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Abstract—In biomedical vision research, a significant challenge
is the limited availability of pixel-wise labeled data. Data augmen-
tation has been identified as a solution to this issue through gener-
ating labeled dummy data. While enhancing model efficacy, semi-
supervised learning methodologies have emerged as a promising
alternative that allows models to train on a mix of limited
labeled and larger unlabeled data sets, potentially marking a
significant advancement in biomedical vision research. Drawing
from the semi-supervised learning strategy, in this paper, a novel
medical image segmentation model is presented that features
a hierarchical architecture with an attention mechanism. This
model disentangles the synthesis process of biomedical images
by employing a tail two-branch generator for semantic mask
synthesis, thereby excelling in handling medical images with
imbalanced class characteristics. During inference, the k-means
clustering algorithm processes feature maps from the generator
by using the clustering outcome as the segmentation mask.
Experimental results show that this approach preserves biomed-
ical image details more accurately than synthesized semantic
masks. Experiments on various datasets, including those for
vestibular schwannoma, kidney, and skin cancer, demonstrate the
proposed method’s superiority over other generative-adversarial-
network-based and semi-supervised segmentation methods in
both distribution fitting and semantic segmentation performance.

Index Terms—Generative Adversarial Network, Semi-
supervised Learning, Hierarchical Architecture, Attention
Mechanism, Biomedical Image Segmentation

I. INTRODUCTION

MEdical experts commonly advocate for surgical resec-
tion and monitoring as primary treatments for serious

disorders. A critical preoperative step involves accurately
marking the lesion on computed tomography (CT) or magnetic
resonance imaging (MRI) scans. However, due to the exponen-
tial increase in biomedical imaging data, manually annotating
a vast quantity of medical images accurately and promptly
has become nearly unfeasible. Consequently, there is growing
research interest in automatic segmentation using computer-
aided techniques, which offer high efficiency in precisely
segmenting medical images.

Traditional segmentation methods predominantly utilize im-
age edge detection algorithms to distinguish target object bor-
ders, and these techniques were initially prevalent in medical
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image segmentation [2], [41]. However, their effectiveness is
limited in accurately delineating lesion boundaries in biomedi-
cal images, often hindered by intricate and similar pixel values
in adjacent areas. As a response, convolutional neural network
(CNN)-based approaches have risen to prominence in various
computer vision fields. These methods excel at autonomously
extracting critical features from deep layers of images.

Recently, a range of CNN-based segmentation networks
has been developed, which automatically segment tumors or
organs from diverse medical images. These networks capitalize
on the proficiency of CNNs in extracting detailed features
from biomedical images [1], [53]. While these advancements
significantly improve upon traditional techniques, the majority
of current models still depend heavily on large, high-quality
labeled datasets. Such reliance poses a challenge as labeled
biomedical data are often limited due to privacy issues and
the scarcity of experts for image annotation. This shortage
complicates the training of segmentation models that perform
well on varied and unseen datasets, thus intensifying the
challenges in automatic biomedical image segmentation.

To tackle the challenge of labeled biomedical data scarcity,
two primary strategies have been proposed. The first involves
the generation of synthetic labeled data pairs using advanced
deep learning models to enhance the original dataset [28], [61],
[63], [66], thereby effectively increasing the amount of data
available for training. The second strategy is the application
of various semi-supervised learning (SSL) methods according
to specific application needs. SSL methodologies integrate a
substantial volume of unlabeled data into the training process,
allowing the model to utilize the full dataset more effectively,
and this results in a more robust model compared to traditional
supervised methods that rely solely on labeled data. The SSL
strategy is particularly valuable in situations where obtaining
labeled data is costly, and the model’s performance may
be adversely affected by a lack of diverse and extensive
training data. Popular SSL techniques include pseudo-labeling
[7], [27], [55] and consistent regularization [13], [14], [40],
[56]. Among others, contrastive learning, which focuses on
training powerful image feature extractors [20], [51], [60]
using unsupervised contrast loss from image transformations,
has shown promising SSL results.

While SSL methods facilitate model training with limited
labeled data, they do not explicitly simulate the input data
distribution, which can lead to overfitting during training. To
address this, in [9], a semi-supervised segmentation technique
has been introduced by using StyleGAN2 designed to fit the
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actual dataset distribution. Despite its state-of-the-art perfor-
mance on various datasets, this method faces challenges with
biomedical images containing small lesions. The key limitation
is the need for a highly consistent representation of the image
and its semantic mask in the latent space, which is a condition
often not met in cases of small lesions in biomedical images.

Non-lesions

Lesions

Inverse

MaskImage

Fig. 1: Disentanglement of biomedical image according to the corresponding
segmentation mask.

Addressing the issue of inadequate performance on small
lesions in biomedical images, in this paper, we introduce a
hierarchical architecture that integrates an attention mechanism
into the generative model. Drawing from the principles of
attention-GAN [12], [17], [58], [65], it’s noted that an attention
map, self-generated by the network, can significantly enhance
the quality of generator synthesis. Building on this concept,
we posit that in segmentation tasks, the semantic mask can
function as a form of attention map. This approach is designed
to focus the generative model more on lesion regions, which
often occupy smaller areas in biomedical images. We achieve
this by differentiating the biomedical image into lesion and
non-lesion areas based on the semantic mask, as illustrated in
Fig. 1.

