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Abstract: This article aims to review the industrial applications of AI-based intelligent
system algorithms in the manufacturing sector to find the latest methods used for sustain-
ability and optimisation. In contrast to previous review articles that broadly summarised
existing methods, this paper specifically emphasises the most recent techniques, providing
a systematic and structured evaluation of their practical applications within the sector. The
primary objective of this study is to review the applications of intelligent system algorithms,
including metaheuristics, evolutionary algorithms, and learning-based methods within
the manufacturing sector, particularly through the lens of optimisation of workflow in
the production lines, specifically Job Shop Scheduling Problems (JSSPs). It critically eval-
uates various algorithms for solving JSSPs, with a particular focus on Flexible Job Shop
Scheduling Problems (FJSPs), a more advanced form of JSSPs. The manufacturing process
consists of several intricate operations that must be meticulously planned and scheduled to
be executed effectively. In this regard, Production scheduling aims to find the best possible
schedule to maximise one or more performance parameters. An integral part of production
scheduling is JSSP in both traditional and smart manufacturing; however, this research
focuses on this concept in general, which pertains to industrial system scheduling and
concerns the aim of maximising operational efficiency by reducing production time and
costs. A common feature among research studies on optimisation is the lack of consistent
and more effective solution algorithms that minimise time and energy consumption, thus
accelerating optimisation with minimal resources.

Keywords: job shop scheduling problems (JSSPs); flexible job shop scheduling problems
(FJSPs); intelligent scheduling; optimisation; metaheuristics; learning-based methods

1. Introduction
Manufacturing is seen as the source of all products used for production purposes

and is entirely dependent on contemporary technologies [1,2]. Manufacturing is critical
since it contributes significantly to the global economy [3,4]. It is strategically necessary to
shift the current manufacturing paradigm to one that emphasises sustainability and energy
reduction [1,5–8]. To achieve sustainability, manufacturers are rethinking and changing
their manufacturing processes. Given that natural resources are finite and cannot meet
future generations’ demands, manufacturing sustainability is a crucial concern [1,4–6,9].

An essential element of any manufacturing setup is scheduling, which directly affects
the system’s efficiency, productivity, and cost-effectiveness [10,11]. Scheduling allocates,
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manages, and optimises task execution. Scheduling is a crucial technique to assign machin-
ery and equipment effectively and optimise production processes by focusing on time and
energy reduction. In manufacturing, scheduling provides the objective of simultaneously
optimising production time and cost; it is a strategic process that seeks to minimise the
makespan [10,11]. Production scheduling has several types of machine environments, such
as Single-Machines (SM) and Multi-Machines (MM), parallel machines, flow shops, and
flexible job shops. These types depend on the jobs’ technological needs and the type of facil-
ities available [12,13]. Studies on JSSP used to be primarily oriented on a single target, such
as completion time, but modern scheduling considers multiple objectives [14]. For instance,
there may be a focus on JSSP’s energy and environmental aspects and makespan [15], or
more academic inquiries, such as applying improved optimisation algorithms [16].

Although traditional scheduling methods have contributed significantly to this do-
main, they often need to handle complex and dynamic environments encountered in
contemporary industrial settings [1,10,11,17–19]. Artificial Intelligence (AI) has brought
about substantial changes to the domain of JSSPs, which has historically faced challenges
related to efficiency in the manufacturing and service sectors. AI offers a cutting-edge
answer to these difficulties by its capacity to effectively process extensive datasets and
intricate algorithms. This improves operational effectiveness and enables the implemen-
tation of flexible and responsive scheduling approaches, essential in settings marked by
unpredictability and swift fluctuations in demand [20].

In this paper, the term Artificial Intelligence (AI) is broadly used to encompass intelli-
gent scheduling systems, including metaheuristic optimisation, learning-based algorithms,
and reinforcement learning models. These are collectively referred to as AI-based ap-
proaches throughout the study [18,20–22]. The application of AI in the domain of JSSPs
is readily apparent through the advancement of intricate models and algorithms. These
models and algorithms can acquire knowledge from data, identify trends, and enhance
scheduling decisions in real time. These innovations improve operational efficiency, en-
hance resource utilisation, and decrease lead times. Industries’ increasing automation and
intelligence have significantly impacted JSSPs [20]. Despite numerous research on JSSPs,
there is still a need to find an improved and advanced model to optimise JSSPs. As a result,
emphasis is now being placed on more capable and modern technology. Various scheduling
methods have been applied to solve JSSPs, and there are encouraging indicators of the
current spike in interest in Metaheuristic (MH) algorithms. These high-level algorithmic
frameworks give developers a set of rules or approaches to follow. They are a desirable
solution for scheduling problems due to their proficiency in navigating challenging search
spaces [18,21,23].

