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Growing Random Networks with Fitness
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Three models of growing random networks with fitness dependent growth rates are analysed using
the rate equations for the distribution of their connectivities. In the first model (A), a network
is built by connecting incoming nodes to nodes of connectivity k and random additive fitness η,
with rate (k − 1) + η. For η > 0 we find the connectivity distribution is power law with exponent
γ =< η > +2. In the second model (B), the network is built by connecting nodes to nodes of
connectivity k, random additive fitness η and random multiplicative fitness ζ with rate ζ(k− 1)+ η.
This model also has a power law connectivity distribution, but with an exponent which depends on
the multiplicative fitness at each node. In the third model (C), a directed graph is considered and
is built by the addition of nodes and the creation of links. A node with fitness (α, β), i incoming
links and j outgoing links gains a new incoming link with rate α(i + 1), and a new outgoing link
with rate β(j + 1). The distributions of the number of incoming and outgoing links both scale as
power laws, with inverse logarithmic corrections.

PACS numbers: 02.50.cw, 05.40.-a, 89.75Hc.

I. INTRODUCTION

Recently, there has been a considerable interest in the
growth properties of human interaction networks such as
the world wide web [1,2], the citation distribution of pub-
lications [3], the electrical distribution systems [4] and the
social networks [5]. These networks all have very different
physical forms, with different definitions for their nodes
and links. However they appear to display considerable
topological similarity, having connectivity distributions
which behave as power laws. These distributions cannot
be explained by traditional random graph theory, which
is based on randomly connecting together a fixed num-
ber of nodes, and results in Poisson distributions for the
connectivity [6,7].

Models of growing random graphs were first introduced
by Barabási and Albert [4], who identified two impor-
tant features that these graphs must possess in order to
display power law distributed connectivities. These fea-
tures are (i) networks grow by addition of new nodes and
(ii) new nodes preferentially attach to highly connected
nodes. Consideration of only these elements in [4] led to
the conclusion that large networks can self-organize into
a scale free state. Since then, many other models [8–17]
have emerged to study various properties of these graphs
such as aging [8,13], connectivity [11], inheritance [12],
permanent deletion of links and nodes [16] and their ef-
fect on a growing network topology. The main conclusion
of all these models is that incorporation of additional fea-
tures changes the scaling behaviour of growing random
networks. However it is still not understood why most
of the empirical work observes power law exponents be-
tween 2 and 3, and the analytical work recovers expo-
nents that range between 2 and ∞ [8,14]. Furthermore,
some of the more detailed features of the networks have
not yet been captured [2,19].

In this paper, based on an idea introduced by [10] we
study the influence of quenched disorder which we call fit-

ness, on the growth rates of networks. Similar ideas have
been studied in other models, either through the initial
attractiveness of a node [9] or the fitness of a site to com-
pete for links [10]. However, our approach is somewhat
different to these models. We use a rate equation ap-
proach [11] to generalize and solve three network models
with different growth rates.

In Sec. II, we investigate the effect of additive ran-
domness, while the effect of multiplicative randomness is
analyzed in Sec. III. In Sec. IV, we assume the network
is a directed graph [7,18–20] and both incoming and out-
going links are considered, to model the growth of the
world wide web. We summarize our results and draw
conclusions in the last section.

II. MODEL A

In this model, we consider a network where a fitness η,
chosen from a probability distribution fA(η), is assigned
to each node. The network is built by connecting incom-
ing nodes to nodes of connectivity k and fitness η with
rate (k − 1) + η, that is to say, there is a linear prefer-
ential attachment to nodes with already high number of
links and a high fitness η. This simply means that not
all nodes which k existing links are equivalent because k
does not enclose the full information about the popularity
of a node. For instance, if a node is a web site, η could be
a measure of the number of related TV commercials, or
tube advertisements. Using the rate equation approach
we describe the time evolution of the average number of
nodes of connectivity k and fitness η, Nk(η), as

∂Nk(η)

∂t
=

1

M
[(k + η − 2)Nk−1(η) − (k + η − 1)Nk(η)]

+δk1fA(η). (1)

The first term on the right hand side of Eq. (1) represents
the increase in the number of sites with k links when a site



with k − 1 links gains a link. The second term expresses
the loss of sites with k links when they gain a new link.
The last term accounts for the continuous addition of
nodes of connectivity 1 and fitness η with probability
fA(η). The multiplicative factor M is defined by

M(t) =
∑

k,η

(k + η − 1)Nk(η), (2)

which ensures that the equation is properly normalized.
Before going any further, let us make some remarks.
First, to obtain a growing network, we need k−1+η > 0
for all k, so that η > 0, because from the definition of
the model, each site is created with one link. Second, all
sites associated with η = 1 have the simple linear pref-
erential attachment of earlier models [4,11,14]. Finally,
fA(η) can either be discrete or continuous.

