
Design of Scalable Population of Reinforcement Learning
Agents for Autonomous 5G Radio Link Control

John Cosmas, Kareem Ali, Ali Mahbas
Prince Kwaku Boakye, John Miguel

Brunel University London
Uxbridge, Middlesex

john.cosmas@brunel.ac.uk

Victor Gabillon, Alexandre
Kazmierowski, Lewis Sear,
Thales SIX GTS,
Gennevilliers (Hauts-de-Seine), France

Abstract— This research demonstrates how MATLAB's
Reinforcement Learning Markov Decision Process (MDP)
Example Model can be used to design Radio Link Control MDP
Reinforcement Learning (RL) agent. Since the number of agents
in MATLAB’s RL toolbox is not scalable beyond one agent, then
an agent scalability scheme is required to design RL agents in
MATLAB’s RL toolbox and then realize multiple lightweight
simultaneously operable Python instances of it for each of the
multiple user equipment UE in a network.

Keywords—MATLAB Reinforcement Learning Tool Box, 5G
Autonomous Radio Link Control Scalable population of
Reinforcement Learning Agents

I. INTRODUCTION

The goal of this research is to first train a Markov Decision
Process (MDP) radio link control model Reinforcement
Learning (RL) agent for 5G Radio Link Control using
MATLAB’s Reinforcement toolbox by building on its RL
MDP Example Model [9] and then secondly use the Thales
TheRLib MA-DRL Tool [1] to produce many light weight
Python instances of these agents so that they can be
simultaneously applied to multiple user equipment instances
(UE) in a 5G Cell-Free Network (CFN) model.

MATLAB’s Network Topology Visualisation of Intercell
Interference Model as shown in Figure 1 was used as a
suitable CFN model.

Fig. 1. MATLAB’s Network Topology Visualisation of Intercell
Interference

This model analyses the interference experienced by UE in the
target green cell due to the effect of simultaneous
transmissions on the same carrier frequencies of the adjacent
red Cells, as shown in Figure 1. By assuming that all the UEs
have been clustered to their nearest gNB this can be
considered as a suitable CFN model [12].

The objective of this research is to train the RL agents for each
of the twelve User Equipment (UE) in the CFN to select
Modulation and Coding Scheme (MCS)/ Channel Quality
Indicator (CQI) to maximise their throughputs. The problem
is that the number of agents in MATLAB’s RL toolbox is not
scalable beyond one agent. Therefore, an agent scalability
scheme is required to design RL agent in MATLAB’s RL
toolbox and then realise multiple lightweight simultaneously
operable Python instances of it for each of the 12 UEs.

This is an example of independent learning category of Multi
Agent Reinforcement Learning (MARL) [17], which if
combined with slicing resource allocation scheduler may
require to be enhanced by applying cooperative or competitive
agent training and execution approaches.
MATLAB’s examples of RL applications are not so easy to
be applied to any other application other than the one it has
been designed for because, while the main program
GenericMDPExample.m is easy to edit, there is no easy way
of overriding the important move_() function in the
AbstractMDP.m file, adding more simulation parameters in
the GenericMDP.m file and modifying SeriesTrainer.m for
providing a visual feedback of the episode number and for
starting at the best state at start of each episode, since these
files are all part of the MATLAB system files, which under
normal circumstances do not have write permission to modify.
We overcame this constraint by installing MATLAB on our
own Linux workstation, where we could modify write
permissions.
The architectural impact of a scalable population of RL
Agents is they can be trained from dataset on MATLAB RL
toolbox and deployed to Open Radio Access Network
(ORAN) and multiple UEs thereby producing a workflow for
training autonomous networks.

II. MODULATION & CODING SCHEME &
CHANNEL QUALITY INDICATOR

A. Existing RLC Scheme
In the 5G Radio Access Network (RAN) design, the MCS is a
key mechanism that controls how many meaningful bits may
be conveyed by a single Resource Block (RB) in the wireless
communication channel. The modulation scheme and the
coding rate are two essential components that the MCS
establishes. The coding rate affects the ability of the
transmitted data to adjust for errors, whereas the modulation
technique determines how information is encoded into the
carrier signal. The right MCS must be chosen in order to
maximise data flow and achieve dependable communication
[11] of which table 5.1.3.1-1 in this reference shows MCS
index and their corresponding spectral efficiency. Higher
MCS levels provide higher data rates, but they also call for
more favourable channel conditions [2]. The higher the MCS
the greater the throughput but also the greater the probability

