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Abstract— This research demonstrates how MATLAB's 
Reinforcement Learning Markov Decision Process (MDP) 
Example Model can be used to design Radio Link Control MDP 
Reinforcement Learning (RL) agent. Since the number of agents 
in MATLAB’s RL toolbox is not scalable beyond one agent, then 
an agent scalability scheme is required to design RL agents in 
MATLAB’s RL toolbox and then realize multiple lightweight 
simultaneously operable Python instances of it for each of the 
multiple user equipment UE in a network.   
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I. INTRODUCTION

The goal of this research is to first train a Markov Decision 
Process (MDP) radio link control model Reinforcement 
Learning (RL) agent for 5G Radio Link Control using 
MATLAB’s Reinforcement toolbox by building on its RL 
MDP Example Model [9] and then secondly use the Thales 
TheRLib MA-DRL Tool [1] to produce many light weight 
Python instances of these agents so that they can be 
simultaneously applied to multiple user equipment instances 
(UE) in a 5G Cell-Free Network (CFN) model. 

MATLAB’s Network Topology Visualisation of Intercell 
Interference Model as shown in Figure 1 was used as a 
suitable CFN model.  

Fig. 1. MATLAB’s Network Topology Visualisation of Intercell 
Interference 

This model analyses the interference experienced by UE in the 
target green cell due to the effect of simultaneous 
transmissions on the same carrier frequencies of the adjacent 
red Cells, as shown in Figure 1. By assuming that all the UEs 
have been clustered to their nearest gNB this can be 
considered as a suitable CFN model [12]. 

The objective of this research is to train the RL agents for each 
of the twelve User Equipment (UE) in the CFN to select 
Modulation and Coding Scheme (MCS)/ Channel Quality 
Indicator (CQI) to maximise their throughputs. The problem 
is that the number of agents in MATLAB’s RL toolbox is not 
scalable beyond one agent. Therefore, an agent scalability 
scheme is required to design RL agent in MATLAB’s RL 
toolbox and then realise multiple lightweight simultaneously 
operable Python instances of it for each of the 12 UEs.  

This is an example of independent learning category of Multi 
Agent Reinforcement Learning (MARL) [17], which if 
combined with slicing resource allocation scheduler may 
require to be enhanced by applying cooperative or competitive 
agent training and execution approaches.  
MATLAB’s examples of RL applications are not so easy to 
be applied to any other application other than the one it has 
been designed for because, while the main program 
GenericMDPExample.m is easy to edit, there is no easy way 
of overriding the important move_() function in the 
AbstractMDP.m file, adding more simulation parameters in 
the GenericMDP.m file and modifying SeriesTrainer.m for 
providing a visual feedback of the episode number and for 
starting at the best state at start of each episode, since these 
files are all part of the MATLAB system files, which under 
normal circumstances do not have write permission to modify. 
We overcame this constraint by installing MATLAB on our 
own Linux workstation, where we could modify write 
permissions.  
The architectural impact of a scalable population of RL 
Agents is they can be trained from dataset on MATLAB RL 
toolbox and deployed to Open Radio Access Network 
(ORAN) and multiple UEs thereby producing a workflow for 
training autonomous networks.  

II. MODULATION & CODING SCHEME &
CHANNEL QUALITY INDICATOR 

A. Existing RLC Scheme
In the 5G Radio Access Network (RAN) design, the MCS is a 
key mechanism that controls how many meaningful bits may 
be conveyed by a single Resource Block (RB) in the wireless 
communication channel. The modulation scheme and the 
coding rate are two essential components that the MCS 
establishes. The coding rate affects the ability of the 
transmitted data to adjust for errors, whereas the modulation 
technique determines how information is encoded into the 
carrier signal. The right MCS must be chosen in order to 
maximise data flow and achieve dependable communication 
[11] of which  table 5.1.3.1-1 in this reference shows MCS
index and their corresponding spectral efficiency. Higher
MCS levels provide higher data rates, but they also call for
more favourable channel conditions [2]. The higher the MCS
the greater the throughput but also the greater the probability
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of a Transport Block Error (BLER). If a BLER occurs then the 
whole Transport Block is discarded and a throughput is zero 
with request for retransmission made using the Hybrid 
Automatic Repeat Request (HARQ).  

In conventional operation, 5G RAN uses the CQI to 
dynamically modify the MCS to suit the various channel 
circumstances that various UEs may encounter based on 
heuristic equations [14] and look-up tables [15] that have 
been characterised and pretrained from network simulations 
[15]. This does not always select the most optimum MCS. 
Adopting a RL RLC solution, which continuously trains 
itself, could potentially select the most optimum MCS.  