Following the assumption that lesion textures and semantic
masks possess analogous semantic representations, in [9], it
has been suggested that images with similar semantics should
correspond to similar representations in the latent space.
Extending this idea, we introduce a tail two-branch generator
derived from StyleGAN2 [46]. This generator is designed to
produce both lesion textures and semantic masks with related
semantics from the same latent representation. Concurrently,
we utilize a standard StyleGAN2 [46] generator to create non-
lesion textures from random noise. In this framework, the
semantic mask is employed as an attention map. The final
composite biomedical image is then formed by integrating the
synthesized lesion texture, the semantic mask, and the non-
lesion texture.

In the inference phase, we follow the method described
in [9] by using an encoder with a ResNet [22] backbone

to encode biomedical images into the targeted latent space.
Subsequently, the corresponding semantic masks are generated
using the trained Hierarchical Attention Generative Adver-
sarial Network (HAGAN). However, due to the hierarchical
design for image disentanglement, the grayscale mask from
the tail two-branch generator often lacks detail compared to
the desired segmentation mask. To address this, inspired by
previous work [10], we apply the k-means clustering algorithm
[44] to the feature maps from a specific layer of the tail two-
branch generator during the inference stage. We use the results
of this clustering as the final segmentation masks for the input
images. Our experimental results show that these clustered
feature maps retain more semantically meaningful details of
the input images than the synthesized attention maps, leading
to improved segmentation accuracy.

The proposed hierarchical attention generative model show-
cases significant potential in the accurate segmentation of
biomedical images. Utilizing techniques in latent space map-
ping and attention map synthesis, the model achieves height-
ened accuracy in reconstructed images and their resultant
segmentation masks. Further enhancement of accuracy and
effectiveness is achieved through feature map extraction and
clustering techniques. The primary contributions of this paper
are summarized as follows.

1) Addressing the challenge of segmenting small lesions
in medical images, we introduce a hierarchical architec-
ture based on StyleGAN2 [46]. The integration of the
attention mechanism in this approach aids in the semi-
supervised segmentation of medical images with small
lesions.

2) We develop a dual-branch generator within the gen-
erative model to simultaneously produce images with
lesion textures and segmentation masks. This design en-
ables more precise and controlled generation of medical
images, specifically targeting lesion-specific characteris-
tics.

3) To counter the potential loss of lesion boundary infor-
mation in segmentation masks, K-means clustering is
applied during the inference phase to refine the seg-
mentation mask. Our experiments show that this method
more effectively retains boundary details.

4) Experimental results indicate that our HAGAN sur-
passes existing semi-supervised segmentation meth-
ods, particularly in segmenting small lesions in med-
ical images, thereby enhancing the accuracy of lesion
boundary detection. By combining the data genera-
tion capability of the proposed method with consis-
tency regularization-based semi-supervised segmenta-
tion methods, we achieve state-of-the-art performance
in semi-supervised segmentation of biomedical images.

The structure of this paper is organized as follows. Section
II provides an overview of existing literature on biomedical
image segmentation and synthesis. Section III delves into
the specifics of the proposed generative network, detailing
its architecture and mechanisms. It also introduces the semi-
supervised segmentation process, explaining how it integrates
with the generative network. In Section IV, the effectiveness
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of our method is substantiated through both qualitative and
quantitative experiments conducted on three different datasets.
Finally, Section V rounds off the paper with a discussion
summarizing the key findings and contributions, followed
by concluding remarks that highlight the implications and
potential future directions arising from this research.

II. RELATED WORK

A. Semi-supervised Semantic Segmentation

To offset the high labeling costs of biomedical images,
semi-supervised methods have emerged as a solution, which
include adversarial learning [3], [36], [56] and the use of weak
annotations [16], [29] for semantic segmentation. Furthermore,
strategies like consistency regularization [13], [14], [40], [56]
and self-supervised learning [20], [51], [60] have been applied
in medical segmentation and detection to leverage unlabeled
data effectively. Unsupervised tasks [5], [31], [38], [45] are
designed to extract meaningful features from this data. For
example, a previous study [9] has implemented a two-branch
GAN for semi-supervised semantic segmentation by recon-
structing images and masks from latent vectors. However,
this method has fallen short for images with small lesions
or organs. To overcome this shortcoming, we introduce a
hierarchical GAN that separates the synthesis process, al-
lowing the generator to concentrate on smaller lesions or
organs, thereby enhancing segmentation accuracy for such
biomedical images. Recently, consistency regularization-based
semi-supervised methods [67], [68] have achieved impressive
results in image segmentation. However, the number of la-
bels still significantly affects the model’s performance. Using
reconstructed images and pseudo-labels obtained from semi-
supervised generative models for data augmentation helps mit-
igate the impact of label scarcity on consistency regularization
methods.

