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A Fuzzy Neural Network Approach to Adaptive

Robust Nonsingular Sliding Mode Control for

Predefined-Time Tracking of A Quadrotor
Yongjun He, Lin Xiao, Zidong Wang, Fellow, IEEE, Qiuyue Zuo, and Linju Li

Abstract—In this paper, a novel adaptive robust predefined-
time nonsingular sliding mode control (ARPTNSMC) scheme is
investigated, which aims to achieve fast and accurate tracking
control of a quadrotor subjected to external disturbance. Inspira-
tion is drawn from a fuzzy neural network that is constructed by
fuzzy logic and zeroing neural network (ZNN). Distinct from most
sliding mode control (SMC) approaches, a nonsingular sliding
mode surface is formulated by employing a general ZNN and a
differentiable predefined-time activation function. Furthermore,
for the compensation of external disturbance, a dynamic adaptive
parameter and a fuzzy adaptive parameter are designed in the
control law. The fuzzy adaptive parameter, generated by the
Takagi-Sugeno fuzzy logic system, is incorporated to enhance the
robustness while reducing the chattering phenomena resulting
from the discontinuous sign function. Theoretical proofs are
provided to demonstrate the predefined-time convergence and ro-
bustness of the closed-loop system. Lastly, two trajectory tracking
examples are offered to validate the convergence, robustness, and
low-chattering characteristics of the closed-loop system under the
developed ARPTNSMC scheme.

Index Terms—Fuzzy neural network, predefined-time conver-
gence, Takagi-Sugeno fuzzy logic system, zeroing neural network,
nonsingular sliding mode control, quadrotor.

I. INTRODUCTION

Quadrotor unmanned aerial vehicles (UAVs) are exten-

sively utilized in various fields of science and engineering

because of their straightforward design, minimal maintenance

costs, and outstanding hovering precision [1]. Quadrotors are

employed in a range of applications including surveying,

mapping, searching, and rescuing [2], [3]. In response to the

control complexities of quadrotors, diverse control strategies

have been developed, which include backstepping control [4],

model predictive control [5], and sliding mode control (SMC)

[6]. Notably, SMC is recognized as an effective strategy for

quadrotors, particularly due to its robustness against parameter

variations and disturbances [6]–[8].

In recent decades, considerable research has focused on

the convergence and robustness of quadrotor systems. For

example, an adaptive sliding mode control has been developed
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in [9] for the finite-time stabilization of UAV systems. The

tracking problem of a quadrotor UAV under wind disturbances

has been dealt with in [10] by using an adaptive super-twisting

terminal SMC strategy, confirming the finite-time reachabil-

ity of sliding surfaces. However, the fixed-time convergent

schemes are significantly affected by initial conditions. In

response, a fixed-time SMC scheme has been proposed in [11]

for a quadrotor UAV under external disturbances, ensuring the

fixed-time convergence of states. Nevertheless, the coupling

relationships (between parameters that determine the upper

bound of convergence time in these finite-time or fixed-

time SMC strategies) can adversely affect the adjustment of

practical convergence performance. Although a particle swarm

algorithm for parameter optimization in an SMC has been put

forward in [12], its performance is contingent on the choice of

group size and can substantially increase computational costs

[13]. Therefore, the development of a robust predefined-time

SMC scheme, with its convergence time controllable by an

independent parameter, is crucial.

Neural networks, particularly the zeroing neural network

(ZNN), a variant of the recurrent neural network, are ex-

tensively used in engineering due to their efficient parallel

processing capabilities [14]–[16]. ZNN excels in dynamic

problems like sensor localization [17], manipulator control

[18]–[21], and chaos control [22]. Various robust ZNN models

have been developed with focus on fixed-time or predefined-

time convergence by using activation functions and integral

designs [22]–[24]. For instance, a fixed-time robust ZNN

controller for chaos synchronization and a noise-tolerant ZNN

for robotic manipulator motion control have been proposed to

demonstrate ZNN’s versatility and effectiveness [22], [24].

In the ZNN and SMC schemes previously discussed, system

parameters are typically static. However, recent research has

shown that variable parameters, such as dynamic adaptive

and fuzzy adaptive parameters, can significantly enhance

the convergence and robustness of systems [25]–[30]. For

example, an adaptive ZNN with dynamic parameters has

been developed in [25] for UAV regulation under unknown

disturbances, a fuzzy-neural controller has been designed in

[27] for collaborative control of multi-manipulator systems,

and an adaptive ZNN utilizing the Takagi-Sugeno fuzzy logic

system has been established in [28] for quadratic programming

in order to achieve adaptive fixed-time convergence. Despite

these advancements, the issue of chattering caused by the

discontinuous sign function has been somewhat overlooked

in earlier robustness research. To address this, the current
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paper introduces a fuzzy adaptive parameter in conjunction

with the dynamic adaptive parameter to mitigate chattering

while compensating for disturbances.

Motivated by the concepts of fuzzy logic and ZNN, this

paper introduces an innovative adaptive robust predefined-

time nonsingular sliding mode control (ARPTNSMC) scheme

through establishing a fuzzy neural network. The primary goal

of this scheme is to facilitate precise position and attitude

tracking of a quadrotor even in the presence of bounded

disturbances. The approach involves several key steps: 1)

formulation of a nonsingular sliding mode surface using a

general ZNN combined with a differentiable predefined-time

activation function (AF); 2) construction of a unified ZNN

that incorporates both a dynamic adaptive parameter and a

fuzzy adaptive parameter, effectively creating a fuzzy neural

network to be employed to develop an approaching law;

and 3) integration of the nonsingular sliding mode surface

with the approaching law, culminating in the development

of a nonsingular robust predefined-time controller. Finally,

the paper presents theoretical analyses and two illustrative

examples to demonstrate the effectiveness and superiority of

the ARPTNSMC scheme.

This paper makes several key contributions outlined as

follows.

1) Two novel predefined-time AFs are introduced, which

ensure both the predefined-time convergence of the

closed-loop system and the non-singularity of the con-

troller.

2) The ARPTNSMC scheme incorporates two types of

adaptive parameters, and such a dual-parameter ap-

proach significantly compensates for external distur-

bances. Notably, the fuzzy adaptive parameter not only

enhances the system’s robustness but also effectively

suppresses chattering (a common issue caused by the

discontinuous sign function).

3) The convergence and robustness of the closed-loop

system under the ARPTNSMC scheme are rigorously

proven, and the analyses demonstrate that the calculated

convergence time is exclusively related to an indepen-

dent predetermined parameter denoted as Tp.

4) The efficacy of the ARPTNSMC scheme is further val-

idated through butterfly-shaped trajectory and Lissajous

trajectory, which clearly demonstrates the scheme’s

predefined-time convergence and strong robustness. Fur-

thermore, an ablation experiment is conducted to high-

light the ARPTNSMC scheme’s capability in chattering

suppression.