B. Proposed New RL RLC Scheme
The principle of operation for RL downlink transmission is 
that each UE records its assigned MCS at the MAC layer and 
evaluates the successful outcome of its assigned Transmission 
Block as a Packet Data Unit (PDU) using Cyclic Redundancy 
Check (CRC) from the HARQ ACK/NACK in the PHY layer 
and then based on this outcome the UE decides to change the 
MCS by increasing/decreasing/remain-same in order to 
maximise Throughput/Efficiency and notifies its gNB, as 
shown in Figure 2. The merit of this approach is that the UE 
decides for itself the optimum MCS to maximise throughput. 

Fig. 2. Reinforcement Learning control RAN Link 

III. THERLIB MULTI-AGENT DEEP

REINFORCEMENT LEARNING (MA-DRL) TOOL

In the DRL control of the RAN links, the UE decides on its 
action to change the MCS to support its needs based on its 
sensing of the state of the environment based on MATLAB’s 
Intercell Interference Model. 

Fig. 3. Relationship between Network Simulation, MATLAB’s MDP 
Model  

How MATLAB Network Simulation of the RL Radio Link 
Control relate to the MDP Radio Link Control model using 
MATLAB RL toolbox is illustrated is Figure 3. Each was 
modelled independently with internally generated MCS 

up/down/same actions and BLER result. These need to be 
integrated with each other with 12 instances of the MATLAB 
MDP for each UE. The top half of the figure shows the two 
software as separately developed simulations. The bottom half 
of the figure shows how these two softwares are integrated. 

Fig. 4. Relationship between Network Simulation, MATLAB’s MDP and 
TheRLib MA-DRL platform 

The high-level architecture of a pure-MATLAB integration is 
as shown in Figure 4. The “ MDP radio link control model 
using MATLAB’s RL toolbox” is broken down into the 
“environment” and “agent” objects that are used by the 
MATLAB RL toolbox and the trained “agent” is used for with 
the Network Simulation. The small-dimensional agent trained 
on the MDP model, which is leveraged to cope with 
performance and scale because 12 instances of the agent, is 
required for each of the 12 UE in the Network Simulation. 

TheRlib can also be used to train and deploy the agent using 
MDP as shown in Figure 6.  

Fig. 5. Applying TheRLib MA-DRL platform for both training and 
deployment of MDP   

Note that TheRLib interacts with the MDP “environment” and 
manages the training process instead of the MATLAB RL 
toolbox. When interacting with the Network Simulation, the 
“TheRLib MA-DRL Deployment component” code is in a 
simple script that loads a serialized TheRLib agent from a data 
file, instantiates the MATLAB RL environment and performs 
the agent-interaction environment. The merit of this approach 
is that an instance of TheRLib agent has a much smaller 
footprint and computes much more efficiently when using 
higher-dimensional states than the MATLAB RL toolbox 
version of it, so can be used to train and deploy many of them 
such as the 12 UEs required in the network simulation. 

TheRLib can be used to train and deploy an agent to the MDP 
Environment shown in Figure 6. The agents can either be 
Actor-Critic Networks trained with algorithms such as soft 
actor-critic or Deep Q-Networks trained with Q-learning. 
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Here the merit is that multiple states can be incorporated such 
as for example MCS/CQI states for Radio Link Control and 
RB Capacity states for a Slice Capacity Control system. 
Training can be performed with the MDP radio link control 
environment, or a refined version with more complex states, 
if it provides the RL environment interface, i.e., step and reset 
functions. 

Fig. 6. Applying TheRLib MA-DRL platform for Neural Network training 
and deployment   

The interface to The RLib tool is shown in Figure 7 where 
those agent successfully trained into Python code agents are 
shown in green whilst those unsuccessfully trained in dark 
blue. 

