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Abstract: Autonomous mini-buses are low-cost passenger vehicles that travel along designated routes
in industrial parks. In order to achieve this goal, it is necessary to implement functionalities such as
lane-keeping and obstacle avoidance. To address the challenge of deploying deep learning algorithms
to detect environmental information on low-performance computing units, which leads to difficulties
in model deployment and the inability to meet real-time requirements, a lightweight algorithm called
YOLOP-E based on the YOLOP algorithm is proposed. (The letter ‘E’ stands for EfficientNetV2,
and YOLOP-E represents the optimization of the entire algorithm by replacing the backbone of the
original model with EfficientNetV2.) The algorithm has been optimized and improved in terms
of the following three aspects: Firstly, the YOLOP backbone network is reconstructed using the
lightweight backbone network EfficientNet-V2, and depth-wise separable convolutions are used
instead of regular convolutions. Secondly, a hybrid attention mechanism called CABM is employed
to enhance the model’s feature-representation capability. Finally, the Focal EIoU and Smoothed
Cross-Entropy loss functions are utilized to improve detection accuracy. YOLOP-E is the final result
after the aforementioned optimizations are completed. Experimental results demonstrate that on the
BDD100K dataset, the optimized algorithm achieves a 3.5% increase in mAP50 and a 4.1% increase in
mIoU. During real-world vehicle testing, the detection rate reaches 41.6 FPS, achieving the visual
perception requirements of the autonomous shuttle bus while maintaining a lightweight design and
improving detection accuracy.

Keywords: deep learning; model lightweighting; attention mechanism; depth-wise separable
convolution; YOLOP; electric autonomous mini-bus

1. Introduction

In recent years, with the rapid development of driverless technology, driverless vehi-
cles have demonstrated great potential in various fields. Specifically in industrial areas,
autonomous electric mini-buses serve as important transport tools that can improve trans-
port efficiency and reduce labor costs while playing a crucial role in traffic management.
In order to implement lane-keeping and obstacle-avoiding functions, autonomous electric
mini-buses need to accurately extract information such as targets, lane lines, and drivable
areas to make accurate decisions and operations.

In current detection algorithms, deep learning algorithms have replaced traditional
detection algorithms due to their simplicity in implementation and high computational
efficiency. These algorithms achieve fast recognition of targets through unique network
structures and loss functions. In deep learning, target detection algorithms are divided
into R-CNN (Region-based Convolutional Neural Network) series two-stage algorithms
and SSD (Single Shot Detector), YOLO series single-stage algorithms [1–3]. Two-stage
algorithms first locate and then recognize, so their accuracy is better than single-stage
algorithms, but their parameter volume and real-time performance are worse, so they
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cannot meet the low computing resources and high real-time requirements of roadside
units. Compared with the R-CNN algorithm, SSD algorithm has faster inference speed,
but its detection accuracy has certain limitations, while the YOLO series of algorithms
have greatly improved detection speed compared with other algorithms while also con-
sidering accuracy. Lane-line and drivable-area recognition, on the other hand, belongs to
semantic segmentation algorithms, such as Enet and SCNN are based on deep learning
frameworks [4,5]. These algorithms ensure the accuracy and efficiency of segmentation
through spatial convolution and context-aware modules. ENet is a lightweight semantic
segmentation algorithm that uses many new technologies, such as initial point convolution
and depth-wise separable convolution, to reduce model size and computational costs. The
main advantages of ENet are its fast speed, lightweight, high accuracy, and suitability
for real-time semantic segmentation in resource-constrained environments. SCNN is a
convolutional neural-network-based semantic segmentation algorithm that uses spatial
convolutional neural networks. It treats image data as two-dimensional tensors using adap-
tive kernel sizes and depths, thereby better preserving the spatial relationships of images.
The main advantages of SCNN are its high precision, good scalability, and suitability for
large-scale, high-precision semantic segmentation tasks.