The structure of the paper is organized into five distinct

sections following the introduction. Section II provides the

necessary preliminaries and formulates the problem. Building

upon two existing ZNN schemes, Section III introduces the

SMC scheme, which features the novel introduction of a

dynamic adaptive parameter and a fuzzy adaptive parameter,

along with two predefined-time activation functions. Sec-

tion IV focuses on the theoretical analysis of the predefined-

time convergence and robustness of the closed-loop system

under the ARPTNSMC scheme. In Section V, two illustrative

TABLE I
LIST OF ABBREVIATIONS.

Abbreviation Description

AF Activation function

ARPTNSMC Adaptive robust predefined-time nonsin-
gular sliding mode control

CNTSMC Continuous nonsingular terminal sliding
mode control

FTRZNN Fixed-time robust zeroing neural network

PTAF Predefined-time activation function

SMC Sliding mode control

SMS Sliding mode surface

TSFLS Takagi-Sugeno fuzzy logic system

UAV Unmanned aerial vehicle

UZNN Unified zeroing neural network

ZNN Zeroing neural network

examples are presented to validate the theorems proposed in

Section IV and demonstrate the superiority of the novel SMC

scheme in terms of convergence time and anti-interference

capabilities, compared to other schemes [31]–[34]. Section VI

concludes the work by summarizing the key findings and

contributions and suggesting possible directions for future

research.

Moreover, a list of abbreviations appeared in this work is

provided in Table I.

II. PRELIMINARY AND PROBLEM FORMULATION

In this section, essential definitions and lemmas are initially

presented to establish the theoretical foundation. Subsequently,

the focus shifts to exploring the nonlinear dynamics of an X-

type quadrotor, along with its position and attitude tracking

challenges.

A. Preliminary

Consider a nonlinear system

ξ̇(t) = −f(ξ(t)), ξ(0) = ξ0 (1)

where ξ(t) ∈ R
n represents the state and f(·) : Rn → R

n

denotes a nonlinear vector function with its element being

f(·) : R → R. Let the origin be an equilibrium point. Then,

some definitions and lemmas are given as follows.

Definition 1 ( [35]). If there exists a real number Ts > 0
determined by ξ0 such that ||ξ(t)||2 = 0 for all t > Ts, then

T (ξ0) = inf{Ts > 0 : ||ξ(t)||2 = 0, ∀t > Ts} (2)

is said to be the settling time of the system (1).

Definition 2 ([35], [36]). The origin of the system (1) is finite-

time stable if there exists a settling time T (ξ0) < +∞ such

that ||ξ(t)||2 = 0 for all t > T (ξ0) and any ξ0 ∈ R
n.

Definition 3 ([36], [37]). The origin of the system (1) is fixed-

time stable if it is finite-time stable and T (ξ0) 6 Tf < +∞
holds, where Tf is unrelated to the initial state ξ0.
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Definition 4 ( [36], [38]). The origin of the system (1) is

predefined-time stable if it is fixed-time stable and the time

T (ξ0) 6 Ts < +∞, where Ts is irrelevant to the initial state

and other system parameters.

Definition 5 ([36], [37]). The integral

B(a, b) =

∫ 1

0

ya−1(1 − y)b−1dy

is called beta function, where a > 0 and b > 0.

Lemma 1 ([39]). For the beta function, one has

B(ξ, 1− ξ) =
π

sin(ξπ)
= π csc(ξπ).

B. Problem Formulation

According to the Newton-Euler equations [40], [41], the

dynamics of the X-type quadrotor are modeled as

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


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






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


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






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
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

ẍ =
1

m
(−Kdxẋ+ (sφsψ + cφsθcψ)u3) ,

ÿ =
1

m
(−Kdyẏ + (−sφcψ + cφsθsψ)u3) ,

z̈ =
1

m
(−Kdzż + cφcθu3)− g,

φ̈ =
1

Jx

(

(Jy − Jz) θ̇ψ̇ − JrΩ̄θ̇ −Kfxφ̇+ u4

)

,

θ̈ =
1

Jy

(

(Jz − Jx) φ̇ψ̇ + JrΩ̄φ̇−Kfyθ̇ + u5

)

,

ψ̈ =
1

Jz

(

(Jx − Jy) φ̇θ̇ −Kfzψ̇ + u6

)

,

(3)

where m is the mass of the quadrotor; [x, y, z]T is the position

of the quadrotor’s center of mass; φ, θ, and ψ represent

the roll, pitch, and yaw angles, respectively; s(·) and c(·)
signify sine function and cosine function; Kdx, Kdy, and

Kdz are the translation air drag coefficients, respectively; g
represents the gravity acceleration; Jx, Jy, and Jz denote the

moment of inertia in the X-, Y-, and Z-directions; Jr is the

rotational inertia of each rotor; Ω̄ =
∑4
i=1(−1)i+1wi with wi

representing the angular speed of the i-th rotor; Kfx, Kfy,

and Kfz represent aerodynamic friction coefficients; and the

control input is denoted by








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√
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√
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







. (4)

Here, Kl is the lift coefficient, l denotes the distance between a

rotor and the center of mass of the quadrotor, and ζ represents

the reverse moment coefficient.

Let u1 = (sφsψ+cφsθcψ)u3 and u2 = (−sφcψ+cφsθsψ)u3
represent the virtual control inputs to cope with the under-

actuation property. Then, the dynamical equations subjected

to external disturbance can be further transformed into the

following form:
{

Γ̇1(t) = Γ2(t),

Γ̇2(t) = Q(Γ2(t)) + G(Γ1(t))u(t) + δ(t),
(5)

where δ(t) ∈ R
6 signifies the bounded disturbance; u(t) =

[u1, u2, u3, u4, u5, u6]
T denotes the control input; Γ1(t) =

[x, y, z, φ, θ, ψ]T refers to the actual position and attitude; and

Q(Γ2(t)) and G(Γ1(t)) are represented by

Q(Γ2(t)) =

















−Kdxẋ/m
−Kdyẏ/m

−Kdzż/m− g

(Jy − Jz)θ̇ψ̇/Jx − JrΩ̄θ̇/Jx −Kfxφ̇/Jx
(Jz − Jx)φ̇ψ̇/Jx + JrΩ̄φ̇/Jx −Kfyθ̇/Jy

(Jx − Jy)φ̇θ̇/Jz −Kfzψ̇/Jz

















,

G(Γ1(t)) = diag(1/m, 1/m, cφcθ/m, 1/Jx, 1/Jy, 1/Jz).

Then, define the following tracking error to monitor the

tracking process:

ε(t) = Γ1(t)− Γd(t), (6)

where Γd(t) = [xd, yd, zd, φd, θd, ψd]
T ∈ R

6 denotes a

differentiable reference position and attitude. To this end, the

tracking error system is obtained as follows:

{

ε̇(t) = Γ̇1(t)− Γ̇d(t)

ε̈(t) = Q(Γ2(t)) + G(Γ1(t))u(t) − Γ̈d(t) + δ(t).
(7)

III. ADAPTIVE ROBUST PREDEFINED-TIME

NONSINGULAR SMC

This section introduces two ZNN schemes and a novel

AF by integrating a dynamic adaptive parameter and a fuzzy

adaptive parameter, including a predefined-time AF (PTAF).