The main contribution of this paper lies in its structured and comparative review of
AI-based intelligent scheduling methods specifically applied to job shop and flexible job
shop scheduling problems. Unlike prior surveys focusing on algorithm classes in isolation,
this review synthesises methods across metaheuristics, evolutionary computation, and
reinforcement learning, offering insight into their adaptability, performance, and practical
relevance. This paper also identifies trends in hybridisation and highlights underexplored
integration paths between AI and traditional scheduling models. This synthesis supports
researchers and practitioners in selecting or designing appropriate scheduling strategies
for modern, dynamic manufacturing systems.

Methodology of the Systematic Review

This paper adopts a systematic review approach to evaluate the application of AI-
based intelligent scheduling techniques for solving Job Shop Scheduling Problems (JSSPs),
focusing on Flexible Job Shop Scheduling Problems (FJSPs). The review process included
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peer-reviewed articles published between 2000 and 2024 retrieved from scientific databases
such as Scopus, IEEE Xplore, Web of Science, and Google Scholar.

The search strategy used combinations of keywords, including “job shop scheduling”,
“FJSP”, “metaheuristics”, “artificial intelligence in manufacturing”, “intelligent scheduling”,
“reinforcement learning”, and “evolutionary optimisation”.

Studies were included if they (i) focused on JSSPs or FJSPs in manufacturing contexts,
(ii) utilised AI-based or intelligent optimisation algorithms, and (iii) reported on perfor-
mance, applications, or comparative results. Papers were excluded if they lacked a practical
scheduling focus or did not apply intelligent or AI-based techniques.

After an initial screening of titles and abstracts, relevant full-text articles were reviewed
in detail. The selected literature was then synthesised based on their algorithmic category
(e.g., evolutionary, swarm-based, learning-based), scheduling objectives (e.g., makespan,
energy consumption), and industrial application. This systematic analysis informed the
taxonomy and comparative insights developed throughout this review.

It explores the strengths and weaknesses of these methods, aiming to identify potential
improvements. While all approaches demonstrate accuracy, there is always room for
enhancement, which remains challenging. Metaheuristic models are promising in this field;
however, integrating them with advanced machine learning and deep learning techniques
could further enhance their effectiveness. The structure of this article is as follows: Section 2
reviews definitions of JSSPs and establishes the description that will be used for this
study. Section 3 discusses the different types of job shops and justifies the rationale for
selecting those appropriate for this project. Section 4 reviews optimisation algorithms
and scheduling methods pertinent to this research. Section 5 examines scheduling using
learning-based methods and Reinforcement Learning (RL). Section 6 discusses the existing
research gap and analyses different scheduling methods, and finally, Section 7 summarises
the review paper.

2. Job Shop Scheduling Problems
Job shop scheduling problems involve scheduling operations across multiple machines

or workstations [24]. The standard JSSP can be characterised as a collection of jobs to be
carried out on various machines, whereby each job consists of many processes carried out
in a predetermined order and on particular machines [25,26]. JSSPs are categorised as non-
deterministic polynomial-time hardness (NP-hard problems), which is the most complex
problem class according to the computational complexity theory. These are challenging to
solve and usually pertain to sophisticated optimisation problems [27–29].

3. Job Shop Types
Manufacturing systems encompass several job shop configurations, which are re-

viewed in the following sections.

3.1. Single-Machine Job Shop Scheduling

Single-machine (SM) job shop scheduling is the simplest form of JSSP, in which one
workstation is used to complete all jobs, each of which consists of a sequence of operations
with a specific duration. SM job shop scheduling aims to minimise total completion time
(i.e., the time taken to complete all jobs) [30].

SM scheduling and its learning effects have been the subject of numerous studies. For
instance, Wang et al. [31] analysed an SM scheduling problem with the time-dependent
learning effect to minimise the weighted sum of completion times, the maximum lateness. A
job’s computation time is a function of the total average processing time of all the other jobs
scheduled upfront in the job. In addition, Lee et al. [32] studied SM problems, including the
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learning effect and released time, to reduce the makespan. A branch-and-bound algorithm
was also created to find the best answer [33,34].

SM job shop scheduling can be solved using various algorithms, including the Short-
est Processing Time (SPT) and the Earliest Due Date (EDD) algorithms. As their names
imply, the SPT and EDD algorithms prioritise jobs with the fastest processing time and
earliest due date, respectively [30,35]. One of the main advantages of SM job shop schedul-
ing is its simplicity, which requires less computational power and can be solved using
basic algorithms.

