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Abstract: Complex and diverse multi-attribute flight data can provide data-driven oppor-
tunities for airport flight delay prediction. However, it is a challenge to effectively and
efficiently process multi-attribute flight data. This paper proposes a hybrid dynamic spatial-
temporal long short-term memory network (LSTM) with 3D-directional multi-attribute
features (3DF-DSCL) for departure flight delay prediction. The model is based on a 3D
convolutional neural network (3D-CNN), graph convolutional network (GCN) and long
short-term memory networks (LSTM) model. Firstly, the dataset divides the state and envi-
ronment of departure flight delay into three situations, including the dynamic operation
link, which integrates the trajectory system of aircraft movement in the terminal area, the
network congestion link caused by aircraft multi-area movement in the air and ground,
and other delay factors determined by the airport take-off and landing requirements. Multi-
attribute data are divided into time series, spatial-temporal network and dynamic moving
trajectory grid input variables. Among them, the spatial network and dynamic moving
trajectory grid data are the inputs of GCN and 3D CNN models, which aim to extract
spatial-temporal features. The time series input variables are fed into LSTM. These features
are then integrated and fed into LSTM for flight delay prediction, where the flight delay
of airport outbound flights is taken as the output variable. The case study shows that the
proposed method can significantly improve the accuracy of flight prediction delay. The
Mean Absolute Error (MAE) can reach 0.26, which is a 14.47% reduction compared with 2D
CNN+GCN+LSTM.

Keywords: dynamic system; multi-attribute data; deep learning; airport delay prediction

1. Introduction
Multi-determinants can cause airport delays [1]. The key to improving the precision of

airport delay prediction is to comprehensively take all factors into account [2]. Meanwhile,
the increasingly widespread applications of large-scale datasets and sensor technologies
have promoted a revolutionary information age for airport operation and management.
The applicability of large-scale data enables the airport operation control (AOC) system
to capture the potential features of complex dynamic systems from the perspective of big
aviation data, such as aircraft trajectory, meteorology and network systems. Diversity
of data provides more comprehensive and intelligent data support to accurately predict
airport flight delays. However, the dynamic system data also bring several significant
challenges to the modeling of flight delay prediction:

(1) Complexity and interdependence of data subjects: The AOC system includes the
subsystems of humans, equipment and weather conditions. These factors may affect the
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flight delay independently or cause a composite effect on the flight delay [1]. Because of the
complexity and interdependency between subsystems, the extracted flight delay data will
be affected by multi-factors, and some of them are difficult to be directly used in functional
models, such as stress response of human body and abrupt change of weather.

(2) Diversity of data attribute: In AOC system, the research object of airport flight
departure delay is the movement of aircraft, which leads to the increase in data dimensions,
including spatial dimension (i.e., the state and position of aircraft operation), time series
dimension (i.e., the process of aircraft operation, the corresponding weather, delay time,
flight crews, passenger and other related characteristics) and non-time series dimension (i.e.,
the equipment state and operators of aircraft, etc.). The increase in dimensions degrades
the accuracy and efficiency of the existing flight delay prediction models.

(3) Dependency of spatial-temporal dimensions: The dynamic movement of aircraft
means that the state of the system is continuous, and the states of time and position
are simultaneously correlated, thus there is a spatial-temporal dependency between the
delayed state and the past operating state of the aircraft.

In response to the challenges, this paper proposes 3D-directional multi-attribute
features (3DF-DSCL), a deep learning (DL) framework to predict the multi-attribute data-
driven flight delay. The main contributions of this study are as follows:

(1) A new DL method is proposed based on multi-attribute dynamic data (including
spatial dimension, temporal dimension and spatial-temporal dimension), which com-
prehensively considers various determinants of flight delay in airport operation system.
The proposed DL method can effectively extract complex and interdependent multi-
attribute data.

(2) Based on the features of graph convolutional network (GCN), long-term, short-term
memory (LSTM) and 3D- convolutional neural network (CNN), the multi-attribute datasets
are processed respectively by integrating the hybrid framework of 3DF-DSCL.

(3) By applying 3DF-DSCL model, the spatial-temporal relationship in each stage of
aircraft operation delay is obtained.

The remainder of this paper is structured as follows: Section 2 provides a comprehen-
sive review of the relevant literature. Section 3 formulates the multi-attribute data-based
prediction problem and delineates the proposed methodology and framework. Section 4
presents the validation of the proposed approach through case studies, along with the
determination of optimal training parameter values. Finally, Section 5 concludes the study
and outlines potential avenues for future research.

