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Keywords: Transitioning to sustainable and resilient energy generation presents challenges in optimizing resource and
Power plant storage utilization, reducing operational costs, and addressing environmental impacts within renewable energy
Digital twin power plants. The shift away from fossil fuels in the energy sector requires innovative solutions to enhance
Sustainability

sustainability and resilience. This study aims to explore the role of Digital Twin (DT) technology — a digital

E::el‘:;c;e energy replica of a physical object or process with bidirectional communication — in promoting sustainability within
Hydrogen power plants, an area that remains underexplored. Using a Sytematic Literature Review (SLR) of 61 peer-

Digitalization reviewed papers, this research examines six key categories of DT application: predictive analysis, performance
optimization, risk assessment, model evaluation, process traceability, and human-machine interaction. The
findings indicate that DT holds significant potential to improve power plant sustainability by enabling cost
reductions, optimizing energy usage, and minimizing environmental impact through waste reduction and
carbon emission management. This study underscores DT’s importance in supporting the energy sector’s
transition towards sustainable practices and enhancing the resilience of renewable energy systems.
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Introduction

A substantial increase has been noted in daily electricity usage
over the past 20 years. According to Raimi et al. [1], energy con-
sumption is projected to increase by 50% globally by 2050, with the
majority of existing energy power plants relying on fossil fuels, which
contribute to Green House Gases (GHG) emissions. Due to the earth’s
finite resources, there is a significant shift in the energy sector towards
sustainable energy. This shift involves organizations improving their
energy management, increasing the use of renewable energy, reducing
operational costs, and minimizing the environmental impact [2]. As
part of this ongoing transition, power industries are implementing
reforms to enhance their operations, with the goal of improving overall
efficiency. These reforms include measures such as enhancing energy
conversion rates and adopting advanced technologies like smart grids
to optimize operational and maintenance practices. The aim of these
reforms is to counteract the detrimental environmental consequences
of fossil fuel usage, including air pollution and the exacerbation of
climate change. Despite operational efforts to enhance the efficiency of
the energy mix, improvements remain marginal due to the incremental
nature of these solutions [3].

According to Zitney [4], emerging digital solutions such as the
DT demonstrate potential for accelerating the transformation process
and improving operational flexibility in the energy sector. DTs, which
consist of a physical system, a virtual model, and a connecting data
network, leverage computational resources to optimize the perfor-
mance of their real-world counterparts [5]. Over the past two decades,
DT technology has been deployed across a diverse range of applica-
tions industries including real-time monitoring [6], manufacturing [7],
smart cities [8], healthcare [9], human-robot interaction [10]. For
instance, Warke et al. [11] discuss DT’s role in smart manufacturing,
emphasizing real-time monitoring and shop floor optimization, while
Carvalho and da Silva [12] conducted a systematic review highlighting
environmental sustainability concerns in DT systems, including issues
of fidelity, energy control, and material selection. However, despite
DT’s demonstrated versatility, its integration within the energy sector
remains limited.

Recent studies have increasingly investigated the role of DT tech-
nology in energy power plants, with a focus on enhancing operational
efficiency, predictive maintenance, and system optimization. Do Ama-
ral et al. [13] identified DT’s capabilities in managing energy gener-
ation, storage, and distribution, emphasizing its potential to improve
efficiency across these processes. However, challenges in scalability and
practical implementation have limited its broader application in diverse
energy environments. Heluany and Gkioulos et al. [14] demonstrated
DT’s utility for fault diagnosis and distribution management in energy
systems, yet indicated gaps in stakeholder integration and security mea-
sures within DT frameworks. Similarly, Ardebili et al. [15] reviewed
DT’s application for anomaly detection and smart energy system man-
agement but identified feasibility issues, including high implementation
costs and data management complexities due to Internet of Things
(IoT) integration. Other reviews, such as those by [16-21], underscore
DT’s potential for energy efficiency and carbon reduction but highlight

a lack of frameworks capable of supporting long-term, sustainable
outcomes within energy sectors. Additionally, [8,22], explored the
challenges of integrating DTs with conventional electric grids, while
Sifat et al. [23] propose a framework to address complexity in grid
operations through DT. Although these studies contribute frameworks
for DT application, they lack comprehensive validation and often show
biases due to limited database scope. Shah et al. [24] further identi-
fied major challenges, such as data acquisition, plant modeling, and
taxonomy development for DT applications in energy, emphasizing the
need for IoT and Artificial Intelligence (AI) integration to enhance DT’s
applicability and scalability across power plants.

While these reviews establish DT’s transformative potential in en-
ergy management, the majority of studies remain theoretical, with
limited exploration of DT’s practical application and its role in compre-
hensive sustainability, particularly in terms of resilience and environ-
mental impact. Previous research predominantly addresses isolated DT
functionalities, such as predictive maintenance or efficiency improve-
ments, rather than a holistic assessment that encompasses economic,
environmental, and social dimensions. This gap highlights the necessity
for a systematic evaluation of DT’s role in supporting sustainable,
resilient renewable energy systems.

In response, this study conducts a SLR to categorize DT technology
into six decision-support dimensions: performance optimization, pre-
dictive analysis, risk assessment, model evaluation, process traceability,
and HMI. By mapping these categories to sustainability objectives,
this research provides insights into DT’s practical benefits, including
cost reduction, GHG emissions mitigation, and enhanced operational
resilience. Furthermore, this study examines the emerging role of Al
and Machine Learning (ML) in enhancing DT capabilities, with a focus
on how these advancements can support sustainability objectives in
renewable energy power plants during the transition to cleaner energy
sources.

Research Objectives:

To address the challenges and opportunities presented by DT tech-
nology in the renewable energy sector, this study undertakes a SLR to
explore the scope and impact of DTs on sustainability and resilience in
renewable power plants. Specifically, the objectives of this study are
designed to address the following two research questions: (1) How can
DT contribute to the sustainability and resilience of renewable energy power
plants? This question evaluates the role of DT technology in supporting
sustainable operations, reducing environmental impacts, and enhancing
the resilience of renewable energy power plants. It involves analyzing
how DT functionalities, such as real-time monitoring, predictive main-
tenance, and performance optimization, align with sustainability goals.
and (2) To what extent can current research and developments address the
gaps and limitations in implementing of sustainable and resilience energy
power plants using DT?. This question reviews existing studies to identify
underexplored areas and challenges in DT implementation, offering
insights for future research. It highlights current limitations in DT
applications, particularly regarding practical scalability, operational ef-
ficiency, and the evolving technological needs of the renewable energy
sector.

The rest of this paper is organized as follows:

Section “RERs and sustainability”: provides an overview of RERs,
discussing their importance in sustainable development. Key economic,
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environmental, and social dimensions are explored, highlighting RERs
potential to reduce GHG and enhance energy accessibility.

Section “DT and energy power plant”: explores DT technology
in energy power plants, highlighting its components, applications, and
role in optimizing operations across energy sectors.

Section “Methodology”’: outlines the SLR methodology and presents
a DT taxonomy, categorizing applications across physical, digital, and
service spaces. This taxonomy serves as a foundation for analyzing DT’s
impact on energy sector sustainability and resilience.

Section “Systematic literature outcome”: presents the insights of
our SLR on the deployment of DT technology across diverse sectors,
emphasizing its role as a solution to provide sustainability and enhance
resilience in energy power plants.

Section “Discussion”: discusses challenges in DT adoption, such as
data interoperability and real-time synchronization, and suggests future
directions for Al integration and improved data flows. It also discuss
potential future research directions and limitation of the study.

Section “Conclusion”: concludes with an emphasis on DT’s poten-
tial to support sustainable energy transitions, recommending interdisci-
plinary efforts to enhance DT’s impact on energy resilience and carbon
reduction.

RERs and sustainability

RERs are energy sources that can be continually replenished and
provide a constant and limitless supply of energy. These sources such
as solar, wind, bioenergy, geothermal, hydropower, and ocean energy
are capable of powering various applications including transportation,
households, and urban heating [25]. The comparison of the energy
sources share (in percentage) in global energy production is shown in
Fig. 1.

Sustainable energy refers to a sufficient measure of energy man-
agement undertaken by organizations to reduce energy usage, increase
the use of RERs, reduce operational costs, decrease the environmental
impact of energy use, and positively impact society [26]. This definition
includes the key components of affordability, accessibility, replenish-
able, safety for the environment, and long-term availability [27]. The
environmental aspect of sustainability is often justified through the con-
cept by considering renewable energy share, optimized natural resource
usage, and climate or air quality indicators for carbon footprint and
GHG emission reduction [28]. The economic aspect of sustainability
includes efficiency, productivity, and export growth of sustainable en-
ergy at cost-competitive with traditional fossil fuels [29], that must be
affordable for individuals, businesses, and governments [30], generated
and used efficiently and effectively, and able to scale to meet the
growing energy needs of a population or economy [31]. The social
aspect of sustainability is often intertwined with the concepts of energy
security, and equitable access, irrespective of geographic location or
socioeconomic status [32]. Rather than fossil fuel, RERs are aligning
with sustainable development more than ever before because fossil
fuel are limited, and harmful for environment [33]. A comparison of
renewable and conventional energy systems is presented in Table 1.
These RERs cause minimal environmental harm due to their distributed
and low-intensity nature. Additionally, as these sources capitalize on
natural environments, their potential supply effectively outpaces the
finite nature of conventional energy. They embody the definition of
sustainable energy management, leading to reduced energy usage and
operational costs while minimizing environmental impacts [26].