The fuzzy adaptive parameter, derived from the Takagi-Sugeno

fuzzy logic system (TSFLS), is tailored to enhance robustness

and minimize chattering. The section also details the design

of the TSFLS’s fuzzy inference with two rule bases, each

containing twelve rules, for adaptive error correction. Finally,

it presents the ARPTNSMC scheme based on the two ZNN

schemes, two adaptive parameters, and AFs.

A. Evolution Laws of ZNN and UZNN

We are now in a position to introduce two ZNN schemes

that will serve as the basis for the novel SMC scheme,

such that ε(t) can converge to zero in fixed/predefined-time

through exploiting an appropriate AF [23], [24]. According to

Refs. [23], [24], [42], the evolution laws of the general ZNN

and the unified ZNN (UZNN) are formulated as follows:

ξ̇(t) = −η1P(ξ(t)), (8)

ξ̇(t) = −η1P(ξ(t))− η2P

(

ξ(t) +

∫ t

0

η1P(ξ(τ))dτ

)

, (9)

where ξ(t) ∈ R
n denotes the state variable; η1 > 0 and η2 > 0

are fixed parameters; and P(·) : Rn → R
n represents the AF

array with its element being p(·) : R → R.
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Fuzzification Defuzzification

 Inference 

Rule Base 1

 Inference 

Rule Base 2

Fuzzy 

Inference

Fig. 1. Block diagram of the TSFLS.

B. Two Novel Activation Functions

Inspired by [31], [32], [43], two novel PTAFs are con-

structed to attain predefined-time property. The first AF P1(·)
is a fuzzy adaptive PTAF with the element form denoted by

p1(ξ) =
4λ

Tp

(

|ξ|α + |ξ|β
)

sign(ξ) + ̺sign(ξ) + ρ(ξ)ξ, (10)

where Tp is the predetermined parameter used to control the

convergence time independently, α > 1, 0 < β < 1, and

λ = π csc
(

(1 − β)π/(α − β)
)

/(α − β). Besides, ̺ > 0
denotes the fuzzy adaptive parameter generated by the TSFLS

in Section III-C to enhance the robustness while suppressing

the chattering caused by the discontinuous sign(ξ), and ρ(ξ)
denotes the dynamic adaptive parameter with expression being

ρ(ξ) = exp

(

µarccsc

(

1

|ξ|
+ 1

))

, (11)

where µ > 0, arccsc(·) denotes inverse cosecant function. The

novel dynamic adaptive parameter (11) is designed to further

enhance noise-tolerant performance.

The second AF, P2(·), is a differentiable PTAF with its

element form p2(·) defined by

p2(ξ) =















2λ

Tp

(

|ξ|α + |ξ|β
)

sign(ξ), if |ξ| > ǫ1,

2λ

Tp

(

ι1ξ + ι2ξ
2sign(ξ)

)

, if |ξ| 6 ǫ1,

(12)

where ǫ1 is a small positive constant, ι1 = (2−α)ǫα−1
1 +(2−

β)ǫβ−1
1 , and ι2 = (α− 1)ǫα−2

1 + (β − 1)ǫβ−2
1 .

The differentiable PTAF will be used to construct a sliding

mode surface in the ZNN framework to ensure the predefined-

time reachability of the sliding mode surface.

C. Takagi-Sugeno Fuzzy Logic System

Inspired by the adaptivity of the TSFLS [28], [44]–[47], we

utilize a fuzzy adaptive gain (i.e. fuzzy adaptive parameter)

to replace the constant gain in the discontinuous sign item,

aimed at suppressing chattering. For this purpose, a TSFLS

is presented, with the design process divided into fuzzifica-

tion, fuzzy inference, and defuzzification. Besides, the block

diagram of the TSFLS is displayed in Fig. 1.

Fuzzification: This step involves the mapping of accurate

input values to fuzzy values through membership functions

with the input values χ1 = |ξ(t)| and χ2 =
∣

∣ξ̇(t)
∣

∣. The

Gaussian membership function is selected:

M(χ) = exp

(

−
(χ− o1)

2

2o22

)

(13)
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Fig. 2. Gaussian membership functions with input χ1 and input χ2.
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Fig. 3. Surfaces of the TSFLS utilizing two inference rule bases.

with constant parameters o1 and o2. Besides, Gaussian mem-

bership functions corresponding to χ1 and χ2 are depicted in

Fig. 2.

Fuzzy inference: In the fuzzy inference step, two inference

rule bases are employed to better adapt to input changes, where

each rule base includes twelve rules. If ξ(t)ξ̇(t) > 0, the first

inference rule base is selected, otherwise, the second inference

rule base is employed.

The first inference rule base is as follows:

R1: If χ1 is PL and χ2 is PL, then σ1 = 2χ1 + 1χ2;

R2: If χ1 is PL and χ2 is PM, then σ2 = 2χ1 + 0.8χ2;

R3: If χ1 is PL and χ2 is PS, then σ3 = 2χ1 + 0.6χ2;

R4: If χ1 is PM and χ2 is PL, then σ4 = 1χ1 + 0.4χ2;

R5: If χ1 is PM and χ2 is PM, then σ5 = 1χ1 + 0.2χ2;

R6: If χ1 is PM and χ2 is PS, then σ6 = 1χ1 + 0.1χ2;

R7: If χ1 is PS and χ2 is PL, then σ7 = 0.5χ1 + 0.08χ2;

R8: If χ1 is PS and χ2 is PM, then σ8 = 0.5χ1 + 0.06χ2;

R9: If χ1 is PS and χ2 is PS, then σ9 = 0.5χ1 + 0.04χ2;

R10: If χ1 is AZ and χ2 is PL, then σ10 = 0.2χ1 + 0.02χ2;

R11: If χ1 is AZ and χ2 is PM, then σ11 = 0.2χ1 + 0.01χ2;

R12: If χ1 is AZ and χ2 is PS, then σ12 = 0.2χ1+0.005χ2.

The second inference rule base is provided as follows:

R1: If χ1 is PL and χ2 is PL, then σ1 = 2χ1 + 0.6χ2;

R2: If χ1 is PL and χ2 is PM, then σ2 = 2χ1 + 0.8χ2;

R3: If χ1 is PL and χ2 is PS, then σ3 = 2χ1 + 1χ2;

R4: If χ1 is PM and χ2 is PL, then σ4 = 1χ1 + 0.1χ2;

R5: If χ1 is PM and χ2 is PM, then σ5 = 1χ1 + 0.2χ2;

R6: If χ1 is PM and χ2 is PS, then σ6 = 1χ1 + 0.4χ2;

R7: If χ1 is PS and χ2 is PL, then σ7 = 0.5χ1 + 0.04χ2;

R8: If χ1 is PS and χ2 is PM, then σ8 = 0.5χ1 + 0.06χ2;

R9: If χ1 is PS and χ2 is PS, then σ9 = 0.5χ1 + 0.08χ2;

R10: If χ1 is AZ and χ2 is PL, then σ10 = 0.2χ1 + 0.005χ2;

R11: If χ1 is AZ and χ2 is PM, then σ11 = 0.2χ1 + 0.01χ2;

R12: If χ1 is AZ and χ2 is PS, then σ12 = 0.2χ1 + 0.02χ2;
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where the fuzzy sets PL, PM, PS, and AZ denote positive large,

positive medium, positive small, and almost zero, respectively.