2. Related Work
Classification and regression are two mainstream modeling methods for flight delay

prediction. Regression methods include the automatic regression model, automatic regres-
sion moving average, automatic reverse integrated moving average (ARIMA) and Markov
model [2–4]. In the classification model [5], a large amount of research has applied machine
learning methods and achieved promising results [6]. For example, Khan et al. [7] used
regression models for three major commercial airports in New York to predict flight delays.
Highly skewed and scattered historical datasets make it difficult to accurately predict flight
delay [8]. Chakrabarty et al. [9] compared four supervised machine learning algorithms,
including random forest, support vector machine, gradient enhanced classifier and K algo-
rithm, which are applied in American Airlines arrival delay prediction. In addition, the
unbalanced distribution of the classes of delay [10], backpropagation (BP) neural network,
support vector machine (SVM) and decision tree [11] have also attracted attention in flight
delay prediction [12,13]. Gui et al. [14] used LSTM to forecast flight delays by collecting
automatic dependent surveillance-broadcast (ADS-B) data and meteorological information.
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The results showed that the LSTM model was an effective method for investigating time
dependence in sequence data. However, the correlation and complexity of multi-factors
may degrade the accuracy of these existing methods in flight delay prediction.

Mining and extracting multi-attribute, dynamic and high-dimensional data from large-
scale datasets requires advanced methods to guarantee excellent performance, reliability
and scalability. Deep learning (DL) is one of the most used methods for delay prediction.
Through the hierarchical learning approach, it can extract a variety of complex and abstract
data [15]. For example, recurrent neural network (RNN) [16] or its variants, LSTM [17,18],
was used in time series data, two-dimensional convolutional neural network (2D CNN) was
used to investigate spatial relations (images) [19], and spatial-temporal features selection
of three-dimensional convolutional neural network (3D-CNN) [20] was used to extract
dynamic and continuous movement of objects and spatial topological network relations
of graph convolutional networks (GCNs) [21]. These applications can effectively provide
state-of-the-art multi-attribute data processing methods for developing and integrating
new DL architectures.

Recently, researchers applied machine learning technology to flight delay predic-
tion [22,23]. Yu et al. [24] used a novel deep belief network method and support vector
regression method to identify the micro-influencing factors in flight delay so that aviation
authorities can explore the fundamental behavior and mechanism of flight delay. Mar-
garida et al. [25] combined a dynamic Bayesian network to simulate flight delay. Some
research combines the Autoregressive Integrated Moving Average (ARIMA) model [26],
Alarm model [27], SVM [24] and BP [28,29] in flight delay prediction. The hybrid machine
learning algorithm-based prediction model can achieve higher prediction accuracy than
the traditional methods with mathematical statistics, but most of these models cannot
deal with the complex spatial-temporal correlations among flights. Thus, the real-time
prediction for multi-stage aircraft dynamic trajectory networks requires further exploration.
Based on the convolution neural network, after RNN is introduced into the field of delay
prediction [29], convolution operation can be used to better capture the spatial-temporal
characteristics of aircraft taxiing [30], and deep-CNN was used to forecast flight delay
by integrating flight data and meteorological data [15]. Although CNN has good feature
learning ability, it can only be applied to Euclidean structure data. All non-Euclidean
structure data must be transformed into a fixed format before being fed into the CNN
model. In data transformation, some network topology data were disrupted or lost, so the
relevant model (GCN) considering adjacency matrix and network topology has come into
being [26,31]. However, GCN mostly uses shallow networks with one to four layers. When
constructing a deep-seated graph network, the model performance is not as good as using
a residual connection to construct a deep neural network (CNN) [32]. Therefore, high-order
spatial features cannot be effectively extracted.

In order to overcome the shortcomings of using a single deep learning model and
extract the spatial-temporal dependence of the network more effectively, various complex
deep learning frameworks have been developed based on RNN, CNN, GCN, deep neural
networks (DNNs) [33], graph temporal convolutional networks (TCNs) [34] and so on. For
example, CNN and LSTM were combined for prediction [35,36]. Ai et al. [37] predicted
the flight delay in the network structure by innovatively combining the summary layer
and LSTM layer into an end-to-end deep learning architecture, which can capture the
spatial and temporal features of delay variables at the same time. Yang et al. [38] proposed
a hybrid spatial longitudinal long-short-term memory network (SCLN-TTF) for airway
prediction index prediction. The model combined GCN and LSTM neural networks to
extract the congestion of each operation state of aircraft effectively. Some studies embedded
LSTM, Gaussian regression and other models under the framework of Auto encoder to
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predict short-term delay [39,40]. Deep learning framework has better model performance
than a single RNN, CNN and GCN model in most cases. However, some deep learning
framework models cannot effectively deal with complex multi-attribute datasets. Therefore,
it is necessary to consider the model complexity, model performance and application value
comprehensively.