B. GAN-based Image Disentanglement

Disentangling the image components can markedly improve
the synthesized image quality in GAN-based approaches,
especially for images with class imbalances. A hierarchical
GAN, inspired by [25], [62], offers a promising strategy by
segregating the input image into foreground and background
layers through a masking technique. Furthermore, a three-
stage generative model for biomedical image disentangle-
ment has been introduced in [63] to further underscore the
potential of image disentanglement in enhancing synthesis
quality. Motivated by these advancements, our work introduces
a hierarchical architecture that employs dual generators to
independently synthesize lesion and non-lesion textures, ad-
dressing the semantic segmentation challenges in biomedical
images. This method leverages disentanglement to generate
high-quality, balanced representations of biomedical images,
thereby improving the efficiency and effectiveness of semantic
segmentation processes.

C. GAN-based Image Synthesis

Generative Adversarial Networks (GANs) have become a
cornerstone in image synthesis, transforming random noise

vectors into realistic images. The foundational structure of a
standard GAN, as introduced in [18], consists of a genera-
tor that crafts images from noise, and a discriminator that
differentiates between these synthesized images and actual
ones. Various adaptations, such as [18], [30], [46], [52], [57],
[59], have been developed to generate high-quality images
from latent vectors tailored to specific synthesis goals. Innova-
tively, [61] merged StyleGAN2 [46] with classifiers to create
images paired with semantic labels, while [9] introduced a
two-branch GAN for direct image segmentation. Building on
this, [28] developed a three-stage GAN aimed at generating
extensive biomedical data pairs. Drawing from these two-
branch and disentanglement concepts, our research introduces
a Hierarchical Attention Generative Adversarial Network. This
network is designed for the semi-supervised segmentation
of biomedical images, leveraging hierarchical structures and
attention mechanisms to enhance segmentation performance.

D. Attention Mechanism for Image Synthesis

To enhance the realism of synthesized images, attention
maps that assign weights to each pixel are employed. This
concept has seen various implementations, including an ad-
ditional attention network ( [58]), a self-attention strategy
( [65]), and local sparse attention layers ( [12]). A recent
advancement by [15] involves the use of image synthesis loss
to create attention masks. Expanding on the use of attention
mechanisms in image synthesis, we dissect the input images
into lesion and non-lesion components. Our methodology
merges the synthesized non-lesion textures with the product
of foreground textures and the generated attention map to
form the final image. This technique allows for the nuanced
weighting of pixels, yielding images that are not only more
realistic but also visually richer.

III. METHOD

This section starts with an overview of our method, high-
lighting its key enhancements. We then detail the model’s
architecture, training regimen, and the segmentation process,
focusing on the novel features that improve segmentation
accuracy.

A. Overview

Neural network-based semantic segmentation methods aim
to identify the optimal function f : X → Y , which maps
images x ∈ X to their segmentation masks y ∈ Y . The
conventional optimization objective is to maximize the con-
ditional probability p(y|x). However, this approach may lead
to overfitting in datasets with limited annotations.

In contrast, generative adversarial network (GAN)-based
semantic segmentation methods seek the optimal generator
G(z) : Z → (X ,Y), which fits the joint distribution p(x, y)
from a random noise vector z, adhering to a standard normal
distribution p(z) = N (0, 1). By considering the latent vector
z as an embedded semantic representation, the optimized G(z)
can concurrently generate an image and its corresponding
segmentation mask. Subsequently, an encoder can map the
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Fig. 3: Tail two-branch generator architecture

image x to its latent space, allowing the generator to synthesize
the segmentation masks ŷ.

Building on the above concept, a two-branch GAN has
been introduced in [9] which, however, shows limited ef-
ficacy in class-imbalanced biomedical images. The funda-
mental premise of [9] is that the semantic mask and im-
age representations in the low-dimensional latent space are
similar, potentially leading to the omission of some seman-

e

Vestibular schwannoma

e

Kidney

Fig. 4: Disentanglement of the biomedical images’ synthesis process

tic classes, especially those occupying smaller areas, during
the synthesis process. To address this, especially for class-
imbalanced images like those with small lesions, we segment
the synthesis process into lesion image synthesis and non-
lesion image synthesis. A tail two-branch generator Gtwo(z) :
Z → (FeaL, Att) is devised to simultaneously synthesize the
lesion textures FeaL and the segmentation mask Att, with
the latter serving as an attention map. The lesion images x̂L

are produced by the product of lesion textures and attention
maps: x̂L = FeaL × Att. Concurrently, another generator
Gstyle(z) : Z → XN generates the non-lesion image x̂N .
The final synthetic biomedical image x̂ is a combination of
the synthetic non-lesion image and the lesion image, derived
from the product of the attention map and lesion texture:
x̂ = FeaL × Att + x̂N . This hierarchical approach aims
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to fit the joint distribution of p(x, y) through Gtwo(z) and
Gstyle(z).

It is noted from experiments that the hierarchical architec-
ture does not ideally separate biomedical images into lesions
and non-lesions, often resulting in attention maps that depict
lesions smaller than their actual size due to the loss of
boundary detail. Due to the imbalance problem of lesions and
non-lesions in biomedical images, our two branch generative
model would lead to focus more on the generation of non-
lesion areas during training, and the semantic mask generator
Gtwo tend to generate smaller lesions. To improve this, we
apply the k-means [44] clustering algorithm to the feature
maps from the middle layer of Gtwo, using the clustered results
as the final segmentation masks, which preserve more accurate
boundary details than the synthesized attention maps.