Despite their potential, the intermittency and unpredictability of
some RERs, such as wind and solar, due to variable weather conditions,
present significant challenges [34]. These include the technological dis-
parities encountered in power-heavy industries and long-haul transport
sectors [35], management of variable supply [36], and integration of
clean technologies [37]. Initial costs and expenses for energy storage
systems are substantial and introduce an element of unpredictabil-
ity [38]. Therefore, there is a need to design strategies and optimization
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methods for effective planning and control of power generation and
distribution within renewable energy systems [39]. According to Shaari
et al. [40], predictive analytics and optimization techniques like Parti-
cle Swarm Optimization (PSO) [41] and Genetic Algorithm (GA) [42],
have been extensively used to manage the fluctuating production asso-
ciated with RERs. Through demand response programs and predictive
control mechanisms, energy systems can adapt to the supply conditions,
making energy generation and distribution within renewable energy
systems more efficient and reliable [43].

Sustainability dimension for RERs

Sustained growth in global electricity demand and major reliance on
fossil fuels have given rise to environmental, geopolitical, and economic
challenges. As a result, transitioning to RERs is key to confronting these
challenges and fostering sustainable energy systems.

To ensure a successful energy transition, it is essential to understand
the key contributing factors to the sustainability and resilience of
energy power plants [45]. This knowledge is critical in developing
strategies to promote sustainable practices, optimize resource use, and
improve overall power system performance. Table Al in Appendix A
compiles various scholarly papers to provide an in-depth examination
of the economic, environmental, and social dimensions of RERs. The
table offers a holistic perspective to assessing sustainability in energy
systems ensuring the alignment of economic prosperity, environmental
protection, and social equity.

After a thorough analysis of the sustainability and resilience dimen-
sions found in Table Al in Appendix A, we have pinpointed essential
dimensions critical to the sustainability and resilience of energy power
plants. These crucial dimensions, listed in Table 2, can guide decision-
making and strategy formulation, paving the way for a successful
energy transition and equipping power plants to adapt to changing
conditions and maintain operational efficiency.

The LCOE serves as a critical metric for comparing different energy
sources, providing a comprehensive evaluation of costs over the entire
life-time of a energy power plant [50,51]. Notably, advancements in
technology have narrowed the cost gap between thermal and renewable
power generation [52]. It is calculated as the average net present cost
of generating electric power, considering both fixed and variable costs
[46]. This LCOE used for evaluating the economic viability of a energy
power plant, as it provides a comprehensive cost analysis that takes
into account various expenses associated with electricity production.
By examining the total cost of electricity production, stakeholders can
gain valuable insights into the profitability of a energy power plant and
make informed decisions about its future operation.

Social aspect, in respect to sustainability, influenced by energy
affordability, creates divergent experiences around the globe [53].
Advanced economies enjoy straightforward access to clean and af-
fordable energy, promoting general well-being and economic growth,
alternatively, in resource-poor settings, the population often combats
challenges related to energy utilization [54]. Resources like wood and
dung are routinely burned for energy, leading to health implications
from indoor pollution. It underscores the critical importance of equity
in energy access and affordability in driving social sustainability.

The concept of diversification involves adopting multiple energy
sources to enhance energy security, reduce environmental impact, and
improve the reliability of the energy system [55]. The objective of
diversification is to ensure the sustainability and stability of energy
supply during the transition period, mitigate the impacts of an energy
crisis, and support innovations in the energy industry [56].

Energy security, which is largely contingent on the diversification
of energy sources, can be compromised due to over-reliance on a single
type of energy source or excessive imports [57]. The measurement
of diversity in energy sources can be effectively gauged through the
utilization of several reputable indices, and among these the SWI, a rep-
utable diversity measurement by Jansen et al. [48], which evaluates the
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Fig. 1. Comparison of the energy sources as percentages of the share in global energy production.

Table 1
Comparison of renewable and conventional energy systems [44].

Factors Renewable energy supplies Conventional energy supplies
Examples Wind, Solar, Biomass, Tidal, Hydropower Coal, oil, gas, radioactive ore
Source Natural environment Concentrated stock

Initial average intensity Low intensity, dispersed: <300 W/m?

Lifetime of supply Infinite

Cost at source Free

Equipment capital cost per Expensive, commonly = $1,000
kW capacity

Scale Small-scale often economic
Dependence Self-sufficient systems encouraged

Pollution and
environmental damage

Usually little environmental harm, especially at
moderate scale

Released at > 100 kW /m?

Finite

Increasingly expensive

Moderate, perhaps $500 without
emissions control, yet $1,000 with
emissions reduction

Increased scale often improves supply
costs; large-scale frequently favored.
Systems dependent upon outside
inputs

Environmental pollution common,
especially of air and water.

Table 2
Key sustainability and resilience dimensions for energy power plant transition to renewable energy.

Dimensions Sub-dimension Description

Citation

Levelized Cost of
Energy (LCOE)

Economical Capital cost

Operational and maintenance cost

Fuel cost
Discount rate

[46]

Energy generated (capacity utilization of energy power plant)

Energy Conversion
Efficiency

Efficiency of energy conversion including fossil fuel efficiency
for electricity generation, efficiency of oil refining and losses
occurring during electricity transmission

Diversification The index mostly used to measure diversity is the
Shannon-Wiener Index (SWI): H = -}, p; Inp;, where H
represents Shannon-Wiener Index, p; representing the share of
fuel i in the energy mix or the market share of supplier i, and
Y. indicates the calculation is applied across all fuels or
supplies in the system. The higher the value of H, the more

diverse the system is.

[47]

[48]

Social

Accessibility Share of households (or population) without electricity or
commercial energy, or heavily dependent on non-commercial

energy

[49]

Environmental

GHG Measurement of CO, during electricity generation, GHG
emissions from energy production and use per capita and per
unit of Gross Domestic Production (GDP)

[49]
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level of diversification by weighing the number of energy sources and
their proportional representation. As the proportion of RERs increases
in the energy mix, the SWI rises, reflecting improved energy security.
In the context of resilience, diversified energy sourcing plays a crucial
role, enabling a system, community, or society to adapt to potential
hazards and maintain acceptable functioning and structure [58].

Diversification, when measured effectively, provides a buffer against
energy supply disruptions, guiding power generators towards a more
sustainable future. Resource diversification is vital in complex en-
ergy systems like energy power plants, strengthening their sustainabil-
ity [59]. Moreover, such strategies within shared resources lead to
optimal operational efficiency and significant cost savings.

DT and energy power plant

According to Grieves and Vickers [60], the purpose of DT tech-
nology is to create a virtual model that replicates the real system in
order to simulate, predict, and optimize the system functions using
bidirectional communication. It provides a dynamic mirror of a phys-
ical system that allows for real-time analysis, monitoring and decision
making [61]. By doing so, organizations can better understand how
their systems are performing, identify potential issues before they
become problems, test new ideas, and optimize operations for better
efficiency and performance. .

With the rapid advancements in technology, the digital space has
evolved from simple visual and technical representations to encompass
a range of complex operations such as modeling, testing, and opti-
mization [62]. The DT houses the actual product’s properties, state,
and behavior within its models and data, offering a prediction of
the object’s operational environment. Moving beyond the traditional
three dimensions, Tao et al. [63] introduced a five-dimensional DT
model:

1. Physical entity, an actual phenomenon in a physical product.

2. Virtual entity, is a set of digital models representing the physical
entity.

3. The data model, consists of data from the physical and virtual
entity, data from services, and domain knowledge.

4. Bidirectional connections between the physical entity, virtual
entity, data model, and service space.

5. Services space, includes services for the physical and virtual
entity, including optimization, assessment, prediction, and val-
idation.

The DT model, as illustrated in Fig. 2, is characterized by seamless
and autonomous interactions among its five dimensions. These dimen-
sions are readily accessible and designed to ensure efficient utilization.
According to [64,65], the services, which listed as the final dimension,
offers a simplified user experience by providing comprehensive analysis
across all stages, regardless of the users’ technical proficiency. This
dimension is crucial in ensuring the optimal performance of the DT,
as it facilitates the effective utilization of all other defined dimensions.
The DT can be customized to accommodate various factors, such as
resources, data, modeling, and product life-cycle. As a result, the DT,
with its integral dimensions, represents a dynamic and complex con-
cept throughout its lifespan. These five crucial dimensions of the DT
promote a dynamic and potentially complex concept throughout its life
cycle.