Although the deep tilt model has made significant progress in flight delay prediction,
there are some key limitations in the existing deep learning architecture. First, multi-factors
of dynamic datasets affect airport flight delays. The datasets have synchronization in
spatial-temporal dimensions and have a 3D data structure. Secondly, in the airport, the
operating paths of multiple aircraft will establish a multi-stage path network. The delay
time series data on the whole network are mobile data with topological structure and delay
propagation. Traditional CNN and GCN models can only process Euclidean structured
data. Traditional LSTM and RNN structural models are inflexible, and most of them are
suitable for multi-step-ahead flight delay prediction [22], while others are suitable for
high-dimensional, temporarily ordered data with noise [1].

Based on the features of the above-mentioned DL methods, this paper proposes a
DL architecture that combines 3D-CNN, GCN and LSTM. The proposed model is called
3DF-DSCL, which can effectively deal with complex datasets in dynamic systems. Multi-
attribute datasets are the input variables, and these three methods are selected to extract
features respectively. This architecture can deal with multiple data subjects: (1) 3D-CNN
captures dynamic and continuous aircraft movement data features with spatial-temporal
dependence; (2) GCN mines dynamic topological relations in airport aircraft operation
network; (3) LSTM focuses on time series dimensions, which combines the weather and
other related factors and further integrates time relations to understand the underlying
effects of static factors.

3. Methodology
To predict departure delays for short-term flights, a hybrid dynamic spatial-temporal

convolution along short-term memory network with 3D-directional multi-attribute features
(3DF-DSCL) model is created. Figure 1 shows the architecture of the 3DF-DSCL approach.
The model takes the processed multi-attribute data as the input and the delay time as the
output. The architecture consists of four layers, including input, feature extraction, LSTM
and output.
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3.1. Input Data Processing

Previous studies have shown that there exist some connections between airport delays
in aircraft operation flow, operation time, congestion and queuing, unfavorable weather,
and other factors [41–43]. Among them, Roh et al. develop and assess winter climate
hazard models to evaluate their impact on traffic volume. The study highlights how
extreme weather conditions, such as snow, ice, and low temperatures, contribute to traffic
delays, affecting both ground transportation and potentially air travel [41]. Sridhar et al.
propose a short-term delay prediction model for the National Airspace System (NAS)
using a Weather Impacted Traffic Index. This model considers adverse weather conditions,
such as storms and turbulence, as key delay factors affecting air traffic operations [42].
Adacher et al. focus on solving air traffic congestion through rerouting algorithms. The
study identifies congestion-related delays as a major challenge and explores optimization
techniques to mitigate airspace bottlenecks and improve flight efficiency [43]. Based on
these delay determinants, add the moving trajectory of the aircraft and the topology of the
airport ground to better describe the aircraft operation state and taxi congestion variables.
In our selected variables, the spatial feature data values are spatial variation, time static or
relatively static data, including the spatial positions of the departure point, entry point and
apron, and the moving distance between runway and taxiing record point. Time feature
data are time-varying and spatial static data, including date, time, crew information and
weather conditions. Spatial-temporal feature data refers to data that has changed in both
time and space dimensions and has time-space dependence and correlation at the same
time. Spatial-temporal data includes aircraft operation status data and the aircraft queuing
congestion index within a fixed time interval.

3.1.1. Congestion Index Calculation

Congestion index (CI) refers to the degree of queuing and waiting of aircraft within
the scope of airport operation control. Usually, the degree of airport congestion is estimated
according to the ratio of the number of aircraft to the operating capacity in a fixed time
interval. In order to consider different congestion states, it is widely used to calculate CI by
combining the information on running flow, running distance and running time [44–47].
The airport CI is described as the cumulative running time divided by the running length in

each state. The congestion index is calculated as Cz =
N
∑

n=1

S
∑

s=1
tz,s,n/Ls of the airport during

the z period [38].
Li represents the actual length of the I section (km). S indicates the moving state of

the aircraft in the air and on the ground during the z period. tz,i,n represents the taxiing or
moving time of aircraft n in state i during z. N represents all aircraft operating during the
flight f. The unit of Cz is in minutes per kilometer (min/km).