This article has been accepted for publication in a future proceedings of this conference, but has not been fully edited. Content may change prior to final publication.
Citation information: DOI: 10.1109/WCNC57260.2024.10570617, 2024 IEEE Wireless Communications and Networking Conference (WCNC)

Copyright © 2024 Institute of Electrical and Electronics Engineers (IEEE). Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or
future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any
copyrighted component of this work in other works. See: https://journals.ieeeauthorcenter.ieee.org/become-an-ieee-journal-author/publishing-ethics/guidelines-and-policies/post-publication-policies/.

of a Transport Block Error (BLER). If a BLER occurs then the
whole Transport Block is discarded and a throughput is zero
with request for retransmission made using the Hybrid
Automatic Repeat Request (HARQ).

In conventional operation, 5G RAN uses the CQI to
dynamically modify the MCS to suit the various channel
circumstances that various UEs may encounter based on
heuristic equations [14] and look-up tables [15] that have
been characterised and pretrained from network simulations
[15]. This does not always select the most optimum MCS.
Adopting a RL RLC solution, which continuously trains
itself, could potentially select the most optimum MCS.

B. Proposed New RL RLC Scheme
The principle of operation for RL downlink transmission is
that each UE records its assigned MCS at the MAC layer and
evaluates the successful outcome of its assigned Transmission
Block as a Packet Data Unit (PDU) using Cyclic Redundancy
Check (CRC) from the HARQ ACK/NACK in the PHY layer
and then based on this outcome the UE decides to change the
MCS by increasing/decreasing/remain-same in order to
maximise Throughput/Efficiency and notifies its gNB, as
shown in Figure 2. The merit of this approach is that the UE
decides for itself the optimum MCS to maximise throughput.

Fig. 2. Reinforcement Learning control RAN Link

III. THERLIB MULTI-AGENT DEEP

REINFORCEMENT LEARNING (MA-DRL) TOOL

In the DRL control of the RAN links, the UE decides on its
action to change the MCS to support its needs based on its
sensing of the state of the environment based on MATLAB’s
Intercell Interference Model.

Fig. 3. Relationship between Network Simulation, MATLAB’s MDP
Model

How MATLAB Network Simulation of the RL Radio Link
Control relate to the MDP Radio Link Control model using
MATLAB RL toolbox is illustrated is Figure 3. Each was
modelled independently with internally generated MCS

up/down/same actions and BLER result. These need to be
integrated with each other with 12 instances of the MATLAB
MDP for each UE. The top half of the figure shows the two
software as separately developed simulations. The bottom half
of the figure shows how these two softwares are integrated.

Fig. 4. Relationship between Network Simulation, MATLAB’s MDP and
TheRLib MA-DRL platform

The high-level architecture of a pure-MATLAB integration is
as shown in Figure 4. The “ MDP radio link control model
using MATLAB’s RL toolbox” is broken down into the
“environment” and “agent” objects that are used by the
MATLAB RL toolbox and the trained “agent” is used for with
the Network Simulation. The small-dimensional agent trained
on the MDP model, which is leveraged to cope with
performance and scale because 12 instances of the agent, is
required for each of the 12 UE in the Network Simulation.

TheRlib can also be used to train and deploy the agent using
MDP as shown in Figure 6.

Fig. 5. Applying TheRLib MA-DRL platform for both training and
deployment of MDP

Note that TheRLib interacts with the MDP “environment” and
manages the training process instead of the MATLAB RL
toolbox. When interacting with the Network Simulation, the
“TheRLib MA-DRL Deployment component” code is in a
simple script that loads a serialized TheRLib agent from a data
file, instantiates the MATLAB RL environment and performs
the agent-interaction environment. The merit of this approach
is that an instance of TheRLib agent has a much smaller
footprint and computes much more efficiently when using
higher-dimensional states than the MATLAB RL toolbox
version of it, so can be used to train and deploy many of them
such as the 12 UEs required in the network simulation.

TheRLib can be used to train and deploy an agent to the MDP
Environment shown in Figure 6. The agents can either be
Actor-Critic Networks trained with algorithms such as soft
actor-critic or Deep Q-Networks trained with Q-learning.