Defuzzification: The function of defuzzification is to convert

fuzzy variables in the TSFLS into a precise value. The wtaver

method [28] in this process is considered as follows:

̺ =

∑12
q=1 ςqσq

∑12
q=1 ςq

with ςq = Mq(χ1)Mq(χ2) being the weight of the output σq
of the q-th rule in the total output, where Mq(χ1) and Mq(χ2)
represent degree of membership of χ1 and χ2 in the q-th rule

belonging to the fuzzy set.

Finally, the surfaces of the TSFLS utilizing two inference

rule bases are exhibited in Fig. 3. The results indicate that the

output ̺ will change adaptively with two inputs χ1 = |ξ(t)|
and χ2 =

∣

∣ξ̇(t)
∣

∣.

D. Sliding Mode Surface Based on ZNN

Firstly, considering differentiable PTAF (12) and the input

ε(t), we rewrite the evolution law (8) with η1 = 1 as

ε̇(t) = −P2(ε(t)). (14)

Then, shifting the right-hand side of (14) to the left-hand side,

the state variable of nonsingular sliding mode surface (SMS)

based on the ZNN is obtained as

s(t) = ε̇(t) + P2(ε(t)) (15)

with its derivative being

ṡ(t) = ε̈(t) +
∂P2(ε(t))

∂ε
ε̇(t). (16)

Remark 1. Note that the dynamic properties of the SMS

constructed by ZNN depend on the evolution law and dif-

ferentiable AF of ZNN. Following the design framework of

(14) and (15), SMSs with different properties can be simply

constructed by utilizing the existing finite-time, fixed-time,

and predefined-time convergent ZNN approaches. Therefore,

compared with traditional SMS, the method of constructing

SMS using ZNN has two main advantages: 1) it is simpler

and clearer because it follows a fixed design framework;

2) it realizes the predefined-time reachability of the non-

singularity SMS due to the differentiable PTAF designed under

the framework of ZNN.

E. Controller Based on Fuzzy Neural Network

In order to make ε(t) reach SMS (15), an approaching law

is put forward by utilizing fuzzy neural network (i.e., evolution

law (9) with η1 = η2 = 1 and fuzzy adaptive PTAF (10)):

ṡ(t) = −P1(s(t)) − P1

(

s(t) +

∫ t

0

P1(s(τ))dτ

)

. (17)

Then, combining (7), (16), and (17), the adaptive robust
predefined-time nonsingular controller (dependent on the
fuzzy neural network) is developed:

u(t) = G−1(Γ1(t))

(

−
∂P2(ε(t))

∂ε
(Γ̇1(t)− Γ̇d(t))−P1(s(t))

−Q(Γ2(t)) + Γ̈d(t)− P1

(

s(t) +

∫ t

0

P1(s(τ ))dτ

))

.

(18)

IV. THEORETICAL ANALYSIS

This section establishes the predefined-time reachability of

SMS (15), along with the predefined-time convergence and

robustness of the closed-loop system. Note that the initial

state is represented by Γ0 = [ΓT
1(0),Γ

T
2(0)]

T in the following

analysis.

Theorem 1. Consider a differentiable reference trajectory

Γd(t). For external disturbance δ(t) = 0 and randomly

generated initial state Γ0, the tracking error ε(t) of the system

(5) by applying the controller (18) can move to SMS (15)

within predefined-time Tp/2, where Tp is the predetermined

parameter from PTAF (10).

Proof: Firstly, substituting the controller (18) into the

error system (7) yields

ε̈(t) =−
∂P2(ε(t))

∂ε
ε̇(t)− P1(s(t))

− P1

(

s(t) +

∫ t

0

P1(s(τ))dτ

)

+ δ(t).

(19)

According to (16), (19) is transformed into

ṡ(t) = −P1(s(t))− P1

(

s(t) +

∫ t

0

P1(s(τ))dτ

)

+ δ(t).

(20)

Since disturbance δ(t) = 0, (20) is written as

ṡ(t) = −P1(s(t)) − P1

(

s(t) +

∫ t

0

P1(s(τ))dτ

)

. (21)

Define an auxiliary variable

υ(t) = s(t) +

∫ t

0

P1(s(τ))dτ. (22)

Then, we obtain

υ̇(t) = ṡ(t) + P1(s(t)) = −P1(υ(t)) (23)

with element being υ̇(t) = −p1(υj(t)), where υj(t) is the j-th
element of υ(t).

Denoting ̟1(t) = υ
T(t)υ(t) as a Lyapunov function, we

have

˙̟ 1(t) = 2

6
∑

j=1

υj(t)υ̇j(t)

= −2

6
∑

j=1

υj(t)p1(υj(t)) 6 0

because p1(·) is a monotonically increasing odd function.

Thus, (23) is globally asymptotically stable in the Lyapunov

sense. With the fact of υj (T (υj(0))) = 0, which is a direct
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corollary of Definition 1, it is not difficult to obtain the settling

time of system (23) as follows:

T (υj(0)) =

∫ T (υj(0))

0

dt

=

∫ υj(0)

υj(T (υj(0)))

1

p1(υj)
dυj

=

∫ |υj(0)|

0

1

4λ
Tp

(

υαj + υβj

)

+ ̺+ ρ(υj)υj
dυj

6
Tp

4λ

∫ +∞

0

1

υαj + υβj
dυj .

(24)

Denoting

ϕ =
1

υα−βj + 1
=

υβj

υαj + υβj
,

we have










υj = (1/ϕ− 1)
1

α−β ,

dυj = −
(1− ϕ)−1+ 1

α−β

(α− β)ϕ1+ 1
α−β

dϕ.

In the light of λ = π csc
(

(1 − β)π/(α − β)
)

/(α − β),
Definition 5, and Lemma 1, an upper bound of settling time

can be calculated by

T (υ(0)) 6
Tp

4λ

∫ +∞

0

1

υαj + υβj
dυj

=
−Tp

4λ(α− β)

∫ 0

1

ϕ
β−1

α−β (1− ϕ)
1−β
α−β

−1dϕ

=
Tp

4λ(α− β)
B

(

1−
1− β

α− β
,
1− β

α− β

)

=
πTp

4λ(α− β)
csc

(

1− β

α− β
π

)

=
Tp

4
.

(25)

Therefore, the system (21) evolves over time as

ṡ(t) = −P1(s(t)), t > Tp/4. (26)

Since system (26) shares the same expression as system

(23), the settling time of system (26) is calculated by

T (s(Tp/4)) 6 Tp/4.