The hierarchical attention GAN is less reliant on annotations
compared to traditional CNN-based methods. Given that the
loss functions for the generators and encoder include both
supervised and unsupervised components, a minimal set of
labeled images is adequate for HAGAN to perform semi-
supervised segmentation of input images.

B. Model Structure

Our model leverages StyleGAN2 [46] to generate realistic
images and their corresponding semantic masks, capitalizing
on its capability to produce high-quality images from noise
vectors. The generator accepts random noise vectors, adhering
to a normal distribution, and initially maps them into a more
complex space, often referred to as W space [49]. Through the
application of the transformed noise vector to the generator’s
primary style layers, StyleGAN2 is able to produce realistic
images.

Illustrated in Fig. 2, our model architecture introduces a
hierarchical attention generative adversarial network tailored
for biomedical imaging. A residual encoder maps the image
x into latent representations ω within the W+ space. Two
generators are employed to create biomedical images and
their associated attention maps from the latent codes. The
definitive segmentation masks are derived by clustering feature
maps extracted from specific layers, either the seventh or
ninth, of the tail two-branch generator Gtwo. The subsequent
sections provide an in-depth explanation of the structure and
functionality of each component.

Generators: Our model incorporates two generators. The
first is a tail two-branch generator for lesion texture synthesis,
and the second focuses on non-lesion synthesis. Drawing
from StyleGAN2’s residual skip-connection design, the tail
two-branch generator (Fig. 3) ensures consistency between
attention maps A⊔⊔ and lesion images §L by sharing style
convolutional layers. This generator, defined as Gtwo : Z →
(FeaL, Att), takes noise vectors z ∈ Z , following p(z) =
N(0, 1), to generate attention maps Att and lesion images
x̂L ∈ X̂L. We use convolutional layers named tRGB to reshape
intermediate feature layers from n ∗ m ∗ x to n ∗ m ∗ t ∗ 3
where x = t ∗ 3. By stacking tRGB results of different
depths, the dual-branch generator Gtwo can extract lesion
textures stored in RGB shape. Additionally, since the lesion

textures are highly consistent with the lesion semantic mask,
binarizing the stacked texture features through the tSEG layer
can produce the corresponding semantic mask. The second
generator, following StyleGAN2’s design, synthesizes non-
lesion images x̂N ∈ X̂N from the same noise vectors and
is defined as Gstyle : Z → X̂N .

Discriminators: Two discriminators are employed: an im-
age discriminator, DI : X → R, using a residual archi-
tecture to assess image realism, and a pair discriminator,
DP : (X , Att) → R, evaluating the authenticity of image-
mask pairs, thereby ensuring their consistency.

Encoders: An encoder, defined as E : X → W+, maps
images into latent representations in W space, adopting a
residual network design. This facilitates the use of a higher-
dimensional space W+ for the StyleGAN-based generator,
improving synthesis quality.

Cluster: The k-means clustering algorithm [44] is applied to
feature maps from the tail two-branch generator’s intermediate
layer, using the clustering results as segmentation masks. This
method, focusing on the feature maps from the seventh or
ninth layer, preserves more accurate boundary information by
avoiding detail loss during normalization and binarization.

Hierarchical Architecture: The hierarchical architecture
enables focused synthesis on lesion and non-lesion areas. It
addresses the limitations of single generators in synthesizing
detailed segmentation masks and realistic images simultane-
ously, especially for small lesions. The synthesized image
x̂ = x̂L + x̂N combines the outputs of both generators,
with discriminator scores guiding their training for improved
quality. This architecture effectively disentangles the synthesis
process, allowing for the concurrent generation of lesion
images with semantic masks and their integration with non-
lesion images to form complete biomedical images (Fig. 4).

C. Training Process

The training process is divided into two main phases: i) the
first phase involves training the generators and discriminators
to create biomedical images and attention maps from random
noise vectors; and ii) in the second phase, the encoder is
trained to map input images to latent representations in W+

space, using the previously trained generators to reconstruct
the images and their semantic masks.

The dataset used for training, denoted as F = {S,U},
comprises both labeled data S and unlabeled data U . The
labeled data, used for supervised learning, is represented as
S = {(x1, y1), (x2, y2), ..., (xm, ym)}, whereas the unlabeled
data is denoted as U = {x1, x2, ..., xn}, with m ≪ n
indicating that the number of labeled instances is much smaller
than the number of unlabeled instances.

1st Phase: The objective functions of generators G =
{Gtwo, Gstyle} and discriminators DI , DP are given as fol-
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lows.