Network Simulation of
the Reinforcement
Learning Radio Link

Control

Markov Decision
Process (MDP) radio
link control model

using Matlab’s
Reinforcement

toolbox

BLER

MCS up/down/same

Network Simulation of
the Reinforcement
Learning Radio Link

Control

Markov Decision
Process (MDP) radio
link control model

using Matlab’s
Reinforcement

toolbox

MCS up/down/same MCS up/down/same
BLER BLER

Network Simulation
of the Reinforcement
Learning Radio Link

Control
BLER

MCS up/down/same

Network Simulation
of the Reinforcement
Learning Radio Link

Control

Markov Decision
Process (MDP) radio
link control model

using Matlab’s
Reinforcement

toolbox

MCS
up/down/same BLER BLER

Markov Decision Process
(MDP) radio link control

environment
(rlMDPEnv)

MCS up/down/same

BLER

Radio link
control
agent

(rlQAgent)

Current MCS

Radio link control agent
(rlQAgent) trained on
the MDP environment

Current MCS Trained
rlQAgent
- QMatrix

This article has been accepted for publication in a future proceedings of this conference, but has not been fully edited. Content may change prior to final publication.
Citation information: DOI: 10.1109/WCNC57260.2024.10570617, 2024 IEEE Wireless Communications and Networking Conference (WCNC)

Copyright © 2024 Institute of Electrical and Electronics Engineers (IEEE). Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or
future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any
copyrighted component of this work in other works. See: https://journals.ieeeauthorcenter.ieee.org/become-an-ieee-journal-author/publishing-ethics/guidelines-and-policies/post-publication-policies/.

Here the merit is that multiple states can be incorporated such
as for example MCS/CQI states for Radio Link Control and
RB Capacity states for a Slice Capacity Control system.
Training can be performed with the MDP radio link control
environment, or a refined version with more complex states,
if it provides the RL environment interface, i.e., step and reset
functions.

Fig. 6. Applying TheRLib MA-DRL platform for Neural Network training
and deployment

The interface to The RLib tool is shown in Figure 7 where
those agent successfully trained into Python code agents are
shown in green whilst those unsuccessfully trained in dark
blue.

Fig. 7. User Interface to The RLib tool

IV. RL MDP 5G RADIO LINK CONTROL

MATLAB DEVELOPMENT ENVIRONMENT

A. Markov Decision Process (MDP) approach

The MDP approach in RL for the 5G RAN setup entails
characterising a series of states, actions, transition
probabilities, and rewards. The RL’s chooses to increase RAN
performance are included in the action space. The possibility
of changing to a new state depending on activities is shown by
transition probabilities, which reflect environmental
uncertainty. State-action combinations are given numerical
rewards via the reward function, which directs the agent
towards more advantageous RAN configurations [10].
When applying RL to an MDP, the RL agent discovers the
best course of action through interactions with the
environment. For the purpose of making wise judgements, the
agent experiments with various activities, monitors results
(rewards), and updates its knowledge. The agent develops
methods to lessen interference, efficiently manage resources,
and improve overall RAN performance over time. By using
an adaptive method, the agent may configure the 5G RAN in
a way that is effective and intelligent and improves wireless
communication capabilities while dynamically responding to
changes in the wireless environment [3].

B. Adaptive MCS Selection using MDP with Block
Error Rate

The reinforcement learning-based methodology was used to
integrate MCS, CQI, and BLER. The MDP environment,

which models the 5G RAN setup, was interacted with by the
reinforcement learning agent. In order to choose the proper
MCS levels for each UE in the system, the agent obtains
knowledge from the CQI feedback and BLER data. The agent
seeks to maximise cumulative rewards by optimising the MCS
selection based on real-time channel circumstances, which
equates to obtaining greater data rates while ensuring
dependable and error-free communication [2].

The core of our approach lies in the move_function, which
simulates state transitions in the MDP. The function accepts
an action, representing the MCS to be used, and returns the
next state, the received reward, and a flag indicating whether
a terminal state has been reached. Here, the reward R is set to
zero if a block error occurs.

