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14 Abstract—In biomedical vision research, a significant challenge image segmentation [2], [41]. However, their effectiveness is

15 is the limited availability of pixel-wise labeled data. Data augmen-  ]imited in accurately delineating lesion boundaries in biomedi-

16 tation has been identified as a solution to this issue through gener- ., images, often hindered by intricate and similar pixel values
ating labeled dummy data. While enhancing model efficacy, semi- . di A lutional | K

17 supervised learning methodologies have emerged as a promising In adjacent areas. As a response,. convo uthIlE.l neurg nethor

18 alternative that allows models to train on a mix of limited (CNN)-based approaches have risen to prominence in various

19 labeled and larger unlabeled data sets, potentially marking a computer vision fields. These methods excel at autonomously

20 Signiﬁcant ad.Vancem(.ant in biognedical ViSiO.Il res'earch. Drawing extracting Critical features from deep layers of images'

21 from the semi-supervised learning strategy, in this paper, a novel Recently, a range of CNN-based segmentation networks
medical image segmentation model is presented that features has been d’evelo ed. which automatically seement tumors or

22 a hierarchical architecture with an attention mechanism. This - ped, o y seg o

23 model disentangles the synthesis process of biomedical images ©organs from diverse medical images. These networks capitalize

24 by employing a tail two-branch generator for semantic mask on the proficiency of CNNs in extracting detailed features

25 synthesis, thereby excelling in handling medical images with  from biomedical images [1], [53]. While these advancements

% lmbalapced clas.s characteristics. During inference, the k-means significantly improve upon traditional techniques, the majority
clustering algorithm processes feature maps from the generator of current models still depend heavilv on laree. hieh-qualit

27 by using the clustering outcome as the segmentation mask. p y 8¢, high-q y

28 Experimental results show that this approach preserves biomed- labeled datasets. Such reliance poses a challenge as labeled

29 ical image details more accurately than synthesized semantic biomedical data are often limited due to privacy issues and

30 masks. Experiments on various datasets, including those for the scarcity of experts for image annotation. This shortage

31 vestibular SChwartnoma’ kidney, and skin cancer, demonstrate the .\ ,1icate5 the training of segmentation models that perform
proposed method’s superiority over other generative-adversarial- well on varied and unseen datasets. thus intensifvine the

32 network-based and semi-supervised segmentation methods in . R T y g

33 both distribution fitting and semantic segmentation performance. ~ challenges in automatic biomedical image segmentation.

34 To tackle the challenge of labeled biomedical data scarcity,

35 Index Terms—Generative Adversarial Network, Semi- (WO primary strategies haye been proposed.. The .ﬁrst involves

36 supervised Learning, Hierarchical Architecture, Attention the generation of synthetic labeled data pairs using advanced

37 Mechanism, Biomedical Image Segmentation deep learning models to enhance the original dataset [28], [61],

38 [63], [66], thereby effectively increasing the amount of data

39 I. INTRODUCTION avallal?le for tr.alnmg. The secor}d strategy is the apphcat}on

40 dical Iv ad f ical of various semi-supervised learning (SSL) methods according

41 E 1ca ;clxperts. commonly a vocate for surg]:ca resec- o specific application needs. SSL methodologies integrate a

42 - tion :n Tn.onitormg as p.rlmary tre.atmi:nts or SeI‘IOlllS substantial volume of unlabeled data into the training process,

43 dlsOIZQers.h 1 grltlca preoperilltlve step I11nvo ves accurate.y allowing the model to utilize the full dataset more effectively,

44 marking t € lesion 011\1/[;01mpute tIi)Imograp 3’ (€D }(:r magnetic .14 this results in a more robust model compared to traditional

45 rf:slopance !maging ( ) ) scans. oxzever, ue tolt ¢ exponen- supervised methods that rely solely on labeled data. The SSL

46 tial increase mn blomedl‘?al 'maging ata, manually annotating strategy is particularly valuable in situations where obtaining

P a vast quantity of medical images accurately and promptly labeled data is costly, and the model’s performance may

48 has become nearly unfeasible. Consequently, there is growing be adversely affected by a lack of diverse and extensive

49 re'zsearch 1nt§rest mn au'tomatlc segmentatlop using comp'uter- training data. Popular SSL techniques include pseudo-labeling

< aided te.chmque's, Whlch offer high efficiency in precisely [7], [27], [55] and consistent regularization [13], [14], [40],

51 Segmen'n'ng medical 1mages. . L [56]. Among others, contrastive learning, which focuses on

s Traditional segmentation methods predominantly utilize im- training powerful image feature extractors [20], [51], [60]

53 age edge detection algomhms to .dI.SFIIlgUISh target iject t?or- using unsupervised contrast loss from image transformations,
ders, and these techniques were initially prevalent in medical has shown promising SSL results