LG = E(x̂,·)=G(z)[log(1−DI(x̂)]

+ E(x̂,Att)=G(z)[log(1−DP (x̂, Att)] (1)
LDI

= Ex∼F [log(DI(x))]

+ E(x̂,·)=G(z)[log(1−DI(x̂)] (2)
LDP

= E(x,y)∼S [log(DP (x, y))]

+ E(x̂,Att)=G(z)[log(1−DP (x̂, Att)] (3)

The learning objectives for the discriminators DI and DP

involve maximizing LDI and LDP , respectively. Concur-
rently, the generators Gtwo and Gstyle are collaboratively
trained to minimize the combined loss LG. Given that the
synthesized image x̂ consists of lesion parts x̂L and non-
lesion parts x̂N , the first component of Eq. (3) ensures that DI

provides feedback to both Gtwo and Gstyle, encouraging the
synthesis of more realistic textures. Additionally, the second
component of Eq. (3) reflects the evaluation of how authentic
and consistent the synthesized images and segmentation masks
appear. Through the use of labeled data S, DP incentivizes
Gtwo to enhance its focus on lesion areas by assessing the
congruence between the synthetic image and its attention map
against the real image and its semantic mask. Consequently,
the supervised loss component further encourages Gtwo to
concentrate on lesion areas, while Gstyle is naturally directed
towards synthesizing the non-lesion portions of the images.
This approach ensures that the semantic details of lesions are
preserved throughout the synthesis process, regardless of the
size of the lesion areas.

2nd Phase: The encoder’s objective function is a combi-
nation of supervised and unsupervised reconstruction losses
formulated as:

LE = LS + LU (4)

where the reconstructed image and synthesized attention maps
are given by (x̂, Att) = G(E(x)). The supervised reconstruc-
tion loss of semantic masks Ls is defined as:

Ls = CE(y,Att) +DICE(y,Att) (5)

with y being the semantic segmentation label for the input
image x, CE(·) representing the pixel-wise cross-entropy, and
DICE(·) denoting the dice loss as introduced in [11].

The unsupervised loss Lu is defined as:

Lu = LPIPS(x, x̂) + λ∥x− x̂∥2 (6)

Here, LPIPS(·) is the “Learned Perceptual Image Patch
Similarity” metric [43], and the second term is a weighted
L2 norm loss.

After completing the second phase of training, the encoder
is capable of mapping input images into latent representations
ω in W+ space and reconstructing them into the corresponding
realistic images x̂ and attention maps Att.

Semi-supervised Learning: In our semi-supervised learn-
ing framework, we leverage both labeled and unlabeled
biomedical images to provide gradient feedback to the gen-
erators Gtwo and Gstyle. The supervised loss component,

represented as the second term in Eq. (3), encourages Gtwo to
generate attention masks Att that closely resemble the distri-
bution of real segmentation masks Y . This process enables
Gtwo to produce attention maps that accurately reflect the
small lesion areas present in the real masks, based on the
embedded latent representations ω.

The availability of a limited number of annotated data pairs
biases Gtwo towards generating masks with smaller lesion
areas. Conversely, the inclusion of unlabeled images compels
Gstyle to focus on synthesizing the background regions by
employing an unsupervised reconstruction loss, indicated as
the first term in Eq. (3). Subsequently, by mapping the input
image into latent semantic presentations within the W+ space
using the residual encoder, Gtwo is capable of producing
attention maps that align with the semantic content of the input
images, thus facilitating effective semi-supervised learning.

D. Inference Phase

Given that segmentation masks are conceptualized as atten-
tion maps Att, they should not be directly employed as final
semantic masks. Due to the imbalance problem of lesions and
non-lesions in biomedical images, our two-branch generative
model would lead to focus more on the generation of non-
lesion areas during training, and the semantic mask generator
Gtwo tends to generate smaller lesions. To alleviate this, we
apply a cluster to the feature maps from the seventh or ninth
layer from the middle layer of Gtwo. Compared to other
clustering algorithms, k-means has a significant advantage in
separating clusters with regular shapes and relatively symmet-
ric convex forms, making it more suitable for lesion separation
scenarios. The k-means clustering method, focusing on the
feature maps from the seventh or ninth layer, preserves more
accurate boundary information by avoiding detail loss during
normalization and binarization. The objective function for the
k-means algorithm, aimed at minimizing clustering error, is
defined as:

J =

C∑
i=1

N∑
j=1

rijλ||xj − µi||2 (7)

Here, xj represents the data point from the flattened feature
maps of size 256 or 512, and rij ∈ 0, 1 denotes the cluster
assignment of data point xj . The resultant clusters yield the
final semantic segmentation masks, enriched with detailed
information.

The segmentation workflow named Ours-seg in HAGAN’s
inference phase unfolds as follows:

1) Step 1: The residual encoder E transforms the input
image into a latent representation ω within the W+

space.
2) Step 2: The tail two-branch generator Gtwo generates

the attention map Att and lesion textures FeaL, with
feature maps being extracted from either the seventh or
ninth layer during this process.

3) Step 3: The k-means clustering algorithm, utilizing
two clusters, is applied to the aforementioned flattened
feature maps. The clustering outcome serves as the
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definitive semantic segmentation mask for the input
image.

The data generation workflow named Ours-gen in HA-
GAN’s inference phase unfolds as follows:

1) Step 1: Randomly sample a noise vector z in the Z
space.

2) Step 2: The generator module generates realistic image
x̂ and lesion textures FeaL, with feature maps being
extracted from either the seventh or ninth layer during
this process.

3) Step 3: The k-means clustering algorithm, utilizing
two clusters, is applied to the aforementioned flattened
feature maps. The clustering outcome serves as the
definitive semantic segmentation mask for the generated
image x̂.