Fig. 8. MCS,CQI & BLER

If no block error has occurred then then the training episode is
not terminated early and is allowed to continue for the whole
frame of 20 slots when it is terminated, which is shown in the
Figure 8. Whereas if a single block error has occurred then the
training episode is terminated, since less than 1 in 20 block
errors or < 5% is allowed. Less than 2 in 20 block errors or <
10% is allowed then 2 block errors must have occurred for the
training episode to be terminated. The methodology for
developing an agent in a MDP environment in MATLAB can
be summarized into below four key steps and their sub-tasks.
1. Creating the MDP Environment
2. Creating the Q-Learning Agent
3. Integrate the MDP Environment with Q-Learning Agent
4. Training and Validating the Q-Learning Agent

1. CREATING MDP ENVIRONMENT
The first step in working with a MDP involves establishing
the fundamental elements that define the environment in
which the agent will operate. This foundational step has
several sub-steps:

a) DEFINING THE STATES
The createMDP function in MATLAB is used to construct an
MDP model in the initialisation phase. This function allows
the user to specify the number of states and actions required
for the MDP framework. For the purposes of this project, the
MDP is designed with 15 states that correspond to the 15 CQI
indexes and their corresponding MCS states and three possible
actions: ‘UP’, ‘DOWN’; and ‘SAME’; These actions signify
the choices available to the RL agent at each state. In this
context, each state within the 5G RAN is representative of a
specific configuration or situation [3].

b) DEFINING THE STATE TRANSITION MATRIX
The state-action transition matrix (MDP.T) is a three-
dimensional matrix where each element MDP.T(i, j, k)

Markov Decision Process
(MDP) radio link control

environment
(rlMDPEnv)

MCS up/down/same

BLER
Current MCS

Reward

Training: using
papers/classic_control/matlab_train.py
Exploitation: using
SoftActorCriticAgent.decide(state)

TheRLib MA-DRL Platform

Storage: SoftActorCritic model with Pytorch neural network
weights in
« my_experiment_logs/agent_0/weights/weight10000.pt »

TheRLib Agent
(e.g.

therutils.agents.soft_actor_critic.Soft
ActorCriticAgent)

MATLAB Python

This article has been accepted for publication in a future proceedings of this conference, but has not been fully edited. Content may change prior to final publication.
Citation information: DOI: 10.1109/WCNC57260.2024.10570617, 2024 IEEE Wireless Communications and Networking Conference (WCNC)

Copyright © 2024 Institute of Electrical and Electronics Engineers (IEEE). Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or
future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any
copyrighted component of this work in other works. See: https://journals.ieeeauthorcenter.ieee.org/become-an-ieee-journal-author/publishing-ethics/guidelines-and-policies/post-publication-policies/.

specifies the transition probability from state ‘i’ to state ‘j’
when taking action ‘k’ [3].
In our model, the transition probabilities were deterministic.
For instance, a transition probability of MDP.T(1,2,1) = 1
indicates that if the system is in state 1 and the action ‘UP’ is
taken (indexed as 1), the system will transition to state 2 with
a probability of 1. Actions are indexed as 1 for "UP," 2 for
"DOWN," and 3 for "SAME." States are indexed numerically
starting from 1.

Fig. 9. Specifying the Transition Matrix

c) SPECIFYING THE REWARD MATRIX
The reward matrix (MDP.R) is another three-dimensional
matrix where each element MDP.R(i, j, k) specifies the
reward obtained when transitioning from state ‘I’ to state ‘j’
through action ‘k’ [3]. For example, MDP.R(1,2,1) = 0.2344
implies that a transition from state 1 to state 2 through action
‘UP’ would yield a reward of 0.2344. The reward is the
spectral efficiency defined for a MCS as defined in table
5.1.3.1-1 in reference [11]. The reward matrix, which gives
the RL agent rapid feedback for each state-action transition, is
essential component of the MDP environment. It shows the
benefits the agent gains from doing particular actions and
changing states. The agent’s behaviour may be influenced and
made to make choices that result in greater rewards by altering
the reward matrix.

Fig. 10. Reference Simulation for Reward Matrix

d) INCORPORATING BLER IN THE MDP STATES
In our MDP model for optimizing 5G RAN configuration, we
incorporate the BLER as an essential state-dependent
parameter, that constitutes our dataset until such point the
Network Simulation can be used for providing BLER for each
UE. It displays the likelihood that a block of sent data (in a
slot) will be incorrectly received. The MATLAB code assigns
BLER values to each of the 15 states in our model, stored in
the array MDP.E.
 Low BLER States: The states with MDP.E values of 0.01

represent configurations or conditions where the BLER is
very low, indicating high reliability.

 Moderate BLER States: The states with MDP.E values
around 0.5 to 0.9 signify moderate to high levels of block
errors, possibly requiring corrective actions or
reconfigurations.