Fig. 7. User Interface to The RLib tool 

IV. RL MDP 5G RADIO LINK CONTROL

MATLAB DEVELOPMENT ENVIRONMENT

A. Markov Decision Process (MDP) approach

The MDP approach in RL for the 5G RAN setup entails 
characterising a series of states, actions, transition 
probabilities, and rewards. The RL’s chooses to increase RAN 
performance are included in the action space. The possibility 
of changing to a new state depending on activities is shown by 
transition probabilities, which reflect environmental 
uncertainty. State-action combinations are given numerical 
rewards via the reward function, which directs the agent 
towards more advantageous RAN configurations [10]. 
When applying RL to an MDP, the RL agent discovers the 
best course of action through interactions with the 
environment. For the purpose of making wise judgements, the 
agent experiments with various activities, monitors results 
(rewards), and updates its knowledge. The agent develops 
methods to lessen interference, efficiently manage resources, 
and improve overall RAN performance over time. By using 
an adaptive method, the agent may configure the 5G RAN in 
a way that is effective and intelligent and improves wireless 
communication capabilities while dynamically responding to 
changes in the wireless environment [3]. 

B. Adaptive MCS Selection using MDP with Block
Error Rate

The reinforcement learning-based methodology was used to 
integrate MCS, CQI, and BLER. The MDP environment, 

which models the 5G RAN setup, was interacted with by the 
reinforcement learning agent. In order to choose the proper 
MCS levels for each UE in the system, the agent obtains 
knowledge from the CQI feedback and BLER data. The agent 
seeks to maximise cumulative rewards by optimising the MCS 
selection based on real-time channel circumstances, which 
equates to obtaining greater data rates while ensuring 
dependable and error-free communication [2]. 

The core of our approach lies in the move_function, which 
simulates state transitions in the MDP. The function accepts 
an action, representing the MCS to be used, and returns the 
next state, the received reward, and a flag indicating whether 
a terminal state has been reached. Here, the reward R is set to 
zero if a block error occurs.  

Fig. 8. MCS,CQI & BLER 

If no block error has occurred then then the training episode is 
not terminated early and is allowed to continue for the whole 
frame of 20 slots when it is terminated, which is shown in the 
Figure 8. Whereas if a single block error has occurred then the 
training episode is terminated, since less than 1 in 20 block 
errors or < 5% is allowed.  Less than 2 in 20 block errors or < 
10% is allowed then 2 block errors must have occurred for the 
training episode to be terminated. The methodology for 
developing an agent in a MDP environment in MATLAB can 
be summarized into below four key steps and their sub-tasks. 
1. Creating the MDP Environment
2. Creating the Q-Learning Agent
3. Integrate the MDP Environment with Q-Learning Agent
4. Training and Validating the Q-Learning Agent

1. CREATING MDP ENVIRONMENT
The first step in working with a MDP involves establishing 
the fundamental elements that define the environment in 
which the agent will operate. This foundational step has 
several sub-steps: 

a) DEFINING THE STATES
The createMDP function in MATLAB is used to construct an 
MDP model in the initialisation phase. This function allows 
the user to specify the number of states and actions required 
for the MDP framework. For the purposes of this project, the 
MDP is designed with 15 states that correspond to the 15 CQI 
indexes and their corresponding MCS states and three possible 
actions: ‘UP’, ‘DOWN’; and ‘SAME’; These actions signify 
the choices available to the RL agent at each state. In this 
context, each state within the 5G RAN is representative of a 
specific configuration or situation [3]. 

b) DEFINING THE STATE TRANSITION MATRIX
The state-action transition matrix (MDP.T) is a three-
dimensional matrix where each element MDP.T(i, j, k) 
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specifies the transition probability from state ‘i’ to state ‘j’ 
when taking action ‘k’ [3]. 
In our model, the transition probabilities were deterministic. 
For instance, a transition probability of MDP.T(1,2,1) = 1 
indicates that if the system is in state 1 and the action ‘UP’ is 
taken (indexed as 1), the system will transition to state 2 with 
a probability of 1. Actions are indexed as 1 for "UP," 2 for 
"DOWN," and 3 for "SAME." States are indexed numerically 
starting from 1. 

Fig. 9. Specifying the Transition Matrix  

c) SPECIFYING THE REWARD MATRIX
The reward matrix (MDP.R) is another three-dimensional 
matrix where each element MDP.R(i, j, k) specifies the 
reward obtained when transitioning from state ‘I’ to state ‘j’ 
through action ‘k’ [3]. For example, MDP.R(1,2,1) = 0.2344 
implies that a transition from state 1 to state 2 through action 
‘UP’ would yield a reward of 0.2344. The reward is the 
spectral efficiency defined for a MCS as defined in table 
5.1.3.1-1 in reference [11]. The reward matrix, which gives 
the RL agent rapid feedback for each state-action transition, is 
essential component of the MDP environment. It shows the 
benefits the agent gains from doing particular actions and 
changing states. The agent’s behaviour may be influenced and 
made to make choices that result in greater rewards by altering 
the reward matrix. 

