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Abstract
Stock price prediction remains a critical challenge in financial research due to its potential to inform strategic decision-
making. Existing approaches predominantly focus on two key tasks: (1) regression, which forecasts future stock prices, and
(2) classification, which identifies trading signals such as buy, sell, or hold. However, the inherent limitations of financial
data hinder effective model training, often leading to suboptimal performance. To mitigate this issue, prior studies have
expanded datasets by aggregating historical data from multiple companies. This strategy, however, fails to account for the
unique characteristics and interdependencies among individual stocks, thereby reducing predictive accuracy. To address these
limitations, we propose a novel BiLSTM-GAT-AM model that integrates bidirectional long short-term memory (BiLSTM)
networks with graph attention networks (GAT) and an attention mechanism (AM). Unlike conventional graph-based models
that define edges based solely on technical or fundamental relationships, our approach employs a dual-graph structure: one
graph captures technical similarities,while the other encodes fundamental industry relationships. These two representations are
aligned through an attention mechanism, enabling the model to exploit both technical and fundamental insights for enhanced
stock market predictions. We conduct extensive experiments, including ablation studies and comparative evaluations against
baselinemodels. The results demonstrate that ourmodel achieves superior predictive performance. Furthermore, leveraging the
model’s forecasts, we construct an optimized portfolio and conduct backtesting on the test dataset. Empirical results indicate
that our portfolio consistently outperforms both baseline models and the S&P 500 index, highlighting the effectiveness of our
approach in stock market prediction and portfolio optimization.

Keywords Attention mechanism · BiLSTM · Graph attention network · Portfolio management · Stock selection ·
Technical indicators

1 Introduction

Stock market prediction has long been a critical area of
research due to its potential to offer significant financial ben-
efits [1]. Accurate forecasting of stock prices is highly sought
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after in the financial industry [2], as it can enable investors
and traders to make informed decisions and optimize their
portfolios for maximum returns [3]. However, the complex
and volatile nature of financial markets makes stock mar-
ket prediction an inherently challenging task [4]. While deep
learning models have made strides in improving predictive
accuracy [5], there remain significant limitations that hinder
their effectiveness in real-world trading scenarios.

Traditional deep learning approaches to stock market
prediction are often constrained by two primary factors.
First, these models typically aggregate data from multiple
companies into a single dataset without considering the het-
erogeneity inherent in the stock market [6, 7]. By treating
companies as homogenous entities, these models overlook
the distinct characteristics of individual companies and the
intricate relationships between them [8, 9]. Factors such as
industry sector, market capitalization, and financial health
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can all influence stock performance, and ignoring these
nuances can result in oversimplifiedmodels that do not reflect
the true dynamics of the market [10].

Second, the narrow focus on predicting stock prices alone
provides little operational value for actual trading [11].While
price predictions may achieve high accuracy, they often fail
to offer actionable insights that can inform profitable trading
decisions [12]. In practice, financial markets require more
than accurate price forecasts; they demand a comprehensive
understanding of market structure, inter-company correla-
tions, and risk-adjusted returns [13, 14]. Thus, moving from
pure price prediction to a framework that considers both pre-
dictive performance and practical decision-making is crucial
[15].

To address these limitations, recent advances in Graph
Neural Networks (GNNs) have shown significant potential
in capturing the complex relationships between stocks [16,
17].Unlike traditionalmodels,GNNscan treat each stock as a
node and define the connections between them using various
criteria [17]. This is particularly useful in financial markets
where inter-company relationships can significantly impact
stock performance [18, 19]. For example, companies within
the same industry often exhibit similar price behaviors due
to shared economic factors, while companies with different
business models may demonstrate weaker correlations [20].
Graph Attention Networks (GATs), an extension of GNNs,
are particularly powerful as they assign attention weights to
different edges, enabling themodel to focusmore on relevant
relationships between companies and discount less important
ones. However, the success of graph-based models is highly
sensitive to the design of the adjacency matrix, which deter-
mines how connections between companies are defined [21,
22], and [23].

In financial markets, these connections can be understood
through two major analytical frameworks: technical analy-
sis [24] and fundamental analysis [25]. Technical analysis
focuses on price movements and trends, while fundamental
analysis examines a company’s underlying attributes, such
as industry classification, financial performance, and market
position [26]. Most existing models that use GNNs for stock
prediction primarily focus on one of these aspects, typically
using price data to model relationships [27, 28]. However, to
fully capture the complexity of stock markets, it is necessary
to consider both technical and fundamental factors.

We propose a novel stock market prediction and portfo-
lio optimization model that integrates Bi-directional Long
Short-Term Memory (BiLSTM) networks, Graph Attention
Networks (GATs), and Attention Mechanisms (AMs). Our
approach addresses key limitations of traditional models by
treating each company as a distinct node and constructing
two separate adjacency matrices: one capturing technical
similarities based on price movements and the other reflect-
ing fundamental similarities based on industry sectors. This

dual-graph representation enables a more comprehensive
understanding of inter-company relationships.

Beyond price prediction, our model ranks stocks by
predicted return rates, constructing a portfolio optimized
for risk-adjusted returns. Performance evaluation against
benchmark indices (e.g., S&P 500) and baseline models
demonstrates superior results across key financial metrics,
including internal rate of return (IRR), Sharpe ratio, and final
balance. These findings highlight the model’s effectiveness
in generating higher returns while managing risk.

This research advances stock market prediction by inte-
grating technical and fundamental analysis into a unified
framework. Furthermore, it shifts focus from pure forecast-
ing to actionable trading strategies, bridging the gap between
financial prediction and decision-making.

2 Related work

Predicting stock prices has long been a complex and endur-
ing challenge within financial markets, captivating both
researchers and industry professionals. The dynamic and
volatile nature of financial markets has led to the develop-
ment and continual refinement of a wide range of predictive
methodologies. Early efforts were grounded in traditional
statistical models, which sought to capture patterns in his-
torical price data. However, with the rapid advancements in
computational power and data availability, machine learn-
ing models have emerged as powerful alternatives, offering
enhancedpredictive capabilities. These advanced approaches
incorporate not only historical price data but also a broad
array of market factors, including technical indicators,
macroeconomic variables, and even sentiment analysis. This
evolution from traditional to machine learning-based tech-
niques reflects the increasing sophistication in tackling the
inherent complexities of financial markets [29–31].