54 ) e . o
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59 zidong.Wang@brunel.ac.uk has been introduced by using StyleGAN2 designed to fit the
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2 actual dataset distribution. Despite its state-of-the-art perfor- to encode biomedical images into the targeted latent space.
3 mance on various datasets, this method faces challenges with  Subsequently, the corresponding semantic masks are generated
4 biomedical images containing small lesions. The key limitation using the trained Hierarchical Attention Generative Adver-
5 is the need for a highly consistent representation of the image sarial Network (HAGAN). However, due to the hierarchical
6 and its semantic mask in the latent space, which is a condition design for image disentanglement, the grayscale mask from
7 often not met in cases of small lesions in biomedical images. the tail two-branch generator often lacks detail compared to
8 the desired segmentation mask. To address this, inspired by
9 Non-lesions previous work [10], we apply the k-means clustering algorithm
10 [44] to the feature maps from a specific layer of the tail two-
1 branch generator during the inference stage. We use the results
12 of this clustering as the final segmentation masks for the input
13 images. Our experimental results show that these clustered
14 feature maps retain more semantically meaningful details of
15 the input images than the synthesized attention maps, leading
16 to improved segmentation accuracy.
17 The proposed hierarchical attention generative model show-
18 cases significant potential in the accurate segmentation of
19 biomedical images. Utilizing techniques in latent space map-
20 Image Mask Lesions ping and attention map synthesis, the model achieves height-
21 l ened accuracy in reconstructed images and their resultant
22 segmentation masks. Further enhancement of accuracy and
23 ® effectiveness is achieved through feature map extraction and
24 e clustering techniques. The primary contributions of this paper
25 are summarized as follows.
26 Fig. 1: Disentanglement of biomedical image according to the corresponding 1) Addressing the challenge of segmenting small lesions
27 segmentation mask. in medical images, we introduce a hierarchical architec-
28 ture based on StyleGAN2 [46]. The integration of the
gg Addressing the issue of inadequate performance on small attention gnechamsm m thlfs apl()ir.oa;:h. aids in t_hﬁ sem;
31 lesions in biomedical images, in this paper, we introduce a lsuperwse segmentation of medical images with sma
32 hierarchical architecture that integrates an attention mechanism 5 ‘;SIOSS' , dualbranch —
33 into the generative model. Drawing from the principles of ) ¢ deve Og la uat- rfmc gelneratog within: the g‘?nl;
32 attention-GAN [12], [17], [58], [65], it’s noted that an attention lefa.tlve model to dSImu taneously P“’k UCTeh_lmgg?S wit
35 map, self-generated by the network, can significantly enhance (;sllon textures an seimentatllcindmas §. 1his ?Slgz.eni
36 the quality of generator synthesis. Building on this concept, ables more p'rECIS]T an cqntrol & genera.tilion (k)l medica
37 we posit that in segmentation tasks, the semantic mask can Images, specifically targeting lesion-specific characteris-
38 function as a form of attention map. This approach is designed 3 2[1‘03. 0 11 ¢ lesion boundary inf
39 to focus the generative model more on lesion regions, which ) To counter the potentia ossko IESIOH ounl ary 1ntor-
40 often occupy smaller areas in biomedical images. We achieve matllpr(ll lg s.egmeﬁltagofn mas S,h -means ﬁc USt;rmg 18
41 this by differentiating the biomedical image into lesion and appihied urlngk t; interence p asﬁ to krle n;:.t ¢ S;g(i
42 non-lesion areas based on the semantic mask, as illustrated in mentation mask. Qur experiments show that this metho
43 Fig. 1. more F:ffectlvely reta1n§ bgundary details.
44 Following the assumption that lesion textures and semantic 4 Experlmen.tell' results . 1nd1cat§ t(lilat our If/t_GAN S?;'
45 masks possess analogous semantic representations, in [9], it g?lzsesar(:'xclsllarilg §§12281$:§ZLS6 snjzlglr?::';lls()qn Hrfed-
46 has been suggested that images with similar semantics should ; 1’ iIr)n cu thyr lb ih 0 ilng h rl lf o) 1;
47 correspond to similar representations in the latent space. bca nd ?gefi,t etieny ; a le%inirf a(t:lclu adcyt 0 is:
48 Extending this idea, we introduce a tail two-branch generator tiglrl1 Cz };bﬂ?tec ch) ihe y rgoosed mgethoii V:i; é;znesiz:
49 derived from StyleGAN2 [46]. This generator is designed to renc ri ular?zation-basi q psemi-su rvised seementa.
50 produce both lesion textures and semantic masks with related tionymetlglods we achieve State—Of—gl ot erfogrmance
51 semantics from the same latent representation. Concurrently, i semis er’ sed seemnentation of biomedri)cal mages
57 we utilize a standard StyleGAN2 [46] generator to create non- uperv g £es.
53 lesion textures from random noise. In this framework, the The structure of this paper is organized as follows. Section
54 semantic mask is employed as an attention map. The final II provides an overview of existing literature on biomedical
55 compos.ite biomedical image is then for.med by integrating the image segmentation and synthesis. Section III delves into
56 syqthesued lesion texture, the semantic mask, and the non- the specifics of the proposed generative network, detailing
57 lesion texture. its architecture and mechanisms. It also introduces the semi-
58 In the inference phase, we follow the method described supervised segmentation process, explaining how it integrates
59 in [9] by using an encoder with a ResNet [22] backbone with the generative network. In Section IV, the effectiveness

60 Copyright © 2025 Institute of Electrical and Electronics Engineers (IEEE). Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or
future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any
copyrighted component of this work in other works. See: https://journals.ieeeauthorcenter.ieee.org/become-an-ieee-journal-author/publishing-ethics/guidelines-and-policies/post-publication-policies



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information:

DOI:10.1109/TETCI.2025.3540418,

IEEE Transactions on Emerging Topics in Computational Intelligence

SUBMITTED 3
1
2 of our method is substantiated through both qualitative and vectors into realistic images. The foundational structure of a
3 quantitative experiments conducted on three different datasets. standard GAN, as introduced in [18], consists of a genera-
4 Finally, Section V rounds off the paper with a discussion tor that crafts images from noise, and a discriminator that
5 summarizing the key findings and contributions, followed differentiates between these synthesized images and actual
6 by concluding remarks that highlight the implications and ones. Various adaptations, such as [18], [30], [46], [52], [57],
7 potential future directions arising from this research. [59], have been developed to generate high-quality images
8 from latent vectors tailored to specific synthesis goals. Innova-
9 II. RELATED WORK tively, [61] merged StyleGAN2 [46] with classifiers to create
10 A. Semi-supervised Semantic Segmentation images paired with semantic labels, while [9] introduced a
11 To offset the high labeling costs of biomedical images, twp-branch GAN for direct image segmen.tation. Building.on
12 semi-supervised methods have emerged as a solution, which this, [28] d?vel(’p.ed a three-st.age GAN, aimed at generating
13 include adversarial learning [3], [36], [56] and the use of weak extensive blqmedlcal data pairs. Drawing from these two-
14 annotations [16], [29] for semantic segmentation. Furthermore, bral}ch "‘“q dlsentanglement Con.cepts, our re.search 1r1tr0duce?s
15 strategies like consistency regularization [13], [14], [40], [56] a Hlerarcl'ncal Attentlon Generative Adversa.nal Network. Thls
16 and self-supervised learning [20], [51], [60] have been applied netwprk 1§ deslgned for the 'seml-'superv.lsed segmentation
17 in medical segmentation and detection to leverage unlabeled of bl(,’medlcal 1mages, leveraging hlerarchl(.:al structures and
18 data effectively. Unsupervised tasks [5], [31], [38], [45] are attention mechanisms to enhance segmentation performance.
19 designed to extract meaningful features from this data. For
20 example, a previous study [9] has implemented a two-branch  D. Attention Mechanism for Image Synthesis
;; ;’:}C\Imfor i::lzzugﬁgwrsrfss;senflf;rEC1;;%1?6\111;2:;?2 l;-)lloifecx(f):r- To enhance the realism of synthesized images, attention
23 this me%hod l%as fallen short for images with sn.lall lesions’ maps that assign wellghts .to each p1x§1 e emplf)yed. This
24 h 8es 3 concept has seen various implementations, including an ad-

or organs. To overcome this shortcoming, we introduce a - gitional attention network ( [58]), a self-attention strategy
25 hler.archlcal GAN that separates the synthesis proc§ss, al- ( [65]), and local sparse attention layers ( [12]). A recent
26 lowing the generator tg concentrate on smaller lesions or —,quan omony by [15] involves the use of image synthesis loss
27 organs, thereby enhancing segmentation accuracy for such . cieqe attention masks. Expanding on the use of attention
28 blorpedlcal images. Recently, consistency regglarlzgtlon—baged mechanisms in image synthesis, we dissect the input images
29 sem1-supery1sed methods [6_7]’ [68] have achieved impressive ;¢4 Jesion and non-lesion components. Our methodology
30 results in image segmentation. However, the number of la- merges the synthesized non-lesion textures with the product
31 bels still signiﬁcantly affects the model’s performance. Usin.g of foreground textures and the generated attention map to
32 reconstructed images and pseudo-labels obtained from semi- ) the final image. This technique allows for the nuanced
33 :superwse.d generative models for data augmentatlon helps rr.ut— weighting of pixels, yielding images that are not only more
g;l 1ga:f1 tge impact of label scarcity on consistency regularization .. 1ictic but also visually richer.

methods.
36
37 B. GAN-based Image Disentanglement IL.METHOD
38 Disentaneline the image components can markedlv improve This section starts with an overview of our method, high-
39 h th & g . & “P’ GAN-based Y Ph lighting its key enhancements. We then detail the model’s
40 the Sy eoeet mage dnaty i “oased Approaciies. architecture, training regimen, and the segmentation process,

especially for images with class imbalances. A hierarchical ) . ’
41 GAN, inspired by [25], [62], offers a promising strategy by focusing on the novel features that improve segmentation
42 segregating the input image into foreground and background accuracy.
43 layers through a masking technique. Furthermore, a three-
Zg stage generative model for biomedical image disentangle- A. Overview
46 ment has bee.n 1ntr0d}lced in [63] tolfunher upderscore the Neural network-based semantic segmentation methods aim
47 poteptlal of. image disentanglement in enhancmg. synthesis ¢ identify the optimal function f : X — ), which maps
48 qua!lty. Mgtlvated b?/ these advancements, our work introduces images € X to their segmentation masks y € ). The
49 a (inerar(ci:hwlal archﬁtegturel that en:iploys ldu'al generators :10 conventional optimization objective is to maximize the con-
50 iin cpen elrllt y synthesize lesion an Eoﬁ' esion tel);tures,d.a i ditional probability p(y|z). However, this approach may lead
51 dressing ":“hf? Semaﬁtlg Tegmentatlgp cha eilges I bromedical o gyerfitting in datasets with limited annotations.
52 Lr'niges' i 1 bmlet Od everages .1senta111gbe.:men:1.tolgenerate In contrast, generative adversarial network (GAN)-based
53 ﬁg 'Sufl 1ty, a.lanclel: rfe;pr.esentatl(zinsffo b1ome IC? 1mages,  semantic segmentation methods seek the optimal generator
” thereby m'lprovmgt e efficiency and effectiveness of semantic G(z) : £ — (X,), which fits the joint distribution p(z, y)
55 segmentation processes. from a random noise vector z, adhering to a standard normal
56 . distribution p(z) = N(0,1). By considering the latent vector
57 C. GAN-based Image Synthesis z as an embedded semantic representation, the optimized G(2)
58 Generative Adversarial Networks (GANs) have become a can concurrently generate an image and its corresponding
59 cornerstone in image synthesis, transforming random noise segmentation mask. Subsequently, an encoder can map the
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Fig. 2: Model Structure of HAGAN. The residual encoder maps image 2 into latent presentations w in W7 space; Two generators reconstruct them into
lesion textures F'ear,, attention maps At¢t and non-lesion textures & ; Feature maps from the seventh or ninth layer of G0 are clustered into 2 classes as

final segmentation results.
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Fig. 3: Tail two-branch generator architecture

Fea; Att

image x to its latent space, allowing the generator to synthesize
the segmentation masks .