Challenges: This characteristic makes it an attractive option for small-scale manufac-
turing industries with limited resources. However, it is hampered by its fundamental
inefficiency, including long waiting times, resulting in low productivity and increased pro-
duction costs. Furthermore, it is unsuitable for large-scale manufacturing industries requir-
ing high-volume production. Therefore, SM scheduling is commonly used in small-scale
manufacturing industries such as job and repair shops and maintenance workshops [30]. In
contrast to SM, Multi Machines (MM) job shops have several workstations to be executed,
which will be discussed later in the following sections

3.2. Parallel Job Shop Scheduling

Parallel job shop scheduling is used when multiple machines or workstations work to
complete jobs simultaneously. In this type of scheduling, each job consists of a sequence of
operations performed simultaneously on different machines or workstations. Parallel job
shop scheduling aims to minimise total completion time (i.e., the time taken to complete all
jobs). It can be solved using various algorithms, such as the branch-and-bound algorithm,
the Genetic Algorithm (GA), and the Simulated Annealing algorithm (SA). The branch-
and-bound algorithm systematically explores all possible solutions to find the optimal
solution. GA is based on natural selection and evolution and is used to find near-optimal
answers [30,36].

One of the main advantages of parallel job shop scheduling is its efficiency, as jobs are
performed on different machines simultaneously [30]. It can significantly reduce waiting
times, increase productivity, and lower production costs. Furthermore, it suits large-scale
manufacturing industries requiring high-volume production.

Challenges: However, its disadvantage is its complexity. It requires significant compu-
tational power, and large-scale problems can be challenging. Furthermore, using multiple
machines and workstations can increase the risk of machine breakdowns, leading to pro-
duction delays [30,36].

3.3. Flexible Job Shop Scheduling Problem

In a practical model of JSSPs, a machine may perform more than one type of opera-
tion, and every procedure may then be performed on various machines, giving it greater
flexibility than a standard JSSP; this problem is referred to as FJSP [25,26,37]. (FJSP) is an
extension of the traditional JSSP, which reduces constraints on machine selection by allow-
ing each operation to be processed on many machines within its alternative machine set.
Due to the addition of new choice content to the sequencing and the fact that it comprises
more problems than JSSP, FJSPs are more difficult combinatorial optimisation problems.
In FJSPs, the objective is to solve two subproblems: operation sequencing and machine
assignment. The goal of the FJSP is to obtain an allocation for each operation and define
the order of operations on each machine to reduce the maximum processing workload time
(makespan) [28,37–40].

FJSPs, which are specific kinds of JSSPs, may be formulated as described below:

• In FJSP, there is a set of independent jobs J = J1, J2, . . ., Jn.
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• Each job Ji is formed by a sequence O1, O2, . . ., Oni of operations to be processed one
after the other.

• There is a set U = M1, M2, . . ., Mm of machines as well.
• Each operation Oij is executed among a subset Uij ⊂ U of compatible machines.
• Each operation has to be executed to complete the job.

Each operation j of job i (Oij) needs one machine from a set of given machines, Mij.
In general, the following assumptions are considered in FJSSP:

1. Machines are available at time t = 0.
2. Jobs are available at time t = 0.
3. Each operation can be executed only by one machine at a time.
4. There are no precedence constraints in executing different jobs, and jobs are indepen-

dent of each other.
5. Pre-emption of operations is not allowed; an action, once begun, cannot be interrupted.
6. Transportation time of jobs between available machines and the time required to

set up the machine for processing the operations are included in the processing
time [28,37,41,42].

Many optimisation techniques have been devised to address FJSPs. Table 1 presents
the chronological application of optimisation methods to FJSPs, listing each algorithm, year
of publication, and primary scheduling approach. As shown in Table 1, numerous optimi-
sation techniques have been applied to FJSPs over the past two decades. These range from
early hybrid PSO methods to recent reinforcement learning and hyper-heuristic strategies.

Table 1. Application of different optimisation methods on FJSPs.

Reference Year Method

[43] 2009 Hybrid approach combining PSO and TS

[44] 2010
Knowledge-based ant colony optimisation
(ACO)

[45] 2011 GA

[46] 2017 Multi-agent-based Particle swarm optimisation (PSO)
and a two-stage PSO

[47] 2017 Hybrid ABC based on Tabu Search (TS)
[48] 2018 Multi-objective evolutionary algorithm
[49] 2019
[50] 2019 Novel Metaheuristic (MH) method
[51] 2020 Effective search algorithm
[52] 2020 RL (RL)
[37] 2020 Self-learning genetic algorithm (GA)
[53] 2021 Advanced GA
[54] 2021 Hybrid GA and TS
[55] 2022 Novel approach for FJSPs
[56] 2022 Improved GA
[7] 2022 A hybrid iterated greedy algorithm

[19] 2022 Hybrid scheduling measures

[57] 2024 stochastic machine breakdowns by an improved tuna
swarm optimiser

[58] 2024 An improved genetic programming hyperheuristic
[59] 2024 An improved GA with an overlapping strategy
[60] 2024 Whale optimisation algorithm
[61] 2024 A new artificial bee colony algorithm
[62] 2024 A novel col-laboratory agent RL framework
[63] 2024 A discrete event simulator to implement deep re-RL
[64] 2024 Multi-resource constrained
[65] 2024 Evolutionary algorithm incorporating RL
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3.4. Flow Shop Scheduling