We analyse the model from the rate equation starting
with the moments of Nk(η) defined by

Mij(t) ≡
∑

k,η

kiηjNk(η). (3)

We can easily show that

∂M00

∂t
= 1,

∂M10

∂t
= 2 and

∂M01

∂t
=< η > (4)

where < η > is the average value of the fitness. For
large times, the initial values of the moments become
irrelevant, so that we get

M(t) = M10(t) + M01(t) − M00(t) = [< η > +1]t. (5)

Similarly, it can be shown that Nk(η, t) and all its mo-
ments grow linearly with time. Therefore, we can write
Nk(η, t) = tnk(η) and M(t) = mt. The latter relation
implies m =< η > +1, while we insert the former in
Eq.(1) to obtain the recurrence relation

(k + η + m − 1)nk(η) = (k + η − 2)nk−1(η) + mδk1fA(η).

(6)

Solving Eq. (6), we obtain

nk(η) =
Γ(k + η − 1)

Γ(k + η + m)

Γ(η + m)

Γ(η)
mfA(η). (7)

In particular, the rate of change of the total number of
links connected to the sites with fitness η is equal to

∞
∑

k=1

knk(η) =

(

1 +
η

< η >

)

fA(η). (8)

For large k, Eq. (7) is equivalent to

nk(η) ∼ k−(m+1)
∼ k−(<η>+2). (9)

The distribution scales as a power law nk(η) ∼ k−γ

with an exponent γ =< η > +2, which depends only

on the average fitness < η >, and consequently is the
same for every node. Hence, the introduction of an ad-
ditive random fitness at each node, modifying the pref-
erential attachment process, generates a power law con-
nectivity distribution. The exponent of this power law is
shifted by < η > −1 with respect to its value when the
preferential attachment is simply linear. Of course, for
fA(η) = δ(η − 1),

nk ∼ k−3, (10)

which is, as expected, the result obtained in previous
models without fitness [4,11,14].

III. MODEL B

In the previous section, we introduced a model where
linear preferential attachment is decorated by a random
additive process to construct an independent source of
preferential attachment. However, even if it seems rea-
sonable to assume that the attachment is proportional
to the number of already existing links, there is no spe-
cific reason to assume that the coefficient of proportion-
ally is the same for every node. In this section, we con-
sider a network where each node is associated to a triplet
(k, η, ζ). The network is built by adding a new node at
each time step and connecting it to a node with random
additive fitness η, random multiplicative fitness ζ and
connectivity k with rate ζ(k − 1) + η. Where η and ζ
are quenched variables, initially chosen from a probabil-
ity distribution fB(η, ζ). This model is a generalisation
of that introduced in [10], and Model A is recovered when
fB(η, ζ) = fA(η)δ(ζ −1). The multiplicative fitness sym-
bolizes the fact that, even if the growth rate is propor-
tional to already existing links, there can exist different
categories of nodes which attract new links at different
rates.

The rate equation for this model, which describes the
time evolution of the average number of nodes with
triplet (k, η, ζ), Nk(η, ζ), is given by

∂Nk(η, ζ)

∂t
=

1

M
([ζ(k − 2) + η]Nk−1(η, ζ)

−[ζ(k − 1) + η]Nk(η, ζ)) + δk1fB(η, ζ). (11)

The terms on the right-hand side of this equation are
analogous to those in Eq. (1), with the new preferential
rates of growth. The normalization factor here is

M(t) =
∑

k,η,ζ

[ζ(k − 1) + η] Nk(η, ζ). (12)

To solve Eq. (11), we employ the same technique as in
the previous section, defining the moments of Nk(η, ζ) by

Mijl ≡
∑

k,η,ζ

kiηjζlNk(η, ζ). (13)
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Looking at the lowest moments of Nk(η, ζ), we find

∂M(t)

∂t
=

1

M

∑

k,η,ζ

ζ[ζ(k − 1) + η]Nk(η, ζ)+ < η >, (14)

where < η > is the average additive fitness. Again, it
is easy to prove that Nk(η, ζ, t) and all its moments are
linear functions of time. Hence, we define m and nk(η, ζ)
through M(t) ≡ mt and Nk(η, ζ, t) ≡ tnk(η, ζ), respec-
tively. We refer to m as the reduced moment from now
on.