Building on the above concept, a two-branch GAN has
been introduced in [9] which, however, shows limited ef-
ficacy in class-imbalanced biomedical images. The funda-
mental premise of [9] is that the semantic mask and im-
age representations in the low-dimensional latent space are
similar, potentially leading to the omission of some seman-

Fig. 4: Disentanglement of the biomedical images’ synthesis process

tic classes, especially those occupying smaller areas, during
the synthesis process. To address this, especially for class-
imbalanced images like those with small lesions, we segment
the synthesis process into lesion image synthesis and non-
lesion image synthesis. A tail two-branch generator G0 (2) :
Z — (Feay, Att) is devised to simultaneously synthesize the
lesion textures Feay and the segmentation mask Att, with
the latter serving as an attention map. The lesion images %,
are produced by the product of lesion textures and attention
maps: &, = Feay x Att. Concurrently, another generator
Gstyle(z) : Z — XN generates the non-lesion image £N.
The final synthetic biomedical image # is a combination of
the synthetic non-lesion image and the lesion image, derived
from the product of the attention map and lesion texture:
T = Feayp x Att + xy. This hierarchical approach aims
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2 to fit the joint distribution of p(z,y) through Gtwo(z) and textures are highly consistent with the lesion semantic mask,
3 Gsiyie(2). binarizing the stacked texture features through the tSEG layer
4 It is noted from experiments that the hierarchical architec- can produce the corresponding semantic mask. The second
5 ture does not ideally separate biomedical images into lesions generator, following StyleGAN2’s design, synthesizes non-
6 and non-lesions, often resulting in attention maps that depict lesion images Ty € XN from the same noise vectors and
7 lesions smaller than their actual size due to the loss of is defined as Gstyle : Z — Xn.
8 boundary detail. Due to the imbalance problem of lesions and Discriminators: Two discriminators are employed: an im-
9 non-lesions in biomedical images, our two branch generative age discriminator, D; : X — R, using a residual archi-
10 model would lead to focus more on the generation of non- e pyre o assess image realism, and a pair discriminator,
11 lesion areas during training, and the semantic mask generator Dp : (X,Att) — R, evaluating the authenticity of image-
12 Gtwo tend to generate smaller lesions. To improve this, we mask pairs, thereby ensuring their consistency.
13 apply the k-means [44] clustering algorithm to the feature
14 maps from the middle layer of Gyyo, using the clustered results ~ Encoders: An encoder, defined as £ : A" — W, maps
15 as the final segmentation masks, which preserve more accurate ~1mages into latent representations in }V space, adopting a
16 boundary details than the synthesized attention maps. re?s1dua} network design. This facilitates the use of a higher-
17 The hierarchical attention GAN is less reliant on annotations .d1menS}ona1 Space W .for the StyleGAN-based generator,
18 compared to traditional CNN-based methods. Given that the 1mProving synthesis quality.
19 loss functions for the generators and encoder include both Cluster: The k-means clustering algorithm [44] is applied to
20 supervised and unsupervised components, a minimal set of feature maps from the tail two-branch generator’s intermediate
21 labeled images is adequate for HAGAN to perform semi- layer, using the clustering results as segmentation masks. This
22 supervised segmentation of input images. method, focusing on the feature maps from the seventh or
23 ninth layer, preserves more accurate boundary information by
24 B. Model Structure avoiding detail loss during normalization and binarization.
25 Our model leverages StyleGAN2 [46] to generate realistic Hierarchical Architecture: The hierarchical architecture
;g images and their corresponding semantic masks, capitalizing zgz?éeszezof}?:i?nz?[,;tizisslSo;):irlfsl]on and non—%esmn areas. I
; . : - . gle generators in synthesizing
28 on its capability to produce high-quality images from noise detailed segmentation masks and realistic images simultane-
29 vectors. The generator accepts random noise vectors, adhering ously, especially for small lesions. The synthesized image
30 to a normal distribution, and initially maps them into a more 4 = ;. + &y combines the ou£puts of both generators
31 complex space, often referred to as VW space [49]. Through the with discriminator scores guiding their training for improveci
32 application of the transformed noise vector to the generator’s quality. This architecture effectively disentangles the synthesis
rimary style layers, StyleGAN?2 is able to produce realistic ) . . .
33 primary sty Yers, Sty p process, allowing for the concurrent generation of lesion
34 1mages. N . . images with semantic masks and their integration with non-
35 'Illustr‘ated n F%g. 2, our model archlt.ecture 1ntr0du.ces 2 esion images to form complete biomedical images (Fig. 4).
36 hierarchical attention generative adversarial network tailored
37 for biomedical imaging. A residual encoder maps the image
38 x into latent representations w within the W1 space. Two
39 generators are employed to create biomedical images and
40 their associated attention maps from the latent codes. The o
41 definitive segmentation masks are derived by clustering feature C. Training Process
42 maps extracted from specific layers, either the seventh or
43 ninth, of the .tail twq-branch generator G'two- The subsequent The training process is divided into two main phases: i) the
44 sections provide an in-depth explanation of the structure and g phase involves training the generators and discriminators
45 furgtionalitty of (e)ach cogq;qnent. s ¢ . - to create biomedical images and attention maps from random
46 enerators: Uur model Incorporates two generalors. I1h€  poige vectors; and ii) in the second phase, the encoder is
47 first is a tail two-branch generator for lesion texture synthesis, (rqined to map input ?mages to latent rI;presentations in W+
48 and the second focus‘?s on nfm'lesmn .SyntheSS- Drawmg space, using the previously trained generators to reconstruct
49 from StyleGAN2’s residual skip-connection design, the tail o images and their semantic masks.
50 two-branch generator (Fig. 3) ensures consistency between The dataset d for traini denoted F o SU
51 attention maps AL and lesion images §, by sharing style ¢ da abse hulseb ICZIr draml;g, deno ;: beisd d - ({] 7Th}’
52 convolutional layers. This generator, defined as Gy : Z — lcobm{)r(ljse;s ot 3 fee ata ) ;‘Ii uniabele ata U. p ©
53 (Fear, Att), takes noise vectors z € Z, following p(z) = ;Ee ata, used for supervise earmr;lg, 18 re}lljreserllti lacsl
54 N(0,1), to generate attention maps Att and lesion images q t_ {(Icll’ yli’((i“’yz)l’ " (Zms Ym) s W creas 'tthe uniabele
55 1, € Xr. We use convolutional layers named tRGB to reshape ade.l 15 irlioteth as b - fix];’lxz"""txn}’ w1 Tg <<11n
56 intermediate feature layers from nxm sz to nxm *xt * 3 $ lcilhlng ab e Iguml egcl) da' ete Instances 1s much sma’fier
57 where z = t % 3. By stacking tRGB results of different an the number ol uniabeled instances.
58 depths, the dual-branch generator G4, can extract lesion 1st Phase: The objective functions of generators G =
59 textures stored in RGB shape. Additionally, since the lesion  {Giwo, Gstyie} and discriminators Dy, Dp are given as fol-
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lows.