Flow shop scheduling is a particular example of job shop scheduling in which every
operation must be done in a specific order. In specific flow shop scheduling, no machine
can carry out more than one task at once, and an execution time is given for each job’s
operation. There has been much research into the flow shop scheduling problem. For
example, Lin et al. [66] solved the flow shop scheduling problem for changeable processing
parameters and low carbon emissions, thoroughly examining the effects of machines and
scheduling levels on production throughput and the environment. Wu et al. [67] developed
a mathematical model of multi-objective optimal scheduling using renewable energy and
processing time as constraints. Lu et al. [68] investigated the energy consumption of the
flow shop scheduling problem with the sequence-dependent setup, and controlled transit
time was investigated. Figure 1 depicts some fundamental categories of job shop scheduling
methods reviewed in this study.
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JSSP, the primary production and manufacturing system’s topic, has been discussed in
the previous sections. Based on the above review of job shop types, this article focuses on
FJSPs due to their flexibility in the scheduling process. Due to the features of FJSPs and
their importance in production scheduling and manufacturing, much research has been
done in this field [69]; however, there is still a need to improve and find advanced models.

Challenges: The review of prior research indicates that the central emphasis on improv-
ing JSSPs and introducing novel models mainly focuses on verifying and evaluating the
performance of optimisation algorithms. The following sections review the application of
various intelligent methods in solving FJSPs

4. Optimisation Algorithms and Scheduling Methods
In relation to the JSSPs, four distinct activities can be undertaken to address an opti-

misation problem effectively. The first step is identifying the problem’s parameters. The
optimisation problem can be categorised as continuous or discrete based on these parame-
ters. The second step involves distinguishing between a constrained and an unconstrained
optimisation problem by deciding what limitations should be placed on the parameters.
Thirdly, the problem’s goals must be carefully examined and incorporated. Optimisation
problems may be classified as single-objective problems (having one objective) or multi-
objective problems (having multiple objectives). Lastly, a compatible optimiser should be
selected to solve the problem depending on the parameters, constraints, and number of
objectives [21,70,71].

Many optimisation challenges are inherently complicated, and traditional mathemat-
ical optimisation techniques cannot quickly identify optimal solutions. Current studies
demonstrate a growing demand for optimisation techniques that are more accurate and
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efficient in terms of associated time and financial costs. Metaheuristics (MH) is one of
these optimisation techniques [21,72]. Different scheduling methods are used to optimise
JSSPs. Figure 2 [73,74] indicates popular scheduling methods (i.e., MH, heuristic, simula-
tion, and mathematical programming). Each category includes models using discrete and
continuous problems; this paper focuses on FJSPs and constant problems. This section will
discuss various scheduling methods based on MH algorithms, which are the most popular
techniques for scheduling problems.
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4.1. Metaheuristics and AI Techniques for Optimisation

Glover [75] proposed the term “metaheuristic” in the 1980s, derived from “meta”
(indicating something superseding the usual or natural bounds) and “heuristics” (“to
discover”), referring to the methodology of solving problems within systems. MH op-
timisation seeks to identify the best solutions to defined problems while avoiding local
optima. MHs are optimisation solution techniques incorporating higher-level strategies
within search procedures [75–77].

Challenges: Metaheuristic methods (MH) have gained prominence in optimisation
due to their ability to find near-optimal solutions while avoiding local optima. However,
several challenges remain in applying MH techniques effectively. One significant challenge
is the difficulty in selecting the most suitable metaheuristic for a given problem, as various
algorithms may perform differently depending on the problem’s complexity and structure.
Moreover, the computational cost and time required to run these methods, especially for
large-scale problems, can limit their practical implementation [75–77].

The history of MH usage is categorised into five main periods [72,75]. MH approaches
were not formally introduced during the first period, prior to the 1940s, and only straightfor-
ward optimisation problems were resolved using these techniques. MH was first formally
used during the second period, from 1940 to 1980. Many MHs were used for various
applications during the third phase (1980 to 2000). This approach was effectively intro-
duced in the fourth period, which spans from 2000 to the present. In the fifth phase, the
scientific period, the creation of new MHs will become an increasingly specialised scientific
endeavour [72,75]. MHs fall into four primary categories: The first group is Evolutionary
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Algorithms (EAs), which include GAs [78], memetic algorithms, Differential Evolution
(DE) [79], and evolution methods [80], all of which are based on biological evolution [72,81].
Darwinian principles (i.e., natural selection) to solve scientific problems first emerged in
the 1940s, before computers were developed [72].

The cooperative behaviour of decentralised and self-organised natural or artificial
systems provides the basis for the second category of swarm intelligence-based algorithms,
including ACO [82], PSO [83], ABC [84], and Cuckoo Search (CS) [85].

The following section reviews and discusses the application of the most popular MH
algorithms in scheduling problems.

