Python-based undergraduate course in computational macroeconomics. J. Econ. Educ. 53 (2), 126–140.
Johnson, D.W., Johnson, R.T., 1999. Learning Together and Alone: Cooperative. Competitive, and Individualistic Learning. Allyn and Bacon.
Junior, C.J.C., Garcia-Cintado, A.C., Junior, K.M., 2022. A modern approach to monetary and fiscal policy. Int. Rev. Econ. Educ. 39, 100232.
Karst, N., 2013. Applied Linear Algebra for Business, Economics and Finance. Mimeo, Babson College.
Kochanski, T., 2012. Toward teaching markets as complex systems: a web based simulation assignment implemented in Netlogo. Int. Rev. Econ. Educ. 11 (2),

102–114.
Kuroki, M., 2021. Using Python and Google Colab to teach undergraduate microeconomic theory. Int. Rev. Econ. Educ. 38, 100225.
Lave, J., Wenger, E., 1991. Situated learning: Legitimate peripheral participation. Cambridge University Press.
Lindfield, G., Penny, J., 2018. Numerical Methods: Using MATLAB. Academic Press.
Liu, Y., 2023.Leveraging the power of ai in undergraduate computer science In 2023 IEEE Frontiers in Education Conference (FIE), 1-5.
Motahar, E., 1994. Teaching modeling and simulation in economics: a pleasant surprise. J. Econ. Educ. 25 (4), 335–342.
Neumuller, S., Rothschild, C., Weerapana, A., 2018. Bridging the gap between undergraduate and graduate macroeconomics. J. Econ. Educ. 49 (3), 242–251.
Notaros, B.M., McCullough, R., Manić, S.B., Maciejewski, A.A., 2019. Computer-assisted learning of electromagnetics through matlab programming of

electromagnetic fields in the creativity thread of an integrated approach to electrical engineering education. Comput. Appl. Eng. Educ. 27 (2), 271–287.
Padgett, J.F., Ansell, C., 1993. Robust action and the rise of medici, 1400-1434. Am. J. Sociol. 98 (6), 1259–1319.
Pejcinovic, B., Wong, P., 2017.Evolution of an introductory electrical engineering and programming course.In: 2017 ASEE Annual Conference & Exposition, Number,

10.18260/1-2–28312, Columbus, Ohio. ASEE Conferences.〈https://peer.asee.org/28312〉.
Pezzino, M., 2016. Understanding strategic competition using numerical simulations and dynamic diagrams in Mathematica. Int. Rev. Econ. Educ. 22, 34–47.
Piaget, J., 1996.Foundations of Constructivism.Longman Publishers USA.
Solis-Garcia, M., 2021. Yes we can! Teaching DSGE models to undergraduate students. J. Econ. Educ. 49 (3), 226–236.
Spiro, R.J., Feltovich, P.J., Feltovich, P.L., Jacobson, M.J., Coulson, R.L., 1991. Cognitive flexibility, constructivism, and hypertext: random access instruction for

advanced knowledge acquisition in Ill-structured domains. Educ. Technol. 31 (5), 24–33.
Strulik, H., 2004. Solving rational expectations models using excel. J. Econ. Educ. 35 (3), 269–283.
University of Sussex, 2024.Career Options with Economics: Top 7 Careers in Economics.〈https://isc.sussex.ac.uk/blog/career-in-economics〉.(accessed September 14,

2024).
Vygotsky, L.S., 1978. Mind in Society: The Development of Higher Psychological Processes. Harvard University Press.