2.1 Technical indicators

Technical indicators are mathematical constructs derived
fromhistorical price data, including previous open, high, low,
and close prices, as well as trading volumes. These tools
are instrumental in identifying trends, momentum, volatil-
ity, and other critical aspects of market behavior. According
to [32], technical indicators are pivotal in analyzing price
movements by providing a deeper understanding of market
dynamics, making them indispensable for traders and ana-
lysts. Commonly integrated into deep learning models for
stock price prediction, widely recognized indicators such as
Moving Averages (MA), Relative Strength Index (RSI), and
Moving Average Convergence Divergence (MACD) serve as
important features that enable these models to discern pat-
terns and relationships within historical data [33].
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Numerous studies, including those by [34, 35], and [36],
have demonstrated that the incorporation of technical indica-
tors into predictive models can improve their performance,
allowing models to detect subtle market signals and enhance
forecasting precision. Despite their utility, however, the
contribution of technical indicators alone to the predictive
accuracy of models remains modest, as highlighted by [37].
These findings suggest that while technical indicators pro-
vide valuable information, they may not fully capture the
complexities of financial markets when used in isolation.

In response to these limitations, recent research has shifted
towards integrating technical indicators with a broader
range of data sources and more advanced modeling tech-
niques. This approach aims to capture the intricate, multi-
dimensional nature of financial markets, leading to more
robust and accurate predictions. For instance, models pro-
posed by [38, 39], and [40] combine technical indicators with
additional inputs such as sentiment data, macroeconomic
variables, and alternative data sources, as well as employing
sophisticated methodologies like convolutional neural net-
works and hybridmodels. These advancements have resulted
in significant improvements in prediction accuracy, under-
scoring the importance of comprehensive, multi-faceted
approaches to stock price forecasting.

2.2 Long short-termmemory networks

Long Short-Term Memory (LSTM) networks, a specialized
form of recurrent neural network (RNN), are particularly
adept at handling sequential data, making them an ideal
choice for time series forecasting tasks such as stock price
prediction. Their architecture is uniquely designed to cap-
ture long-term dependencies in data by selectively retaining
information over extended time periods, a critical fea-
ture when dealing with the complex and often nonlinear
dynamics present in financial markets [41]. This ability to
model temporal dependencies has been consistently shown
to outperform traditional machine learning approaches, par-
ticularly in financial contexts where time-based patterns play
a crucial role.

Numerous studies, including [42, 43], and [44], have
demonstrated the superiority of LSTM models over con-
ventional methods in stock price forecasting. These studies
emphasize LSTM’s capacity to effectively capture nonlin-
ear relationships and intricate temporal patterns that are
otherwise difficult to model using standard approaches. By
leveraging memory cells that control the flow of information
through gates, LSTMmodels canmaintain a balance between
short-term and long-term trends in stock prices, thus offering
enhanced predictive accuracy in dynamic market environ-
ments.

Moreover, recent advancements in stock price prediction
have explored the integration of LSTM units within hybrid

models to further boost predictive performance. Research
conducted by [45, 46], and [47] has shown that combining
LSTM with other methods, such as Convolutional Neural
Networks (CNNs) or attention mechanisms, can yield signif-
icant improvements in both predictive accuracy and model
robustness. These hybrid models capitalize on the tempo-
ral modeling capabilities of LSTM while incorporating the
feature extraction strengths of CNNs or the ability of atten-
tion mechanisms to focus on relevant data points within the
sequence.

The incorporation of hybrid LSTM models has proven
particularly effective in addressing the volatile and non-
stationary nature of stock prices. For instance, these models
can better generalize across different market conditions by
enhancing their adaptability and reducing overfitting to spe-
cific patterns. As demonstrated in [48], the combination
of LSTM with other deep learning techniques provides a
more holistic approach to stock price forecasting, improving
not only the model’s accuracy but also its ability to handle
the uncertainty and complexity inherent in financial data.
This ongoing research highlights the continued evolution of
LSTM-based models as a cornerstone in the development of
more sophisticated stock prediction systems.

2.3 Graph attention networks

Graph Neural Networks (GNNs) have emerged as a power-
ful tool for analyzing data structured in the form of graphs,
where entities (nodes) are interconnected through relation-
ships (edges) [49, 50]. Unlike traditional machine learning
models, which primarily focus on independent and identi-
cally distributed (IID) data, GNNs excel at capturing the
complex interactions between entitieswithin graph structures
[51]. Thismakes GNNs particularly suitable for tasks such as
social network analysis [52], molecular property prediction
[53], and, more recently, financial market modeling [54]. In
stock prediction, the relationships between different stocks,
sectors, or even external factors such as news sentiment can
be represented as a graph, allowing GNNs to uncover hidden
dependencies and trends that are otherwise difficult to model
with traditional approaches [55, 56].

Building upon theGNN framework, GraphAttentionNet-
works (GATs) introduce attention mechanisms to further
enhance the learning process [57–62]. While GNNs aggre-
gate information from neighboring nodes, they typically treat
all neighbors equally [63]. GATs, on the other hand, assign
varying levels of importance to different neighbors based on
their relevance to the task at hand. This is achieved through
the attention mechanism, which allows the model to weigh
the influence of each neighboring node dynamically, ensur-
ing that more critical connections are given greater focus [64,
65]. As a result, GATs can capture more nuanced and con-
textually important relationships within the graph, making

123



  601 Page 4 of 18 X. Lu et al.

them highly effective in tasks where the importance of rela-
tionships varies significantly across the graph [66, 67].

In the context of stock price prediction, GATs have been
increasingly applied to model the intricate and dynamic rela-
tionships between stocks [68]. Financial markets are highly
interconnected,with stocks often influencing one another due
to factors such as industry sector, supply chain dependencies,
or macroeconomic conditions [69]. GATs allow for the mod-
eling of these dependencies by constructing a graph where
each node represents a stock, and edges represent the rela-
tionships between them, whether they be based on historical
price correlations, shared market sectors, or external influ-
ences such as news sentiment [70, 71], and [72].

Several studies have demonstrated the effectiveness of
GATs in improving the accuracy of stock price prediction
models. By leveraging the attention mechanism, GATs can
identify and focus on themost relevant relationships between
stocks, thereby enhancing the model’s ability to capture
market dynamics[73]. For example, recent work from [74,
75], and [76] has shown that GAT-based models outperform
traditional time series models by effectively incorporating
relational information into the forecasting process. This has
led to improved prediction accuracy, particularly in captur-
ing inter-stock dependencies and broader market trends that
are essential for making informed financial decisions. The
adaptability and precision of GATs in financial modeling
underscore their growing importance in stock market pre-
diction research [77].