4.2. Evolutionary Algorithms

Evolutionary Algorithm (EA) is a fundamental population-based optimisation algo-
rithm and a subset of the MH evolution account. EA uses biologically inspired mechanisms,
including selection, recombination, mutation, and reproduction. The fitness function es-
tablishes the quality of the candidate solutions, which act as members of a population
in the improvement issue. Population growth occurs after the relevant operators are
applied repeatedly.

Challenges: Computational complexity is a prohibited element in most real-world EA
applications. The evaluation of the fitness function causes this computational complexity;
simple EAs can frequently handle complicated issues. Application areas for EAs include
planning, design, and simulation. Different types of EAs, including GA and DE, are
discussed in the subsections [21,86].

4.3. Genetic Algorithm

Among EAs, GA is a popular optimiser scheduling system. John Holland created the
first GA in 1975 [80,87]. It is a well-known optimisation technique that uses the theories of
evolution and natural selection to address challenging optimisation problems [88]. It begins
with a random initial population in which each member is referred to as a chromosome
(potential solution). Evaluating an individual’s performance using an objective function
initiates the algorithm’s primary iterative cycle. Higher fitness values are given a higher
likelihood of selection for creating a new generation (offspring) than lower fitness values
since they represent better solutions. The most promising individuals are likelier to be
chosen for reproduction, while individuals with low fitness scores are commensurately
eliminated. As a result, the performance of the new generation of individuals is expected
to improve. The selected individuals are then recombined to create offspring by sharing
information. After reproduction, mutation further messes with the progeny [89]. A new
generation will subsequently emerge based on the fitness of these new offspring. This
selection, reproduction, mutation, and evaluation cycle continues until the optimisation
requirement is met.

GAs have been widely employed to address challenging JSSPs [80]. GAs encourage
solution space exploration through crossover and mutation operators [80]. Furthermore,
GAs can become trapped in local optimums and are susceptible to premature convergence.
They also need the parameters for population size, mutation rate, and crossover rate to
be carefully tuned. The size and complexity of the task can significantly lengthen the
computing time [90]. The following are some salient features of GA:

1. Optimisation: Natural selection and genetics are the foundations of GAs, making
them effective at finding the best solutions in vast and complex problem spaces, such
as those seen in scheduling difficulties [89].

2. Adaptability: GAs are suitable for flexible scheduling problems where conditions can
change over time because they can handle changes in the problem environment [89].
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Selection is the core part of the GA process, and there are different types of selections,
such as elitism, fittest, sexual, tournament, and roulette wheel selection. Table 2 sum-
marises key literature published from 1996 to 2023 concerning different GA selection
types applied in optimising FJSPs, which is the principal aim of this research. This
review demonstrates the potential of GAs to address FJSPs by employing a range of se-
lection types, as displayed in Table 2. Table 2 provides a detailed overview of Genetic
Algorithm (GA) selection strategies applied to Flexible Job Shop Scheduling Problems
(FJSPs) across various studies. Since GAs are population-based metaheuristic algo-
rithms, the choice of selection mechanism, such as elitism, tournament selection, or
roulette wheel, significantly influences the performance and convergence speed of
the algorithm.

Table 2. Application of different types of selections of GA on FJSPs.

Reference Year Algorithm Selection Types

[91] 1996 GA Ageing
[92] 2001 GA Fittest
[93] 2003 GA Fittest
[94] 2003 GA Sexual selection
[95] 2006 GA Elitism
[96] 2005 GA Elitism
[97] 2008 GA Tournament
[98] 2008 GA + TS Tournament selection
[99] 2009 GA Linear ranking

[100] 2010 GA Random
[101] 2010 PSO + GA Hybrid
[102] 2010 GA + TS Hybrid
[103] 2010 Parthenogenetic Roulette wheel
[104] 2011 GA Tournament selection
[105] 2011 GA + SA Roulette wheel

[106] 2011 GA + ACO Linear scaling, stochastic
universal sampling

[107] 2012 GA Elitism
[108] 2012 GA + PSO Roulette wheel
[109] 2014 GA Tournament selection
[110] 2014 GA Roulette wheel
[111] 2015 GA Roulette wheel
[112] 2015 GA Roulette wheel
[113] 2015 GA + TS Tournament selection
[114] 2015 Improved parthenogenetic Greedy selection

[115] 2016 Neighbourhood GA + TS Fitness neighbourhood selection
operator

[116] 2016 A Heuristics-based
parthenogenetic Roulette wheel selection

[117] 2017 GA Tournament selection
[118] 2017 A hybrid GA Elitism
[119] 2018 Parthenogenetic Parthenogenetic

[120] 2018
List-scheduling-based

multiobjective parthenogenetic
(LS-MPGA)

Pareto-Ranking and Selection

[121] 2019 GA Tournament selection
[122] 2019 RCGA Roulette wheel
[123] 2020 GA Tournament selection
[124] 2020 Parthenogenetic algorithm Parthenogenetic

[125] 2022 Hybrid immune GA with
TS

Tournament, Roulette-wheel,
linear-rank

[123] 2020 IGA
Maximum priority selection

method for remaining processing
time
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Table 2. Cont.