Utilizing advancements in communication and information tech-
nology, the process of digitalization is transforming industrial value
chains under the framework of Industry 4.0 [66]. DT technology, a
cornerstone of this evolution, acts as a catalyst for highly efficient,
adaptable, and automated production systems [63,67]. The potential of
DT extends beyond industrial applications, finding significant relevance
in energy management, where it enhances operational efficiency and
sustainability. According to Lu et al. [67], DTs are crucial in energy
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Fig. 2. Structure of a DT five-dimensional model [64,65].

plant operations, enabling real-time monitoring, predictive mainte-
nance, and operational simulations that optimize plant efficiency and
reduce environmental impacts.

Despite the promising advancements, there remains limited cover-
age in the literature on DT applications specifically tailored to energy
systems, as highlighted in [3]. This study compiles and categorizes
these applications in Table 3, providing an overview of DT implemen-
tations across various energy domains, detailing the purpose and asso-
ciated limitations. This summary aids in understanding DT’s evolving
role in the energy sector, highlighting areas needing further research
and refinement.

In nuclear power, DTs facilitate predictive analytics for service life
and decommissioning, enhancing safety and cost efficiency in complex
operations [68]. Within thermal power plants, DT applications focus
on real-time performance monitoring and system optimization, specif-
ically in steam turbine control stages, employing hybrid modeling to
improve operational efficiency and potentially reduce coal consump-
tion [18,67,69]. In renewable energy contexts, such as offshore wind
energy, DTs provide remote monitoring and predictive maintenance,
minimizing downtime and optimizing output, though limitations arise
from data availability in remote environments and varying weather
conditions [70,71]. In hydroelectric systems, DTs enhance operational
sustainability by detecting current fluctuations in synchronous ma-
chine generators, helping prevent damage and reduce maintenance
costs [72,73]. In the case of Photovoltaic (PV) panel-level power con-
verters, DTs are effectively used for real-time fault detection [74].
Emerging studies underscore DT’s role in microgrid energy manage-
ment. For instance, DTs combined with IoT technologies facilitate
resilient microgrid operations through ML models, which enable real-
time adjustments, optimal scheduling, and load balancing to maintain
sustainable energy distribution even during extreme weather or grid
disruptions [75]. Similarly, smart city planning employs DT to simulate
renewable energy infrastructure placements, assess demand, emissions,
and costs, and promote community-friendly installations, underscoring
DT’s potential in sustainable urban development despite constraints
related to budget and real-time adaptability [76].

In advancing net-zero urban energy systems, DT models address re-
newable energy variability by optimizing storage solutions within smart
grids, balancing loads to reduce dependence on non-renewable sources
and enhance resilience under fluctuating supply conditions [77]. In in-
tegrated multi-energy systems, proposed DT model coordinate thermal
and electrical energy, improving efficiency and reducing costs through
real-time demand response and intensive simulations [78]. Further-
more, DTs are being integrated with Electric Vehicle (EV) dynamics
and blockchain technology to enhance secure energy management
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Table 3
Summary table of existing implementations of DT in energy power plants.
Application area Purpose of DT used Limitation Citation
Nuclear Power Industry To predict service life and model decommissioning processes, No data handling and [68]
both of which have safety and cost implications. management
Thermal power plant (330 To enhance accuracy in real-time performance monitoring Unable to obtain all relevant [80]
MW steam turbines and and optimization in steam turbine control stage systems. internal geometric data.
1000 MW ultra
supercritical steam turbine)
Thermal power plant (320 To implement two optimization solutions to potentially Relies on accurate data. Limiting [69]
MWe coal-fired thermal reduce electricity coal consumption by up to 3.5 g/kWh, generalizability, insights not
power plant unit) results in significant cost savings. universally applicable.
Thermal Power Plant (660 To perform accurate simulation, system optimization, and Limited in obtaining key [18]
MW ultra-supercritical integration of renewable resources of in-service energy power characteristic parameters.
double reheat power plant) plant, which demonstrates remarkable validation with an
average simulation error rate of 0.79% over the full working
range.
Renewable Energy (power To predict the remaining useful life of the power converter Limited applicability. [73]1
converters in offshore wind to optimize Operation & Management
turbines)
Renewable Energy To prove that under-excitation and over-excitation modes Considers few variables affecting [72]
(three-phase synchronous increased the generator’s current magnitude by at least 11% the hydro generator’s operation.
machine generator of and 20%, respectively, resulting in reducing downtime and
310MVA, 56 poles, costly damages.
13.8kV)
Renewable Energy (PV To simulate real-time and field conditions across a variety of The proposed paper focuses on [74]
panel-level power faults. The approach could quickly detect and precisely fault detection, not remediation
converter prototype) identify various types of faults, including incipient ones, due strategies.
to the difference between estimated and measured outputs.
Urban Smart City Energy To model and simulate renewable energy landscape design, Synchronization with industry 4.0 [70]
Landscape integrating IoT for data-driven decisions for emission automation needed.
reduction.
Microgrid Energy To enhancing resilience and flexibility in microgrids by Limited in scalability across [75]
Management employing a ML techniques for optimal scheduling under larger networks due to specific
normal and resilient scenarios. Incorporates simulation and microgrid-focused algorithms.
IoT monitoring for real-time adjustments to demand response
programs and landscape design in renewable energy
integration.
Offshore Wind energy Remote monitoring and predictive maintenance for Limited data availability for [71]1
minimizing downtime and maximizing output. remote turbine conditions and
limiting applicability in
unpredictable weather conditions.
Smart City Planning with To optimize urban renewable energy infrastructure Real-time adaptation is limited; [76]
Renewable Energy placement through DT, assessing energy demand, emissions, budget constraints impact
and costs for community-friendly smart city planning. large-scale deployment.
Net-Zero Smart Cities with To optimize storage solutions for better load balancing and High variability in renewable [771
Renewable Energy reduced reliance on non-renewable sources. sources challenges storage
Uncertainty predictions.
Microgrid with To manage thermal and electrical energy within microgrids Extensive computation required [78]
Multi-Energy Carrier Model using a Multi-Agent System-enabled DT for real-time demand and limited real-world application
response and efficiency. data.
Microgrid with EV To enhance secure energy management in smart cities by Complexity in managing EV data [79]1

Integration

integrating blockchain with DT for resilient EV-grid
interactions and cybersecurity.

and blockchain transactions with
renewable supply.

within microgrids, supporting sustainable EV-grid interactions through
enhanced cybersecurity and adaptive energy allocation [79].

However, these applications face several limitations. Key challenges
include managing vast data flows, ensuring reliable internal geometri-
cal data, achieving consistent accuracy in real-time data, and limited
generalizability across varied energy systems. Additionally, constraints
exist in obtaining essential operational parameters, and some applica-
tions focus narrowly on fault detection without comprehensive reme-
diation strategies. Addressing these limitations will require robust data
management and more extensive fault remediation frameworks, as well
as the development of scalable DT models adaptable to diverse energy
infrastructures and conditions.

While DT technology offers transformative potential for enhancing
the efficiency and sustainability of energy power plants, ongoing ad-
vancements in Al and ML can further enrich DT applications, enabling
continuous system improvements and robust decision-making frame-
works. Continued research aimed at overcoming current limitations will
allow DTs to play an increasingly integral role in transitioning to RERs,
making energy systems more adaptable, efficient, and environmentally
sustainable.

While there have been notable progress in the implementation of
DTs in energy power plants, there are also areas that require improve-
ment, particularly in terms of data management and the development
of comprehensive strategies for fault remediation. It is essential to gain
a comprehensive understanding of the current state of DT applications,
their potential benefits, and the challenges associated with utilization
of them in renewable energy power plants.

Methodology

A SIR is a rigorous and meticulous approach for collecting, ex-
amining, and synthesizing relevant studies from a specific research
area or topic [81]. Unlike conventional narrative reviews, SLRs fol-
low a structured protocol that is both transparent and scientifically
grounded, resulting in comprehensive documentation of the reviewer’s
methodologies, choices, and findings [82]. Using the SLR approach
by Yavari [83], papers were collected relating to DT technology as
a solution across various sectors. A systematic process was employed
to identify, screen, and implement the eligibility of papers using the
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Table 4
Annual distribution of papers by publisher for related work Analysis.
Year MDPI Elsevier IEEE ACM Springer Total/year
2022 73 190 189 7 140 599
2021 82 198 319 10 141 750
2020 36 106 153 7 95 397
2019 8 46 82 2 52 190
2018 1 16 27 0 15 59
2017 0 9 8 1 3 21
Total Papers 200 565 778 27 446 2016

Preferred reporting items for systematic review and meta-analysis pro-
tocols (PRISMA) technique [84] (see Fig. 3 for details) in order to gain a
comprehensive understanding of the existing knowledge on the subject.
Only papers written in English were included in the review.