IV. EXPERIMENTS AND RESULTS

In this evaluation section, our semi-supervised segmenta-
tion approach is assessed across three biomedical datasets,
employing varying quantities of annotated data during the
training phase. Initially, the synthesis quality of our generative
model is compared against numerous leading GANs to gauge
its efficacy in replicating biomedical image distributions.
Both qualitative and quantitative analyses indicate that our
generative model adeptly conforms to the biomedical image
distributions.

Subsequent to the synthesis evaluation, the segmentation ca-
pability of our model is benchmarked. Here, the performance
is juxtaposed with that of Unet [35], along with other semi-
supervised segmentation techniques. The outcomes of these
experiments underscore the effectiveness of our method in
the semi-supervised generation and segmentation domain of
biomedical imagery. By utilizing the data generation workflow
mentioned above, HAGAN can be used for data augmentation
with the latest advanced semi-supervised segmentation models,
reducing the impact of label scarcity and further achieving
state-of-the-art semi-supervised segmentation results.

A. Experimental Settings

Dataset: In our experiments, we used three datasets to
validate the effectiveness of our method: a vestibular schwan-
noma dataset (VS), a kidney dataset (Kits19 [33]), and a
skin cancer dataset (ISIC2018 [39]), among which Kits19
[34] and ISIC2018 [39] are representative benchmark datasets
for biomedical image segmentation. The vestibular schwan-
noma and kidney datasets consist of slices from 3D medical
images. We retained 900 slices from vestibular schwannoma
and 10,000 slices from the kidney dataset, discarding slices
that did not contain valid lesion regions. The skin cancer
dataset consists of 2D scanned images in PNG format, from
which we randomly selected 30,000 images, including 2,500
with segmentation labels. All images across these datasets are
resized to a uniform resolution of 128 × 128 for consistency
in our experiments.

Settings: To assess the efficacy of our semi-supervised
learning approach, we employ varying quantities of labeled

Hyperparameters Value

Batchsize 4
Resolution 128 × 128
Optimizer Adam

Learning rate 0.001
Epoch 120

TABLE 1: Hyperparameters.

Generative Models Inception Score Frechet Inception Distance

Pix2pixGAN [37] 1.18± 0.01 74.35
SPADE [47] 1.09± 0.02 88.72

NICE-GAN [42] 1.12± 0.01 159.54
DPGAN [28] 1.21± 0.01 69.42

StyleGAN2 [46] 1.22 ± 0.01 65.48
Ours 1.21± 0.01 65.42

Ours-Plus 1.22 ± 0.01 62.38

TABLE 2: Synthesis quality of several GANs using 315 labeled vestibular
schwannoma data pairs to perform training. Ours-Plus also utilizes an addi-
tional 315 unlabeled images for training. IS (↑ better) and FID (↓ better).

data to create different experimental setups. The division of
data into training, validation, and testing sets for each dataset
adheres to a 7:1:2 ratio, ensuring a balanced distribution
for comprehensive performance evaluation. Experiments were
performed on one PC with a single RTX3080 GPU and another
PC with two RTX3090 GPUs. As for 128 × 128 resolu-
tion images, the proposed method requires approximately 5.8
GFLOPs and contains about 30 million parameters.

Hyperparameters: During the training process, there are
hyperparameters as shown in TABLE 1.

B. Synthesis Results of GANs

Baselines. For synthesis quality, we compare our method
with several state-of-the-art GANs including Pix2pixGAN
[37], SPADE [47], NICE-GAN [42], StyleGAN2 [46] and
DPGAN [28]. The implementation codes of these methods are
cloned from their public repositories. The above generation
methods do not have significant differences in model size and
training mode. When setting the batch size to 4 the image
resolution is 128x128, they all converge within 6-8 hours.

Evaluation Metrics. The quality of synthesized data pairs is
evaluated by IS [48] and FID [32]. Specifically, IS measures
the clarity and diversity of the data using Kullback-Leibler
divergence, whereas FID focuses on the similarity between
the synthesized and the real images. The higher the IS (or the
lower the FID), the better the synthesis quality.

Generative Models Inception Score Frechet Inception Distance

Pix2pixGAN [37] 1.20± 0.01 55.47
SPADE [47] 1.17± 0.01 90.04

NICE-GAN [42] 1.14± 0.01 203.05
DPGAN [28] 1.19± 0.01 61.71

StyleGAN2 [46] 1.20± 0.01 65.74
Ours 1.21± 0.01 56.85

Ours-Plus 1.22 ± 0.01 54.59

TABLE 3: Synthesis quality of several GANs using 300 annotated KiTS19
data pairs to perform training. Ours-Plus also utilizes an additional 10000
unlabeled images for training. IS (↑ better) and FID (↓ better).
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Real Pix2pixGAN DPGANSPADE NICE-GAN OursStyleGAN2 Ours-Plus

Fig. 5: Comparison of real and fake vestibular schwannoma images synthesized by different generative models. Ours-Plus also utilizes an additional 315
unlabeled images for training.

Pix2pixGAN DPGANSPADE NICE-GAN Ours-PlusOursStyleGAN2Real

Fig. 6: Comparison of real and fake KiTS images synthesized by different generative models. Ours-Plus also utilizes an additional 5323 unlabeled images for
training.