Eq. (14) implies that the reduced moment is a solution
of

m =
1

m

∑

k,η,ζ

ζ[ζ(k − 1) + η]nk(η, ζ)+ < η > . (15)

From Eq. (11), we obtain

[ζ(k − 1) + η + m]nk(ζ, η) = [ζ(k − 2) + η]nk−1(ζ, η)

+mδk1fB(ζ, η). (16)

The previous relation yields

nk(η, ζ) =
Γ

(

k + η
ζ
− 1

)

Γ
(

k + η+m
ζ

)

Γ
(

η+m
ζ

)

Γ
(

η
ζ

)

m

ζ
fB(η, ζ). (17)

When k → ∞,

nk(η, ζ) ∼ k−(1+ m
ζ ). (18)

The growth rate of the number of sites associated with
a triplet (k, η, ζ), scales asymptotically as a power law
nk ∼ k−γ , with an exponent γ = 1+m/ζ, which depends
on the fitness at a particular site. It means that, unlike
the additive fitness, the multiplicative fitness generates
multiscaling, with a different power law for each fitness.

To complete the solution of the model, we need to ob-
tain an expression for the reduced moment, m. For this
purpose, we introduce a generating function defined as

g(x, η, ζ) ≡

∞
∑

k=1

xknk(η, ζ). (19)

Eq. (16) gives

g(1, η, ζ) = fB(η, ζ) =

∞
∑

k=1

nk(η, ζ) (20)

and

g′(1, η, ζ) =
η − ζ + m

m − ζ
fB(η, ζ) =

∞
∑

k=1

knk(η, ζ). (21)

Substituting in Eq. (15) leads to an implicit equation for
m,

∫

fB(η, ζ)
η

m − ζ
dη dζ = 1 (22)

which cannot be solved explicitly. We can define nk, the
connectivity distribution of the entire network, as

nk ≡

∫

fC(η, ζ)nk(η, ζ)dηdζ. (23)

As an example, we consider fB(η, ζ) = 1, 0 ≤ η ≤ 1
and 0 ≤ ζ ≤ 1. Solving Eq. (22) gives m = 1/(1−e−2) =
1.156 and, integrating Eq. (17) over η and ζ within the
chosen limits,

nk =

∫ 1

0

∫ 1

0

k−(m
ζ

+1)
Γ

(

η+m
ζ

)

Γ
(

η
ζ

)

m

ζ
dηdζ. (24)

We find that the connectivity distribution in the asymp-
totic limit k → ∞ is

nk ∼
1

ln k
k−(1+m). (25)

This is simply a power law form multiplied with an in-
verse logarithmic correction and substitution of m yields

nk ∼
1

ln k
k−2.156. (26)

By using fB(η, ζ) = δ(ζ − η) with 0 ≤ ζ ≤ 1, the solu-
tion obtained by [10] is recovered, which has the same
functional form as Eq. (25) with a power law exponent
γ = 2.255.

We can solve for the large k behaviour of the connec-
tivity distribution for a number of different forms of the
fitness. For instance, if

fB(η, ζ) = aζa−1δ(ζ − η) (27)

and 0 ≤ ζ ≤ 1, a > 0, then the connectivity distribution
behaves as

nk ∼
1

ln k
k−(m+1) (28)

as k → ∞ and m(a) satisfies
∫ 1

0

aζa

m − ζ
dζ = 1. (29)

Using this equation it is simple to show that as a → 0,
m → 1 and as a → ∞, m → 2. In Fig. (1) this equation
is solved numerically. We find that 1 ≤ m ≤ 2, implying
that the power law exponent is in the range of (2,3) which
is in very good agreement with the experimental results
[4,3,2].