3.1.2. Aircraft Operational Stages Extraction

The aircraft operation in an airport can be divided into five stages. The length of time
horizon between each stage may lead to the departure delays of the corresponding flight,
and even the continuity between stages may aggravate the delay. Figure 2 shows the five
stages of aircraft operation at the airport, which are closing the hatch stage, removing the
chocks stage, holding-point stage, exiting clearance stage and departure stage. In data
collection, the time point of each flight stage is recorded. All data processing results are
shown in Table 1.
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Table 1. Multi-attribution data processing.

Dimension Name Description

Temporal dataLa

Time Time in a day (yyyy/mm/dd hh:mm:ss).

Flight ID The ID of each flight (e.g., CA975).

Historic delay Historic delay time of each flight (min).

Weather
Dummy variable, general (or severe) unfavorable weather
(mist, light rain, shower, rain, thunderstorm and snowfall) = 1;
others = 0.

Special situation Dummy variable, Special situation (Political regulation,
holidays, winter and summer vacations) = 1; others = 0.

Aircrew ID Dummy variable, crew scheduled = 1; others = 0.

Aircraft ID The type of aircraft (e.g., b737).

Spatial data

Longitude Longitude of the sections and stages point.

LatLatitude Latitude of the sections and stages point.

Moving sections length Length for each moving sections (km), including taxiing,
runway and airway.

Congestion index Congestion index for each moving sections (min/km).

Spatial-temporal data
Scheduled flow Flow of each moving stages according to flight plan

(aircraft/km).

Aircraft operation status Historic aircraft operation status of flight flow for each
moving stages (aircraft/min).

3.2. Input Layer

The data from AOCC systems have many attributes, including static, dynamic, tempo-
ral, spatial and spatial-temporal data. These data are often difficult to process because of
complexity, independence, and interactions [4,11]. The input layer processes and extracts
the data into the standard data of each feature extraction layer.
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3.2.1. Spatial Data

The airport structure layout and the CI of each section are the data with spatial features.
The latitude and longitude coordinates of airport parking, taxiway, runway, and waterway
are taken as points, and the aircraft moving congestion state is considered as connecting
arcs; thus, the spatial characteristics can be effectively extracted, and the network topology
can be formed as the basis of neural network. As shown in Figure 3, there are 3 runways,
15 apron areas, 87 taxiways and 59 airplanes in the airport structure layout. In order to
construct the neural network input graph, the ground structure, runway distribution and
air channel structure graph of the airport is transformed into the network structure graph
as shown in the figure, and the topology graph is constructed according to the aircraft
congestion state.
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When constructing the delay prediction influencing factors, the CI data are the spatial
feature data of each road section, which describes the density of aircraft in the road section
within a fixed time interval. The connection features of arcs in the network are adopted
to reflect the dense situation. Therefore, when constructing CI features, the nodes in the
topology network are defined as the connection arcs in the original network, and the
connection lines between nodes are the direction of aircraft operation. Node 1 represents
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section information between apron PW1 and runway 36R. The edge between nodes 1 and
65 corresponds to the holding point for Runway 36R. In the final topology graph, nodes
1–93 are the congestion of the ground channel, and nodes 94–152 are the congestion of the
air channel.

Data definition is carried out based on the establishment of a network. Firstly, the
topology network matrix airport network G = (L, E) is constructed, where L is a set of air
channel nodes, L = {l1, l2, . . . , lM}, M is the number of nodes and E is aggregate of edges.
Adjacency matrix A corresponds to the concatenate between air channels, A ∈ RM×M. The
adjacency matrix only comprises the 0 and 1 elements. If there is no link between the two
roads, the element is 0, and 1 indicates that there is a link. Secondly, the characteristic
matrix XM×P is defined. The CI information of each road section is taken as the attribute
characteristics of network nodes, which is expressed as X ∈ RM×P. P is the number of
attribute characteristics of nodes (the length of historical time series), and Xt ∈ RM×Ci is
the CI, i is used to represent each channel. Finally, learning mapping function f is based on
network topology G and characteristic matrix X, and then the CI is calculated at the next
time T as shown in Equation (1):

[Xt+1, Xt+2, . . . , Xt+T ] = f (G; (Xt−n, . . . , Xt−1, Xt)), (1)

where n and T represent the length of historical time series and the length of time series to
be predicted, respectively.