2.4 Attentionmechanism

The attention mechanism has become a foundational ele-
ment in modern deep learning models [78], particularly for
tasks involving complex data with multiple sources or chan-
nels [79]. At its core, the attention mechanism dynamically
weighs the importance of different parts of the input, allow-
ing models to focus on the most relevant information [80,
81]. This is particularly useful in scenarios where the model
needs to integrate diverse types of input or outputs from dif-
ferent channels, such as in natural language processing [82],
computer vision [83], or financial forecasting [84].

In broader applications, including stock price prediction,
attention mechanisms are equally valuable. For instance,
when multiple channels of information-such as historical
price data, technical indicators, and external market factors-
are available, the attention mechanism can combine these
diverse outputs by assigning appropriate importance to each
channel [85, 86]. This ability to focus on the most infor-
mative data points helps improve predictive performance,
particularly in volatile and interconnected environments like
financial markets [87].

The flexibility of attention mechanisms lies in their
capacity to integrate and weigh information from different

channels in a data-drivenmanner [88].Bydoing so, attention-
based models can better capture complex dependencies,
making them highly effective in tasks that require the synthe-
sis of information frommultiple sources [89, 90]. In financial
prediction models, this mechanism allows for more refined
and contextually aware forecasts by dynamically prioritizing
the most relevant inputs, leading to more accurate and robust
predictions [91].

3 Methodology

3.1 Technique indicators

This study leverages a set of basic and derived technical indi-
cators to analyze stock price movements and inform trading
decisions. The fundamental indicators used are the Open,
High, Low, and Close (OHLC) prices, as well as tick volume
and spread. These indicators form the basis for generating an
additional 44 features, categorized Table 1.

3.1.1 Simple moving averages (SMA)

The Simple Moving Average (SMA) is a widely used tech-
nical indicator that smooths out price data by creating a
constantly updated average price. It helps in identifying the
direction of the trend over a specified period [92].

The SMA is calculated by taking the arithmetic mean of
a given set of prices over a specific number of periods.

SMAn(t) = 1

n

n−1∑

i=0

P(t − i) (1)

where:

• SMAn(t) is the Simple Moving Average at time t over n
periods.

• P(t − i) is the close price at time t − i .
• n is the number of periods over which the average is
calculated.

In this research the ‘mv100’, ‘mv50’, ‘mv9’ are moving
averages over 100, 50, and9periods, respectively. SMAshelp
in smoothing out price data to identify trends over different
time frames.

3.1.2 Bollinger bands

Bollinger Bands consist of a set of lines plotted two standard
deviations (positively and negatively) away from a simple
moving average (SMA) of the price which provide a relative
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Table 1 List of indicators,
labels, and number of indicators
used

Indicators Labels Count

Simple Moving Averages ’mv100’,’mv50’,’mv9’ 3

Bollinger Bands ’bb_bbm’,’bb_bbh’,’bb_bbl’ 3

Relative Strength Index ’rsi15’,’rsi9’,’rsi50’ 3

Percentage Change Features ’f1’ to ’f10’ 10

Moving Average Comparisons ’f11’ to ’f16’ 6

RSI Comparisons ’f17’ to ’f18’ 2

Bollinger Band Comparisons ’f19’ to ’f22’ 4

Rolling Maximum and Minimum ’f23’ to ’f28’ 6

Close Price Shifts ’f29’ to ’f33’ 5

Trading time ’h1’,’w1’ 2

Total 44

definition of high and low prices of a financial instrument
[93].

Middle Band (MB) The middle band is the simple moving
average (SMA) of the close price, typically over 20 periods.

MB(t) = SMA20(t) = 1

20

19∑

i=0

P(t − i) (2)

Upper Band (UB) The upper band is calculated by adding
two standard deviations to the middle band.

UB(t) = MB(t) + 2 × σ20(t) (3)

where σ20(t) is the standard deviation of the close price over
20 periods.

Lower Band (LB) The lower band is calculated by subtracting
two standard deviations from the middle band.

LB(t) = MB(t) − 2 × σ20(t) (4)

The ’bb_bbm’, ’bb_bbh’, ’bb_bbl’ represent the middle
band (moving average), upper band, and lower band respec-
tively.

3.1.3 Relative strength index (RSI)

The Relative Strength Index (RSI) [94]is a momentum oscil-
lator that measures the speed and change of close price
movements. It is used to identify overbought or oversold
conditions in a market. The RSI oscillates between 0 and
100 and is typically used with a 14-period setting.

1. Calculate the average gains and losses over the specified
period (e.g., 14 or 50 periods).

2. Calculate the Relative Strength (RS):

RS = Average Gain

Average Loss
(5)

3. Calculate the RSI:

RSI = 100 −
(

100

1 + RS

)
(6)

‘rsi14’, ‘rsi50’ are RSI over 14 and 50 periods, respec-
tively, measures the speed and change of close price move-
ments to identify overbought or oversold conditions. ’rsimv9’
is a 9-period moving average of the 14-period RSI.

3.1.4 Price percentage change features

‘f1’ to ‘f10’ calculate the percentage change between dif-
ferent prices (open, close, high, low) and their shifts over
different periods.

f1 =
(
Close − Open

Open

)
× 100 (7)

f2 =
(
High − Low

Low

)
× 100 (8)

f3 =
(
Hight−1 − Lowt−1

Lowt−1

)
× 100 (9)

f4 =
(
Hight−2 − Lowt−2

Lowt−2

)
× 100 (10)

f5 =
(
Hight−3 − Lowt−3

Lowt−3

)
× 100 (11)

f6 =
(
Hight−4 − Lowt−4

Lowt−4

)
× 100 (12)
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f7 =
(
High − Open

Open

)
× 100 (13)

f8 =
(
High − Close

Close

)
× 100 (14)

f9 =
(
Open − Low

Low

)
× 100 (15)

f10 =
(
Close − Low

Low

)
× 100 (16)

3.1.5 Moving average percentage change features

‘f11’ to ‘f13’ calculate the percentage change between
the closing price and the moving averages (50-period, 9-
period, and 100-period, respectively). Features ’f14’ to ’f16’
compute the percentage changes between different moving
averages themselves.

f11 =
(
Close − MV50

MV50

)
× 100 (17)

f12 =
(
Close − MV9

MV9

)
× 100 (18)

f13 =
(
Close − MV100

MV100

)
× 100 (19)

f14 =
(
MV9 − MV50

MV50

)
× 100 (20)

f15 =
(
MV9 − MV100

MV100

)
× 100 (21)

f16 =
(
MV50 − MV100

MV100

)
× 100 (22)