Another example to consider is when

fB(η, ζ) = 6ζ(1 − ζ)δ(ζ − η) (30)

with 0 ≤ ζ ≤ 1. In this case the connectivity distribution
takes the form

nk ∼
1

(ln k)2
k−(m+1). (31)

as k → ∞ where m = 1.550.
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FIG. 1. m against a for Model B when the multiplicative
fitness is distributed as a power law with exponent a−1. The
inset is the region close to the origin.

IV. MODEL C

In the previous two models, the links were undirected
and the number of links and nodes were equal, which is
not a good model for some growing networks such as the
www. In this section, a directed network is built by node
and link addition. At each time step, with probability p,
a new node is added and with probability q = 1 − p, a
new directed link is created between two nodes. A node
with fitness (α, β), i incoming links and j outgoing links,
will gain a new incoming link with rate α(i+1) and a new
outgoing link with rate β(j + 1). Then, the connectivity
distribution Nij(α, β), the average number of nodes with
i incoming and j outgoing links, evolves as

∂Nij

∂t
(α, β) =

qα

M1
[iNi−1j(α, β) − (i + 1)Nij(α, β)]

+
qβ

M2
[jNij−1(α, β) − (j + 1)Nij(α, β)]

+p δi0δj0 fC(α, β). (32)

The first term in the first square brackets represents the
increase of Nij nodes when nodes with i − 1 incoming
and j outgoing links, gain an incoming link and the sec-
ond term represents the corresponding loss. The second
square brackets contain the analogous terms for outgoing
links and the last term ensures the continuous addition
of new nodes with fitness α, β with probability fC(α, β).
M1 and M2 are the normalization factors, given by

M1 =
∑

ijαβ

(i + 1)αNij(α, β) and (33)

M2 =
∑

ijαβ

(j + 1)βNij(α, β). (34)

From the definition of the model, one has

∑

ijαβ

Nij(α, β) = pt, (35)

which simply states that nodes are added with probabil-
ity p. We also have

∑

ijαβ

αNij(α, β) = p < α > t (36)

∑

ijαβ

βNij(α, β) = p < β > t. (37)

We define nij(α, β) through Nij(α, β, t) ≡ tnij , where
from now on we drop the explicit (α, β) dependence to
ease the notation. Also, we can define the reduced mo-
ments m1 and m2 by M1(t) ≡ tm1 and M2(t) ≡ tm2.
Hence we have

m1 =
q

m1

∑

ijαβ

α2(i + 1)nij + p < α > (38)

and similarly

m2 =
q

m2

∑

ijαβ

β2(j + 1)nij + p < β > . (39)

From Eq. (32), we obtain

nij [m1m2 + m1qβ(j + 1) + m2qα(i + 1)]

= m2 q α ini−1j + m1 q β jnij−1

+m1 m2 p δi0δj0 fC(α, β). (40)

Now, we consider the incoming link distribution

gi =

∞
∑

j=0

nij (41)

and the outgoing link distribution

hj =

∞
∑

i=0

nij . (42)

From Eq. (40), the recurrence relations

(

i + 1 +
m1

qα

)

gi = igi−1 +
m1p

qα
δi0fC(α, β) (43)

and
(

j + 1 +
m2

qβ

)

hj = jhj−1 +
m2p

qβ
δj0fC(α, β) (44)

are obtained. Solving these gives the incoming and the
outgoing links distributions

gi =
Γ(i + 1)Γ(m1

qα
+ 1)

Γ(m1

qα
+ i + 2)

m1p

qα
fC(α, β) (45)

and

hj =
Γ(j + 1)Γ(m2

qβ
+ 1)

Γ(m2

qβ
+ j + 2)

m2p

qβ
fC(α, β). (46)
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In the asymptotic limit both distributions are power laws;
as i → ∞, gi ∼ i−γin with γin = (1 + m1/qα) and for
j → ∞, hj ∼ j−γout with γout = (1 + m2/qβ).

The appearance of both multiplicative fitnesses α and
β in the exponents of the power laws, reflects the fact that
growing networks such as the www are evolving on the
basis of competition. The fitnesses here, can be thought
of as a measure of attractiveness of the content of a web
page. This means that within a particular commercial
sector on the web, such as search engines, e-mail ac-
count providers, the software design, films, music and
specific information, the fittest competitors have man-
aged to gather millions of registered users in a very short
span of time.