3.2.2. Temporal Data

The flight delay influencing factors are transformed into a sequence form with time
features (TFs). The quantitative features of classified variables in the data are transformed
into digital features by one-hot coding, including crew information, airline information,
aircraft information, special situations and some weather information. Figure 4 is the
structure of TF, and the data are sorted and fed into the LSTM layer.
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Weather parameters are incorporated into the time series as binary (0–1) variables to
quantify their impact on airport departure delays. Based on the relevant literature [48,49],
the selection criteria for delay-inducing weather conditions are defined as follows:

If a severe thunderstorm is reported within a 50-m radius of the airport, the indicator
variable is assigned a value of 1; otherwise, it is set to 0.

If moderate to severe thunderstorms occur along the flight route, the indicator variable
is assigned a value of 1; otherwise, it is set to 0.

If the airport experiences heavy snowfall (24 h accumulation between 5.0 and 10 mm)
or a blizzard (24 h accumulation exceeding 10 mm), the indicator variable is assigned a
value of 1; otherwise, it is set to 0.

If the airport experiences intense precipitation (hourly rainfall exceeding 16 mm,
cumulative precipitation exceeding 30 mm over 12 h, or exceeding 50 mm over 24 h), the
indicator variable is assigned a value of 1; otherwise, it is set to 0.
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If strong winds occur at the airport (wind force exceeding Level 4), the indicator
variable is assigned a value of 1; otherwise, it is set to 0.

If fog or haze is present at the airport (relative humidity exceeding 80%), the indicator
variable is assigned a value of 1; otherwise, it is set to 0.

If the cloud ceiling at the airport falls below the minimum decision height for the
instrument landing system (10 meters), the indicator variable is assigned a value of 1;
otherwise, it is set to 0.

If a sandstorm occurs at the airport (visibility less than 1 km), the indicator variable is
assigned a value of 1; otherwise, it is set to 0.

3.2.3. Spatial-Temporal Data

The five stages of aircraft operation are firstly converted into a transportation grid.
The dynamic aircraft movement states are added to the running network as the inputs of
3D-CNN. To illustrate, the operation phases on the left side of Figure 5 are transformed into
a spatial-temporal image of the traffic network, where the horizontal axis represents the slip
time interval and the vertical axis represents the spatial positions of the five phases. Each
operating line represents the operating status of each aircraft. The right side of Figure 5
is the input layer of the constructed 3D-CNN with the stacked grid. The parameter l 1 is
the length of the input quantity, representing the operating stage of the aircraft. l 2 (width
of input volume) describes the number of the aircraft trajectories involved in operation
in each grid, and l 3 (height of input quantity) is the number of aircraft states in each
grid. The depth of the input cube is set to 1, which means the output is flight delay. The
square motion trajectory of the aircraft is superimposed into a cube and applied to the
input quantity to generate the output.
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3.3. Feature Extraction Layer
3.3.1. Spatial Features Extracted from GCN

The CI of road sections is spatially affected by the CI of adjacent road sections. In
a fixed time interval, the CI is relatively stable, but from the perspective of overall flight
operation range, the CI is affected by the congestion situation at the historical moments.
Therefore, the feature extraction of the CI in the target road sections should consider its time
and space characteristics. The traffic network based on the airport distribution structure
can well reflect the congested road data source. Based on the CI of the window-time traffic
topology network, the GCN neural network is used to extract the spatial features of the
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actual congestion of the target road section in each window time and the actual congestion
state of the target road section at the output window time is mapped accordingly. Given an
adjacency matrix and a characteristic matrix, the GCN model creates a filter in the Fourier
domain. The filter acts on the nodes in the graph, extracts the space features among nodes
through its first-order neighborhood, and then builds a GCN model by superimposing
multi-convolutional layers. It is described as follows [21]:

H(l+1) = σ
(

D̃− 1
2 ÃD̃− 1

2 H(l)θ(l)
)

(2)

Among them, Ã = A + IM is the matrix adding self-connection, IM is the M × M
identity matrix, D̃ is the degree matrix, Dii = ∑j Aij, and H(l) is the output of the layer
l, H(0) is Xt. θ(l) includes the parameters of the layer, and σ(·) represents the sigmoid
function of the nonlinear model.

3.3.2. Temporal-Spatial Features Extracted from 3D-CNN

A 3D convolution is carried out in the convolutional stage of CNN, and features are
calculated from spatial and spatial-temporal dimensions. The 3D convolution is realized by
convolving 3D kernels into a cube, which is formed by stacking a plurality of consecutive
frames together. With this configuration, the feature map in the convolutional layer is
connected to a plurality of adjacent frames in the upper layer so that the airport aircraft
slip information is obtained. Formally, the value of (x, y, z) on the feature map j of the layer
i is [47].