To conduct a comprehensive search for articles, the Publish or
Perish software (www.harzing.com/resources/publish-or-perish), ac-
cess on 07 September 2022, was employed to examine the Google
Scholar (https://scholar.google.com) database for publications pub-
lished between 2017 and 2022. Five prominent publishers, including
Institute of Electrical and Electronics Engineering (IEEE) (www.ieee.
org), Multidisciplinary Digital Publishing Institute (MDPI) (www.mdpi.
com/), Association for Computing Machinery (ACM) (www.acm.org),
Springer (www.springer.com), and Elsevier (www.elsevier.com) were
investigated. Initially, an extensive set of search terms, including ‘dig-
ital twin,* ‘digital twins,’ and ‘digital twinning,’ was utilized. These
terms were combined with multiple aspects of sustainability and re-
silience in energy systems, resulting in a comprehensive query as
follows: “(‘digital twin OR digital twins OR digital twinning’) AND
(‘sustainability’ OR ‘economical sustainability’ OR ‘environmental sus-
tainability’ OR ‘social sustainability’) AND (‘resilience’) AND (‘energy
system’ OR ‘energy power plant’ OR ‘renewable energy sources’ OR
‘renewable energy plant’)”.

The search produced 200 articles from MDPI, 778 from IEEE, 565
from Elsevier, 446 from Springer, and 27 from ACM (refer to Table 4).
These articles were imported into the EndNote library (https://endnote.
com/, where 41 duplicate entries and 3 records not published in English
were identified and removed, resulting in a total of 1972 articles being
compiled for initial review. After screening the titles and abstracts, 280
articles (by title n=111, by abstract n=169) and 5 inaccessible articles
were excluded, leaving a total of 1687 articles. The remaining articles
were assessed for relevance based on predetermined criteria (outlined
in Table 5), leading to the exclusion of 425 review and 10 conceptual
articles. The 1252 articles that passed the initial screening underwent a
thorough quality assessment, during which articles with zero citations
(n=628) and those outside the top 10% of citation percentile for their
publication year (n=563) using the equation defined in Eq. (1) (extends
from [83]) were eliminated.

pX(n i+ 1)
Hj = 100 (€9)
where:

* u; is the percentile rank for the year j,

« p is the percentile, and

« n; is the total number of papers published by all five publishers
in one year (i.e., j).

After conducting a rigorous selection process, a total of 61 articles
were chosen for in-depth analysis in this systematic review. Each of
the selected articles was thoroughly examined to gather data on the
application of DTs, with a particular focus on instances that promoted
sustainability or enhanced system resilience, regardless of whether
these were the primary objectives of the publications. To ensure the
validity and reliability of the review, two of the authors independently
assessed each article’s eligibility based on the predefined inclusion
criteria. In cases where disagreements arose regarding eligibility, dis-
cussions were held to reach a consensus, and, when necessary, a third
author was consulted to arbitrate and finalize the decision. This multi-
step validation process was implemented to minimize selection bias and
enhance the credibility of the review.

Review taxonomy

In this paper a distinct taxonomy is constructed, based on definition
of DT by Grieves and Vickers [60], to thoroughly analyze and evaluate
the 61 selected papers. The taxonomy extends beyond the original
definition to emphasize the physical space, virtual space, and service
space in the concept of DT, as well as their interconnections. This
taxonomy offers a novel perspective for examining and comprehending
the diverse approaches utilized by authors in implementing DT in their
respective papers.

Three distinct spaces are encompassed within the DT taxonomy,
as depicted in Fig. 4. Physical space delineates the tangible elements
of the system that exist in the real world. Digital space encompasses
data transformation and utilization, which are critical functions of the
system. Lastly, the Service space highlights the interactions with users
and aids in decision-making. Collectively, these spaces offer a holistic
view of the operation and user engagement within the DT system. The
subsequent sections delve into the specifics of each space.

Physical space

Physical space discusses physical entities like vehicles, components,
products, systems, models, and artefacts. The commonalities in these
entities lie in their connection with the physical world. While this
list of terms all refers to man-made entities, the interest of DT has
grown in the DT of humans [87], farms [88], and agriculture [89].
The physical space consists of assets, people, and processes. An asset
is defined as sensors, actuators, and equipment (machinery) used in
the physical world to sense, act and perform different actions and
tasks. People in the physical world are human beings. For example,
the implementation of a DT as discussed in [90], employs a scenario
where Augmented Reality (AR) is used to create a real-time simulation
of a worker or engineer operating a torch machine, providing safety
measures by calculating a safe distance from the machine. Process in
the physical world is a series of events to produce a result, such as
designing, packing, or manufacturing a product in a factory.

Digital space

In the field of DT, the concept of digital space has been formal-
ized by various scholars, including Glaessgen and Starge [91], Tao
et al. [92], and Karakra et al. [93]. Digital space is a virtual represen-
tation of a physical entity that is used to collect data, run simulations,
and investigate performance issues to generate valuable insights. These
insights can then be applied back to the original physical entity. The
digital space is divided into two categories including data management
and data processing.

Data management includes data collection, storage, and modeling,
while data processing encompasses fusion, analysis, and simulation.
Data collection in the DT involves gathering information from the
physical environment, such as sensor data from equipment, materi-
als, processes, and workers. According to ISO 23247-3 [94], physical
entity related data can be categorized into two categories including
static information concerning the physical entity (e.g., identification,
characteristics, schedule) and dynamic states (e.g., status, location,
relationship) [95]. International Business Machines Corporation (IBM)
defines data storage as magnetic, optical, or mechanical media that
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Fig. 4. Taxonomy of a DT, encompassing physical, digital, and service space.
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Table 5
Inclusion and exclusion criteria.

Sustainable Energy Technologies and Assessments 75 (2025) 104197

Inclusion Criteria:

« Articles focus on the concept of the DT technology as a solution framework in case
studies or real-world applications across various sectors.

« Original research presenting empirical data and primary studies.

« Published in peer-reviewed journals from 2017 to 2022.

« Accessible full-text articles written in English, as articles in other languages were

considered out of scope for this review.

Exclusion Criteria:

« Articles that discuss DT technology in a purely theoretical manner without any
original empirical data or evidence of practical application.
« Secondary studies such as literature reviews, opinion papers, editorials, and other

forms of meta-analyses.

« Non-peer-reviewed materials, including conference proceedings, book chapters,

unpublished theses, and position papers.

« Studies focusing on unrelated applications of DT technology outside the context of

solving specific problems in various sectors.

records and preserves digital information for ongoing or future oper-
ations [96]. Data modeling for a DT, as described in [97], is defined
as the practice of structuring and defining data elements using specific
syntax and semantics, allowing for the organization, communication,
and storage of information in a standardized, machine-readable format.
These structured data representations facilitate interoperability and
data exchange between different systems and applications which is
crucial for facilitating the processing and analysis of the diverse data
collected.

In data processing, statistical analysis, ML, and data mining tech-
niques are utilized to uncover hidden patterns within large datasets,
which can be unearthed through techniques such as association rule
mining, clustering, and anomaly detection [98]. Data fusion involves
the integration of data from multiple sources to create enhanced,
precise, and reliable insights, improving comprehensiveness and accu-
racy [99]. This process can take place at various levels, such as sensor
level, feature level, decision level, and multi-modal level. Additionally,
data processing simulation replicates a real-world process, system, or
phenomenon within a digital environment, where models are used to
observe system dynamics, predict outcomes, assess performance, or test
various strategies without interfering with the original system [63].

Service space

The DT service space leverages digital information to direct actions
in the physical world. Transformed and analyzed data is conveyed in a
comprehensible and actionable form, allowing for seamless implemen-
tation in decision-making processes. The DT service space comprises
two sub-categories, HMI and decision support, which both rely on these
insights.

HM]I, is the interface that enables interaction between a human and
a machine or computerized system. It comprises hardware and soft-
ware components that allow the operator to manage system processes,
review data, and input information [100]. Key attributes of HMI at
this layer include accessibility, intuitiveness, and usability, ensuring
effective control and understanding of insights by the users.

Decision support refers to the use of analytical models, and data
analysis to help organizations and individuals make informed decisions
based on an understanding of their possible practical and theoretical
outcomes [92]. The goal of decision support is to produce actionable
insights that improve the quality of decision-making. Visualization
allows for the representation of data in visual formats such as graphs
and maps, enabling easier comprehension and interpretation. It is
particularly useful in pattern and trend identification, as well as for
communicating insights.