Fig. 10. Reference Simulation for Reward Matrix 

d) INCORPORATING BLER IN THE MDP STATES
In our MDP model for optimizing 5G RAN configuration, we 
incorporate the BLER as an essential state-dependent 
parameter, that constitutes our dataset until such point the 
Network Simulation can be used for providing BLER for each 
UE. It displays the likelihood that a block of sent data (in a 
slot) will be incorrectly received. The MATLAB code assigns 
BLER values to each of the 15 states in our model, stored in 
the array MDP.E. 
 Low BLER States: The states with MDP.E values of 0.01

represent configurations or conditions where the BLER is
very low, indicating high reliability.

 Moderate BLER States: The states with MDP.E values
around 0.5 to 0.9 signify moderate to high levels of block
errors, possibly requiring corrective actions or
reconfigurations.

 High BLER State: The state with an MDP.E value of 1.0
is an extreme case where every block is erroneous and
likely signifies a severe issue requiring immediate
attention.

These BLER values are used to guide the decision-making 
process of our reinforcement learning agent. 

Fig. 11. Reference Simulation for Block Error Rate 

e) DEFINING STATE SPACE

Initially the agent was configured to always start at state 1 but 
subsequently modified to start from the best state as identified 
by the largest reward recorded in the QMatrix to ascertain if 
performance in training the agent is improved with this 
modification. This was realised by modifying in top level 
RLCReinforcementLearning.m file function 

  env.ResetFcn = @() 1;  or   env.ResetFcn = @() MDP.StartState;  

and inserting in SeriesTrainer.m choice of best state: 
 if any(QTableMatrix)   % if Qmatrix is not all zero 

 hvalue = max(QTableMatrix(:,2)) 
  location = find(QTableMatrix(:,2) == hvalue) 
 env.ResetFcn = location 

end 

One and two state transitioning, as illustrated in Fig 12 and 
Fig 13 respectively, was explored to determine the 
advantages/disadvantages of each approach.   

Fig. 12. MDP against BLER [4] 

Fig. 13. MDP against BLER for up to two state transitioning[13]  

f) CONTINOUS DECISION MAKING WITHOUT
TERMINAL STATES 
In our study on 5G RAN RLC configuration using 
reinforcement learning, we have designed MDP model that 
intentionally lacks specific terminal states. This design choice 
reflects the continuous operational nature of radio link control 
network management task in a 5G environment. A training 
episode duration of a Radio Frame or in our configuration for 
20 slots. 
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2. CREATE Q-LEARNING AGENT
In the realm of reinforcement learning, a Q-Learning Agent 
aims to learn the optimal policy to navigate through a given 
MDP environment. By iteratively updating a Q-table based on 
rewards and state transitions, the agent learns to make 
decisions that maximize cumulative rewards over time [5]. 

3. INTEGRATION OF MDP ENVIRONMENT WITH Q-
LEARNING AGENT

Finding the best policy in an MDP environment may be done 
according to the agent’s experiences, the Q-learning algorithm 
repeatedly updates the Q-values, which are assessments of the 
quality of each action-state combination. As part of the 
integration, Q-value updates are made while learning is taking 
place utilising the state transition and reward matrices 
specified in the MDP environment [7][8]. 
The BLER values serve as the reward, the probability of 
BLER matrix serves as the environment, and the UE, operates 
as the agent in the RL cycle [16]. The CQI values reflect the 
state, while the BLER values represent the Reward. Choosing 
the appropriate MCS based on the relevant CQI is the agent’s 
activity [6]. 

4. TRAINING AND VALIDATING THE Q-LEARNING AGENT
The success of a Q-Learning Agent hinges on effective 
training and validation. In the training phase, the agent 
interacts with the environment to update its Q-table, thereby 
learning the optimal policy to maximize cumulative rewards. 
Subsequently, the validation phase tests the agent’s learned 
behaviour to ensure its efficacy and reliability [5]. 

V. IMPLEMENTATION OF STATE
TRANSITION LOGIC ABSTRACT MDP
In our RL implementation, the move_ function plays a crucial 
role. Originating from an abstract class AbstractMDP, this 
function can be modified or overridden to implement the 
specific logic for MCS selection. The function takes in the 
current state and action as inputs and returns the new state, 
reward, and a flag indicating whether the simulation has 
reached a terminal state. 
The three additional parameters required for this modified 
move_() function is  
1. Transport BLER to signify if a Transport Block has

experienced an error or not.
2. Probability of an error E occurring in any MCS state
3. Slot Count slotCnt that counts the 20 slots in a frame and

terminates the frame once the 20th slot has been
transmitted.