However, integrating these algorithms to achieve the three tasks simultaneously
requires comprehensive consideration of factors such as model structure design, dataset
annotation, and training strategies, which significantly increases their complexity and
makes it difficult to ensure real-time operation during algorithm deployment.

To address the aforementioned issues, this article selected the YOLOP algorithm,
which can simultaneously achieve target detection, lane-line segmentation, and drivable
area recognition and uses the EfficientNetV2 lightweight network to construct a network
model. Due to the different focus on region-segmentation and -detection tasks, the original
SE (Squeeze and Excitation) channel’s attention mechanism is replaced with the CABM
(Convolutional Block Attention Module). Additionally, new loss functions are introduced,
including Focal EIoU (Focal Extended Intersection over Union) Loss and Smoothed Cross-
Entropy Loss. A lightweight YOLOP-E algorithm is proposed based on these modifications.

2. Algorithm YOLOP-E
2.1. Algorithm YOLOP

To achieve the goal of one model that can finish target detection, lane line segmentation,
and drivable area recognition simultaneously tasks, in this paper, the YOLOP algorithm is
chosen as the fundamental algorithm [6].

The YOLOP algorithm mainly consists of the encoder and decoder. The overall
structure of the model is shown in Figure 1. The entire network shares the same encoder,
which is composed of two parts: backbone and neck. The backbone is used to extract
features from the input image and uses CSP DarkNet, which is the same as YOLOV4, as
the main network [7]. It supports feature propagation and reuse. The neck is used to fuse
the features generated by the backbone, which primarily consists of the SPP and FPN [8,9].
The SPP pyramid pooling module can fuse different scale features, while the FPN feature
pyramid network can fuse hierarchical semantic information. This results in an output
feature that includes information from different semantic levels and scales, and the feature
is merged through concatenation.

The decoder consists of three different heads, and the detection head uses an anchor-
based multi-scale detection method. A bottom-up feature-pyramid-network path integra-
tion network (PAN) is used to transmit location features from top to bottom [10]. This is
combined with the feature pyramid network to improve feature fusion. Multi-scale features
are then used for detection, predicting the position offset, height and width scaling factors,
the probability of each class, and the confidence of the predictions.

The drivable area segmentation head and lane line segmentation head adopt the same
network structure. In the upsampling layer, the nearest-neighbor interpolation method
is used instead of deconvolution. The bottom-level output from the FPN (dimension of
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(W/8, H/8, 256)) is sent to the segmentation branch, and the features go through three
upsampling layers. Finally, the output feature map is restored to the size of (W, H, 2).
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2.2. Lightweighting of Backbone Network

YOLOP has shown excellent performance in the panoramic perception task, but its
model structure is complex, and the number of parameters is huge. In practical application
scenarios, meeting real-time requirements requires optimizing the network structure. The
calculation of model size is shown in the following formula:

J = d× Cin × k2 × Cout (1)

Here, Cin and Cout, respectively, represent the input and output channel numbers,
d represents the convolutional depth, and k represents the kernel size. As we can see
from the formula, when the model channel number is extended n times, the model size
is extended by n2 times. When the depth d is expanded n times, the parameter size J is
extended by n times.

The backbone in YOLOP uses DarkNet53 for construction, with significant optimiza-
tion space for channel numbers, network layer settings, and input–output channel num-
bers. In order to reduce model calculations and improve real-time performance, the
EfficientnetV2-s is used to replace the backbone structure of the original YOLOP model [11].
EfficientnetV2-s is a lightweight network that improves model performance by optimizing
dimensions such as depth, width, and resolution. Similarly, EfficientNetV2 utilizes depth-
wise separable convolutions as a replacement for regular convolutions. The depth-wise
separable convolution (DSC) is an optimized method for convolution operations, which
significantly improves computational efficiency and parameter quantity compared to tradi-
tional convolutions [12]. The difference between DSC and ordinary convolutions is that
the process of ordinary convolutions is divided into two steps: depth-wise convolution
and point-wise convolution. The depth-wise convolution step processes each channel of
the input data separately. The depth-wise separable convolutions significantly reduce
computational complexity compared to standard convolutions, thereby improving com-
putational efficiency. The point-wise convolution, also known as the 1 × 1 convolution,
is a special convolution operation. It uses a 1 × 1 convolution kernel to convolve the
input data, which can achieve information fusion between channels. The main function of
point-wise convolution is to adjust the channel number of the input data while maintaining
the spatial dimensions of the data. These two convolution operations are usually used
in combination to improve computational efficiency and performance. Compared with
ordinary convolutions, DSC has fewer parameters.
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Standard convolutions have the computational cost of