Systematic literature outcome

The insights of our SLR on the deployment of DT technology across
diverse sectors and its potential as a solution towards sustainable and

resilience energy power plants are presented in this section. First, a tax-
onomy, described in Section d, is developed to analyze and investigate
the literature as per three main spaces including physical, digital, and
service spaces. Then, the role of DT in the context of the sustainability
and resilience of energy power plants is investigated.

Analyzing outcomes with DT taxonomy perspective

In this section, the literature was investigated using the DT taxon-
omy outlined in Section ‘“Methodology”. A comprehensive analysis of
the 61 selected papers is presented in Table B1 of Appendix B.

Upon reviewing the papers on physical space (as shown in Table 6),
only 53 out of 61 incorporated assets like sensors and actuators to
validate their proposed DT models. The remaining 8 papers relied solely
on historical data, excluding real-time data collection for experimen-
tal purposes. Furthermore, the papers gave low emphasis on people
and process, with only 11 and 14 papers incorporating these aspects,
respectively.

Of the 61 papers reviewed, 36 discuss data collection through
sensors in both physical and digital spaces. As shown in Table 6, only
16 papers address the data model for collected data from the physical
space. These papers stress the importance of modeling heterogeneous
data in a uniform format, with specific techniques mentioned in their
experiments before storing them. Meanwhile, data storage techniques
were addressed in only 18 papers. For example, [101] utilizes Struc-
tured Query Language (SQL), while [91] employs text files for data
storage. However, these techniques may not be suitable for large-scale
systems. Additionally, a total of 53 papers have employed Al and ML
techniques, such as Principal Component Analysis (PCA) [102], Long
Short-Term Memory (LSTM) [103], Convolutional Neural Networks
(CNN) [104], Support Vector Machine (SVM) [105] are commonly
used algorithms in DT frameworks for tasks such as data analysis,
monitoring, prediction, and decision-making. Among these, 29 papers
utilize simulation techniques. However, the area of data fusion is often
overlooked, with only 12 papers addressing this issue. Data fusion is
crucial for generating compatible data formats that can be processed
collectively.

The Table 6 indicates that in service space 51 out of 61 examined
papers implemented the DT across various fields for decision-making,
including fault and risk assessment, performance optimization, pre-
dictive analysis, process traceability, and optimal model evaluation
in production and manufacturing [69], automation and robotic [90],
energy power system [106],healthcare [9].

In contrast, HMI integrates immersive reality technologies, such as
AR and Virtual Reality (VR), found sparse representation in the selected
papers, with only 8 of these using such technology to augment user
interaction, planning, and design experiences. Despite the enhancement
of safety and user involvement, HMI remains largely unexplored.
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Distribution of DT implementation within a constructed taxonomy including physical space (i.e., assets, people, and process), digital space (i.e., data management and data

processing), and service space (i.e., decision support and HMI).

DT spaces No. of papers
Physical Space Assets 53
People 11
Process 14
Digital Space Data Management Data Collection 36
Data Model 16
Data Storage 18
Data Processing Fusion 12
Analysis 53
Simulation 29
Service Space Decision Support 51
HMI 8
Bidirectional Data Transmission 17

Although bidirectional data transmission has been mentioned in
only 17 out of 61 papers, it remains an essential aspect for real-
time synchronization between the physical and digital space. Further
research in this area could lead to more efficient management of com-
plex physical spaces through the incorporation of actuation support,
which enables reactions in the physical space based on the virtual
space output. Enhancing these features could result in a more seamless
exchange of data between the two environments, ultimately improving
the capabilities of DT technology.

Role of DT for energy power plant sustainability and resilience

This section presents a comprehensive analysis of selected papers,
highlighting the various DT decision support categories that may be
potentially relevant to contributes towards sustainability and resilience
of energy power plants. Reviewing the included papers shows that
decision support categories of DTs implemented in various application
domain can be broadly classified into six categories: predictive analysis,
performance optimization, risk and fault assessment, optimal model
evaluation, process traceability and HMI. Table 7 summarize the poten-
tial of DT technology in leveraging these decision support categories for
power plant sustainability and resilience, which is further elaborated on
in the following sections (detailed analysis are provided in Appendix C
Table C1).

Predictive analysis

Predictive maintenance technology offers a range of benefits includ-
ing cost reduction, aiding regulatory compliance, improving safety, and
mitigating the issues of old infrastructure. A stream of the literature
focuses on predictive analysis with innovative approaches aimed at
minimizing downtime and enhancing operational efficiency across a
diverse range of domains [127]. From predicting the RUL of critical
machinery to foreseeing anomalies that could lead to system failures,
these predictive models play a pivotal role in optimizing performance
and reducing operational costs [128]. Moreover, they are not limited
to one specific sector, the industry is seeing continuous development in
predictive maintenance techniques, especially by utilizing the IoT and
advanced data analytics.

The four selected papers in Table 7 highlight the significant impact
of specific predictive maintenance models in minimizing downtime,
enhancing operational efficiency, and reducing costs by predicting re-
source consumption and facilitating demand forecasting. For example,
Priyanka et al. [101] proposed a machinery prognostic model that
improved operation and maintenance by predicting the RUL of oil
pipelines based on abnormal pressure fluctuations. Similarly, Hosamo
et al. [106] developed a predictive maintenance model for an Air Han-
dling Unit (AHU) using an Artificial Neural Netwrok (ANN) [129] and
SVM [105] to detect anomalies and estimate the RUL of the AHU. Ad-
ditionally, Yang et al. [107] implemented a hybrid ML model to predict

10

the degradation of transmission units, while Park et al. [110] employed
heuristic rule planning in a production process to optimize resource use
and anticipate abnormalities. These proactive maintenance models help
in maintenance planning by enable optimized scheduling and reduce
energy costs by minimizing downtime.

By leveraging predictive analytics, organizations can gain meaning-
ful information into resource utilization patterns and make informed
decisions to enhance operational efficiency. This proactive approach
aids in cost optimization by effectively managing resource allocation
based on accurate predictions of future workloads [130]. As shown in
Table 7 predictive analytic minimize costs through resource consump-
tion optimization, as [112-114] used predictive models for demand
forecasting and resource consumption optimization, as well as improv-
ing system health forecasting. These analytical models help in reducing
waste, cutting costs, scheduling effective resource management and
preventative maintenance. Overall, the papers in the literature show
how predictive analysis can enhance efficiency and reduce operational
costs in sectors such as energy. However, there is still potential for
further research to uncover more applications in energy power plants.

Performance optimization

Performance optimization is important in various industries to im-
prove the efficiency and effectiveness of systems. It can benefit the
entire industry by expanding the design space and heuristic knowledge
base while maintaining sustainability [131]. By maximizing output
while minimizing resource utilization, organizations can achieve cost
savings, increase revenue, improve customer satisfaction, and gain
a competitive advantage [132]. Literature suggests that performance
optimization is closely related to sustainability, as it can improve
development plans, scheduling, cost reduction, and pollution reduc-
tion [133]. Additionally, Deng et al. [134] highlights the need for a
comprehensive evaluation of power system performance from a sustain-
ability perspective. This argument is supported by Sunder Raj [135]
to discuss the shift towards fleet-wide performance monitoring and
optimization in energy power plants for maximum economic benefits.

Reducing downtime, increasing operational and energy efficiency,
optimizing resource allocation, reducing waste, and cutting costs are
some of the benefits of performance optimization, as shown in Table 7.
In robotic and automation application, Li et al. [90] implements a DT
framework using Reinforcement Learning (RL) [136] enabled motion
planning algorithm to enhance productivity and reduce downtime in
handling operation and maintenance cost. The concept of defect detec-
tion is another important aspect to consider in the multifaceted field
of performance optimization. [117,118] utilize a thorough analysis of
various performance attributes of a system to increase the accuracy
of detecting defects, which is central to achieving sustainability ob-
jectives. By minimizing maintenance, operational costs, and energy
consumption, this strategy can potentially reduce costs and improve
overall efficiency.
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Table 7
Summary of the evidence regarding the implementation of DT decision support categories for enhancing the sustainability and efficiency of energy power plant operations.
Decision support Key benefits Key aspects Primary Secondary
category contribution contribution
Predictive Minimizing Downtime Achieved through Remaining Useful Life (RUL), [101,106-108] [109-111]
Analysis and Enhancing Proactive Maintenance, and Utilizing Health State
Operational Efficiency Prognostics
Cost Reduction Achieved through Demand Forecasting and Resource [112-114] [115,116]
Consumption, Time Sensitive Traffic Prediction, and
System Health Forecasting
Performance Downtime Reduction Achieved through Robust Process Management, and [69,90,110,117,118] [101,102,104,106,
and Enhancing Enhancing Fault Diagnosis 108]
Operational Efficiency
Resource Allocation Achieved through Efficient Task Distribution, [119-122] [112,123]
and Energy Efficiency Real-Time Data Analysis, Reducing Transit and
Waiting Time, and Target Association Modeling
Real-Time Traceability, Achieved through Predictive Maintenance and System [124] [98,107]
Reduced Waste, and Optimization Strategies, and Real-Time
Lower Costs Synchronization and Control Flexibility
Risk and Operational Achieved through proactive maintenance and [115,123] [69]
Fault Sustainability advanced damage detection
Performance Achieved through real-time status monitoring and [109,111] [113]
Enhancement & Cost Strategic Optimization Model for Mechanical
Reduction Component Durability
Optimal Model Maximum Operational Achieved through optimal Resource Selection and [98,125]
Evaluation Efficiency and Cost Diversified Selection Strategy in shared resources
Savings
Process Traceability Advancing Energy Achieved through Real-Time Process Traceability for [104,116]
Efficiency and Enhanced Quality and Data Management in Complex
Operational Production Processes
Performance
HMI Enhanced Human Achieved through Visualization of Data and [102,126]