To express these exponents numerically we will find
implicit equations for m1 and m2. Therefore, we use a
generating function defined as

g(x, y, α, β) =

∞
∑

i,j=0

xiyjnij (47)

to find equations for m1 and m2. We have

g(1, 1) = pfC(α, β) (48)

and

∂g

∂x

∣

∣

∣

∣

x=y=1

=
pqα

m1 − qα
fC(α, β). (49)

Hence

∞
∑

i,j=0

inij =
pqα

m1 − qα
fC(α, β) (50)

and by an identical method

∞
∑

i,j=0

jnij =
pqβ

m2 − qβ
fC(α, β). (51)

Substitution of the above relations into Eq. (38) and
Eq. (39) gives implicit equations for m1 and m2,

p
∑

α,β

αfC(α, β)

m1 − qα
= 1 (52)

and

p
∑

α,β

βfC(α, β)

m2 − qβ
= 1, (53)

respectively. The summations run over all possible val-
ues of α and β and can be replaced by integrations for
continuous distributions.

First, we consider a general case; if

fC(α, β) = fC(β, α) (54)

then the distribution of incoming and outgoing links is
the same, gi = hi.

As with Model B, we will consider two particular non-
trivial distributions of the fitness. For power law fitnesses

fC(α, β) = abαa−1βb−1 (55)

we find that the distribution of incoming links is given
by

gi ∼
1

ln i
i−(1+

m1

q
) (56)

and analogously for outgoing links

hj ∼
1

ln j
j−(1+

m2

q
) (57)

for large i and j. The parameter m1 is a function of both
a and p and m2 is a function of b and p. It is a simple
matter to show that m1(a) = g(a) and m2(b) = g(b)
where g(c) satisfies

p

∫ 1

0

c xc

g(c) − qx
dx = 1. (58)

Consequently, as a → 0, m1 → q and as a → ∞, m1 →

1. Thus by picking a appropriately, the power law in
the distribution of incoming links Eq. (56) can have an
exponent with any value between 2 and 1+1/q. A similar
situation occurs with m2(b).

The fitnesses for incoming and outgoing links can be
more strongly coupled together. An example of this is

fC(α, β) =

{

2 α > β,
0 β > α

(59)

where we find that for large i and j, gi has the same form
as Eq. (56) and

hj ∼
1

(ln j)2
j−(1+

m2

q
). (60)

The stronger coupling between the fitnesses is reflected
in the different functional forms of the probability distri-
butions for incoming and outgoing links.

V. DISCUSSION AND CONCLUSIONS

We have studied three growing network models with
the consideration of two key elements in mind; (i) net-
works are continuously growing, (ii) the attachment pro-
cess is preferential. In the first model in Sec. II, we
found that the introduction of random additive fitness
(quenched disorder) η at each node modified the prefer-
ential attachment process and the generated network had
a power law connectivity distribution with an exponent
γ =< η > +1, where only the average value of the fitness
is of importance. However, introduction of both random
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additive fitness η and random multiplicative fitness ζ in
Sec. III, led to a scale free network where the exponent
γ = 1+m/ζ depends on the fitness ζ at each node. When
the fitnesses were distributed with a power law distribu-
tion between 0 and 1, the connectivity distribution of the
whole system was power law with a logarithmic correc-
tion, with the value of the exponent in the power law
between 2 and 3.

In Sec. IV we studied a directed graph which was
allowed to form loops in an attempt to model a differ-
ent class of growing random graphs. The incoming and
the outgoing link distributions exhibit power law forms
with exponents corresponding to γin = (1 + m1/qα) and
γout = (1 + m2/qβ) depending upon the values of the
fitness at each site. Choosing a particular fitness distri-
bution and calculating the connectivity distribution for
the whole system often results in power laws mediated by
logarithmic corrections. We gave two examples of such
behaviour.

There are a great many examples of random growing
graphs in science, social science, technology and biology.
Only a fraction of these systems have been characterised
experimentally. Whilst the systems studied in this pa-
per are not as theoretically appealing as those with pure
power law forms, it seems likely that some of the real
random growing networks will be described by models of
this particular type.
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