Lo = E(j).):G(Z)[Zog(l — Dy ()]

+ Bz, at)=a () [log(1 — Dp (%, Att)] )
Lp, = Eynrllog(Dr(z))]
+ B, )=c(=)[log(1 — D1 ()] 2)

EDP = E(w,y)NS[log(DP (1‘7 y))]
+ E(3,at)=a(2)[log(1 — Dp(2, Att)] 3)

The learning objectives for the discriminators D; and Dp
involve maximizing £D; and LDp, respectively. Concur-
rently, the generators Gy, and Gty are collaboratively
trained to minimize the combined loss L£G. Given that the
synthesized image & consists of lesion parts Z; and non-
lesion parts £ N, the first component of Eq. (3) ensures that Dy
provides feedback to both G and Giiyie, encouraging the
synthesis of more realistic textures. Additionally, the second
component of Eq. (3) reflects the evaluation of how authentic
and consistent the synthesized images and segmentation masks
appear. Through the use of labeled data S, Dp incentivizes
Gwo to enhance its focus on lesion areas by assessing the
congruence between the synthetic image and its attention map
against the real image and its semantic mask. Consequently,
the supervised loss component further encourages Gy, tO
concentrate on lesion areas, while Gy is naturally directed
towards synthesizing the non-lesion portions of the images.
This approach ensures that the semantic details of lesions are
preserved throughout the synthesis process, regardless of the
size of the lesion areas.

2nd Phase: The encoder’s objective function is a combi-
nation of supervised and unsupervised reconstruction losses
formulated as:

Lp=Ls+ Ly “)

where the reconstructed image and synthesized attention maps
are given by (&, Att) = G(E(z)). The supervised reconstruc-
tion loss of semantic masks L is defined as:

Ly = CE(y, Att) + DICE(y, Att) (3)

with y being the semantic segmentation label for the input
image x, C E(-) representing the pixel-wise cross-entropy, and
DICE(-) denoting the dice loss as introduced in [11].

The unsupervised loss £,, is defined as:

L, = LPIPS(z,%) + \|z — |2 (6)

Here, LPIPS(-) is the “Learned Perceptual Image Patch
Similarity” metric [43], and the second term is a weighted
L5 norm loss.

After completing the second phase of training, the encoder
is capable of mapping input images into latent representations
w in W space and reconstructing them into the corresponding
realistic images Z and attention maps Att.

Semi-supervised Learning: In our semi-supervised learn-
ing framework, we leverage both labeled and unlabeled
biomedical images to provide gradient feedback to the gen-
erators Giyo and Ggye. The supervised loss component,
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represented as the second term in Eq. (3), encourages Gy, to
generate attention masks Att that closely resemble the distri-
bution of real segmentation masks ). This process enables
Giwo to produce attention maps that accurately reflect the
small lesion areas present in the real masks, based on the
embedded latent representations w.

The availability of a limited number of annotated data pairs
biases Gy, towards generating masks with smaller lesion
areas. Conversely, the inclusion of unlabeled images compels
Gsiyle to focus on synthesizing the background regions by
employing an unsupervised reconstruction loss, indicated as
the first term in Eq. (3). Subsequently, by mapping the input
image into latent semantic presentations within the W+ space
using the residual encoder, G, is capable of producing
attention maps that align with the semantic content of the input
images, thus facilitating effective semi-supervised learning.

D. Inference Phase

Given that segmentation masks are conceptualized as atten-
tion maps Att, they should not be directly employed as final
semantic masks. Due to the imbalance problem of lesions and
non-lesions in biomedical images, our two-branch generative
model would lead to focus more on the generation of non-
lesion areas during training, and the semantic mask generator
G'wo tends to generate smaller lesions. To alleviate this, we
apply a cluster to the feature maps from the seventh or ninth
layer from the middle layer of Gy, Compared to other
clustering algorithms, k-means has a significant advantage in
separating clusters with regular shapes and relatively symmet-
ric convex forms, making it more suitable for lesion separation
scenarios. The k-means clustering method, focusing on the
feature maps from the seventh or ninth layer, preserves more
accurate boundary information by avoiding detail loss during
normalization and binarization. The objective function for the
k-means algorithm, aimed at minimizing clustering error, is
defined as:

C N
T =3 riAle; — pill? 7
i=1j=1

Here, x; represents the data point from the flattened feature
maps of size 256 or 512, and r;; € 0,1 denotes the cluster
assignment of data point x;. The resultant clusters yield the
final semantic segmentation masks, enriched with detailed
information.