Dk × Dk ×M× N × DF × DF (2)

and depend on the number of input channels M, the number of output channels N, the
kernel size Dk × Dk, and the feature map size DF × DF.

The depth-wise convolution has a computational cost of

Dk × Dk ×M× DF × DF (3)

and the point-wise convolution has a computational cost of

M× N × DF × DF (4)

By expressing convolution as a two-step process of filtering and combining, we obtain
a reduction in computation of [13]

Dk × Dk ×M× DF × DF + M× N × DF × DF
Dk × Dk ×M× N × DF × DF

=
1
N

+
1

D2
K

(5)

When the network structure is constructed, using depth-wise separable convolutions
can reduce the model’s parameter size with minimal performance loss and avoid overfitting.
The modified backbone structure is shown in Figure 2:
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2.3. Optimization of Attention Mechanism

An attention mechanism is a computer algorithm that emulates the human visual
attention process and has been widely used in natural language processing and computer
vision [14]. Its core idea is to effectively focus attention on the relevant parts of the input
sequence during processing by assigning different weights to different inputs in order to
better understand and process the input.

Similarly, EfficientNetv2 uses the SE channel attention mechanism to enhance model
performance. However, the SE attention mechanism mainly focuses on the importance of
feature channels, while relatively neglecting positional information. For object detection
and semantic segmentation, positional information is crucial for accurately locating targets.
Therefore, in this paper, a hybrid attention mechanism CBAM is used to replace the SE
attention mechanism [15]. Compared with the SE’s attention mechanism, CBAM combines
channel attention and spatial attention, thus improving the modeling ability of SE attention
mechanism in spatial position. The basic structure of CBAM includes two sub-modules:
channel attention module and spatial attention module [16]. By concatenating the channel
attention module and the spatial attention module, the CBAM module can adjust the
attention distribution of the feature map in both channel and spatial dimensions, enhancing
the feature representation capability. The overall structure of the attention mechanism is
shown in Figure 3.

Figure 3. Attention mechanism of CBAM.

CBAM can simultaneously focus on spatial positions and channel features in images,
which is more beneficial for the YOLOP model, which needs to perform both object-
detection and semantic-segmentation tasks. By combining spatial attention and channel
attention, the model can assign different weights to objects at different positions in the
image, such as detected target vehicle and detected lane line, to improve the performance
of both tasks.

MBConv is the main convolution block type in EfficientNetV2. It primarily includes
the following components: Depthwise convolution, Batch Normalization, Swish activation
function, Pointwise convolution, and the Squeeze-and-Excitation attention mechanism.
FMBConv is another convolution block type in EfficientNetV2. It improves upon MBConv
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by merging Depthwise convolution and Pointwise convolution into a single operation.
This operation can reduce computation and model training parameters. Structures of the
MBConv module and FMBConv module with CBAM attention mechanism are shown in
Figure 4 below.
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2.4. Optimization of Loss Function

The loss function for object-detection models under deep learning frameworks has a
significant impact on the detection performance. YOLOP model adopts CIoU loss for the
detection box [17]. The formula for calculating CIoU is as follows:

LCIoU = 1− IoU +
ρ
(
b, bgt)
C2 + av (6)