3.1.6 RSI percentage change features

‘f17’, ‘f18’ calculate the percentage difference between dif-
ferent RSI values (rsi14, rsi50, rsimv9). f17 computes the
percentage change between the 14-period RSI and the 50-
period RSI, while f18 calculates the percentage change
between the 50-period RSI and a 9-period simple moving
average of the 14-period RSI.

f17 =
(
RSI14 − RSI50

RSI50

)
× 100 (23)

f18 =
(
RSI50 − RSImv9

RSImv9

)
× 100 (24)

3.1.7 Bollinger band percentage change features

‘f19’ to ‘f23’ calculate the percentage difference between the
close price and Bollinger Bands (bb_bbm, bb_bbh, bb_bbl),
and between the bands themselves. Specifically, f19 com-
putes the percentage changebetween the closingprice and the
middle Bollinger Band (20-period simple moving average),
f20 calculates the percentage change between the closing
price and the upper Bollinger Band, and f21 calculates the
percentage change between the closing price and the lower
Bollinger Band. Additionally, f22 computes the percentage
change between the lower and upper Bollinger Bands.

f19 =
(
Close − BBMiddle

BBMiddle

)
× 100 (25)

f20 =
(
Close − BBUpper

BBUpper

)
× 100 (26)

f21 =
(
Close − BBLower

BBLower

)
× 100 (27)

f22 =
(
BBLower − BBUpper

BBUpper

)
× 100 (28)

3.1.8 Rolling maximum andminimum

‘f23’ to ‘f28’ calculate the percentage difference between the
close price and its rolling maximum or minimum over differ-
ent periods (20, 50, 100). Specifically, ‘f23’ to ‘f25’ compute
the percentage change between the rolling maximum clos-
ing prices over 20, 50, and 100 periods, respectively, and
the current closing price. Conversely, ‘f26’ to ‘f28’ calculate
the percentage change between the rolling minimum closing
prices over the same periods and the current closing price.

f23 =
(
max(Closet−20:t ) − Close

Close

)
× 100 (29)

f24 =
(
max(Closet−50:t ) − Close

Close

)
× 100 (30)

f25 =
(
max(Closet−100:t ) − Close

Close

)
× 100 (31)

f26 =
(
min(Closet−20:t ) − Close

Close

)
× 100 (32)

f27 =
(
min(Closet−50:t ) − Close

Close

)
× 100 (33)

f28 =
(
min(Closet−100:t ) − Close

Close

)
× 100 (34)
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3.1.9 Close price shifts

‘f29’ to ‘f33’ calculate the percentage change of the close
price compared to its previous values over different periods (1
to 5).‘f29’ computes the percentage change from the closing
price of the previous day to the current closing price. Features
‘f30’ to ‘f33’ extend this calculation to the closingprices from
2 to 5 days prior, respectively.

f29 =
(
Closet−1 − Close

Close

)
× 100 (35)

f30 =
(
Closet−2 − Close

Close

)
× 100 (36)

f31 =
(
Closet−3 − Close

Close

)
× 100 (37)

f32 =
(
Closet−4 − Close

Close

)
× 100 (38)

f33 =
(
Closet−5 − Close

Close

)
× 100 (39)

3.1.10 Trading time

‘h1’ captures the hour of the day from the datetime values.
The second line creates a new column wd that captures the
day of the week (with Monday as 0 and Sunday as 6) from
the datetime values, which could be useful for identifying
patterns related to different weekdays.

h1 = Hour(datetime) (40)

wd = Weekday(datetime) (41)

3.2 Long short-termmemory (LSTM) network

In this study, we employ Long Short-TermMemory (LSTM)
networks to model sequential data and capture both short-
term and long-term dependencies. LSTMnetworks, a variant
of Recurrent Neural Networks (RNNs), are particularly well-
suited for tasks involving temporal sequences due to their
ability to mitigate the vanishing gradient problem inherent
in traditional RNNs. This is achieved through the inclusion
of a memory cell that maintains information over extended
time steps.

The structure of an LSTM cell is defined by three key
gates: the input gate, the forget gate, and the output gate.
These gates regulate the flow of information into and out of
the memory cell, enabling the network to selectively retain
or discard information at each time step. The equations gov-
erning the behavior of the LSTM cell are as follows:

ft = σ(W f · [ht−1, xt ] + b f ) (42)

it = σ(Wi · [ht−1, xt ] + bi ) (43)

C̃t = tanh(WC · [ht−1, xt ] + bC ) (44)

Ct = ft ∗ Ct−1 + it ∗ C̃t (45)

ot = σ(Wo · [ht−1, xt ] + bo) (46)

ht = ot ∗ tanh(Ct ) (47)

In these equations, ft represents the forget gate, which
determines the extent to which the previous cell state Ct−1

should be forgotten. it is the input gate, controlling what new
information is stored in the current cell state. The candidate
cell state, C̃t , is computed based on the previous hidden state
ht−1 and current input xt . The updated cell state Ct is a
combination of the previous cell state and the candidate cell
state, modulated by the forget and input gates. Finally, ot is
the output gate, which controls the output of the LSTM cell,
and ht represents the hidden state, which is passed to the next
time step.

LSTMs are particularly effective in time series forecast-
ing tasks, such as stock price prediction, as they can capture
both short-term fluctuations and long-term trends in financial
data. By leveraging historical stock prices and other relevant
indicators, our LSTM model provides improved forecasting
accuracy compared to traditional models.

The weight matrices W f ,Wi ,WC ,Wo and bias vectors
b f , bi , bC , bo are learned during the training process, ensur-
ing the model adapts to the dynamics of the data.

3.3 Graph construction

In our approach, each company is represented as a unique
node within a graph, where edges are established based on
similarity metrics. Companies exhibiting higher similarity
are interconnected, effectively capturing interdependencies
within the financial market. This graph-based framework
enables the incorporation of relational information among
stocks, allowing for the simultaneous prediction of closing
prices across all companies.

3.3.1 Scaling

Before constructing the weighted edge graph, we first nor-
malize the closing prices of all companies, scaling them to
the range [0, 1]. Let Xi = [x1, x2, . . . , xT ] represent the
normalized time series of closing prices for company i . The
normalization is done as follows:

Xi = Xi − min(Xi )

max(Xi ) − min(Xi )
(48)
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3.3.2 Graph for technical similarity

After normalizing the closing prices, we compute the
Dynamic TimeWarping (DTW) distance between every pair
of companies using the fastdtw algorithm, which provides
an efficient approximation of the DTW distance. Given two
normalized time series Xi and X j for companies i and j , the
DTW distance DTW (Xi , X j ) is calculated.