υ
xyz
ij = tanh

(
bij + ∑

m

Pi−1

∑
p=0

Qi−1

∑
q=0

Ri−1

∑
r=0

ω
pqr
ijm υ

(x+p)(y+q)(z+r)
(i−1)m

)
, (3)

where tanh is hyperbolic tangent function, bij is a deviation of the feature map, m indicates
the feature map set in the layer (i − 1) connected with the current feature map, and ω

pqr
ijm is

the value of (p, q, r) connected to the kernel of the m feature map in the previous layer. They
are the length, width and height of the nucleus, respectively. CNN parameters, such as
deviation bij and kernel weight ω

pqr
ijm , are usually learned using supervised or unsupervised

methods [50–52].

3.3.3. Temporal Features Extracted from LSTM

This work extracts time features by using the LSTM algorithm, such as delay time,
flight features, meteorological features and other time features [53]. For various modified
versions of LSTM, it has been proved that the prediction accuracy is usually equivalent
on condition that the LSTM includes forgetting gate and activation function [54]. In the
literature, the most commonly used LSTM framework is the modified LSTM network,
which achieves information retention and forgetting by setting more complex frameworks,
such as input gate, forget gate, unit gate and output gate [55]. The structure of LSTM
mainly includes the input layer, stack hidden layer and output layer. LSTM mainly uses
a gate mechanism for a series of operations. The three mechanism gates are the input
gate i, forgetting gate f and output gate o. The two basic units are cell state C̃ and hidden
unit h [55]. The input of neurons is the unit and meteorological information xt of time
t, the memory information of time t − 1 is called hidden state ht−1 and cell state Ct−1,
and the output is hidden state ht and cell state Ct of time t. The calculation equations are
the followings:

ft = σ
(

W f · [ht−1, xt] + b f

)
(4)

it = σ(Wi · [ht−1, xt] + bi) (5)

ct = tanh(Wc · [ht−1, xt] + bc) (6)
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Ct = ft ⊙ Ct−1 + it ⊙ ct (7)

ot = σ(Wo · [ht−1, xt] + bo) (8)

ht = ot ⊙ tanh(Ct) (9)

Equation (4) controls the degree of retention of historical information, which is com-
pleted by the Sigmoid function of the forgetting gate. Among them, W f and b f are the
weight matrix and paranoia of ft. Equation (5) controls the retention of the current input
information, which is determined by the Sigmoid function of the input gate. Among them,
Wi and bi are the weight matrix and paranoia of it. Equation (6) is to establish a new candi-
date vector ct using the Tanh function. Wc is Tanh’s weight matrix, and bc is the bias. The
weights of Ct−1 and ct are ft and it, respectively, and the two states are merged to update
the current state, which is expressed as Equations (7)–(9) output the latest information,
which is completed by the Sigmoid function of the output gate.

3.3.4. Fusion Technique

To integrate the input data from the three feature extraction layers, a fusion technique
was implemented, wherein the output vectors of the GCN, 3D CNN and LSTM layers were
concatenated side by side. If the output dimension of GCN is (N, G), the 3D CNN is (N, D),
and the LSTM layer is (N, L), then the merged vector will be (N, G+D+L). N is the amount
of training or testing data. The merged vector is then used as input and used as another
LSTM layer to complete the prediction.

3.4. Loss Function and Evaluation Methods

The L2 regularization method is used to prevent over-fitting caused by insufficient
samples. The loss function is calculated as follows:

Loss =
1
n∑n

i=1

(
y′ i − yi

)2
+ λ∑k w2

k , (10)

where yi and y′ i are the actual and the predicted value of the sample i, respectively; λ is the
ratio of regularization in total loss; and w is trainable weight for regression models. n is
the total prediction number. The MAE, RMSE and MAPE are calculated to evaluate the
performance, as shown in Equations (11)–(13).

MAE =
1
n∑n

i=1

∣∣y′ i − yi
∣∣ (11)

RMSE =

√
1
n∑n

i=1(y
′
i − yi)

2 (12)

MAPE =
1
n∑n

i=1

∣∣∣∣y′ i − yi

yi

∣∣∣∣ (13)

4. Case Analysis Results
4.1. Data Collection

In this study, the flight data were collected from Beijing Capital International Airport
(PEK) during 1 December 2017 to 30 November 2018, which can be classified as flight
datasets and meteorological datasets. These data consist of a set of 305,643 flights. Each
flight data point is recorded as: inbound and outbound date (UTC time), flight ID, aircraft
type, apron area, runway information, historical time of aircraft taxiing record point,
inbound and outbound point, inbound and outbound direction, and delay time. Airport
Meteorological Information collected meteorological conditions in 2018, including airport
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code, UTC time, average hourly temperature, wind direction, wind speed, precipitation,
thunderstorms, fog, snowfall, smog and other weather phenomena. The variables of these
weather phenomena in data processioning are set as dummy variables.