IoU =
A ∩ B
A ∪ B

(7)

v =
4
π

[
arctan

(
wgt

hgt

)
− arctan

(w
h

)]2

(8)

a =
v

(1− IoU) + v
(9)


∂v
∂w = 8

π2

[
arctan

(
wgt

hgt

)
− arctan

(w
h
)]
× h

w2+h2

∂v
∂h = − 8

π2

[
arctan

(
wgt

hgt

)
− arctan

(w
h
)]
× w

w2+h2

(10)

In the formula, IoU is the intersection-over-union ratio, which measures the degree
of overlap between the predicted box and the true box; ρ

(
b, bgt) represents the distance

between the center points of the predicted box and the true box; C is a normalization factor
that includes the diagonal length of the minimum enclosing rectangle of the predicted
box and the true box; a is an adjustable parameter used to balance the effects of the center
point distance and size offset; and v is a correction term used to stabilize division when C2

approaches zero and avoid zero division.
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Although CIoU Loss takes into account the size and center-point deviation of the
predicted box and true box and can more comprehensively measure the difference between
them, it requires manual adjustment of parameters for different detection tasks, increasing
the complexity of use. To address this problem, this paper replaces CIoU Loss with Focal-
EIoU Loss [18]. Focal-EIoU Loss integrates EIoU Loss and Focal L1 Loss. The formula for
calculating EIoU Loss is as follows:

LEIoU = LEIoU + Ldis + Lasp = 1− IoU +
ρ2(b, bgt)

c2 +
ρ2(w, wgt)

cw2 +
ρ2(h, hgt)

ch
2 (11)

In the formula, LEIoU , Ldis, and Lasp represent loss functions for the overlap area,
center point distance, and aspect ratio, respectively. cw and ch are the width and height of
the minimum enclosing rectangle that covers both boxes.

Compared with CIoU loss, EIoU loss does not require a normalization factor for
calculating diagonal length and center point distance, reducing the complexity of compu-
tation and resource consumption. At the same time, EIoU Loss does not require manual
adjustment of hyperparameters. The true values of the width and height of the box can

be directly calculated using
ρ2(w,wgt)

cw2 and
ρ2(h,hgt)

ch
2 , thereby resolving the optimization

bottleneck problem of CIoU loss.
The Focal-EIoU Loss is expressed as:

LFE = IouγLEIoU (12)

The parameter γ is used to control the curvature of the curve and set a larger gradient
for regions with larger deviations during optimization to reduce the impact of some inferior
samples on the loss function.

For the binary classification problem of lane line segmentation, the original algorithm
used cross-entropy loss. The formula for calculating cross-entropy loss is as follows:

LCE =
1
N ∑i Li =

1
N ∑i −[yi × log(pi) + (1− yi)× log(1− pi) (13)

In the formula, yi represents the label of sample i, with 1 as the positive class and 0
as the negative class. pi represents the probability that sample i is predicted to be in the
positive class.

Cross-entropy loss performs well in binary classification tasks, as it can directly calcu-
late the difference between the predicted probability and the true label. However, taking
into account the influence of image noise and unclear lane lines in the actual operation
of the mini bus (Figure 5), a smoothed cross-entropy loss function is introduced [19]. The
formula for calculating it is as follows:

LSCE =
1
N ∑i −[yi × log(pi + epsilon) + (1− yi)× log(1− pi + epsilon) (14)

In the formula, epsilon is a small positive number used to prevent division-by-zero
errors in logarithmic operations. By introducing smoothed cross-entropy loss, the model’s
generalization ability and robustness in the presence of noise in the labels are improved.

For the drivable-area-segmentation part, the original model introduced IoU loss
in cross-entropy loss. The final loss is obtained by weighting the three types of losses
mentioned above:

Lall = LFE + LSCE + (LCE + LIoU) (15)
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3. Experimental Design and Verification

This paper compares the modified model and the unmodified model on the BDDD100K
dataset in terms of two metrics: mAP50 and mIoU. The performance of the detection head
was compared with YOLOv5-m and EfficientDet, while the performance of the segmen-
tation head was compared with ENet and SCNN. The models were trained according
to the environment set in Section 3.1, and data augmentation was performed as shown
in Section 3.3.