Next, we introduce a threshold τ to determine which
company pairs should be connected by edges. For any two
companies i and j , if their DTW distance DTW (Xi , X j )

is less than the threshold τ , an edge is established between
them. The weight of the edge wi j is computed as:

wi j = τ − DTW (Xi , X j ) (49)

This formula ensures that the closer theDTWdistance is to
0 (i.e., the more similar the two companies’ stock prices are),
the larger the edge weight will be. Conversely, as the DTW
distance approaches the threshold, the edgeweight decreases.

The result is aweighted graph,where each node represents
a company, and edges are established only between compa-
nies whose DTW distance is below the threshold τ . The edge
weight reflects the similarity of the companies’ stock price
movements, with smaller DTW distances leading to stronger
connections. This graph provides a structural representation
of the relationships between companies based on their nor-
malized closing prices.

This weighted graph as is shown in Fig. 5 is then used
in subsequent Graph Neural Network (GNN) and Graph
Attention Network (GAT) models to predict future trends
by incorporating both individual company data and the rela-
tionships captured in the graph.

3.3.3 Graph for fundamental similarity

The construction of the second graph is predicated on the
industry sectors of the selected companies. We introduce this
graph under the hypothesis that companies within the same
industry sector exhibit similar patterns in price performance.
Tooperationalize this concept, an edge is establishedbetween
companies belonging to the same industry sector, with each
edge assigned a uniform weight. This approach assumes that
the shared sectorial characteristics will reflect in comparable
price change behaviors, providing a structured framework to
analyze the interconnectedness ofmarket performance across
similar industries.

3.4 Graph neural networks (GNN) and graph
attention networks (GAT)

In this study, we also incorporate Graph Neural Networks
(GNNs) to model complex relationships between entities

represented as graphs. GNNs are particularly suited for
structured data, where the relationships between nodes can
provide crucial insights that are otherwise missed by tradi-
tional neural networks. Each node in a graph represents an
entity, and edges define relationships or interactions between
these entities. The objective of a GNN is to learn a node rep-
resentation by aggregating features from neighboring nodes
through message passing mechanisms.

The key operation in a GNN is the neighborhood aggre-
gation or message passing, where the representation of each
node is updated based on its neighbors’ features. Formally,
the node representation h(k)

v at the k-th layer is computed as:

h(k)
v = aggregate

(
h(k−1)
u : u ∈ N (v)

)
(50)

where N (v) represents the set of neighbors of node v, and
h(k−1)
u is the representation of node u from the previous layer.

The aggregation function can vary based on the GNN variant
(e.g., summation, averaging, or more complex functions).

3.4.1 Graph attention networks (GAT)

To further enhance the expressiveness of GNNs, we utilize
Graph Attention Networks (GATs), which introduce atten-
tion mechanisms to assign different importance weights to
neighboring nodes during the aggregation process. In a GAT,
rather than treating all neighbors equally, attention scores
are learned, allowing the model to focus on the most rele-
vant nodes. This attention mechanism is particularly useful
in scenarios where not all neighbors contribute equally to a
node’s final representation.

For each node v, the attention coefficient αvu between
node v and its neighbor u is computed as:

αvu = exp
(
LeakyReLU

(
aT [Whv‖Whu]

))
∑

k∈N (v) exp
(
LeakyReLU

(
aT [Whv‖Whk]

)) (51)

where W is a weight matrix applied to the node features, a
is a learnable attention vector, and ‖ denotes concatenation.
The attention coefficients αvu are then used to compute the
weighted sum of the neighboring features to update the node
representation:

hnewv = σ

⎛

⎝
∑

u∈N (v)

αvuWhu

⎞

⎠ (52)

Here, σ is a non-linear activation function, such as ReLU.
ThismechanismallowsGATs to adaptively attend to themost
informative neighbors, improving the model’s performance
on tasks where the relevance of neighbors varies (Fig. 1).

By leveraging GNNs and GATs, our methodology cap-
tures both local and global dependencies in graph-structured
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Fig. 1 Illustration of the step-by-step process for constructing the first graph, which quantifies technical similarity using DTW

data, offering a robust framework for learning node represen-
tations. The graph attention mechanism further enhances the
model’s ability to focus on critical nodes in the graph, leading
to more accurate predictions, particularly in tasks involving
structured data such as social networks, molecular graphs, or
citation networks.

3.5 Attentionmechanism for multi-channel graph
networks

In our approach, we utilize an attention mechanism to
combine the outputs of two separate graph networks, each
representing a different channel of information for every
node in the graph. By leveraging this mechanism, we are
able to aggregate information from both graph channels and
make more informed predictions based on the features of
each node.

Given two graph networks, G1 and G2, the output of each
network for a node v is represented by the feature vectors
hG1

v and hG2
v , respectively. Our goal is to combine these two

outputs using an attention mechanism that determines the
contribution of each graph channel to the final representation
of node v.

The attention mechanism assigns a weight to each graph
channel based on the relevance of the information provided
by each channel for the specific node. For each node v, the
attention coefficients β

G1
v and β

G2
v are computed as follows:

βGi
v =

exp
(
aT · concat(hG1

v , hG2
v )

)

∑
j∈{1,2} exp

(
aT · concat(hG1

v , hG2
v )

) (53)

Here,a is a learnable attentionvector, and concat(hG1
v , hG2

v )

represents the concatenation of the feature vectors from both
graph channels for node v. The softmax function ensures that
the attention coefficients β

G1
v and β

G2
v sum to 1, allowing the

model to weigh the importance of each channel dynamically.

The final representation hfinalv for node v is then computed
as the weighted sum of the two graph channels:

hfinalv = βG1
v hG1

v + βG2
v hG2

v (54)

This mechanism enables the model to focus on the most
relevant graph channel for each node, depending on the spe-
cific task and data characteristics.

3.5.1 Node-level prediction

Once the final node representation hfinalv is obtained by com-
bining the two graph outputs, we use it to make predictions at
the node level. Specifically, for each node v, we apply a fully
connected layer followed by a softmax function to output the
predicted class or value for that node. The prediction ŷv for
node v is computed as:

ŷv = softmax(W · hfinalv + b) (55)

where W is a weight matrix, and b is a bias term learned
during the training process. The softmax function converts
the raw scores into probabilities for classification tasks, while
other activation functions may be used for regression tasks.