Figure 6 shows PEK airport delay information, which recorded the airport delay time
at different timeslots from December 2017 to November 2018. For example, catastrophic
delay period in the red area and typical strong delay propagation stage. The graph also
describes the randomness and volatility of delay values. In the vertical time scale, the peak
period of airport delays is concentrated from 10:00 to 17:00, and the delay peaked in June,
July and August. The flight delays present the phenomenon of short-term propagation
fluctuation and multi-frequency triggers. In the horizontal time scale, flight delays occur
regularly, and the data points in red with high values of delays are presented in the figure
with horizontal broken bars, which shows that airports often repeat delays every day in the
same time intervals.
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Figure 7 presents the weather conditions at the PEK airport. Gale is defined as an
average wind greater than or equal to 10 m/s; extreme gale is a gale with an average wind
greater than or equal to 17 m/s. The strong winds in PEK mainly occur in January–February,
April–May, September–October and December, and the extreme winds mainly occur in
April–May in spring or December–February in winter. The frequency is the highest from
afternoon to evening, the lowest from night to morning, and the peak occurs at 14:00–15:00.
The extreme gale of Capital Airport is mainly caused by the northwest gale after the cold
front with a wind direction of up to 330 degrees. The extreme gale at Capital Airport
can be divided into three categories: spring gale, summer gale and winter gale. Among
them, in spring, the surface water content is relatively small, the cold air passes quickly,
and the strong wind is often accompanied by dusty weather. Summer gale is a strong
convective weather associated with thunderstorms. In winter, the temperature is low, and
the surface water content is large. The strong winds are often accompanied by rain, snow
and freezing weather.
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Figure 8 shows the time distribution of aircraft operation during various stages of
airport flight delays. When there is a delay, the aircraft operates for a longer period of
time in stages 1 and 5, which are the closing, the hatch stage and the departure stage. The
average running time of these two stages is 10 min (with an operation time concentrated
ranging between 3 and 13 min) and 16 min (with an operation time ranging between 13
and 25 min), which easily leads to a large delay. The remaining three stages, including
the removing chocks stage, holding-point stage, and exiting clearance stage, operate for a
relatively short period of time, averaging 3–7 min.
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Based on the calculation formula of CI, the congestion index of each road section (edge)
is obtained, as shown in Figure 9. The higher the CI value, the higher the aircraft density
in the corresponding road section. The highest CI value is 11.74 min/km. The higher CI
values are mostly concentrated in the section from airport apron P1 to P6 to runway 18L/R
(moving routes ≤ 50). The taxiing distance of the relevant section is relatively short, but the
density of aircraft on the section is high, often exhibiting peak aggregation characteristics
throughout the day. The CI of the remaining sections (moving routes > 50) is lower, which
is characterized by longer taxiing distances or lower aircraft density on the sections. The CI
of the entire road section is concentrated between 1–3 min/km.
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4.2. Model Training and Testing

The convergence of the DL model largely depends on the selection of the optimizer.
A superior optimizer can result in faster convergence and lower errors [48]. The results
of the model using the Nadam [49] optimizer with five widely used optimizers, namely
Adam [49], Adamax [56], SGD [57], Adagrad [58] and Adadelta [58], were compared
in this study. Firstly, batch_size was set to 32. MSE as used as the loss function. The
Loss function using l2 regularization is shown in Equation (10). Epochs was set to 200.
TEST sums five different optimizers under different learning raftes (LR). Figure 10 shows
the lossy convergence rates using the SGD, Adagrad and Adadelta optimizers are rather
slow compared with the other three optimizers. For Adam, Adamax and Nadam, their
convergence speeds and training performance are similar. By comparing Nadam and Adam,
TEST’s performance at different learning rates was determined to decide on an appropriate
value. The figure shows that the performance of these two optimizers is similar under
different learning rates. Thus, the Nadam optimizer was used in the following experiments.
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4.3. Flight Delay Prediction Based on the 3DF-DSCL Method