Subsequently, the planned experiments were conducted on a real vehicle to validate
the algorithms optimized at different stages. Firstly, we calibrated the camera used. Then,
we installed the camera sensor on the vehicle to capture data via USB and process it. Finally,
the obtained results are compared, as shown in Section 3.4.

Finally, we input images with blurred lane lines into the model to test our optimization
results. The final detection comparison and all experimental results are shown in Section 4.

3.1. Experimental Setup

The experimental environment was the Ubuntu 20.04 operating system, with an i7-
12700k processor and an RTX3090 graphics card with 24 GB memory. PyTorch 2.0.1 and
Python 3.8 were used, as well as extensions such as CUDA 11.8 and OpenCV 4.6.0.6. The
experimental results of the proposed algorithm and the compared algorithms are obtained
in this experimental environment.

3.2. Dataset Setting

BDD100K is an open-source large-scale autonomous driving dataset, which includes
100,000 multimodal (images, videos, etc.) and highly annotated street images that cover
various real-life situations in urban driving, such as different weather, time, and traffic
conditions, and can be used for training and testing in applications such as autonomous
driving, object detection, and semantic segmentation [20]. As a result of its ability to
produce algorithms with robust performance that can be generalized to new environments,
the BDD100K dataset was selected for training and evaluating our network.
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Meanwhile, considering that the resolution of the image data captured by the camera
sensor used in subsequent real-car experiments is different from the resolution of the
images collected in the BDD100K dataset, the image resolution was uniformly changed
to 2448 × 2048 in the algorithm’s image-preprocessing section to facilitate subsequent
real-car verification.

3.3. Implementation Details

To improve the performance of our model, we empirically adopted some practical
techniques and methods for data augmentation.

For training, we implemented a step-by-step training method, where we initially
trained the Encoder and Detect head, then froze them while training two Segmentation
heads. Finally, all three tasks were jointly trained.

To equip our detector with more prior knowledge of objects in traffic scenes, we
utilized the k-means clustering algorithm for obtaining prior anchors from all detection
frames in our dataset. We utilized the Adam optimizer for training our model and set
the initial learning rates of β1, β2, and β3 to be 0.001, 0.924 and 0.999, respectively. We
employed warm-up and cosine annealing techniques to adjust the learning rate during
training, aiming to improve and expedited model convergence.

Data augmentation was used to enhance the image variability and to improve the
robustness of our model in various environments. To address both photometric and geomet-
ric distortions, a training scheme that applied mosaic augmentation was implemented [7].
For the former, adjustments to the hue, saturation, and brightness of images were made,
while for the latter, images underwent random rotations, scaling, translations, shearing,
and horizontal flipping.

3.4. Real-Vehicle Experimental Setup

To better understand the impact of the improvements made in this paper on the
performance of YOLOP object detection and lane segmentation, we designed a set of
ablation experiments. The models with different variables were deployed on industrial
controllers and tested using a mini-bus. The experimental environment included a Ubuntu
20.04 operating system, an i7-6700 processor, RTX3060 graphics card with 12 GB of memory,
and extensions such as PyTorch 2.0.1, Python 3.8, CUDA 11.8, and OpenCV 4.6.0.6. The
Daheng Mercury Industrial Camera MER2-502-79U3M was used as the camera sensor, and
real-time image data was sent to the algorithm for processing through the ROS operating
system. Some camera parameters are shown in Table 1:

Table 1. Camera MER2-502-79U3M parameters.