Synthesized Skin Cancer ImagesReal

Fig. 7: Comparison of real and synthesized skin cancer images training with
200 annotated data pairs and 29800 unlabeled images.

As shown in TABLE 2 and TABLE 3, we utilize part
of annotated data pairs to train the generative models. The
quantitative results present that StyleGAN2 has better per-
formance in the synthesis of biomedical images (Note: the
proposed HAGAN is also constructed based on StyleGAN2).
Further, in order to validate the semi-supervised learning
strategy of the proposed method, we apply Ours-Plus which
also applies amounts of unlabeled data to train the HAGAN.
Combining the qualitative experimental results presented in
Fig. 5 and Fig. 6, we find that Ours-Plus has a higher definition
and more visible lesion areas than Ours. This further proves
that HAGAN has the capacity to disentangle the biomedical
image and extract expected features. Moreover, we also apply
HAGAN to the ISIC2018 data set to evaluate HAGAN on
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20 labeled 80 labeled 315 labeled

Unet [35] 0.6216 0.7912 0.8154
MT [4] 0.5580 0.6369 0.6703
AdvSSL [54] 0.5735 0.6750 0.7059
GCT [64] 0.5817 0.7158 0.7249
SemanticGAN [9] 0.5042 0.6651 0.6912
Ours-seg 0.6252 0.7940 0.8098
UniMatch [67] 0.7052 0.8297 0.8564
ARCO [68] 0.8024 0.8580 0.8782
Ours-gen + UniMatch 0.8320 0.8324 0.8749
Ours-gen + ARCO 0.8519 0.8641 0.8795

TABLE 4: Segmentation results of vestibular schwannoma using different
numbers of annotated data evaluated with the dice score.

50 labeled 150 labeled 300 labeled

Unet [35] 0.3254 0.3562 0.4213
MT [4] 0.3616 0.4083 0.4846
AdvSSL [54] 0.3849 0.4260 0.5077
GCT [64] 0.4131 0.4686 0.5591
SemanticGAN [9] 0.3915 0.4526 0.5238
Ours-seg 0.4173 0.5087 0.6062
UniMatch [67] 0.6699 0.7330 0.7358
ARCO [68] 0.7424 0.7486 0.7536
Ours-gen + Unimatch [67] 0.7350 0.7494 0.7519
Ours-gen + ARCO [68] 0.8071 0.8645 0.8433

TABLE 5: Segmentation results of KiTS19 images using different scale
annotated images evaluated with Dice.

biomedical data sets with big lesions. We use 200 annotated
data pairs and 29800 unlabeled images, obtain IS = 2.04±0.01,
and FID = 34.15. Samples in Fig. 7 indicate that HAGAN can
synthesize detailed textures of skin cancer images.

Groudtruth Image Ours Groudtruth Image Ours

Fig. 8: Segmentation samples of ISIC images. We use 200 labeled data
pairs and 29800 unlabeled images to perform training.

C. Semi-Supervised Segmentation Results

Baselines: For semi-supervised segmentation of biomedical

40 labeled 200 labeled 2000 labeled

Unet [35] 0.4935 0.6041 0.6469
MT [4] 0.5200 0.7052 0.7741
AdvSSL [54] 0.5016 0.6657 0.7388
GCT [64] 0.4759 0.6814 0.7887
SemanticGAN [9] 0.7144 0.7555 0.7890
Ours-seg 0.7204 0.7631 0.8071

TABLE 6: Segmentation results of ISIC skin lesion images using different
scale annotated images evaluated with the Jaccard score.

images, we compare our method with both Unet [35] and
several semi-supervised segmentation methods to evaluate
the proposed strategy. Unet is trained only with annotated
data while semi-supervised methods utilize unlabeled data
also. As semi-supervised methods, we use the mean teacher
model with transformation-consistency (MT), the adversarial
training-based method (AdvSSL) [54], Guided Collaborative
Training (GCT) [64], AN-based semi-supervised segmentation
method (SemanticGAN) [9], and advanced consistency nor-
malization based methods ARCO [68] and Unimatch [67].
Some of the implementations are adapted from PixelSSL1

and their public code repositories. Among the above methods,
when the batch size is set to 4 and the image resolution
is 128x128, only Unet can achieve convergence within 2
hours, while the other methods require 6-8 hours to reach
convergence.

Evaluation Metrics. The segmentation performance is eval-
uated with two metrics. Let n be a positive integer, given
two image sets P = {pi| 0 < i ≤ n} and Q = {qi| 0 <

i ≤ n}. The Dice coefficient is defined as 1
n

∑n
i=1

2|pi∩qi|
|pi|+|qi|

to evaluate the similarity of sets, and the Jaccard index is
1
n

∑n
i=1

|pi∩qi|
|pi|+|qi|−|pi∩qi| to measure the similarity and diversity

of sets.
Vestibular Schwannoma Segmentation. As shown in TA-

BLE 4, we apply Unet to perform supervised segmentation
and compare it with several semi-supervised networks. Con-
sidering that the method proposed in this paper has both
segmentation and data generation capabilities, we compare the
segmentation results obtained using the segmentation dataflow
(Ours-seg) of HAGAN, with the results obtained using the
generation dataflow (Ours-gen) for data augmentation in con-
sistency normalization-based methods [67], [68]. The results
show that using the generation dataflow for data augmentation
yields the best semi-supervised segmentation results, further
demonstrating the effectiveness of the proposed method in
fitting distributions of biomedical images and corresponding
masks.