The segmentation workflow named Ours-seg in HAGAN’s
inference phase unfolds as follows:

1) Step 1: The residual encoder E transforms the input
image into a latent representation w within the W™
space.

2) Step 2: The tail two-branch generator G, generates
the attention map Att and lesion textures Feay, with
feature maps being extracted from either the seventh or
ninth layer during this process.

3) Step 3: The k-means clustering algorithm, utilizing
two clusters, is applied to the aforementioned flattened
feature maps. The clustering outcome serves as the
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definitive semantic segmentation mask for the input
image.
The data generation workflow named Ours-gen in HA-
GAN’s inference phase unfolds as follows:

1) Step 1: Randomly sample a noise vector z in the Z
space.

2) Step 2: The generator module generates realistic image
2 and lesion textures Fear, with feature maps being
extracted from either the seventh or ninth layer during
this process.

3) Step 3: The k-means clustering algorithm, utilizing
two clusters, is applied to the aforementioned flattened
feature maps. The clustering outcome serves as the
definitive semantic segmentation mask for the generated
image .

IV. EXPERIMENTS AND RESULTS

In this evaluation section, our semi-supervised segmenta-
tion approach is assessed across three biomedical datasets,
employing varying quantities of annotated data during the
training phase. Initially, the synthesis quality of our generative
model is compared against numerous leading GANs to gauge
its efficacy in replicating biomedical image distributions.
Both qualitative and quantitative analyses indicate that our
generative model adeptly conforms to the biomedical image
distributions.

Subsequent to the synthesis evaluation, the segmentation ca-
pability of our model is benchmarked. Here, the performance
is juxtaposed with that of Unet [35], along with other semi-
supervised segmentation techniques. The outcomes of these
experiments underscore the effectiveness of our method in
the semi-supervised generation and segmentation domain of
biomedical imagery. By utilizing the data generation workflow
mentioned above, HAGAN can be used for data augmentation
with the latest advanced semi-supervised segmentation models,
reducing the impact of label scarcity and further achieving
state-of-the-art semi-supervised segmentation results.

A. Experimental Settings

Dataset: In our experiments, we used three datasets to
validate the effectiveness of our method: a vestibular schwan-
noma dataset (VS), a kidney dataset (Kits19 [33]), and a
skin cancer dataset (ISIC2018 [39]), among which Kits19
[34] and ISIC2018 [39] are representative benchmark datasets
for biomedical image segmentation. The vestibular schwan-
noma and kidney datasets consist of slices from 3D medical
images. We retained 900 slices from vestibular schwannoma
and 10,000 slices from the kidney dataset, discarding slices
that did not contain valid lesion regions. The skin cancer
dataset consists of 2D scanned images in PNG format, from
which we randomly selected 30,000 images, including 2,500
with segmentation labels. All images across these datasets are
resized to a uniform resolution of 128 x 128 for consistency
in our experiments.

Settings: To assess the efficacy of our semi-supervised
learning approach, we employ varying quantities of labeled
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Hyperparameters Value
Batchsize 4
Resolution 128 x 128
Optimizer Adam

Learning rate 0.001
Epoch 120

TABLE 1: Hyperparameters.

Generative Models  Inception Score  Frechet Inception Distance

Pix2pixGAN [37] 1.18 £ 0.01 74.35
SPADE [47] 1.09 £ 0.02 88.72
NICE-GAN [42] 1.124+0.01 159.54
DPGAN [28] 1.21 +£0.01 69.42
StyleGAN2 [46] 1.22 + 0.01 65.48
Ours 1.21 £0.01 65.42
Ours-Plus 1.22 + 0.01 62.38

TABLE 2: Synthesis quality of several GANs using 315 labeled vestibular
schwannoma data pairs to perform training. Ours-Plus also utilizes an addi-
tional 315 unlabeled images for training. IS (1 better) and FID (| better).

data to create different experimental setups. The division of
data into training, validation, and testing sets for each dataset
adheres to a 7:1:2 ratio, ensuring a balanced distribution
for comprehensive performance evaluation. Experiments were
performed on one PC with a single RTX3080 GPU and another
PC with two RTX3090 GPUs. As for 128 x 128 resolu-
tion images, the proposed method requires approximately 5.8
GFLOPs and contains about 30 million parameters.

Hyperparameters: During the training process, there are
hyperparameters as shown in TABLE 1.

B. Synthesis Results of GANs

Baselines. For synthesis quality, we compare our method
with several state-of-the-art GANs including Pix2pixGAN
[37], SPADE [47], NICE-GAN [42], StyleGAN2 [46] and
DPGAN [28]. The implementation codes of these methods are
cloned from their public repositories. The above generation
methods do not have significant differences in model size and
training mode. When setting the batch size to 4 the image
resolution is 128x128, they all converge within 6-8 hours.

Evaluation Metrics. The quality of synthesized data pairs is
evaluated by IS [48] and FID [32]. Specifically, IS measures
the clarity and diversity of the data using Kullback-Leibler
divergence, whereas FID focuses on the similarity between
the synthesized and the real images. The higher the IS (or the
lower the FID), the better the synthesis quality.