Finally, we can obtain the total convergence time Tc1 satisfying

Tc1 = T (υ(0)) + T (s(Tp/4)) 6 Tp/2.

As a result, the sliding variable s(t) converges to zero within

time Tp/2, i.e., the tracking error ε(t) of the system (5)

utilizing the controller (18) can move to SMS (15) within a

predefined-time Tp/2, which ends the proof.

Theorem 2. Consider a differentiable reference trajectory

Γd(t). For disturbance δ(t) = 0 and randomly generated

initial state Γ0, the tracking error of the system (5) applying

the controller (18) can converge to the following band

|εj(t)| 6 ǫ1, j ∈ {1, 2, ..., 6}

within predefined-time Tp, where ǫ1 is a small positive con-

stant.

Proof: Firstly, the sliding variable s(t) can be stabilized

to zero within predefined-time Tp/2 if δ(t) = 0 according to

Theorem 1, indicating that s(t) = ṡ(t) = 0 for any t > Tp/2.

From (15), we deduce that

ε̇(t) = −P2(ε(t)), ∀t ∈ [Tp/2,+∞), (27)

where its element is ε̇j(t) = −p2(εj(t)). Likewise, defining a

Lyapunov function

̟2(t) = ε2j(t) (28)

and differentiating it with respect to t lead to

˙̟ 2(t) = 2εj(t)ε̇j(t)

= −2εj(t)p2(εj(t)) 6 0

due to the fact that p2(·) defined in (12) is a monotonically in-

creasing odd function. Therefore, on the basis of the Lyapunov

stability theory, the system (27) is globally asymptotically

stable. Thus, we can assume that |εj(t)| approaches ǫ1 within

time Tce1, that is, εj (Tp/2 + Tce1) = ǫ1. Moreover, according

to (24) and (25), if |εj(Tp/2)| > ǫ1, the time Tce1 is estimated

by

Tce1 =

∫ Tp/2+Tce1

Tp/2

dt

=

∫ |εj(Tp/2)|

ǫ1

1

p2(εj)
dεj

<
Tp

2λ

∫ +∞

0

1

εαj + εβj
dεj

=
Tp

2
.

(29)

Then, we obtain the time Tc2 for |εj(t)| to converge from

|εj(0)| to ǫ1 as follows:

Tc2 = Tp/2 + Tce1 < Tp.

Accordingly, the tracking error ε(t) of the system (5) utilizing

the controller (18) approaches ǫ1 within predefined-time Tp,

and the proof is now complete.

Theorem 3. Consider a differentiable reference trajectory

Γd(t). If each element in disturbance vector δ(t) is bounded by

|δj(t)| 6 ̺ + ρ(υj(t))|υj(t)|, for randomly generated initial

state Γ0, the tracking error of the system (5) applying the

controller (18) can converge to the following band

|εj(t)| 6 ǫ1, j ∈ {1, 2, ..., 6}

within predefined-time Tp, where ǫ1 is a small positive con-

stant.

Proof: The j-th subsystem of (20) is obtained:

ṡj(t) = −p1(sj(t)) − p1

(

sj(t) +

∫ t

0

p1(sj(τ))dτ

)

+ δj(t).

(30)

Considering the element of the auxiliary variable (22) is

υj(t) = sj(t) +
∫ t

0
p1(sj(τ))dτ , υ̇j(t) is calculated by

υ̇j(t) = −p1(υj(t)) + δj(t). (31)
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A Lyapunov function is defined by

̟3(t) = υ2j (t). (32)

Due to |δj(t)| 6 ̺+ ρ(υj(t))|υj(t)|, we have

˙̟ 3(t) = 2υj(t)υ̇j(t)

= 2υj(t)(−p1(υj(t)) + δj(t))

6−
8λ

Tp

(

|υj(t)|
α+1 + |υj(t)|

β+1
)

− 2̺|υj(t)|

− 2ρ(υj(t))|υj(t)|
2 + 2|υj(t)||δj(t)|

6−
8λ

Tp

(

̟
α+1

2

3 (t) +̟
β+1

2

3 (t)

)

.

(33)

Furthermore, it follows from (33) that

dt 6−
Tp

8λ

(

̟
α+1

2

3 (t) +̟
β+1

2

3 (t)

)d̟3.
(34)

Similar to (25), by integrating both sides of (34) from 0 to

T (̟3(0)) with respect to the time variable t, the settling time

of ̟3(t) is calculated as follows:

T (̟3(0)) 6
Tp

8λ

∫ 0

̟3(0)

−
1

̟
α+1

2

3 (t) +̟
β+1

2

3 (t)
d̟3

6
Tp

8λ

∫ +∞

0

1

̟
α+1

2

3 (t) +̟
β+1

2

3 (t)
d̟3

=
πTp

8λ (α−β)
2

csc

(

1− β

α− β
π

)

=
Tp

4
.

(35)

Therefore, the subsystem (30) evolves over time to

ṡj(t) =− p1(sj(t)), t > Tp/4. (36)

Based on the system (26), the settling time of the subsystem

(36) is calculated as T (sj(Tp/4)) 6 Tp/4. Thus, from (15),

we deduce that the j-th subsystem satisfies

ε̇j(t) = −p2(εj(t)), ∀t ∈ [Tp/2,+∞). (37)

Based on (27)-(29) in Theorem 2, the time Tce2 for |εj(t)| to

converge from |εj(Tp/2)| to ǫ1 satisfying Tce2 < Tp/2 can be

inferred.

Finally, the time Tc3 for |εj(t)| to converge from |εj(0)| to

ǫ1 is obtained by

Tc3 = T (̟3(0)) + T (sj(Tp/4)) + Tce2 < Tp,

and the proof is now complete.

Theorem 4. Consider a differentiable reference trajectory

Γd(t). If each element in disturbance vector δ(t) is bounded

by |δj(t)| 6 δmax, for randomly generated initial state Γ0, the

tracking error of the system (5) applying the controller (18)

can converge to the following band

|εj(t)| 6
T 2

p δmax

4λ2 + λTp

, j ∈ {1, 2, ..., 6},

where δmax is a constant.

Proof: Following ̟3(t) in (32), we obtain

˙̟ 3(t) = 2υj(t)υ̇j(t)

= 2υj(t)(−p1(υj(t)) + δj(t))

6 2|υj(t)|(−|p1(υj(t))|+ |δj(t)|)

6 2|υj(t)|(−|p1(υj(t))|+ δmax).

(38)

From (38), we can infer that |p1(υj(t))| 6 δmax as t→ ∞.