Reference Year Algorithm Selection Types

[126] 2021 Learning interactive GA Edge selection encoding

[127] 2021 Adaptive GA based on
individual similarity Binary tournament

[128] 2021 Parthenogenetic Parthenogenetic
[129] 2022 GIFA Ranking based on Fitness
[130] 2022 Taguchi method GA and Parthenogenetic

[56] 2022 MILP and IGA

Two-vector encoding scheme to
represent the configuration

selection and operation
sequencing

[131] 2022 Elite GA Binary tournament selection and
the elitism method

[132] 2023 HGA A hybrid selection of tournament
selection and elite selection

[133] 2023 Improved GA with a population
diversity check method

Elitist selection and the binary
tournament selection

[134] 2023 MGA multi-start GA Based on random
parthenogenetic algorithm

[58] 2024 An improved genetic
programming Hyper-heuristic

[59] 2024 An improved GA An overlapping strategy

This table highlights the diversity of approaches researchers have used to fine-tune GA
performance for FJSPs. It also illustrates how GA research has evolved from basic selection
strategies to more adaptive, hybrid, and problem-specific methods in recent years. By
summarising this historical progression, the table demonstrates the critical role of selection
strategy in determining the effectiveness of GA-based scheduling, especially in complex,
multi-objective optimisation settings like FJSPs.

4.4. Particle Swarm Optimisation

Particle Swarm Optimisation (PSO) is a well-known swarm intelligence model created
by Eberhart and Kennedy [83], based on the social behaviour of swarming birds and fish.
Swarm intelligence models refer to computational algorithms that take inspiration from the
collective behaviour observed in natural systems, such as the coordinated movements of
bird flocks or the organised activities of ant colonies. These models employ basic principles
for individual agents to engage with their surroundings and one another, resulting in the
formation of intricate, intelligent global patterns that are advantageous for addressing
optimisation challenges. In PSO, the agent known as particles represents the candidate
solution to the optimisation problem. Position and velocity describe particles that are free
to move about the search space.

In the startup phase of PSO, each particle is given a randomly chosen initial position
and velocity. The following iteration will change the particle’s position depending on its
rate [83]. By comparing the particle’s present fitness to both its past best placements and
its neighbour’s best solution, the PSO technique determines the particle’s new position.
To solve JSSPs, PSO is frequently taken into consideration by researchers in hybridisation
with other MH algorithms, including TS [135], ACO [136], harmony search (HE) [137], and
CS [138].

Unlike GA, PSO lacks a systematic calculation approach and evolutionary operators
like crossover, selection, and mutation. Consequently, PSO models are more straightfor-
ward to build and have fewer parameters to alter [73]. Fontes et al. [139] proposed a hybrid
PS and SA algorithm for the JSSPs. PSO, which has unique advantages for resolving issues
with FJSP, has a quick search speed and a limited number of parameters [140]. Furthermore,
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in another study by [40], the scheduling of embedded real-time production systems was
categorised as an FJSP, and a distributed PSO approach was proposed as a solution. In this
work, the elements affecting speed, position, and learning remained the same. Notably, the
PSO algorithm’s ability to balance local search with global exploration largely depends on
the control settings that the algorithm uses [141].

4.5. Differential Evolution

Differential Evolution (DE) is a global optimisation algorithm developed by Storn and
Price [78]. It can be considered an EA, which solves optimisation problems by evolving
a population of candidate solutions using biology-inspired crossover, mutation, and se-
lection operations [78]. The DE approach provides better results for multi-dimensional
optimisation problems, including neural network learning, than other EAs, such as GA. In
addition, DE methods have been suggested to solve Holland’s primary problem of poor
local search performance [80].

4.6. Simulated Annealing

Simulated Annealing (SA) is a local and random search MH algorithm [85]. This
algorithm mimics the annealing process in metallurgy. During an annealing process, a metal
is heated to a specified temperature and then cools and freezes at a determined cooling rate
into a crystalline state with minimum energy to avoid defects. The optimisation procedures
of SA always start by generating an initial solution space, after which a proper initial value
of the annealing parameter is set. In each iteration step, the algorithm determines whether
the neighbouring solution is better or worse than the current solution. The adjacent solution
will be accepted if it improves the cost function value, and only specific worse points will
be taken based on an acceptance function. After that, the temperature decreases slowly,
and the probability of accepting a worse solution is the same. Lastly, the iteration ends
while a stopping criterion is met.

A significant advantage of SA is that it is highly flexible and robust and can approach
global optimality compared to other local search methods [85]. Its key drawback is that the
computation time tends to grow dramatically with the size of the problem. Furthermore,
picking a suitable cooling schedule is a crucial SA parameter, but it can be difficult and
significantly affect the algorithm’s performance. Zhang and Wu [142] proposed a functional
SA model for JSSPs.