Safety and Continuous
Productivity

Operations via Smart Mixed-Reality and Utilizing
Human-Robot Interaction

Manufacturing plants have benefited from a system proposed in
[110], which focuses on strategic planning and real-time alerts for
abnormal situations. This approach has been effective in reducing
operational costs and quickly responding to changes or abnormalities.
Additionally, [69] employees a two-phase approach to fault diagnosis
prioritizes early detection and precision throughout the product life
cycle, minimizing downtime and operational costs. Studies also suggest
that optimizing resource allocation with DT technology can improve
energy conversion efficiency. The study by Negri et al. [120], founds
that implementing optimal scheduling and real-time data analysis can
help reduce operation costs during high-demand periods. Overall, these
papers emphasize the importance of optimizing processes and resource
allocation to achieve sustainability objectives and improve efficiency in
various industries.

The utilization of algorithms for resource allocation can lead to
substantial improvements in production. This has been demonstrated
by research conducted in [121,122] show that advanced algorithms can
optimize data tasks, streamline planning processes, and enhance overall
productivity. By optimizing resource allocation, these methods can also
reduce energy waste and improve operational efficiency. According to
Guo et al. [124], real-time digital synchronization and flexible controls
in assembly systems can lead to substantial energy savings and stream-
lined workflows. This is achieved by eliminating unnecessary setups,
reducing waiting times, and optimizing resource allocation, resulting
in substantial cost savings and increased operational efficiency across
various manufacturing processes.

To enhance operational efficiency and decrease energy consumption
and waste, deploying advanced techniques like algorithms, precise fault
detection methods, and innovative digital technologies holds immense
promise. These techniques not only improve productivity but also
minimize downtime and operational expenses. Further investigation
into their application across diverse industry settings and varying pro-
duction conditions would aid in unlocking their full potential. Adapting
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to the continually changing industrial landscape, particularly in the
context of energy power plants, is essential for achieving a future of
enhanced productivity and sustainability. This study aims to explore
how implementing digital technologies can lead to these improvements
and shape the future of the energy sector.

Risk and fault assessment

The effective maintenance of system reliability and sustainability
can be achieved through fault diagnosis and risk assessment techniques.
Fault diagnosis plays a crucial role in the early identification of system
anomalies, which dramatically reduces downtime and enhances ma-
chine lifespan and operational performance. In support of this concept,
the study by Karve et al. [111] elaborates on the use of a Bayesian
estimation algorithm (defined detailed in [137] for predictive main-
tenance strategies developed to ensure the uninterrupted operation of
mechanical systems. Similarly, [109] focused on real-time status moni-
toring and finite element analysis to prevent excessive physical damage,
such as wear and aging in equipment, thus increasing the longevity
and reliability of operation. On the other hand, risk assessment plays
a pivotal role in predicting potential dangers and allowing proactive
intervention. For instance, Xia et al. [123] proposed a deep transfer
learning [138] based method, which is applied for the early detection
of operational faults and plays a key role in risk mitigation and aligns
with sustainable operational goals. In addition, [115] uses Quadratic
Discriminant Analysis (QDA) [139] method to underline the vital im-
portance of risk management for the necessity of advanced damage
detection techniques in infrastructure systems from a sustainability
standpoint. It is crucial to note that fault diagnosis and risk assessment
serve different purposes, though both are critical for effective system
management. Specifically, fault diagnosis is concerned with identifying
existing anomalies, while risk assessment focuses on anticipating poten-
tial problems. These strategies lead to optimal resource usage, reducing
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maintenance and operational costs, and enhancing overall system per-
formance in energy power plants are characterized by their intricate
systems, which require early fault detection and risk prediction to
prevent operational downtime and improve overall performance. The
integration of RERs necessitates the utilization of such techniques to
identify potential issues and predict risks associated with new tech-
nologies, thereby facilitating a smoother transition. By preventing faults
and mitigating the risks associated with this transition, energy power
plants can not only enhance their operational efficiency but also ensure
long-term sustainability and resilience.

Optimal model evaluation

Optimal model evaluation within the context of DTs involves more
than just evaluating current system performance. It is a comprehensive
approach that aims to improve efficiency, sustainability, and adaptabil-
ity to changing demands and fluctuating weather conditions affecting
energy production [131]. Unlike basic performance assessments that
focus on functionality, optimal model evaluation delves deeper and
develops strategies for dynamic adaptation, thereby enhancing system
reliability and accuracy under various circumstances [140].

An DT framework proposed by Mi et al. [125] emphasizes ac-
curacy and reliability of predictive maintenance task with the aim
of optimized operational efficiency. This framework also provides a
mechanism for assessing resources and guiding their optimal selection
under varying parameters, allowing for an agile response to fluctuating
energy market conditions. This approach prioritizes achieving the op-
timal state of operations, surpassing simple performance evaluation to
ensure reduced costs and carbon emissions. This concept is supported
by Wang et al. [98], which proposes a DT-driven service model for
seamless monitoring and control of shared manufacturing resources.
This model prioritizes factors such as cost, time, and provider trust-
worthiness during the allocation process, and allows for the selection
of the most suitable resource from a range of options. This diversified
strategy guides decision-making from an efficiency, cost-effectiveness,
environmental impact, and reliability perspective. Such optimal model
evaluation enables organizations to enhance operational efficiency,
maintain the sustainability of their operations using diversify resource
allocation by implementing DT models.

Process traceability

Process traceability as enacted by DT technology provides a service
distinct and separate from operations themselves. This service enables
real-time surveillance within intricate manufacturing and production
workflows, consequently allowing in-depth comprehension of opera-
tional processes, expedited in-process modifications, and strategic im-
provements leading to superior product quality [141]. The unique role
of process traceability is exemplified in the work by Liu et al. [104],
who proposed a biomimicry [142] based traceability framework. This
framework compiles and analyses real-time data on geometry, behav-
ior, and process to enhance comprehension of ongoing procedures,
enabling immediate tuning and alterations that improve overall product
quality. The key here is the utilization of collected data to adjust
processes in real-time, rather than just carrying out operations without
continual optimization.

Similarly, Zhuang et al. [116] also offered a traceability approach
distinctively made for enhancing quality control, troubleshooting, and
process optimization. Through real-time monitoring at each stage of
production, they can enable effective problem-solving and process
enhancement, which go beyond mere execution of operations, but
leverage data for continuous optimization.

In summary, process traceability is not just about the execution of
operations but involves real-time, data-driven tracking and improve-
ment of processes for optimized operational performance and energy
efficiency. It is an ongoing evaluative method to refine operations
rather than a static process of operation execution.
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HMI

The use of DT technology in HMI highlights the importance of
understanding the dynamics and dependencies involved in collabora-
tions [143]. This knowledge can improve collaboration efficiency and
optimize task assignment and workload distribution between humans
and robots [10]. According to Table 7, [126] developed a model using
DT and HMI to enhance safety and productivity in robotics and automa-
tion. The integration of smart mixed-reality glasses offers a cutting-edge
platform for optimized human-machine collaboration. Similarly, [102]
implemented an HMI system integrated with DT, which replicates the
processes of skilled human users to guide robots and novice users,
improving operational efficiency and productivity.

Although the focus of these papers is not on energy power plant
operations, the implications of these HMI strategies, made possible
by digital technology, for the sustainability and resilience of energy
power plants are significant. Incorporating these HMI strategies into
energy power plant operations can improve safety, minimize downtime,
and enhance operational efficiency, which are crucial aspects for the
sustainability and resilience of energy power plants. By combining DT
technology with cutting-edge HMI techniques, it is possible to enhance
system efficiency and resilience, ultimately making a significant con-
tribution to the development of sustainable and resilient energy power
systems.