By incorporating the attention mechanism to fuse the two
graph channels and making node-specific predictions, our
model is able to leverage the full potential of multi-channel
graph information, leading to more accurate and context-
aware predictions for each node.

3.6 Proposed LSTM-GAT attentionmodel

In this study, we propose a novel model that combines Long
Short-Term Memory (LSTM) networks, Graph Attention
Networks (GATs), and an attention mechanism to capture
both temporal and relational dependencies in time series data.
A single input at time t consists of a 2-dimensional vector rep-
resenting 82 companies, with each company characterized
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by 51 features, including the technical indicators mentioned
previously.

3.6.1 Model architecture

Our proposed model consists of three main components: the
LSTM layers, the GAT layers for two graph channels, and
an attention mechanism to fuse the outputs from these chan-
nels. The final output is generated through a series of fully
connected layers. Below is a detailed description of each
component:

LSTM Layers The LSTM layers are used to capture the tem-
poral dependencies in the time series data. The input time
series data for each node is passed through a two-layer bidi-
rectional LSTM, which processes the sequential information
in both forward and backward directions. The LSTM output
at the final time step is used as the node’s representation of
the sequence. This results in a feature vector for each node
that summarizes the historical information.

GAT Layers The model employs two sets of GAT layers to
process graph-structured data from two distinct adjacency
matrices (representing two different graph channels). Each
graph is processed through three consecutive GAT layers.
Each GAT layer updates the node features by attending to
the features of neighboring nodes, where the attention mech-
anism learns to assign different importance weights to each
neighbor.

For both graph channels, the node features from theLSTM
layers are first passed through the GAT layers to propagate
information from neighboring nodes, resulting in updated
node representations for each channel.

Attention Mechanism After processing the node features
through the two sets of GAT layers, the model employs an
attention mechanism to fuse the outputs from the two graph
channels. TheGAToutputs from the two channels are stacked
and passed through a linear layer to compute attention scores
for each channel. These scores are then normalized using
a softmax function to obtain attention weights, which are

applied to the GAT outputs. The final node representation is
computed as the weighted sum of the two GAT outputs.

Fully Connected Layers
The combined node features from the attention mechanism
are passed through a series of fully connected layers. The
first two layers use ReLU activations, while the final layer
outputs the prediction for each node. This part of the model
captures complex non-linear relationships in the learned node
representations as is shown in Fig. 2.

4 Evaluationmetrics

In this study, four primary evaluation metrics are employed
to assess the performance of our proposed model: the Mean
Squared Error (MSE) for prediction accuracy, the Sharpe
Ratio for portfolio performance, the Mean Absolute Error
(MAE) for absolute prediction deviations, and the Annual
Return and Maximum Drawdown for overall financial per-
formance. These metrics provide a comprehensive analysis
of the predictive capability, risk-adjusted return, andfinancial
resilience of the model.

4.1 Mean squared error (MSE)

TheMean Squared Error (MSE) is used to measure the accu-
racy of the model’s predictions of the next day’s stock prices.
It evaluates how close the predicted values are to the actual
values, with a lower MSE indicating a more accurate model.
The MSE is calculated as follows:

MSE = 1

n

n∑

i=1

(yi − ŷi )
2 (56)

where yi is the actual stock price, ŷi is the predicted stock
price, and n represents the total number of data points.

4.2 Sharpe ratio

The Sharpe Ratio is utilized to evaluate the risk-adjusted
returnof theportfolio generated from themodel’s predictions.

Fig. 2 Visualisation of proposed
LSTM-GAT-AM model
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It compares the portfolio’s excess return to its volatility,
with a higher Sharpe Ratio indicating a more favorable risk-
adjusted return. The Sharpe Ratio is computed as follows:

Sharpe Ratio = E[Rp − R f ]
σp

(57)

where Rp is the portfolio return, R f is the risk-free rate, and
σp is the standard deviation of the portfolio’s excess return.

4.3 Mean absolute error (MAE)

TheMeanAbsolute Error (MAE)measures the averagemag-
nitudeof the errors in a set of predictions,without considering
their direction. It is less sensitive to outliers than the MSE
and provides a clearer measure of actual prediction errors.
The MAE is calculated as follows:

MAE = 1

n

n∑

i=1

|yi − ŷi | (58)

where yi and ŷi are defined as in the MSE section.

4.4 Annual return andmaximum drawdown

The Annual Return measures the percentage change in the
portfolio value over a year, reflecting the overall profitabil-
ity of the investment strategy. The Maximum Drawdown
assesses the largest single drop from peak to trough in the
portfolio during the investment period, providing insight into
the potential risk of losses. These metrics together offer
a complete picture of the financial performance and risk
resilience of the portfolio.

• Annual Return: Calculated based on the cumulative
returns at the end of the year compared to the initial port-
folio value.

• MaximumDrawdown:Defined as the maximum obser-
ved loss from a peak to a trough of the portfolio, before
a new peak is attained.

5 Experimental setup

5.1 Data source

The data for this study were obtained from Yahoo Finance,
comprising the largest 100 companies by market share in
the S&P 500. The sampling period spanned from January 1,
2020, to December 31, 2023 including the Open, High, Low,
Close, andVolume.Thenwegenerate the technical indicators
respectively as is shown in Fig. 3.

Fig. 3 Visualisation of the process of data pre-processing

To ensure data consistency, we specifically excluded com-
panies that underwent stock splits during the sample period.
Stock splits introduce abrupt, non-fundamental shifts in stock
prices, which could obscure the true patterns the model is
designed to detect. By omitting such companies, we min-
imize distortions and focus on capturing the underlying
relationships between company characteristics and stock
price movements. This approach enhances the model’s pre-
dictive accuracy and robustness.

5.2 Data pre-processing

5.2.1 Scaling

To ensure that all features contribute equally to the prediction
model and to improve the performance of the regression algo-
rithms, data scaling will be applied during the pre-processing
step.Wewill employ StandardScaler() to standardize the fea-
tures and stock prices by removing the mean and scaling to
unit variance. This transformation is expressed as:

zi = xi − μ

σ
(59)

where xi represents the original feature value, μ is the mean,
and σ is the standard deviation of the feature values. This
standardization ensures that the data has a mean of 0 and
a standard deviation of 1, aligning all features on the same
scale. This step is essential for models that are sensitive to
feature scales or assume normally distributed input data.