Analogously, denote a Lyapunov function ̟4(t) = s2j(t). It

follows from (30) that

˙̟ 4(t) = 2sj(t)ṡj(t)

= 2sj(t)(−p1(sj(t))− p1(υj(t)) + δj(t))

6 2|sj(t)|(−|p1(sj(t))| + |p1(υj(t))|+ |δj(t)|)

6 2|sj(t)|(−|p1(sj(t))| + 2δmax)

as t → ∞. Consequently, sj(t) converges to the band of

|sj(t)| 6 |p−1
1 (2δmax)| as t→ ∞, where p−1

1 (·) is the inverse

function of p1(·). Moreover, |p1(ξ)| > |(4λ/Tp+ρ(ξ))ξ| keeps

correct from (10), then |p−1
1 (ξ)| 6 |ξ/(4λ/Tp + ρ(ξ))| is

obtained. Thus, sj(t) can converge to the band of |sj(t)| 6
2δmax/(4λ/Tp + ρ(sj(t))).

According to (15), we know ε̇j(t) = −p2(εj(t)) + sj(t).
Furthermore, as t→ ∞, it follows from (28) that

˙̟ 2(t) = 2εj(t)ε̇j(t)

= 2εj(t)(−p2(εj(t)) + sj(t))

6 2|εj(t)|(−|p2(εj(t))| + |sj(t)|)

6 2|εj(t)|

(

−|p2(εj(t))|+
2δmax

4λ/Tp + ρ(sj(t))

)

.

Hence, εj(t) can converge to the band of |εj(t)| 6

|p−1
2 (2δmax/(4λ/Tp + ρ(sj(t))))|. Besides, |p−1

2 (ξ)| 6

|Tpξ/(2λ)| is obtained due to the fact that |p2(ξ)| > |2λξ/Tp|
from (12). Therefore, as t → ∞, the bound of |εj(t)| can be

written as

|εj(t)| 6

∣

∣

∣

∣

p−1
2

(

2δmax

4λ/Tp + ρ(sj(t))

)∣

∣

∣

∣

6
T 2

p δmax

4λ2 + λρ(sj(t))Tp

6
T 2

p δmax

4λ2 + λTp

,

and the whole proof is over.

Remark 2. So far, a novel ARPTNSMC scheme has been

developed to target fast and accurate tracking of a quadrotor

under external disturbances. This scheme is based on a fuzzy

neural network by combining fuzzy logic with a ZNN, and

therefore stands out from traditional SMC methods in that a

general ZNN and a differentiable predefined-time activation

function are developed to form a nonsingular sliding mode

surface. The control law includes both dynamic and fuzzy

adaptive parameters, which are developed from the Takagi-

Sugeno fuzzy logic system, to enhance robustness and re-

duce chattering. In Theorems 1-3, theoretical validation of

the system’s predefined-time convergence and robustness has
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TABLE II
QUADROTOR PARAMETERS.

Symbol Value Symbol Value

Kfx 5.6× 10−4 N ·m/(rad/s) m 0.12 kg

Kfy 5.6× 10−4 N ·m/(rad/s) l 0.13m

Kfz 6.4× 10−4 N ·m/(rad/s) Jx 6.7× 10−5 kg ·m2

Kdx 5.6× 10−4 N/(m/s) Jy 7.5× 10−3 kg ·m2

Kdy 5.6× 10−4 N/(m/s) Jz 7.5× 10−3 kg ·m2

Kdz 6.4× 10−4 N/(m/s) ζ 3.2× 10−2 N ·m/(rad/s)2

Kl 3.0× 10−3 N/(rad/s)2 Jr 2.8× 10−5 N ·m/(rad2/s)

been provided. A practical example of butterfly-shaped trajec-

tory tracking has been used to demonstrate the ARPTNSMC

scheme’s effectiveness.

Remark 3. In comparison to existing research results, this

paper makes several distinct contributions as summarized

below.

1) Innovative Control Scheme: A novel ARPTNSMC

scheme is developed to enhance the tracking control

performance of quadrotors especially under external

disturbances.

2) Fusion of Techniques: The developed scheme uniquely

combines fuzzy logic and ZNN to form a fuzzy neural

network, which differs from traditional SMC methods.

This integration provides a more robust and efficient

control strategy.

3) Advanced Activation Functions: The paper proposes the

use of a general ZNN and a differentiable predefined-

time activation function to create a nonsingular sliding

mode surface, which is a notable advancement over

standard SMC approaches.

4) Adaptive Parameters for Disturbance Compensation:

The introduction of both dynamic and fuzzy adaptive

parameters in the control law is a key differentiator.

The fuzzy adaptive parameter, derived from the Takagi-

Sugeno fuzzy logic system, specifically targets the en-

hancement of robustness and the mitigation of chatter-

ing, which is a common issue in control systems.

5) Theoretical and Practical Validation: The paper pro-

vides theoretical proofs to validate the predefined-

time convergence and robustness of the ARPTNSMC

scheme. Furthermore, it substantiates these claims with

a practical example of butterfly-shaped trajectory track-

ing, demonstrating the scheme’s superior performance

in convergence, robustness, and chattering suppression

compared to existing methods.

In summary, the paper contributes a sophisticated, theoret-

ically sound, and practically validated control scheme that

advances the capabilities of quadrotor control systems in

challenging environments.

V. ILLUSTRATION EXAMPLE

This section presents two illustrative examples using a

quadrotor to validate the effectiveness of the ARPTNSMC

scheme, with quadrotor parameters detailed in Table II. It

start point

end point

Reference

CNTSMC

FTRZND

DARPTSMC

xy

z

(a) 3D trajectories

start point end point

Reference

CNTSMC

FTRZND

DARPTSMC

x

y

(b) 2D trajectories

Fig. 4. Butterfly-shaped trajectories of the quadrotor controlled by three
schemes when δj(t) = 0.

Reference
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FTRZND

DARPTSMC

Time (s)

x

Tp = 2

Reference

CNTSMC

FTRZND

DARPTSMC

Time (s)

y

Tp = 2

Reference

CNTSMC

FTRZND

DARPTSMC

Time (s)

z

Tp = 2

Reference

CNTSMC

FTRZND

DARPTSMC

Time (s)

φ

Tp = 2

Reference

CNTSMC

FTRZND

DARPTSMC

Time (s)

θ

Tp = 2

Reference

CNTSMC

FTRZND

DARPTSMC

Time (s)

ψ

Tp = 2

Fig. 5. States of the quadrotor controlled by three schemes when δj(t) = 0.

also introduces the continuous nonsingular terminal SMC

(CNTSMC) [33] and fixed-time robust ZNN (FTRZNN) [34]

for comparative analysis, highlighting the advantages of the

ARPTNSMC scheme.

A. Controllers for Comparison

To unify the SMC and ZNN schemes for comparison, the

sliding variable is chosen as follows [31], [32]:

s(t) = ε̇(t) + η3P3(ε(t)), (39)

where P3(·) : Rn → R
n is a nonlinear vector function with

element p3(·) : R → R being

p(ε(t)) =

{

εc1/c2(t), if |ε(t)| > ǫ2,

ι3ε(t) + ι4ε
2(t)sign(ε(t)), if |ε(t)| 6 ǫ2,

where c1 and c2 are positive odd integers such that 0 <

c1/c2 < 1, ι3 = (2 − c1/c2)ǫ
c1/c2−1
2 , and ι4 = (c1/c2 −

1)ǫ
c1/c2−2
2 .