The selection operations used by GA and DE algorithms differ markedly [78]. One
of the advantages of the DE approach is its simplicity because the search process is only
controlled by three input parameters: size of the population, scale factor, and crossover
parameter. However, its efficiency depends on the control parameter [143]. In addition,
obtaining the optimum operations, such as crossover and mutation, in the DE approach is
usually time-consuming [143]. Different variants of DE have been implemented in various
industrial applications for better performance [144–146].

4.7. Tabu Search

Glover created Tabu Search (TS), an MH algorithm to solve optimisation problems [75].
This method employs responsive exploration and memory structures to find an optimi-
sation solution. Memory structures like the tabu list can effectively search the solution
space by specifying the visited solutions. Responsive exploration provides a fundamentally
enhanced technique employing the search history in TS.

The tabu list prevents the seen solutions and directs the search towards the undis-
covered solution space for possible solutions. It stores the keys studied throughout the
search space. TS effectively solves larger and more complex problems. Numerous control
parameters should be established, and the parameter setting significantly impacts achiev-
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ing a global optimum [75]. TS has been applied in hybridisations with other optimisation
techniques for scheduling, including SA [147,148] and ABC [149].

4.8. Artificial Bee Colony Algorithm

The Artificial Bee Colony (ABC) algorithm is an MH algorithm based on bees’ foraging
behaviour [150]. A food source’s position and nectar content symbolise a potential solution
to a problem and the fitness that goes along with it. The program uses three types of
artificial bees: employed, bystander, and scout bees. The available food and the number
of bees at work are equal. All employed bees belong to groups that use dancing to find,
transport, and communicate information about food sources. Scout and observer bees are
always looking for new food sources. Scout bees only blindly explore the search area, while
spectator bees can gather information from employed bees by remaining in the dance area
while searching for a food source [151].

The ABC method solves issues in various applications, such as improving wireless
sensor networks, maximising heat transfer rates, power plant optimisation, machining
process improvement, and JSSPs [146]. Compared to other MH algorithms, the ABC
method has been shown to tackle engineering problems with high dimensionality [152]
efficiently. To improve performance, the ABC algorithm has also been combined with other
algorithms, including the hill-climbing [153], ACO [154], and DE [155,156] algorithms.
As a result, in recent years, JSSP has been solved using ABC and its advancements [157].
Problems including no-wait constraints [158,159], rescheduling strategy [47], or FSSP [160]
have been addressed using deteriorated or hybrid versions. However, due to the search
process, ABC has shortcomings in solving the scheduling problems [161].

4.9. Harmony Search

The intriguing Harmony Search (HS) algorithm is designed to overcome problems
according to the inspirations of musical performances [162,163]. Musicians constantly
seek the ideal harmony, and the search process in HS is modelled on their behaviour
while seeking the optimal balance to improve their melodies. The HS iteratively improves
the solutions during optimisation to optimise the objective function. Initialising the HS
parameter, which includes the amount of harmony memory, harmony considering rate,
and pitch adjusting rate, is the first step in the HS algorithm technique.

Three different iterative techniques must be used to improvise and update the new
solution to reach the best outcome [162]: (a) Consideration of memory: to use HM, a new
solution is created from an old one; (b) Considering memory, a new solution is devised
by slightly changing the pitch; (c) Randomisation process: a new, improvised solution is
constructed. The subsequent HM acceptance rate determines its strength. These three
factors can thus be used to achieve good performance in HS with a balance of intensification
and diversification.

HS is straightforward to implement because it does not involve complicated calcula-
tions. The HS method has also been modified to enhance its convergence capabilities. This
approach is frequently used in many applications, including scheduling in manufacturing
processes [164] and medical applications [165]. Owing to these benefits, HS has been
effectively adapted to address many optimisation issues in various domains [166]. Despite
its benefits for solving JSSPs, HS can experience stagnation throughout the optimisation
process, resulting in less-than-ideal solutions [167]. The algorithm’s complexity rises due
to the requirement for precise parameter adjustment to produce the best results [168].

4.10. Cuckoo Search

According to Yang and Deb [169], the Cuckoo Search (CS) optimisation MH algorithm
imitates the cuckoo’s breeding habits, which are defined by laying fertilised eggs to be
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hatched in the nests of other birds. Cuckoos typically prefer newly produced nests to
enhance the likelihood of hatching eggs; consequently, the host birds will care for the
cuckoo offspring. To increase their access to food delivered by the foster parents, the cuckoo
chick pushes the native eggs out of the nest after hatching. The host bird either destroys
or quits the nest and creates a new one elsewhere if it learns that the egg that has been
hatched is alien [169]. As a result, the cuckoo chick has a unique ability to imitate the look
and sound of its host bird to maximise its reproductive success and prevent abandonment.