Initialization: 
At the beginning of each call to the move_ function, certain 
initialization steps are undertaken. The time slot count 
(obj.slotCnt) is incremented by one to keep track of the 
number of steps taken in the environment. The initial reward 
R is set to zero, and the current state S0 is fetched from the 
object’s property. 
Terminal State Check: 
The function first checks if the current state is terminal using 
the helper function isTerminalState(obj). In the context of a 
terminal state, the episode concludes, and the agent starts a 
new episode. 

State Transition Logic: 
The next state is calculated based on a pre-defined state 
transition matrix. A random number generator is used in 
conjunction with this matrix to determine the next state 
probabilistically. 
Reward Calculation: 
The reward for the transition is fetched using another helper 
function getRewardTransition_(obj, ActionName) which 
likely refers to a reward matrix that specifies the reward for 
each state-action pair. 
Simulating Block Error and Its Effects: 
The function simulates the occurrence of block errors. A 
random number is drawn and compared against a block error 
rate specific to the current state. If the random number is  
smaller, it simulates the occurrence of a block error, resetting 
the reward to zero and incrementing a counter for the number 
of block errors (obj.NoPBER). 
Logging and Debugging: 
For tracking and debugging purposes, crucial information is 
printed at each step. This includes the time slot, current state, 
action taken, total number of block errors, and the reward. 
Updating the Environment: 
The state of the environment and the termination flag are 
updated based on the logic and counters discussed above. 

VI. RESULTS AND ANALYSIS

A. Result overview for 1 state transitioning
Our specific RL model, embodied by the Episode Manager, 
utilizes an RL agent named ‘rlQagent’ operating within a 
MDP Environment (‘rlMDPEnv’).  
The agent’s task is to dynamically configure the network’s 
MCS, an essential aspect of 5G RAN that has far-reaching 
implications for network latency, throughput, and reliability. 
The ‘Episode Reward’ on the y-axis serves as a quantitative 
measure of how well the rlQagent is performing its task of 5G 
RAN configuration in each episode, whereas the ‘Episode 
Number’ on the x-axis indicates the sequence of interactions 
the agent has had with its environment. For agent starting 
training from state 1, the average reward is 12.5629 for an 
episode (as shown in Figure 14) which consists of 20 slots, 
therefore the average reward per slot = 12.5629/20 = 0.6282. 

Fig. 14. RL Episode Manager at  Episode 250 

The Episode Manager of The RLib tool is shown in Figure 
15 and includes additional metrics such as Actor Loss, Critic 
Loss, Entropy Loss, Loss and Score (i.e. Average Reward).  
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Fig. 15. RL Episode Manager at  Episode 250 

B. Result overview for up to 2 state transitioning

Up to two state transitioning between states restricts the 
transitions between states to [up, down, same, up2, down2]. 
The average is 12.6564 for an episode (as shown in Figure 16) 
which consists of 20 slots, therefore the average reward per 
slot = 12.6564/20 = 0.6328, which is again an efficiency 
between MCS/CQI 4 and 5 and marginally better than for the 
1 state transitioning. It required around 2000 episodes for the 
RL state machine to reach a stable optimal state, which 
corresponds to 2000 5G frames of 10ms duration or 20 
seconds in real time. This is considerably larger time required 
than for the single state transitioning system.    

Fig. 16. Up to two State Transitioning Episode 2000 

C. Result overview for starting at best state

Fig. 17. Episode reward for rIMDPEnv with rlQAgent 

Now for an agent starting training from the best state 
identified so far, the average reward is 14.8942 for an episode, 
as shown in Figure 17, which consists of 20 slots, therefore 
the average reward per slot = 14.8942/20 = 0.7447. This is an 
improvement from the 1 state solution starting from state 1. 

VII. CONCLUSION

Workflow for training and creating MDP reinforcement 
learning agents for 5G RLC using MATLAB’s Reinforcement 
toolbox and then use the Thales TheRLib MAD-DRL Tool to 
produce many light weight Python instances of these agents 
so that they can be simultaneously applied to multiple UE 
instances in a 5G CFN model.  

The authors believe that this workflow can be applied to other 
autonomous network management such as slice management. 
It can also form the basis of the FlexRIC interface to ORAN.  
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