Generative Models  Inception Score  Frechet Inception Distance

Pix2pixGAN [37] 1.20£0.01 55.47
SPADE [47] 1.17 +£0.01 90.04
NICE-GAN [42] 1.14 £0.01 203.05
DPGAN [28] 1.19+£0.01 61.71
StyleGAN2 [46] 1.20 £0.01 65.74
Ours 1.21+£0.01 56.85
Ours-Plus 1.22 + 0.01 54.59

TABLE 3: Synthesis quality of several GANs using 300 annotated KiTS19
data pairs to perform training. Ours-Plus also utilizes an additional 10000
unlabeled images for training. IS (1 better) and FID ({ better).
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Ours-Plus

DPGAN  StyleGAN2 Ours

Fig. 5: Comparison of real and fake vestibular schwannoma images synthesized by different generative models. Ours-Plus also utilizes an additional 315

unlabeled images for training.

Real Pix2pixGAN  SPADE  NICE-GAN

DPGAN  StyleGAN2 Ours Ours-Plus

Fig. 6: Comparison of real and fake KiTS images synthesized by different generative models. Ours-Plus also utilizes an additional 5323 unlabeled images for

training.

Real Synthesized Skin Cancer Images

)

\ Jx'u

Fig. 7: Comparison of real and synthesized skin cancer images training with
200 annotated data pairs and 29800 unlabeled images.

As shown in TABLE 2 and TABLE 3, we utilize part
of annotated data pairs to train the generative models. The
quantitative results present that StyleGAN2 has better per-
formance in the synthesis of biomedical images (Note: the
proposed HAGAN is also constructed based on StyleGAN2).
Further, in order to validate the semi-supervised learning
strategy of the proposed method, we apply Ours-Plus which
also applies amounts of unlabeled data to train the HAGAN.
Combining the qualitative experimental results presented in
Fig. 5 and Fig. 6, we find that Ours-Plus has a higher definition
and more visible lesion areas than Ours. This further proves
that HAGAN has the capacity to disentangle the biomedical
image and extract expected features. Moreover, we also apply
HAGAN to the ISIC2018 data set to evaluate HAGAN on
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1
2 20 labeled ~ 80 labeled 315 labeled images, we compare our method with both Unet [35] and
3 Unet [35] 0.6216 0.7912 0.8154 several semi-supervised segmentation methods to evaluate
4 MT [4] 0.5580 0.6369 0.6703 the proposed strategy. Unet is trained only with annotated
AdvSSL [54] 0.5735 0.6750 0.7059 . . . .
5 GCT [64] 0.5817 07158 07249 data while semi-supervised methods utilize unlabeled data
6 SemanticGAN [9] 0.5042 0.6651 0.6912 also. As semi-supervised methods, we use the mean teacher
7 Su'r;/_lsigh - 8?(2)2% 8-;3‘9“7) 8-2222 model with transformation-consistency (MT), the adversarial
8 ARCO [68] 08024 08580 08789 training-based method (AdvSSL) [54], Guided Collaborative
9 Ours-gen + UniMatch 0.8320 0.8324 0.8749 Training (GCT) [64], AN-based semi-supervised segmentation
10 Ours-gen + ARCO 0.8519 0.8641 0.8795 method (SemanticGAN) [9], and advanced consistency nor-
11 TABLE 4: Segmentation results of vestibular schwannoma using different malization based methods ARCO [68] and Unimatch [67].
12 numbers of annotated data evaluated with the dice score. Some of the implementations are adapted from PixelSSL!
13 and their public code repositories. Among the above methods,
14 S0 labeled 150 labeled 300 labeled yvhen the batch size is set to 4. and the image resplgtlon
15 is 128x128, only Unet can achieve convergence within 2
Unet [35] 0.3254 0.3562 0.4213 . .
16 MT [4] 03616 04083 0.4846 hours, while the other methods require 6-8 hours to reach
17 AdvSSL [54] 0.3849 0.4260 0.5077 convergence.
GCT [64] 0.4131 0.4686 0.5591 . . . . )
18 SemanticGAN [9] 03915 04526 0.5238 Evalu.atlon Metrlc.s. The segmentation p.e'rforr.nance is eyal
19 Ours-seg 0.4173 0.5087 0.6062 uated with two metrics. Let n be a positive integer, given
20 UniMatch [67] 0.6699 0.7330 0.7358 two image sets P = {p2| 0 <1< n} and Q = {Qz| 0 <
ARCO [68] 0.7424 0.7486 0.7536 . . . . 1 2|ping|
21 Ours-gen + Unimatch [67]  0.7350 0.7494 0.7519 ¢ < n}. The Dice coefficient is defined as ;; >, 1, 1
22 Ours-gen + ARCO [68] 0.8071 0.8645 0.8433 to evaluate the similarity of sets, and the Jaccard index is
23 Ly pi0ail 6 measure the similarity and diversit
TABLE 5: Segmentation results of KiTS19 images using different scale ”f21_1 [pil+lgil=lpiNgsl Y y
24 annotated images evaluated with Dice. of sets.
25 Vestibular Schwannoma Segmentation. As shown in TA-
26 BLE 4, we apply Unet to perform supervised segmentation
27 biomedical data sets with big lesions. We use 200 annotated  and compare it with several semi-supervised networks. Con-
28 data pairs and 29800 unlabeled 1mages, obtain IS = 204Z|2001, sidering that the method proposed in this paper has both
29 and FID = 34.15. Samples in Fig. 7 indicate that HAGAN can  segmentation and data generation capabilities, we compare the
30 synthesize detailed textures of skin cancer images. segmentation results obtained using the segmentation dataflow
31 (Ours-seg) of HAGAN, with the results obtained using the
32 /lmage Groudtruth ~ Ours Image  Groudtruth Ours\ generation dataflow (Ours-gen) for data augmentation in con-
33 sistency normalization-based methods [67], [68]. The results
34 show that using the generation dataflow for data augmentation
35 |, ! yields the best semi-supervised segmentation results, further
36 I r_j demonstrating the effectiveness of the proposed method in
37 fitting distributions of biomedical images and corresponding
38 ‘ masks.
39 ‘ Kidney Segmentation. Segmentation results in TABLE 5
40 “ and Fig 10 demonstrate that combining GAN-based semi-
41 \ J supervised generation with consistency regularization-based
42 semi-supervised learning can achieve better segmentation re-
43 Fig. 8: Segmentation samples of ISIC images.. We use 200 labeled data  gults. Although the segmentation performance of Ours_seg
44 pairs and 29800 unlabeled images to perform training. is weaker than the consistency normalization-based methods
45 Unimatch [67] and ARCO [68], when our method is applied
46 as a generative method called Ours-gen and the generated
47 C. Semi-Supervised Segmentation Results medical images and corresponding pseudo-labels are used as
48 . . . . . . augmented labeled data to ARCO and Unimatch, the segmen-
49 Baselines: For semi-supervised segmentation of biomedical : . .
tation metrics of both methods showed improvement across
50 different dataset scales. This further demonstrates that the
51 40 labeled 200 labeled 2000 labeled proposed method can better learn the distribution of medical
52 Unet [35] 0.4935 0.6041 0.6469 images and their corresponding masks. This demonstrates
53 MT [4] 0.5200 0.7052 0.7741 that combining GAN-based semi-supervised learning methods
54 AdvSSL [54] 0.5016 0.6657 0.7388 and consistency normalization-based semi-supervised learning
55 GCT [64] 0.4759 0.6814 0.7887 . . . .. .
SemanticGAN [9] 07144 0.7555 0.7890 strategies could be a valuable future direction arising from this
56 Ours-seg 0.7204 0.7631 0.8071 research.
57
58 TABLE 6: Segmentation results of ISIC skin lesion images using different
59 scale annotated images evaluated with the Jaccard score. I https://github.com/ZHKKKe/PixelSSL
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23 Fig. 9: Segmentation samples of vestibular schwannoma images. We use 80 labeled data pairs and 550 unlabeled images to perform training.