5.2.2 Train test split

To prevent the model from learning from future data, which
could lead to overfitting, the dataset is split into training,
validation, and test sets based on chronological order. The
training data spans from 2020-01-01 to 2023-04-01, the vali-
dation set covers the period from 2023-04-01 to 2023-08-01,
and the test set includes data from 2023-08-01 to 2023-12-31
as is shown in Fig. 4. It is important to note that the scaling
of features is performed using the statistics (mean and stan-
dard deviation) derived only from the training set to ensure
that no future information is leaked into the model during the
scaling process. This approach helps maintain the integrity
of the model evaluation.
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Fig. 4 The split interval of train, validation, and test set

5.3 Graph preparing

5.3.1 Graph with technical analysis

As is shown in Fig. 5 the first graph is a weighted and undi-
rected graph based on the Dynamic Time Warping (DTW)
distance between the companies. Companies with smaller
distances will have a higher weight on the edges that link
them.

5.3.2 Graph with fundamental analysis

As is shown in Fig. 6 the second graph is an undirected and
unweighted graph based on the industry sector the company
belongs to. Companies within the same industry sector will
be linked.

5.4 Software and hardware setup

The experiments in this study were conducted using the fol-
lowing software environment: PyTorch 2.4.0, TensorFlow
2.13.0, Keras 2.13.1, Pandas 2.0.3, and Numpy 1.24.3. The
hardware configuration consisted of an Apple Silicon pro-
cessor (ARM architecture) with 12 CPU cores (12 physical,
12 logical) and 32.0 GB of RAM, running on macOS (Dar-
win 23.6.0). GPU acceleration was leveraged using the MPS
Backend (Metal Performance Shaders), which was enabled
and available for PyTorch, with the MPS device specified as
mps.

Fig. 5 Visualization of the adjacency matrix using the Fruchterman-
Reingold algorithm. Each company is represented as a unique dot.
Companies are connected with edges where the weight is inversely
related to their DTW distance, with closer companies having heavier
connections. The size of each dot is scaled based on the number of
connections to enhance visual clarity

Fig. 6 Visualization of the adjacency matrix using the Fruchterman-
Reingold algorithm. Each company is represented as a unique dot.
Companies are connected within the same industry sector. The size
of each dot is scaled based on the number of connections to enhance
visual clarity

6 Experimental results and comparative
analysis

In this section, we present the results in a two-fold man-
ner. Initially, we evaluate our model’s ability to predict the
next day’s closing price, comparing its performance against
other models with single graph generated by DTW distance
or Industry sector using the Mean Squared Error (MSE) as
the evaluation metric.

Subsequently, utilizing the predicted closing prices, we
compute the daily return rate, ranking companies based on
this metric. A portfolio is then formulated by selecting the
top-performing companies. This portfolio is backtested with
actual market data to assess its practical viability.

The process involves recalculating the true average return
rate of the selected companies daily and adjusting the port-
folio composition accordingly. This iterative procedure is
replicated across each trading day to emulate the portfolio’s
temporal performance.

We conclude by analyzing and contrasting the final bal-
ance and Sharpe ratio achieved by our model against those
of other models during the testing period.

6.1 Results on prediction

In this section, we conduct a detailed comparison of our
proposed model against several baseline models including
ablation studies, employing identical experimental setups
and performancemetrics to ensure a fair and rigorous evalua-
tion. The results of this comparison are presented in Table 2.

The baseline BiLSTM-GAT model retains its original
structure, utilizing a single graph constructed from Dynamic
Time Warping (DTW) distance or the industry sector graph.
In contrast, the BiLSTM-GNN model replaces the Graph
Attention Network (GAT) framework with a more general
Graph Neural Network (GNN) architecture to highlight the
differences in performance attributable to the graphmodeling
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Table 2 Comparison of
proposed model and baseline
model in MSE/MAE for
prediction of next day’s close
price

Model MSE (Mean Squared
Error)

MAE (Mean Absolute
Error)

BiLSTM-GAT-AM (DTW & Sector graph) 0.00440 0.04680

BiLSTM-GAT (DTW graph) 0.00454 0.04730

BiLSTM-GAT (Sector graph) 0.00543 0.05408

BiLSTM-GNN (DTW graph) 0.01518 0.08032

BiLSTM-GNN (Sector graph) 0.00561 0.05484

Bold items are best score

approach. Notably, our proposed BiLSTM-GAT-AM model
introduces an enhanced architecture by incorporating two
distinct graphs, enabling it to capture more complex rela-
tional structures within the data.

By comparing these models side by side, we aim to illus-
trate the improvements brought about by the additional graph
in the BiLSTM-GAT-AM model, which allows for richer
feature extraction and, ultimately, superior predictive per-
formance.

6.2 Results on portfolio return

In this section, we compare the portfolio returns of the three
models with the performance of the S&P 500 index dur-
ing the testing period. The results, as illustrated in Fig. 7,
demonstrate that our proposed model achieves the high-
est final portfolio balance, outperforming both the baseline
models and the S&P 500 index. Furthermore, the proposed
model exhibits the largest Sharpe ratio, smaller drawdown,
and higher annual return rate as is shown in Table 3, indi-
cating a superior risk-adjusted return compared to the other
models. This highlights the model’s ability to generate con-
sistent returns while effectively managing risk throughout
the evaluation period.

7 Discussion of results and ablation studies

Our study highlights the critical relationship between predic-
tion accuracy and decision-making in stock market models.

Fig. 7 Comparison of the final balance of the proposed model and
baseline models on testing period

While prediction accuracy, as measured by Mean Squared
Error (MSE), is a key factor in evaluating a model’s perfor-
mance, it is not the sole indicator of its practical utility in
real-world trading. The ultimate goal in financial modeling
is not just to accurately predict stock prices but to make prof-
itable and risk-adjusted portfolio decisions. This is where
the strength of the proposed BiLSTM-GAT-AM model truly
stands out.

From the MSE results, we observe that the proposed
model slightly outperforms the BiLSTM-GAT model that
uses only the DTW graph. This shows that our dual-
graph approach, combining both technical and fundamental
insights, marginally improves predictive accuracy. However,
it is in the backtesting phase-where the model’s predictions
are translated into actionable decisions-that the true novelty
and superiority of our approach become apparent.