In this case, epochs = 200 was specified, and the batch_size value was specified
according to the change of the loss function and the situation in the training process,
generally ensuring that it was less than 20% of the number of samples. In order to verify
the performance of the proposed 3DF-DSCL model, a set of commonly used methods were
also applied to test cases as a benchmark. Based on the literature and our data features,
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using selected benchmark models can effectively compare the performance. All benchmark
methods use the same input variables for training and test to ensure the comparability
of models. Table 2 summarizes MAE, MAPE and RMSE for each method. According to
the analysis, the proposed 3DF-DSCL method achieves the most stable and satisfactory
performance in terms of MAE, MAPE and RMSE among all the methods of GCN+LSTM,
2D CNN+LSTM, 3D CNN+LSTM, LSTM, ARIMA, GCN and CNN. The performance
of 2D CNN+GCN+LSTM, GCN+LSTM and 3D CNN+LSTM is far superior to the other
methods because they integrate LSTM and GCN (CNN) structures and consider spatial
and temporal features at the same time. In addition, 3DF-DSCL has more benefits than 2D
CNN+GCN+LSTM because it is more accurate in extracting dynamic data.

Table 2. The MAE, MAPE and RMSE of different methods.

Model MAE (min) RMSE (min) MAPE (*)

LSTM 0.430 0.728 0.297
ARIMA 0.681 0.927 0.265
CNN 0.581 0.860 0.584
GCN 0.584 0.847 0.568
GCN+LSTM 0.403 0.728 0.296
2D CNN+LSTM 0.418 0.598 0.332
3D CNN+LSTM 0.341 0.551 0.322
2D CNN+GCN+LSTM 0.304 0.454 0.163
3DF-DSCL 0.260 0.363 0.053

*: Between 0 and 1, it is represented as a decimal.

Finally, the robustness of the proposed model is verified from the perspective of data
scales and data dimensions by using different sizes and dimensions of datasets in flight
delay prediction. The size of datasets is distinguished by monthly, quarterly, semi-yearly,
and annual historical data, respectively. Figure 11 shows the prediction results between 3DF-
DSCL and 2D CNN+GCN+LSTM models under different data scales and data dimensions.
In the specified prediction scenarios, all the MAE values of the proposed method are less
than 0.6, which proves the model’s robustness to different data scales and dimensions.
Moreover, it can be observed that the prediction accuracy of large-scale datasets is relatively
higher than that of small-size datasets, which indicates that the proposed model is more
applicable in the scenarios of large-scale datasets. Overall, the proposed 3DF-DSCL has
the least MAPE, RMSE and MAE compared with the 2D CNN+GCN+LSTM model in all
test cases.
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datasets is relatively higher than that of small-size datasets, which indicates that the 
proposed model is more applicable in the scenarios of large-scale datasets. Overall, the 
proposed 3DF-DSCL has the least MAPE, RMSE and MAE compared with the 2D 
CNN+GCN+LSTM model in all test cases. 
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5. Conclusions
In this study, a deep learning network was developed to model the non-temporal,

temporal and extemporization features of complex airport systems. Specifically, in order
to solve the complex multi-attribute datasets caused by moving objects, the proposed
3DF-DSCL model merges three different model architectures with self-dominance neural
network features, named 3D CNN, GCN and LSTM. The 3D CNN layer is the input of
the stacked grid/volume, which aims to capture the continuous dynamic spatial-temporal
dependence. The LSTM layer, which processes temporal data as a sequence, is developed
to extract time dependence. The GCN, which imports topology network features, is used to
identify the influence factors of spatial-temporal correlation. The proposed model utilizes
three-dimensional convolution to extract features from spatial, temporal, and spatiotempo-
ral dimensions, enabling the capture of motion trajectory information embedded across
multiple adjacent frames. The model generates multiple channel representations, which
are subsequently integrated into a unified feature representation. To further enhance its
performance, feature regularization is applied, and the model’s recognition capabilities are
strengthened by incorporating multiple complementary models. The proposed approach
is deployed in a real-world airport environment to identify aircraft operational behaviors.
Its effectiveness is then systematically evaluated through a comparative analysis against
baseline methods to assess its advantages. In the case analysis, the model can effectively
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and accurately predict airport delays. The MAE reaches 0.26, which is at least a 14.47%
reduction as compared to 2D CNN+GCN+LSTM. Future research still needs to determine
the impact of multivariable delay. For example, the airport dynamic weather map data
obtained by weathe radar, wind profile radar and meteorological satellites are used as
data input for delay prediction. Secondly, this paper takes single airport data as a case
study. The multi-airport prediction model can also be used in further study of the model’s
robustness and applicability.
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