 High BLER State: The state with an MDP.E value of 1.0
is an extreme case where every block is erroneous and
likely signifies a severe issue requiring immediate
attention.

These BLER values are used to guide the decision-making
process of our reinforcement learning agent.

Fig. 11. Reference Simulation for Block Error Rate

e) DEFINING STATE SPACE

Initially the agent was configured to always start at state 1 but
subsequently modified to start from the best state as identified
by the largest reward recorded in the QMatrix to ascertain if
performance in training the agent is improved with this
modification. This was realised by modifying in top level
RLCReinforcementLearning.m file function

 env.ResetFcn = @() 1; or env.ResetFcn = @() MDP.StartState;

and inserting in SeriesTrainer.m choice of best state:
 if any(QTableMatrix) % if Qmatrix is not all zero

 hvalue = max(QTableMatrix(:,2))
 location = find(QTableMatrix(:,2) == hvalue)
 env.ResetFcn = location

end

One and two state transitioning, as illustrated in Fig 12 and
Fig 13 respectively, was explored to determine the
advantages/disadvantages of each approach.

Fig. 12. MDP against BLER [4]

Fig. 13. MDP against BLER for up to two state transitioning[13]

f) CONTINOUS DECISION MAKING WITHOUT
TERMINAL STATES
In our study on 5G RAN RLC configuration using
reinforcement learning, we have designed MDP model that
intentionally lacks specific terminal states. This design choice
reflects the continuous operational nature of radio link control
network management task in a 5G environment. A training
episode duration of a Radio Frame or in our configuration for
20 slots.

This article has been accepted for publication in a future proceedings of this conference, but has not been fully edited. Content may change prior to final publication.
Citation information: DOI: 10.1109/WCNC57260.2024.10570617, 2024 IEEE Wireless Communications and Networking Conference (WCNC)

Copyright © 2024 Institute of Electrical and Electronics Engineers (IEEE). Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or
future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any
copyrighted component of this work in other works. See: https://journals.ieeeauthorcenter.ieee.org/become-an-ieee-journal-author/publishing-ethics/guidelines-and-policies/post-publication-policies/.

2. CREATE Q-LEARNING AGENT
In the realm of reinforcement learning, a Q-Learning Agent
aims to learn the optimal policy to navigate through a given
MDP environment. By iteratively updating a Q-table based on
rewards and state transitions, the agent learns to make
decisions that maximize cumulative rewards over time [5].

3. INTEGRATION OF MDP ENVIRONMENT WITH Q-
LEARNING AGENT

Finding the best policy in an MDP environment may be done
according to the agent’s experiences, the Q-learning algorithm
repeatedly updates the Q-values, which are assessments of the
quality of each action-state combination. As part of the
integration, Q-value updates are made while learning is taking
place utilising the state transition and reward matrices
specified in the MDP environment [7][8].
The BLER values serve as the reward, the probability of
BLER matrix serves as the environment, and the UE, operates
as the agent in the RL cycle [16]. The CQI values reflect the
state, while the BLER values represent the Reward. Choosing
the appropriate MCS based on the relevant CQI is the agent’s
activity [6].

4. TRAINING AND VALIDATING THE Q-LEARNING AGENT
The success of a Q-Learning Agent hinges on effective
training and validation. In the training phase, the agent
interacts with the environment to update its Q-table, thereby
learning the optimal policy to maximize cumulative rewards.
Subsequently, the validation phase tests the agent’s learned
behaviour to ensure its efficacy and reliability [5].

V. IMPLEMENTATION OF STATE
TRANSITION LOGIC ABSTRACT MDP
In our RL implementation, the move_ function plays a crucial
role. Originating from an abstract class AbstractMDP, this
function can be modified or overridden to implement the
specific logic for MCS selection. The function takes in the
current state and action as inputs and returns the new state,
reward, and a flag indicating whether the simulation has
reached a terminal state.
The three additional parameters required for this modified
move_() function is
1. Transport BLER to signify if a Transport Block has

experienced an error or not.
2. Probability of an error E occurring in any MCS state
3. Slot Count slotCnt that counts the 20 slots in a frame and

terminates the frame once the 20th slot has been
transmitted.

Initialization:
At the beginning of each call to the move_ function, certain
initialization steps are undertaken. The time slot count
(obj.slotCnt) is incremented by one to keep track of the
number of steps taken in the environment. The initial reward
R is set to zero, and the current state S0 is fetched from the
object’s property.
Terminal State Check:
The function first checks if the current state is terminal using
the helper function isTerminalState(obj). In the context of a
terminal state, the episode concludes, and the agent starts a
new episode.