N. Hashimzade et al.

http://refhub.elsevier.com/S1477-3880(25)00002-7/sbref3
http://refhub.elsevier.com/S1477-3880(25)00002-7/sbref3
http://refhub.elsevier.com/S1477-3880(25)00002-7/sbref4
https://www.chronicle.com/article/liberal-arts-majors-have-plenty-of-job-prospects-iftheyhave-some-specific-skills-too/
https://www.chronicle.com/article/liberal-arts-majors-have-plenty-of-job-prospects-iftheyhave-some-specific-skills-too/
http://refhub.elsevier.com/S1477-3880(25)00002-7/sbref5
http://refhub.elsevier.com/S1477-3880(25)00002-7/sbref6
http://refhub.elsevier.com/S1477-3880(25)00002-7/sbref6
http://refhub.elsevier.com/S1477-3880(25)00002-7/sbref7
http://refhub.elsevier.com/S1477-3880(25)00002-7/sbref8
http://refhub.elsevier.com/S1477-3880(25)00002-7/sbref8
http://refhub.elsevier.com/S1477-3880(25)00002-7/sbref9
https://blogs.lse.ac.uk/impactofsocialsciences/2019/07/12/coding-for-and-as-social-science
http://refhub.elsevier.com/S1477-3880(25)00002-7/sbref10
http://refhub.elsevier.com/S1477-3880(25)00002-7/sbref10
http://refhub.elsevier.com/S1477-3880(25)00002-7/sbref11
http://refhub.elsevier.com/S1477-3880(25)00002-7/sbref11
http://refhub.elsevier.com/S1477-3880(25)00002-7/sbref12
http://refhub.elsevier.com/S1477-3880(25)00002-7/sbref13
http://refhub.elsevier.com/S1477-3880(25)00002-7/sbref13
http://refhub.elsevier.com/S1477-3880(25)00002-7/sbref14
http://refhub.elsevier.com/S1477-3880(25)00002-7/sbref15
http://refhub.elsevier.com/S1477-3880(25)00002-7/sbref16
http://refhub.elsevier.com/S1477-3880(25)00002-7/sbref16
http://refhub.elsevier.com/S1477-3880(25)00002-7/sbref17
http://refhub.elsevier.com/S1477-3880(25)00002-7/sbref18
http://refhub.elsevier.com/S1477-3880(25)00002-7/sbref18
http://refhub.elsevier.com/S1477-3880(25)00002-7/sbref19
http://refhub.elsevier.com/S1477-3880(25)00002-7/sbref20
http://refhub.elsevier.com/S1477-3880(25)00002-7/sbref21
http://refhub.elsevier.com/S1477-3880(25)00002-7/sbref22
http://refhub.elsevier.com/S1477-3880(25)00002-7/sbref22
http://refhub.elsevier.com/S1477-3880(25)00002-7/sbref23
http://refhub.elsevier.com/S1477-3880(25)00002-7/sbref24
http://refhub.elsevier.com/S1477-3880(25)00002-7/sbref25
http://refhub.elsevier.com/S1477-3880(25)00002-7/sbref25
http://refhub.elsevier.com/S1477-3880(25)00002-7/sbref26
http://refhub.elsevier.com/S1477-3880(25)00002-7/sbref27
http://refhub.elsevier.com/S1477-3880(25)00002-7/sbref28
http://refhub.elsevier.com/S1477-3880(25)00002-7/sbref29
http://refhub.elsevier.com/S1477-3880(25)00002-7/sbref30
http://refhub.elsevier.com/S1477-3880(25)00002-7/sbref30
http://refhub.elsevier.com/S1477-3880(25)00002-7/sbref31
http://refhub.elsevier.com/S1477-3880(25)00002-7/sbref32
http://refhub.elsevier.com/S1477-3880(25)00002-7/sbref33
http://refhub.elsevier.com/S1477-3880(25)00002-7/sbref34
http://refhub.elsevier.com/S1477-3880(25)00002-7/sbref35
http://refhub.elsevier.com/S1477-3880(25)00002-7/sbref36
http://refhub.elsevier.com/S1477-3880(25)00002-7/sbref36
http://refhub.elsevier.com/S1477-3880(25)00002-7/sbref37
https://peer.asee.org/28312
http://refhub.elsevier.com/S1477-3880(25)00002-7/sbref38
http://refhub.elsevier.com/S1477-3880(25)00002-7/sbref39
http://refhub.elsevier.com/S1477-3880(25)00002-7/sbref40
http://refhub.elsevier.com/S1477-3880(25)00002-7/sbref40
http://refhub.elsevier.com/S1477-3880(25)00002-7/sbref41
https://isc.sussex.ac.uk/blog/career-in-economics
http://refhub.elsevier.com/S1477-3880(25)00002-7/sbref42

	Integrating programming into the modern undergraduate economics curriculum
	1 Introduction
	2 The case for programming in undergraduate economics education
	2.1 Programming skills and the modern job market
	2.2 Current approaches and their limitations
	2.3 Related literature

	3 Proposed integrated programming curriculum
	3.1 Programming principles for economists
	3.1.1 Course design
	3.1.1.1 Programming logic and computer operations
	3.1.1.2 Language-specific basics of programming
	3.1.1.3 Introduction to numerical algorithms and their implementation

	3.1.2 Course structure and assessment

	3.2 Applied programming for economists
	3.2.1 Course design
	3.2.2 Proposed topics
	3.2.2.1 Solving and simulating linear dynamic systems
	3.2.2.2 Solving and Simulating Non-Linear Dynamic Systems
	3.2.2.3 Markov chains
	3.2.2.4 Portfolio choice
	3.2.2.5 Social networks
	3.2.2.6 Rational expectations in macroeconomics
	3.2.2.7 Real business cycle model

	3.2.3 Course structure and assessment

	3.3 Teaching methods for programming courses
	3.4 Integration with the economics curriculum
	3.5 Trade-offs and practical considerations

	4 Conclusion
	Authors’ contribution
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Appendix A Appendix
	References