Next, the approaching law of the CNTSMC [33] and the

evolution law of the FTRZNN [34] are

ṡ(t) =− k1|s(t)|
1/2sign(s(t))− k2s(t)

−

∫ t

0

(k3sign(s(τ)) + k4s(τ))dτ,

ṡ(t) = η4
(

− k5 exp(|s(t)|
k6 )|s(t)|βsign(s(t))

− k7s(t)− k8sign(s(t))
)

,

where k1, k2, k3, k4, k5, k6, and k7 are positive parameters;

and k8 > 0, α > 1, and 0 < β < 1. Thus, for the CNTSMC
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Time (s)

‖
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(t
)‖

2
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FTRZND

DARPTSMC

Time (s)

‖
ε
(t
)‖

2

Tp = 2

(b) Tracking errors ‖ε(t)‖2

Fig. 6. Sliding variables ‖s(t)‖2 and tracking errors ‖ε(t)‖2 synthesized by
three schemes when δj(t) = 0.

initial point Γ
(1)
0

Γ
(2)
0

Γ
(3)
0

Γ
(4)
0

Time (s)

‖
ε
(t
)‖

2

(a) Sliding variables ‖s(t)‖2

Tp = 2Tp = 2
Tp = 2.5Tp = 2.5
Tp = 3Tp = 3
Tp = 3.5Tp = 3.5

Time (s)

‖
ε
(t
)‖

2

(b) Tracking errors ‖ε(t)‖2

Fig. 7. Tracking errors ‖ε(t)‖2 synthesized by the ARPTNSMC scheme
with various initial states Γ0 and predetermined parameter values Tp when
δj(t) = 0.

and the FTRZNN, controllers based on sliding variable (39)

can be given, respectively, as follows:

u(t) = G−1(Γ1(t))

(

− η3
∂P3(ε(t))

∂ε
(Γ̇1(t)− Γ̇d(t))

−Q(Γ2(t)) + Γ̈d(t)− k1|s(t)|
1/2sign(s(t))

− k2s(t) −

∫ t

0

(k3sign(s(τ)) + k4s(τ))dτ

)

,

u(t) = G−1(Γ1(t))

(

− η3
∂P3(ε(t))

∂ε
(Γ̇1(t)− Γ̇d(t))

+ Γ̈d(t)− k5 exp(|s(t)|
k6 )|s(t)|βsign(s(t))

− k7s(t) − k8sign(s(t)) −Q(Γ2(t))

)

.

Moreover, the parameters of (10)-(12) and the above con-

trollers are set as µ = 16/π; Tp = 2, α = 2, β = 0.2,

ǫ1 = ǫ2 = 0.01; and η3 = 2, c1 = 3, c3 = 5, k1 = k2 = 2,

η4 = k3 = k4 = k5 = k7 = k8 = 1, k6 = 0.5.

B. Butterfly-Shaped Trajectory

In this part, the objective is to track a given reference

butterfly-shaped trajectory utilizing three control schemes. The

reference trajectory is represented by










xd = 0.5 sin(πt/5)π1,

yd = −1 + 0.5 cos(πt/5)π1,

zd = 0.5,

and φd = θd = ψd = 0.1, where π1 = exp(cos(πt/5)) −
2 cos(4πt/5) − sin5(πt/60). The initial state is Γ0 =
[−0.4, 0,−0.5, 0, 0.3, 0,−0.1, 0, 0.3, 0, 0.4, 0]

T
.

start point

end point

Reference

CNTSMC

FTRZND

DARPTSMC

xy

z

(a) 3D trajectories

start point end point

Reference

CNTSMC

FTRZND

DARPTSMC

x

y

(b) 2D trajectories

Fig. 8. Butterfly-shaped trajectories tracking of the quadrotor controlled by
three schemes when δj(t) = 3.
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Time (s)

z
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FTRZND

DARPTSMC

Time (s)

φ

Reference

CNTSMC

FTRZND

DARPTSMC

Time (s)

θ

Reference

CNTSMC

FTRZND

DARPTSMC

Time (s)

ψ

Fig. 9. States of the quadrotor controlled by three schemes when δj(t) = 3.

1) Convergence analysis: In this part of the study, Fig. 4

depicts butterfly-shaped trajectories executed by three different

control schemes, with red dotted lines indicating the reference

trajectory. The ARPTNSMC scheme’s performance, both in

3D and 2D trajectories as shown in Figs. 4(a) and 4(b),

demonstrates a quicker convergence to the reference trajectory

compared to the other schemes when disturbances δj(t) = 0.

Additionally, Fig. 5 displays the position and attitude outcomes

for the quadrotor under the same three schemes without

disturbances. The results clearly show that the ARPTNSMC

scheme achieves a faster approach to the desired position and

attitude of the quadrotor than the other two schemes. Fur-

thermore, Fig. 6 presents the comparison of sliding variables

‖s(t)‖2 and tracking errors ‖ε(t)‖2 across these schemes. It’s

observed that while the convergence time of ‖s(t)‖2 is almost

identical for the ARPTNSMC and FTRZNN schemes, the

‖ε(t)‖2 converges to zero more rapidly under the ARPTNSMC

scheme. In summary, Figs. 4 to 6 collectively indicate that

the closed-loop system controlled by the ARPTNSMC scheme

achieves a faster convergence rate compared to the other two

schemes.

In Fig. 7, the tracking errors ‖ε(t)‖2 according to the

ARPTNSMC with various initial states Γ0 and predeter-

mined parameter values Tp are exhibited. Furthermore, the

p-th Γ0 is represented by Γ
(p)
0 (p ∈ {1, 2, 3, 4}), where

Γ
(p)
0 = 3 × 10p−1 × [0.4, 0, 0.5, 0,−0.3, 0, 0, 0, 0, 0, 0, 0]

T

if p is an odd number, otherwise Γ
(p)
0 = 7 × 10p−1 ×

[0.4, 0, 0.5, 0,−0.3, 0, 0, 0, 0, 0, 0, 0]
T
. Thereinto, Fig. 7(a)

manifests that the convergence time of ‖s(t)‖2 synthesized

by the ARPTNSMC has barely changed when its initial value

gets near Γ
(2)
0 . That is, the upper bound of convergence time
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‖
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2

(b) Tracking errors ‖ε(t)‖2

Fig. 10. Sliding variables ‖s(t)‖2 and tracking errors ‖ε(t)‖2 synthesized
by three schemes when δj(t) = 3.
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(a) δj(t) = 3 sin(3t)
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(b) δj(t) = 5 + 6 sin(6πt + 1) +
8 sin(8πt) + 6 sin(10πt + 2)

CNTSMC
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‖
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2

(c) δj(t) = 3 sin(3t)ϑ(t − 2)

CNTSMC
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Time (s)

‖
ε
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)‖

2

(d) δj(t) = (5 + 6 sin(6πt + 1) +
8 sin(8πt)+6 sin(10πt+2))ϑ(t−2)

Fig. 11. Tracking errors ‖ε(t)‖2 synthesized by three schemes under different
disturbances with ϑ(t) representing the Heaviside step function.

synthesized by the ARPTNSMC is unrelated to the initial

state. It can be seen from Fig. 7(b) that, the smaller the

predetermined parameter Tp is, the smaller the convergence

time of tracking error would be, which indicates that the

parameter Tp can indeed control the convergence time of

tracking error.