Key Parameters Parameter Values

Resolution 2448 × 2048
Minimum pixel size 3.45 µm × 3.45 µm
Storage temperature −20–70 ◦C

Operating temperature 0–45 ◦C
Operating humidity 10–80%

Before using a camera as an image sensor, the calibration of the camera is necessary.
For the calibration of a monocular camera, Zhang’s calibration method is used, with a
standard international chessboard black-and-white grid calibration board. First, a square
grid with alternating black and white squares is made, with each square’s edges having a
length of 25 cm. The number of black and white squares should not be too small, as the
camera will detect the corners where the black and white squares meet during calibration.
The length of the corner points is set to 7 and the width to 6, as shown in the figure. After
the calibration board is made, it is printed on A3 paper and fixed on the board. When
pasting, it is important to ensure that the paper is as flat as possible and adheres to the
calibration board. The images used for camera calibration are shown in Figure 6.
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The calibration of the monocular camera in this article was conducted under the
ROS operating system in the Linux system. The calibration of the monocular camera was
implemented using the camera calibration function package under the ROS operating
system. After opening the function package, the calibration interface was entered, and the
black-and-white chess-grid calibration board was slowly moved from left to right, from top
to bottom and from far to near in front of the camera. Calibration is complete when the
button CALIBRATE on the right side of the calibration interface turns green. Finally, SAVE
is clicked to save the calibration results. Then, the calibration results are extracted and the
configuration file of the camera driver is added to. Afterward, the camera driver is started
to receive real-time captured image information from the camera. The camera-calibration
process is shown in Figure 7:
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The camera-captured data are published in the form of ROS topic through rospy.
Publisher. The algorithm can subscribe to the camera-captured image data through rospy.
Subscriber. However, the image data received through ROS cannot be directly processed
by the algorithm. Therefore, cv_bridge is used to convert the image data in the ROS format
to the OpenCV image format. With this, the camera sensor completed the acquisition of
image data, and the algorithm completed the processing of the image data.
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The placement of the camera sensor is shown in Figure 8.
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4. Experimental Results
4.1. Experimental Results and Analysis of YOLOP-E and YOLOP

In terms of the training parameters, the training epoch was set to 100, and the training
batch size was 32. The graph shows the mAP50 curve of YOLOP and YOLOP-Efficient
obtained from the object-detection training. The vertical axis represents the map value,
and the horizontal axis represents the number of iterations. Comparing the two curves
shows that after training for more than 30 iterations, the optimized algorithm’s mAP50
and mIoUcurve are always higher than those of the YOLOP algorithm, indicating that the
algorithm proposed in this article has better detection accuracy. The results are shown
in Figure 9.
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4.2. Comparative Experiments with other Algorithms

To verify the effectiveness of the optimized algorithm, comparative experiments
are conducted on the BDD100K dataset to evaluate the performance of the proposed
algorithm in two respects, object detection and lane line segmentation, compared with
other algorithms. We selected some networks dedicated to a single task for comparison
with our network. YOLOv5 is a single-stage network that has achieved state-of-the-art
performance on the COCO dataset. EfficientDet is an efficient and accurate object-detection
algorithm that uses BiFPN and a new Compound Scaling method to reduce the model
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size [21]. ENet is a lightweight semantic segmentation algorithm. SCNN is a convolutional
neural network used for road scenes that can perform the pixel-level semantic segmentation
of roads. We retrained the above networks on the BDD100k dataset and compared them
with our network on object detection and lane segmentation tasks. The results are as
follows (Tables 2 and 3).

Table 2. Comparison of object detection with other models.

FPS (f/s) mAP50 (%) Params (M)

YOLOv5-m 73 75.3 18.4
EfficientDet 87.5 72.4 18.2

Ours (det only) 69.4 79.4 26.4

Table 3. Comparison of lane line segmentation with other models.

FPS (f/s) mIoU (%) Params (M)

ENet 83 35.2 18.4
SCNN 22.6 37.6 48.2

Ours (sgt only) 61.3 73.7 26.4

Based on the above comparison, it can be concluded that our algorithm performs better
than lightweight algorithms such as EfficientDet and YOLOV5-m in terms of detection
accuracy, but slightly worse in terms of detection speed. For the lane-segmentation task,
the detection speed is lower than that of ENet and higher than that of SCNN. However, the
accuracy is higher than both of them.