Backtesting results reveal that the proposed BiLSTM-
GAT-AM model consistently generates higher portfolio
returns compared to all baseline models, including those
using single-graph approaches. The final portfolio balance
achieved by the proposed model is the highest, as is the
Sharpe ratio, which indicates that the model is not only
generating higher returns but is also managing risk more
effectively. In contrast, the baseline models, particularly
those using only the sector graph, fail to capture the full com-
plexity of the stock market and deliver inferior performance
in both return and risk metrics.

The DTW-based graph, which captures technical rela-
tionships between stocks, yields better results than the
sector-based graph alone, but it still does not fully account
for the broader, fundamental relationships that can influ-
ence long-term portfolio performance. The combination of
the two graphs in the BiLSTM-GAT-AM model enables it
to capture both short-term price movements and long-term
industry-based relationships, leading to more informed port-
folio decisions. This dual-graph structure allows themodel to
generalize across different market conditions, thus providing
superior results at the end of the testing period, even when
the market is favorable for all models.

In addition, while predicting stock prices accurately is
important, the decision-making process that follows from
these predictions is crucial. Our model’s slight edge in
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Table 3 Comparison of proposed model and baseline model on Final balance, Sharp ratio, Max Draw-down, and Annual return

Model Final Balance Sharpe ratio maximum DD Annual RR

BiLSTM-GAT-AM (DTW & Sector graph) 176.56 0.5554 -3.79% 302.47%

BiLSTM-GAT (DTW graph) 166.63 0.5070 -5.10% 252.88%

BiLSTM-GAT (Sector graph) 145.89 0.4070 -4.51% 165.57%

BiLSTM-GNN (DTW graph) 157.90 0.4206 -5.59% 222.47%

BiLSTM-GNN (Sector graph) 147.43 0.4089 -4.29% 160.51%

S&P500 105.98 0.0777 -8.88% 14.50%

Bold items are best score

MSE over the BiLSTM-GAT with only the DTW graph
underscores its better predictive capacity. However, it is
the backtesting phase-where portfolio strategies based on
these predictions are evaluated-that demonstrates the full
potential of the BiLSTM-GAT-AM model. By consistently
outperforming baseline models in portfolio management, the
proposed model showcases its ability to translate predic-
tion into more effective decision-making, delivering superior
financial returns.

This underscores the importance of not only developing
models that predict stock movements accurately but also
focusing on their capacity to make profitable trading deci-
sions. The dual-graph structure of the BiLSTM-GAT-AM
model, supported by the attention mechanism that dynam-
ically weights relevant relationships, provides a powerful
framework for making these decisions, ultimately bridging
the gap between prediction and actionable outcomes in stock
market trading.

8 Conclusion and future work

8.1 Conclusion

In this study, the use of a dual-graph approach — incor-
porating both Dynamic Time Warping (DTW) and industry
sector-based graphs — has proven to be an effective strat-
egy in improving stock prediction and portfolio optimization.
Notably, the DTW-based graph, which captures technical
similarities by measuring the temporal alignment of stock
price movements, has delivered superior results compared
to the industry sector graph when considered individually.
This observation highlights the value of technical analysis
in detecting short-term correlations and subtle relation-
ships between stocks based purely on their historical price
behavior. The DTW graph’s ability to connect stocks with
highly similar price trends allows themodel to leveragemore
precise and targeted insights, leading to better predictive
accuracy and portfolio performance.

However, the industry sector graph, while not outperform-
ing the DTW graph in isolation, should not be viewed as
a detriment to the overall model performance. On the con-
trary, its contribution to the hybrid graph framework provides
significant complementary benefits. The sector graph estab-
lishes connections between companies within the same
industry, ensuring that every node (company) is linked to
at least some others. This is in contrast to the DTW graph,
where certain nodes may remain disconnected due to the
lack of strong price movement similarity. The inclusion of
the industry sector graph helps bridge these gaps by creat-
ing a more complete and interconnected structure, thereby
ensuring that no company is entirely isolated from the graph.

This hybridization has a positive impact on the overall
performance of the model. By combining both technical
and fundamental perspectives, the hybrid graph capitalizes
on the strengths of each approach. The DTW graph excels
at capturing nuanced and short-term relationships, while
the sector-based graph ensures that longer-term, industry-
level connections are accounted for. The result is a more
robust representation of the stock market’s structure, which
leads to improved predictions and portfolio outcomes. The
sector-based graph’s ability to link nodes that are otherwise
disconnected in the DTW graph enhances the information
flow across the network, allowing the model to make more
informed and comprehensive decisions.

Moreover, the combination of these two graphs allows the
Graph Attention Networks (GATs) to assign more contex-
tually aware attention weights. In scenarios where technical
similarities alone might not provide sufficient insight due
to sparse connections in the DTW graph, the sector graph
ensures that the model still has access to relevant infor-
mation through the industry-based relationships. This inte-
grated approach mitigates the risk of missing out on critical
inter-stock relationships and creates amore reliable decision-
making framework.

In summary, while the DTW graph has demonstrated bet-
ter standalone performance, the industry sector graph plays
a crucial role in enhancing the hybrid model. Its contribution
to creating a fully connected network, especially in cases
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where the DTW graph leaves certain nodes disconnected,
ensures that themodel can access both short-termpricemove-
ments and long-term industry insights. This complementary
relationship between the two graphs is key to the supe-
rior performance of the hybrid BiLSTM-GAT-AM model,
underscoring the importance of leveraging both technical and
fundamental analyses in stock market prediction and portfo-
lio optimization.

8.2 Future work

While this research has laid a strong foundation through
backtesting, future work should focus on conducting real-
world market tests to evaluate the model’s practical perfor-
mance in live trading environments. Market conditions are
often unpredictable, and backtesting results may not fully
capture the complexities encountered in real-time trading,
such as liquidity constraints, transaction costs, or market
impact. Tobridge this gap, it is crucial to deploy themodel in a
live trading setting and assess its performance over extended
periods and diverse market conditions.

Additionally, future studies could explore incorporat-
ing more diverse forms of data, such as news sentiment,
macroeconomic indicators, or even social media analytics,
to enhance the model’s understanding of external factors
that influence stock prices. Further improvements might
also involve testing different graph construction methods,
including more sophisticated inter-company relationships or
dynamic graphs that evolve based on real-time data. Expand-
ing the graph representation could uncover deeper insights
into stock behaviors and improve both the predictive accu-
racy and portfolio optimization strategy.

Finally, including more visual representations of these
relationships in the form of detailed graphs and heatmaps
could provide traders with more intuitive insights into how
individual stocks interact, aiding in more informed trading
decisions.
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