Discussion

This review provides a comprehensive overview of how DTtech-
nology can support sustainability and resilience in renewable energy
power plants. By analyzing 61 studies, with a specific focus on 27
that directly address our research objectives, this SLR categorizes DT
functionalities into six primary decision support categories outlined
in our taxonomy (see Table 7): performance optimization, predictive
analysis, risk and fault assessment, optimal model evaluation, process
traceability, and HMI. The implementation of these DT decision support
categories play a pivotal role in achieving economic objectives by
enabling cost reduction, enhancing operational efficiency, and ensuring
optimal resource allocation, and for achieving environmental objectives
by promoting operational sustainability and contributing to GHG emis-
sion reduction. We elaborate on these outcomes in more detail below;
followed by the limitation, challenges and future directions.

Fig. 5 demonstrates the connections between identified DT decision
support categories (on the right) and the dimensions of sustainability
and resilience in energy power plants (on the left). The Fig. 5 differ-
entiates between primary (illustrated with solid lines) and secondary
(illustrated with dotted lines) contributions based on the prevalence
and significance of DT functionalities within each sustainability dimen-
sion. Primary contributions represent core areas where DT technologies
have a direct, robust impact, whereas secondary contributions indicate
complementary or supporting roles where DT functions have an indirect
effect. The categorization into primary and secondary contributions
reflects common trends observed within the literature, where certain
studies address multiple decision support functions. For example, Wei
et al. [109] developed a DT framework focused on fault and risk
assessment aspects, bringing its contribution to predictive analytics,
hence showing the overlap of DT functions. This dual focus is either on
risk management or predictive maintenance for operational efficiency
in the identification and mitigation of possible issues that support
economic resilience and sustainability goals. Similarly, Patel [144] pro-
pose the DT model for a Computer Numerical Control (CNC) machine
tool, including real-time status monitoring and predictive analytics for
improving longevity. It reduces not only downtime but also resource
use and hence helps attain economic and environmental sustainability
goals. Further detail is provided in Appendix C Table C1. The thematic
overlap observed in these studies suggests that DT functionalities are
often interconnected, with certain categories like performance opti-
mization and predictive analysis frequently complementing each other.
Such overlaps are illustrated in Fig. 5 as lines connecting multiple
sustainability dimensions, showing how a single DT functionality can
contribute to multiple areas of sustainability and resilience.
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Fig. 5. Mapping DT frameworks in literature, highlighting their potential to contribute to the sustainability of renewable energy power plants across social, economic, and

environmental dimensions, with a focus on the service space of DT technology.

Economic sustainability: DT role in cost reduction and resource optimization

Economic sustainability is essential for renewable energy power
plants as they transition from fossil fuels to RERs. DT technology
enhances economic resilience through proactive strategies like demand
forecasting, resource consumption analysis, system health forecasting,
and predictive maintenance, all of which contribute to cost reduction
and efficient resource utilization. Below, we summarize key insights
from Table C1 in Appendix C regarding how these decision support
categories contribute to economic sustainability.

By utilizing predictive analysis frameworks, as seen in studies [101,
107], DT systems provide real-time insights into the health of power
plant components, allowing for proactive maintenance and minimiz-
ing downtime. These frameworks use predictive modeling to forecast
critical maintenance needs, which prevents unplanned interruptions. In
a power plant setting, applying predictive analysis helps avoid costly
emergency repairs and extends the lifespan of equipment, directly sup-
porting economic sustainability by reducing unexpected expenditures
and improving asset longevity. Similarly, performance optimization
frameworks, highlighted in the literature (e.g., Wang et al. [98]),
help streamline operations by dynamically allocating resources based
on real-time data. In power plants, this type of optimization ensures
that equipment is used efficiently, reducing energy waste and op-
erational costs. By aligning with economic metrics like the LCOE,
these frameworks enhance economic sustainability by lowering pro-
duction costs, ultimately contributing to more affordable renewable
energy generation. In addition, risk and fault assessment frameworks
enable early detection of potential issues, allowing for timely inter-
ventions that significantly reduce maintenance expenses. For example,
the proactive fault identification approach used in [109] minimizes
downtimes, which is crucial in high-stakes power generation environ-
ments where even brief interruptions can be costly. In the context of
renewable energy, this risk mitigation reduces the need for expensive
reactive maintenance, contributing to stable operations and improving
the plant’s overall economic resilience.

Optimal model evaluation, is one of the key DT decision support
category that has the potential within the economic dimension, to con-
tribute to the sustainability of energy power plants using diversification

13

factor. The proposed optimal model evaluation frameworks in the liter-
ature in [98,125] offer effective solutions to achieve cost optimization
and GHG emission reduction through accurate and reliable predictive
maintenance tasks. These model evaluation frameworks maximize effi-
ciency and accuracy by selecting optimal resources, rapidly responding
to changing energy markets, and sustaining operations under uncertain
conditions. In shared manufacturing contexts, the optimal model eval-
uation use a credit-aware approach in [145] for resource allocation,
ensuring a robust and efficient selection strategy from a diverse pool of
resources. This diversified selection strategy considers various param-
eters like cost-effectiveness, efficiency, reliability, and environmental
impact for higher adaptability in resource utilization. By leveraging
optimal model evaluation, DT technology used in energy power plants
can allocate resources more efficiently, leading to sustainability and
resilience during the transition to RERs. This approach also enhances
operational efficiency and cost-effectiveness through strategic shared
resource management.

Together, these DT decision support categories enable a multi-
faceted approach to achieving economic sustainability in renewable
energy power plants. Through predictive analysis, performance opti-
mization, risk assessment, optimal model evaluation, DT technology
supports cost-effective, adaptable, and resource-efficient operations.
Each of these categories plays a distinct role in reducing costs, improv-
ing resource allocation, and reinforcing economic resilience, facilitating
an economically sustainable transition to renewable energy. For de-
tailed descriptions of each framework, please refer to Appendix C, Table
C1, which provides a comprehensive overview of the decision support
categories and their contributions to economic sustainability.

Environmental sustainability: DT’s role in emission reduction

The Fig. 5 highlights that several decision support categories within
DT technology-such as performance optimization, predictive analysis,
and optimal model evaluation-are crucial for enhancing environmental
sustainability. These DT frameworks contribute to environmental goals
by improving operational efficiency, reducing resource consumption,
and lowering GHG emissions. With capabilities to monitor real-time
data and optimize energy usage, DT technology aligns directly with
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environmental objectives, supporting renewable energy systems as they
transition away from carbon-intensive operations.

Performance optimization and predictive analysis are DT decision
support categories that drive environmental sustainability by man-
aging resources more effectively and minimizing energy waste. In
manufacturing contexts, studies like those by Meraghni et al. [108]
have shown that DT applications can reduce energy consumption by
optimizing operations and decreasing inefficiencies. When applied to
renewable energy plants, performance optimization ensures efficient
energy use, indirectly contributing to GHG reduction goals by curtailing
unnecessary resource usage. This functionality supports an environ-
mentally sustainable operation by conserving energy, reducing material
waste, and aligning renewable power plant operations with broader
sustainability objectives.

Risk assessment and optimal model evaluation contribute further by
ensuring that resources are allocated efficiently and waste is minimized.
DT models that assess risks and optimize resource management enable
precise maintenance scheduling, which reduces repair frequency and
extends equipment lifespan, conserving both materials and energy. In
renewable power plants, optimal model evaluation can strategically
allocate resources to limit their environmental impact, thus reducing
the carbon footprint through effective resource management and main-
tenance planning. While these strategies may not directly target GHG
emissions reduction, they indirectly support environmental objectives
by minimizing waste and promoting cost-effective, energy-efficient
resource deployment. Additionally, DT frameworks offer ecological
adaptability by using real-time monitoring and predictive analytics
to allow renewable energy plants to remain resilient under dynamic
environmental conditions. The adaptability of DT technology enables
systems to respond effectively to fluctuations in energy demand, pre-
venting overproduction and waste. This approach aligns operations
with real-time needs, ensuring sustainable resource management that
benefits both the environment and the economic viability of renewable
energy systems.

Although the primary focus of DT frameworks may not always be
environmental sustainability, their ability to facilitate multifaceted re-
source selection and rapid adaptability to unpredictable energy trends
allows them to support sustained operations even under uncertain
demand conditions. By reducing machine downtime, optimizing main-
tenance, and using diversified resources, DT technology aids energy
power plants in achieving greater decision-making accuracy and op-
erational resilience. This adaptability not only contributes to cost re-
ductions but also lowers carbon emissions, reinforcing DT’s role in
supporting an ecologically sustainable transition to RERs.

Together, these DT decision support categories foster cleaner, more
efficient operations by reducing emissions, conserving resources, and
enhancing adaptability. Each category plays a distinct role in en-
vironmental sustainability, from decreasing energy consumption and
material waste to aligning renewable energy practices with sustainable
goals.