Kidney Segmentation. Segmentation results in TABLE 5
and Fig 10 demonstrate that combining GAN-based semi-
supervised generation with consistency regularization-based
semi-supervised learning can achieve better segmentation re-
sults. Although the segmentation performance of Ours-seg
is weaker than the consistency normalization-based methods
Unimatch [67] and ARCO [68], when our method is applied
as a generative method called Ours-gen and the generated
medical images and corresponding pseudo-labels are used as
augmented labeled data to ARCO and Unimatch, the segmen-
tation metrics of both methods showed improvement across
different dataset scales. This further demonstrates that the
proposed method can better learn the distribution of medical
images and their corresponding masks. This demonstrates
that combining GAN-based semi-supervised learning methods
and consistency normalization-based semi-supervised learning
strategies could be a valuable future direction arising from this
research.

1https://github.com/ZHKKKe/PixelSSL
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Groudtruth Image Unet MT AdvSSL GCT SemanticGAN OursDPGAN-Unet

Fig. 9: Segmentation samples of vestibular schwannoma images. We use 80 labeled data pairs and 550 unlabeled images to perform training.

Groudtruth Image Unet MT AdvSSL GCT SemanticGAN OursDPGAN-Unet

Fig. 10: Segmentation samples of KiTS19 images. We use 300 labeled data pairs and 10000 unlabeled images to perform training.

Skin Lesion Segmentation. To evaluate the proposed
method on biomedical datasets with large lesions, we also
apply our method to ISIC2018 [39] skin lesion data set. Re-
sults shown in TABLE 6 and Fig 8 show that the hierarchical
structure can slightly improve the segmentation performance
of images with large lesion areas. The final segmentation
semantic masks are obtained by applying the two-category k-
means clustering algorithm on the ninth layer feature maps of
Gtwo.

Vestibular Schwannoma KiTS19 ISIC2018

Ours–no clustering 0.6094 0.6047 0.7263
Ours 0.6252 0.6062 0.7631

TABLE 7: Segmentation score of using attention maps or clustered feature
maps as the final semantic segmentation masks.

D. Ablation Analysis

In the inference phase, we apply two k-means clusters to the
feature maps extracted from certain layers of Gtwo. Comparing
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Groudtruth Image Ours

-no clustering

Ours Groudtruth Image Ours

-no clustering

Ours

Fig. 11: Segmentation samples of using attention maps or clustered feature maps as the final semantic segmentation masks.

with the no-clustering results presented in TABLE 7 and
Fig. 11, we find that the clustered results preserve more details
of the lesion boundaries than attention maps and obtain a
better segmentation score. One of the main reasons is that
attention maps synthesized by Gtwo are not strictly 0 or 1
masks. Some minor changes in the values of adjacent pixels
that may contain boundary information are lost during the
normalization and binarization. Instead, the k-means algorithm
preserves more accurate boundary information by clustering
the flattened feature maps.

V. DISCUSSION AND CONCLUSION

In this study, a novel hierarchical attention GAN has
been developed for semi-supervised semantic segmentation
of biomedical images, particularly those with small lesions.
Our approach effectively separates the synthesis process into
lesion and non-lesion components, enhancing the clarity and
visibility of lesion areas. A key feature of our model is
the tail two-branch generator, inspired by StyleGAN2 [46],
engineered to concurrently generate semantic masks and le-
sion textures from identical latent codes. These generated
semantic masks function as attention maps throughout the
training process. One challenge with this method is that the
attention maps produced by the tail two-branch generator are
not strictly binary, which means subtle variations in adjacent
pixel values, which are potentially crucial for delineating
boundaries, might be overlooked during the normalization and
binarization processes. To address this, we have employed the
k-means clustering algorithm on the flattened feature maps
from specific layers of the tail two-branch generator during
the inference stage. This technique aids in preserving detailed
boundary information within the final segmentation masks.
The performance of our proposed method has been rigorously
assessed against leading generative models and GAN-based

semi-supervised segmentation techniques through both quali-
tative and quantitative evaluations, showcasing its effectiveness
and potential in enhancing segmentation accuracy for biomed-
ical images with small lesions. However, this method also has
some limitations. GAN-based semi-supervised segmentation
methods learn the mapping from the noise space to the medical
image space to acquire the underlying semantic information
of the image. Since the adversarial loss primarily focuses on
the validity of the generated images, the model tends to focus
more on shallow image representations (such as global texture
distribution) and neglects the deeper features that truly affect
the image semantics. In contrast, by extracting the common
features of the same image under different noise influences,
adversarial consistency methods are more effective in extract-
ing deep features that impact image semantics. Considering
that GAN-based methods can generate high-quality images
and pseudo-labels, Combining GAN-based semi-supervised
learning methods and consistency normalization-based semi-
supervised learning strategies could be a potential future
direction arising from this research.
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