State Transition Logic:
The next state is calculated based on a pre-defined state
transition matrix. A random number generator is used in
conjunction with this matrix to determine the next state
probabilistically.
Reward Calculation:
The reward for the transition is fetched using another helper
function getRewardTransition_(obj, ActionName) which
likely refers to a reward matrix that specifies the reward for
each state-action pair.
Simulating Block Error and Its Effects:
The function simulates the occurrence of block errors. A
random number is drawn and compared against a block error
rate specific to the current state. If the random number is
smaller, it simulates the occurrence of a block error, resetting
the reward to zero and incrementing a counter for the number
of block errors (obj.NoPBER).
Logging and Debugging:
For tracking and debugging purposes, crucial information is
printed at each step. This includes the time slot, current state,
action taken, total number of block errors, and the reward.
Updating the Environment:
The state of the environment and the termination flag are
updated based on the logic and counters discussed above.

VI. RESULTS AND ANALYSIS

A. Result overview for 1 state transitioning
Our specific RL model, embodied by the Episode Manager,
utilizes an RL agent named ‘rlQagent’ operating within a
MDP Environment (‘rlMDPEnv’).
The agent’s task is to dynamically configure the network’s
MCS, an essential aspect of 5G RAN that has far-reaching
implications for network latency, throughput, and reliability.
The ‘Episode Reward’ on the y-axis serves as a quantitative
measure of how well the rlQagent is performing its task of 5G
RAN configuration in each episode, whereas the ‘Episode
Number’ on the x-axis indicates the sequence of interactions
the agent has had with its environment. For agent starting
training from state 1, the average reward is 12.5629 for an
episode (as shown in Figure 14) which consists of 20 slots,
therefore the average reward per slot = 12.5629/20 = 0.6282.

Fig. 14. RL Episode Manager at Episode 250

The Episode Manager of The RLib tool is shown in Figure
15 and includes additional metrics such as Actor Loss, Critic
Loss, Entropy Loss, Loss and Score (i.e. Average Reward).

This article has been accepted for publication in a future proceedings of this conference, but has not been fully edited. Content may change prior to final publication.
Citation information: DOI: 10.1109/WCNC57260.2024.10570617, 2024 IEEE Wireless Communications and Networking Conference (WCNC)

Copyright © 2024 Institute of Electrical and Electronics Engineers (IEEE). Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or
future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any
copyrighted component of this work in other works. See: https://journals.ieeeauthorcenter.ieee.org/become-an-ieee-journal-author/publishing-ethics/guidelines-and-policies/post-publication-policies/.

Fig. 15. RL Episode Manager at Episode 250

B. Result overview for up to 2 state transitioning

Up to two state transitioning between states restricts the
transitions between states to [up, down, same, up2, down2].
The average is 12.6564 for an episode (as shown in Figure 16)
which consists of 20 slots, therefore the average reward per
slot = 12.6564/20 = 0.6328, which is again an efficiency
between MCS/CQI 4 and 5 and marginally better than for the
1 state transitioning. It required around 2000 episodes for the
RL state machine to reach a stable optimal state, which
corresponds to 2000 5G frames of 10ms duration or 20
seconds in real time. This is considerably larger time required
than for the single state transitioning system.

Fig. 16. Up to two State Transitioning Episode 2000

C. Result overview for starting at best state

Fig. 17. Episode reward for rIMDPEnv with rlQAgent

Now for an agent starting training from the best state
identified so far, the average reward is 14.8942 for an episode,
as shown in Figure 17, which consists of 20 slots, therefore
the average reward per slot = 14.8942/20 = 0.7447. This is an
improvement from the 1 state solution starting from state 1.

VII. CONCLUSION

Workflow for training and creating MDP reinforcement
learning agents for 5G RLC using MATLAB’s Reinforcement
toolbox and then use the Thales TheRLib MAD-DRL Tool to
produce many light weight Python instances of these agents
so that they can be simultaneously applied to multiple UE
instances in a 5G CFN model.

The authors believe that this workflow can be applied to other
autonomous network management such as slice management.
It can also form the basis of the FlexRIC interface to ORAN.