2) Robustness analysis: The constant disturbance, sinusoidal

disturbance, and hybrid sinusoidal disturbance are considered

in order to test and verify robustness of the ARPTNSMC

scheme. In Figs. 8 and 9, the butterfly-shaped trajectories,

position, and attitude synthesized by these three schemes

subjected to constant disturbance are illustrated. As shown in

Figs. 8 and 9, only position and attitude trajectories synthe-

sized by the FTRZNN cannot fit reference position and attitude

trajectories, indicating that the CNTSMC and the ARPTNSMC

schemes are robust to constant disturbance δj(t) = 3. Besides,

Fig. 10 draws sliding variables ‖s(t)‖2 and tracking errors

‖ε(t)‖2 synthesized by these three schemes. The findings

provide substantial evidence that the ARPTNSMC scheme has

stronger anti-disturbance ability to constant disturbance than

the other two schemes.

With non-fuzzy adaptive parameter

With fuzzy adaptive parameter

Time (s)

u
1

With non-fuzzy adaptive parameter

With fuzzy adaptive parameter

Time (s)

u
2

With non-fuzzy adaptive parameter

With fuzzy adaptive parameter

Time (s)

u
3

With non-fuzzy adaptive parameter

With fuzzy adaptive parameter

Time (s)

u
4

With non-fuzzy adaptive parameter

With fuzzy adaptive parameter

Time (s)

u
5

With non-fuzzy adaptive parameter

With fuzzy adaptive parameter

Time (s)

u
6

Fig. 12. Control inputs synthesized by the ARPTNSMC with fuzzy adaptive
parameter or non-fuzzy adaptive parameter when δj(t) = 0.
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(a) 3D trajectories
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Fig. 13. Lissajous trajectories tracking of the quadrotor controlled by three
schemes when δj(t) = 0.

Finally, some additional time-varying disturbances are con-

sidered in Fig. 11. From Fig. 11(a), only ‖ε(t)‖2 synthe-

sized by the ARPTNSMC reaches zero under disturbance

δj(t) = 3 sin(3t), whereas ‖ε(t)‖2 synthesized by the other

two schemes exhibit apparent oscillations. In Fig. 11(b), even

though ‖ε(t)‖2 synthesized by the three schemes exist certain

oscillations under hybrid sinusoidal disturbance δj(t) = 5 +
6 sin(6πt+1)+8 sin(8πt)+6 sin(10πt+2), the ARPTNSMC

manifests the least oscillation. Besides, the above two kinds of

disturbances are introduced into these models after 2 seconds.

The results are exhibited in Figs. 11(c)-11(d), which is similar

to those in Figs. 11(a)-11(b). Overall, these results reveal that

the robustness of the ARPTNSMC scheme is better than the

other schemes.

3) Chattering analysis: To verify the low-chattering of

the ARPTNSMC, in the case of δj(t) = 0, a comparative

simulation is carried out when the fuzzy adaptive parameter ̺
in fuzzy adaptive PTAF (10) is replaced by constant c3, i.e.,

p1(ξ) =
4λ

Tp

(

|ξ|α + |ξ|β
)

sign(ξ) + c3sign(ξ) + ρ(ξ)ξ.

As shown in Fig. 12, the corresponding control inputs of the

quadrotor controlled by the ARPTNSMC with fuzzy adaptive

parameter or non-fuzzy adaptive parameter are exhibited when

parameter c3 = 3. More specifically, Fig. 12 indicates that the

control inputs with fuzzy adaptive parameter is smoother and

lower chattering than the control inputs with non-fuzzy pa-

rameter. Thus, the results demonstrate that the fuzzy adaptive

parameter generated by the Takagi-Sugeno fuzzy logic system

can suppress chattering.
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Fig. 14. Tracking errors ‖ε(t)‖2 synthesized by three schemes under different
disturbances for Lissajous trajectory.

C. Lissajous Trajectory

In this part, a reference Lissajous trajectory is provided to

further verify the effectiveness of the ARPTNSMC scheme.

The reference Lissajous trajectory is as follows:










xd = sin(3t+ 1.5π),

yd = sin(2t),

zd = 0.5,

and φd = θd = ψd = 0.1. The initial state is Γ0 =
[−0.4, 0, 0.4, 0, 0.35, 0,−0.1, 0, 0.3, 0, 0.4, 0]

T
.

Firstly, Fig. 13 depicts Lissajous trajectories executed by

three different control schemes. As shown in Figs. 13(a)

and 13(b), the results in 3D and 2D trajectories reveal that

the ARPTNSMC scheme possesses a quicker convergence

speed than the other schemes when disturbance δj(t) = 0. In

Fig. 14, the errors synthesized by the three schemes under dif-

ferent disturbances for the Lissajous trajectory are displayed.

Specifically, Fig. 14(a) exhibits that the error synthesized by

the ARPTNSMC converges fastest under δj(t) = 0, further

illustrating the superiority of the ARPTNSMC scheme in

convergence speed. In Fig. 14(b), even though the tracking

errors synthesized by the ARPTNSMC and the CNTSMC

can both converge under δj(t) = 3, the error synthesized by

the ARPTNSMC converges faster. Furthermore, as shown in

Figs. 14(c) and 14(d), only the tracking error synthesized by

the ARPTNSMC can converge under δj(t) = 3 sin(3t) and

δj(t) = 6 + 2 sin(3πt + 1) + 3 sin(4πt) + 4 sin(5πt + 2),
confirming its strong robustness. In general, the results in

Figs. 13 and 14 verify that the ARPTNSMC scheme can track

the Lissajous trajectory well.

VI. CONCLUSION

In this paper, a novel SMC scheme combining a dy-

namic adaptive parameter and a fuzzy adaptive parameter

under the framework of zeroing neural network has been

presented and applied to position and attitude tracking of a

quadrotor. Importantly, the theoretical analysis ensures not

only the predefined-time reachability of the sliding surface

but also the predefined-time convergence and robustness of

the closed-loop system. Moreover, the butterfly trajectory and

Lissajous trajectory tracking examples have confirmed that

the closed-loop system controlled by the ARPTNSMC has

better convergence and stronger robustness than those by the

other schemes. In addition, a comparative simulation has been

implemented to confirm that the control inputs with fuzzy

adaptive parameter have led to lower chattering than those

with non-fuzzy parameter. In the future, the developed fuzzy

neural network scheme could be applied to the cooperative

control of UAVs under the condition of delay.
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