Social sustainability: Accessibility, affordability and safety

As indicated in Fig. 5, DT frameworks are not directly connected
to social sustainability in terms of explicit focus areas. However, based
on the frameworks outlined in Appendix C, Table Cl, it is clear that
DT systems can contribute to social sustainability indirectly by en-
hancing accessibility, affordability, and safety within renewable energy
systems. Cost reductions achieved through DT-supported performance
optimization and predictive maintenance make renewable energy more
economically accessible to broader communities. Below, we discuss
how specific DT decision support categories have the potential to
promote social sustainability.

Performance optimization and predictive maintenance frameworks
increase operational efficiency and reduce downtime, creating cost
savings that can make renewable energy production more affordable.
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By lowering operational costs, DT systems help reduce energy prices,
which expands access to clean energy, especially for underserved or
remote communities. These cost savings align with the principles of
energy justice, promoting equitable access to renewable energy and
supporting a more inclusive energy landscape where diverse commu-
nities benefit from cleaner energy sources. HMI frameworks within
DT systems contribute significantly to social sustainability by enhanc-
ing safety and ensuring seamless interactions between operators and
complex digital systems. Tools like immersive reality interfaces enable
operators to interact with real-time data safely, reducing the likelihood
of errors and minimizing operational delays. In renewable energy
power plants, these HMI capabilities not only improve worker safety
but also protect surrounding communities from potential hazards. By
prioritizing safety and reliability in operations, DT frameworks offer
a socially responsible approach to energy production that safeguards
both personnel and nearby residents.

Additionally, environmentally sustainable operations promoted by
DT frameworks indirectly enhance public welfare by reducing emis-
sions and supporting better air quality and health standards. As DT
technology helps decrease GHG emissions and environmental impact,
it contributes to healthier communities, particularly those located near
renewable energy installations. This indirect contribution to social
sustainability aligns with broader objectives of public well-being, fos-
tering cleaner environments, and improving the quality of life for
communities close to RERs.

In summary, DT technology, though not explicitly focused on social
sustainability, supports this dimension by making renewable energy
more accessible, affordable, and safe. By promoting equitable access
to clean energy, enhancing safety, and contributing to community
health, DT frameworks indirectly advance the social dimension of
sustainability within the renewable energy sector.

Limitations of this study

This study encompasses a SLR utilizing Google Scholar as the pri-
mary search engine to access an array of high-impact, peer-reviewed
journals including those published by MDPI, IEEE, Elsevier, Springer,
and ACM, covering the years 2017-2022. The study did not include
additional literature sources, such as Web of Science, Scopus, techni-
cal journals, and non-peer-reviewed articles, which might provide a
more comprehensive view of this emergent topic. However, the chosen
publishers are known for their high-quality, peer-reviewed articles,
enabling the authors to select the most impact-ful papers and prioritize
the quality of the content over the breadth. This review aims to eluci-
date the ways in which DT technology can enhance sustainability in the
energy sector by improving operational efficiency and decision-making
processes in energy power plants. It is important to note that this
study has limitations in scope and does not account for the full range
of potentially relevant studies. Future research could address these
gaps and provide a more comprehensive evaluation of the relationship
between DTs and sustainable practices in energy infrastructure.

Challenges and future directions

DT technology faces a multitude of challenges that are similar to
those found within data analytics, the IoTs, and the Industrial Internet
of Things (IIOT) as mentioned in [8]. In addition, various researchers
have brought to the forefront additional challenges, such as the need
for clear standardization protocol [18], difficulty of accurate sustain-
ability data collection [146] and dealing with data interoperability.
According to Sleiti et al. [3] data management and analysis stand
out as pressing challenges in utilizing DTs, especially when it comes
to reflecting and forecasting the performance of physical power plant
systems within their virtual counterparts. This problem is not unique to
the energy sector; it is a common thread spanning diverse domains from
aerospace to healthcare. However, within the context of renewable
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energy, these issues become especially salient due to the inherent sus-
tainability goals. The primary challenge at hand is effectively managing
a substantial amount of various and continual data streams, which
encompass production to consumption metrics. Doing so is essential
for creating and maintaining an accurate digital representation for
decision-making and process enhancement [3]. A particular emphasis is
needed on the precision of data concerning power plant sustainability,
where the consequences of inaccuracies can have far-reaching impacts
on environmental and economic outcomes. Advanced analytics and
algorithms—such as those referenced in [147-149] are essential tools
that enable us to sift through complex datasets effectively. By adopting
these tried and tested methods from other applications, we can achieve
not only insightful analysis but also build precise predictive models that
can inform more sustainable practices within power plants, ultimately
leading to more efficient and greener energy production.

Maintaining rigorous data collection standards is a complex task
that is further complicated by the difficulty of accurately capturing
sustainability data, as evidenced by Yavari et al. [146]. Given the
complexity of renewable energy systems, disparities in measurement
protocols, and fluctuating environmental conditions that can impact
energy production, the collection of precise data is paramount. The
drive for real-time data that encompasses the full spectrum of resource
inputs, energy outputs, and environmental effects is essential for de-
veloping a reliable DT. This digital counterpart is crucial for enhancing
operational practices and accurately predicting system behavior under
various scenarios. Consequently, there is a need for a rigorous effort
to enhance the reliability of data collection, standardize measurement
protocols, and utilize advanced sensor and time-sensitive data analysis
as demonstrated in [150]. At the same time, the challenge of merging
various data vectors into a unified model within the DT - while
safeguarding data precision and relevance — remains a prime objective
for ongoing research endeavors.

Interoperability, which refers to the ability of different systems to
work together in a coordinated manner, poses a notable challenge for
implementing DTs [151]. As these virtual models need to communicate
with a range of systems and components, developing standardized data
formats and interfaces becomes a critical task. This standardization aids
in the seamless integration of systems, allowing the full benefits of DT
technology to be realized. Advancing collaboration across various sec-
tors will depend on this ability to securely and efficiently manage and
share data. Therefore, tackling interoperability is crucial for unlocking
the transformative impact DTs promise in power plants.

It is crucial to make a concerted effort in future research to en-
hance DTs for renewable power plants. This requires addressing the
major obstacles of big data analysis, interoperability, data precision,
and standardization. To overcome these challenges, it is necessary to
develop advanced analytical methods for processing and interpreting
the vast amounts of data generated by renewable energy operations.
This will enable the extraction of valuable insights for predictive main-
tenance and real-time optimization. Additionally, seamless interoper-
ability among diverse systems must be achieved to ensure cohesive and
efficient DT functionality. Efforts to enhance data precision through the
implementation of robust collection standards and granular analytics
are also essential to accurately reflect the dynamic nature of RERs in
the DT environment. Furthermore, the establishment of comprehensive
standardization protocols will be vital to ensure the universal appli-
cation and effectiveness of DTs across the sector. Overcoming these
challenges is critical to unlocking the potential of DTs to create more
resilient, efficient, and sustainable renewable energy infrastructures.

Conclusion

This study has highlighted the vital role that DT technology can play
in advancing sustainability and resilience in renewable energy power
plants, answering two core research questions. Through a comprehen-
sive review of 61 studies, this paper identified six primary decision
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support areas—performance optimization, predictive analysis, risk and
fault assessment, optimal model evaluation, process traceability, and
HMI-within DT frameworks. These DT capabilities address the eco-
nomic, environmental, and social dimensions of sustainability, driving
improvements in energy efficiency, reducing costs, and optimizing
resource use.

In response to the first research question — How can DT contribute
to the sustainability and resilience of renewable energy power plants?
— the findings highlight DT’s ability to support proactive management
through tools like demand forecasting and system health monitoring.
These functions help renewable power plants reduce downtime, mini-
mize energy waste, and indirectly lower GHG emissions. The capacity
for energy diversification and enhanced system resilience reinforces
DT’s role in both economic and environmental sustainability.

Addressing the second research question — To what extent can
current research and developments address gaps and limitations in
implementing sustainable and resilient energy power plants using DT?
— the review reveals that while DT frameworks are highly effective in
supporting economic and environmental objectives, their potential for
promoting social sustainability, such as through improved accessibility,
safety, and affordability, is an emerging area. Integrating ML and Al
into DT frameworks promises further advancements, enabling refined
predictive maintenance, enhanced resource allocation, and optimized
energy management as the renewable energy sector evolves.

These findings offer important implications for both theory and
practice. Theoretically, this study expands sustainability frameworks
by demonstrating DT’s capacity to integrate economic, environmental,
and social objectives, aligning with resilience theory through DT’s
adaptability in dynamic conditions. Practically, DT frameworks present
actionable tools for renewable energy plants, enhancing cost-efficiency
and enabling the energy sector to progress towards more accessible
and sustainable solutions. As DT applications continue to evolve, they
are positioned to become foundational for addressing future challenges
in renewable energy. However, it is important to note that many
applications of DT’s in the energy sector are still in the early stages.
A comprehensive, multidisciplinary approach will be necessary to fully
unlock the potential of DT’s, ensuring they integrate economic, envi-
ronmental, and social factors to achieve sustainability and resilience in
energy power plants.
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