Image Groudtruth Unet DPGAN-Unet MT AdvSSL GCT SemanticGAN Ours

46 Fig. 10: Segmentation samples of KiTS19 images. We use 300 labeled data pairs and 10000 unlabeled images to perform training.

49 Skin Lesion Segmentation. To evaluate the proposed Vestibular Schwannoma ~ KiTS19  ISIC2018
50 method on biomedical datasets with large lesions, we also Ours—no clustering 0.6094 0.6047 0.7263

51 apply our method to ISIC2018 [39] skin lesion data set. Re- Ours 0.6252 0.6062  0.7631

52 sults shown in TABLE 6 and Fig 8 show that the hierarchical TABLE 7: Segmentation score of using attention maps or clustered feature
53 structure can slightly improve the segmentation performance maps as the final semantic segmentation masks.

54 of images with large lesion areas. The final segmentation

55 semantic masks are obtained by applying the two-category k-

56 means clustering algorithm on the ninth layer feature maps of D. Ablation Analysis

57
58 Grwo- In the inference phase, we apply two k-means clusters to the

59 feature maps extracted from certain layers of G,,,. Comparing
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21 Fig. 11: Segmentation samples of using attention maps or clustered feature maps as the final semantic segmentation masks.

22

23

24 with the no-clustering results presented in TABLE 7 and semi-supervised segmentation techniques through both quali-
25 Fig. 11, we find that the clustered results preserve more details tative and quantitative evaluations, showcasing its effectiveness
26 of the lesion boundaries than attention maps and obtain a and potential in enhancing segmentation accuracy for biomed-
27 better segmentation score. One of the main reasons is that ical images with small lesions. However, this method also has
28 attention maps synthesized by Gy, are not strictly O or 1  some limitations. GAN-based semi-supervised segmentation
29 masks. Some minor changes in the values of adjacent pixels methods learn the mapping from the noise space to the medical
30 that may contain boundary information are lost during the image space to acquire the underlying semantic information
31 normalization and binarization. Instead, the k-means algorithm of the image. Since the adversarial loss primarily focuses on
32 preserves more accurate boundary information by clustering the validity of the generated images, the model tends to focus
33 the flattened feature maps. more on shallow image representations (such as global texture
34 distribution) and neglects the deeper features that truly affect
35 the image semantics. In contrast, by extracting the common
36 V. DISCUSSION AND CONCLUSION features of the same image under different noise influences,
2573 In this study, a novel hierarchical attention GAN has gdversarial consistency .methods are more effe;ctive in e?xtre}ct—
39 been developed for semi-supervised semantic segmentation "€ deep features that impact image semgntlcs. C'ons¥der1ng
40 of biomedical images, particularly those with small lesions. that GAN-based methOds,C_an generate ‘hlgh-qughty lmf‘%’es
41 Our approach effectively separates the synthesis process into ?nd PSCUdO'labe‘ls’ Comblplng GAN—bag:d §em1—syperv1sgd
42 lesion and non-lesion components, enhancing the clarity and ~€4MNg methods. and con51§tency normallzatlon—ba.sed semi-
43 visibility of lesion areas. A key feature of our model is SL_‘perYlsed }éarnmg strategies could be a potential future
44 the tail two-branch generator, inspired by StyleGAN2 [46], direction arising from this research.

45 engineered to concurrently generate semantic masks and le-

46 sion textures from identical latent codes. These generated REFERENCES
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