4.3. Real Vehicle Verification and Ablation Experiments

The groups consisted of (1) the original YOLOP model, (2) EfficientnetV2 replacing the
backbone model, (3) replacing the CA attention mechanism on the basis of (2), (4) replacing
the CIoU Loss of the original YOLOP model with Focal EIoU Loss, (5) on the basis of (3),
replacing the CioU Loss with Focal EIoU Loss and replacing the Cross-Entropy Loss with
Smoothed Cross-Entropy Loss. Please refer to Table 4 for specific experimental results.

Table 4. Results of ablation experiments.

FPS (f/s) mAP50 (%) mIoU (%) Params (M)

YOLOP 16.2 76.5 70.5 42.4
Efficientnet backbone 36.2 72.4 62.4 26.9

CBAM Attention mechanism 34.4 77.2 71.2 27.2
Focal EIoU Loss and SCE Loss 19.2 78.6 71.6 42.7

Ours 41.6 79.2 73.4 27.6

Table 4 shows that our proposed algorithm performs best in terms of all metrics except
the parameter volume. Replacing the YOLOP model’s Backbone with EfficientNetv2-s
reduces 36.6% of its parameter volume and increases FPS by 20. However, this also causes
a decrease in model accuracy. The CBAM attention mechanism and the Focal-EIoU loss
and smoothed cross-entropy loss improve detection accuracy, particularly during real-
car verification. Model (3) was found to improve the mAP50 value and mIoU of the
original algorithm by 2.7% and 1.6%, respectively, indicating its usefulness for algorithm
optimization. Furthermore, Models (2) and (3) demonstrate the significant improvement in
model accuracy with the CBAM coordinate attention mechanism. Our proposed algorithm
exhibits a 3.5% increase in mAP50, a 4.1% increase in mIoU, and a 25.4 f/s increase in
detection speed compared to the YOLOP algorithm during real-car verification while
reducing parameter volume by 34.9%.
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4.4. Detection Performance

From the results, it can be observed that the final algorithm proposed in this paper is
optimal in terms of the above indicators. The actual operating results and the comparison
of the detection effects of the areas where the lane lines are blurred before and after
optimization are shown in Figure 10.
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From the above pictures, it can be seen that the optimized model has good detection
performance in the real vehicle experiment and can meet the requirements of collecting
and outputting environmental perception information for mini-buses.

5. Conclusions

This paper proposes a lightweight algorithm called YOLOP-E, based on the YOLOP
algorithm, to achieve lane-keeping and obstacle-avoidance functions for driverless mini-
buses in industrial areas. By replacing the original complex network structure with a
lightweight network structure, the complexity and computational load of the network are
reduced. To address the performance-degradation issue caused by using a simplified net-
work, new attention mechanisms and loss functions are adopted. The optimized algorithm
was compared with other algorithms on the BDD100K dataset, and it can be observed
that YOLOP-E achieves better accuracy compared to the benchmark algorithms. Addition-
ally, the FPS metric also meets the real-time requirement. Furthermore, comprehensive
experiments were conducted on an actual mini bus to evaluate YOLOP-E. Compared to
the original algorithm, the optimized algorithm outperforms in terms of FPS, mAP50,
mIoU, and model size, addressing the issues of poor real-time performance and ineffective
detection of fuzzy lane markings that the algorithm encountered during operation.

Despite the significant improvement in the detection accuracy and the real-time per-
formance of the optimized algorithm, we still hope to further reduce the model size in
the future by employing techniques such as model pruning or compression distillation.
Additionally, we aim to enhance the detection accuracy of the model using other methods,
enabling it to perform real-time detection on devices with lower computational capacity,
such as embedded chips.
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