ACKNOWLEDGMENT

 The authors gratefully acknowledge support of EU Horizon
2020 Research Project 6G BRAINS (Bringing Reinforcement
learning Into Radio Light Network for Massive Connections).

REFERENCES
[1] Marco Araújo et al “Final integration for AI-based E2E network slicing

control and MANO” 6G BRAINS Deliverable D5.3, 30th September
2023.

[2] Techplayon, 2020. 5G NR Modulation and Coding Scheme –
Modulation and Code Rate. [Online] Available at:
https://www.techplayon.com/5g-nr-modulation-and-coding-scheme-
modulation-and-code-rate/ [Accessed 27 July 2023].

[3] Santos, E.C., 2017. A simple reinforcement learning mechanism for
resource allocation in lte-a networks with markov decision process and
q-learning. arXiv preprint arXiv:1709.09312.

[4] K. A. Prof. John Cosmas, "6GBRAINS-T5.4 Brunel Powerpoint
report," 2023

[5] MATLAB, 2023. Train Reinforcement Learning Agent in MDP
Environment. [Online]
Available at: https://uk.mathworks.com/help/reinforcement-

learning/ug/train-reinforcement-learning-agent-in-mdp-
environment.html?s_tid=srchtitle_site_search_2_MDP
[Accessed 26 July 2023].

[6] Available at: https://towardsdatascience.com/introduction-to-
reinforcement-learning-markov-decision-process-44c533ebf8da
[Accessed 27 July 2023].

[7] Tang, L., Tan, Q.I., Shi, Y., Wang, C. and Chen, Q., 2018. Adaptive
virtual resource allocation in 5G network slicing using constrained
Markov decision process. IEEE Access, 6, pp.61184-61195.

[8] Wilhelmi, F., Bellalta, B., Cano, C. and Jonsson, A., 2017, October.
Implications of decentralized Q-learning resource allocation in
wireless networks. In 2017 ieee 28th annual international symposium
on personal, indoor, and mobile radio communications (pimrc) (pp. 1-
5). IEEE.

[9] “Train Reinforcement Learning Agent in MDP Environment” Available
at: Train Reinforcement Learning Agent in MDP Environment -
MATLAB & Simulink - MathWorks United Kingdom, seen 7/9/2023

[10] Sutton, R.S. and Barto, A.G., 2018. Reinforcement learning: An
introduction. MIT press.

[11] ETSI TS 138 214 V16.2.0 (2020-07) “5G; NR; Physical layer
procedures for data” (3GPP TS 38.214 version 16.2.0 Release 16)

[12] Prince Kwaku Boakye “5G RAN Configuration and Control Using
Reinforcement Learning” MSc Wireless Computer Communication
Networks Dissertation Thesis, September 2023

[13] Alexandre Kazmierowski et al "Preliminary integration for AI-based
E2E network slicing control and MANO" 6G BRAINS Deliverable
D5.2, 21st December 2023

[14] Jobin Francis and Neelesh B. Mehta, “EESM-Based Link Adaptation
in Point-to-Point and Multi-Cell OFDM Systems: Modelling and
Analysis” IEEE TRANSACTIONS ON WIRELESS
COMMUNICATIONS, VOL. 13, NO. 1, JANUARY 2014

[15] Josep Colom Ikuno, Martin Wrulich, Markus Rupp “System level
simulation of LTE networks” On line Publication seen on 9-5-2021

[16] Raffaele Bruno, Antonino Masaracchia, Andrea Passarella “Robust
Adaptive Modulation and Coding (AMC) Selection in LTE Systems
using Reinforcement Learning” Ares(2015)1917862 - 06/05/2015.

[17] Kai Cui, Anam Tahir, Gizem Ekinci, Ahmed Elshamanhory, Yannick
Eich, Mengguang Li and Heinz Koepp “A Survey on Large-Population
Systems and Scalable Multi-Agent Reinforcement Learning” Online

This article has been accepted for publication in a future proceedings of this conference, but has not been fully edited. Content may change prior to final publication.
Citation information: DOI: 10.1109/WCNC57260.2024.10570617, 2024 IEEE Wireless Communications and Networking Conference (WCNC)

Copyright © 2024 Institute of Electrical and Electronics Engineers (IEEE). Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or
future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any
copyrighted component of this work in other works. See: https://journals.ieeeauthorcenter.ieee.org/become-an-ieee-journal-author/publishing-ethics/guidelines-and-policies/post-publication-policies/.