To solve the JSSP, Singh et al. [170] suggested CSO with several individual enhance-
ment schemes. In terms of finding the global optimum, CS has a faster convergence speed
in finding optimal solutions. Compared to other algorithms, it simplifies the tuning process
because there are fewer parameters to change [169,171]. CS excels at solving continuous or
combinatorial problems, making it adaptable to various JSSPs. However, it is exposed to
premature convergence in areas with complicated problems [172].

4.11. Firefly Algorithm

The Firefly Algorithm (FA) is an MH algorithm inspired by the flashing behaviour of
fireflies [173]. A firefly is a species of bug that may emit natural light to entice a mate or
ward off predators. The FA generally follows three guidelines: 1. Since fireflies are unisex,
they usually gravitate toward the brighter and more appealing mating partner. 2. Since air
absorbs light, the attraction is inversely related to brightness and diminishes as the distance
between two fireflies grows. 3. The brightness of a firefly will depend on the geography of
the objective function.

FA is a simpler algorithm compared to other swarm-based algorithms. Additionally,
the benefits of the autonomous subdivision have improved its effectiveness [173]. As
documented in the literature [173–176], this approach has been used in numerous applica-
tions since the inception of the firefly algorithm. Studies have shown that FA outperforms
algorithms like ABC and PSO and can obtain the world’s best solutions [174].

FA has been used effectively in a variety of applications, but in contrast to other MHs,
not much study has been done on applying the FA with regard to the FJSP [177]. In the
study by [177], an integrated approach using FA has been proposed to solve FJSPs. In the
scheduling field, an FA was provided by [178] to minimise makespan in the workflow
scheduling problem with deadline constraints. Recently, ref. [179] applied improved FA
for FJSPs.

4.12. Gravitational Search Algorithm

The Gravitational Search Algorithm (GSA) is a physical-based heuristic search algo-
rithm that draws inspiration from the Newtonian principle of mass interaction [180]. It
is widely used to solve nonlinear optimisation problems. According to Newton’s gravity
equation, any two particles will be attracted to one another by a gravitational force [181].
The gravitational force varies inversely with the square distance between the particles and
directly with the product of the particle masses. A group of agents in search space are
drawn together by gravity in GSA. While their performance is correlated with their packs,
these agents behave as objects. Due to the pull of gravity, all things in the search space
gravitate toward those with heavier masses [73].

Researchers’ interest in this algorithm is growing because it can produce better results
than other nature-inspired algorithms and identify solutions close to the global optimum.
In various applications, it is useful when combined with other computational techniques to
overcome its slow convergence and searching speed [73].

Based on current knowledge, the GSA has many reported applications for scheduling
problems. For instance, ref. [182] introduced a highly efficient GSA for addressing the
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study’s permutation flow shop scheduling problem. In another study, ref. [183] proposed
an enhanced GSA for addressing the scheduling problem in hybrid flow shop environments
with parallel machines. Furthermore, ref. [184] suggested discrete GSA for a kind of flow
shop problem with total flow time minimisation.

4.13. Ant Colony Optimisation

Ant Colony Optimisation (ACO) is another effective swarm intelligence method, first
put forth to categorise problems in the medical industry and achieve success in continuous
optimisation [185]. The ACO algorithm’s application to scheduling problems, such as SM
scheduling problems, was the subject of preliminary studies [186], or JSSP in general [187].
Researchers have employed strategies for combining the ACO algorithm with specific
JSSPs, such as local searches [188,189].

JSSPs have been successfully solved using ACO [190]. Heuristics customised to
a particular situation can be incorporated into ACO algorithms to improve the search
process [191]. ACO’s distributed computing model makes parallel processing possible,
speeding up the problem-solving process [192]. One of the disadvantages of ACO is that the
algorithm needs to be fine-tuned to perform well because it is highly sensitive to parameter
adjustments [193]. ACO performance degrades with more significant problems [190].

4.14. Comparative Discussion and Insights

Despite the advancements of metaheuristic and learning-based algorithms, several
limitations remain in their practical application to JSSPs and FJSPs. Many metaheuristics,
such as Genetic Algorithms (GA), require extensive parameter tuning (e.g., population
size, mutation rate) and are susceptible to premature convergence. Algorithms like Par-
ticle Swarm Optimisation (PSO) often struggle with local optima and scalability in large
problem spaces. Reinforcement Learning (RL) methods offer adaptability but can suffer
from slow convergence and instability during training. Hybrid methods show promise
but add complexity, and their integration often lacks generalisability across various man-
ufacturing contexts. Moreover, real-time application of these algorithms remains limited
due to high computational demands and the need for large datasets or simulation environ-
ments [169–179].

5. AI-Driven Learning-Based Scheduling and Reinforcement
Learning Approaches

One of the promising models for JSSPs and FJSPs is RL [24,194], wherein agents make
decisions while receiving little input, and each decision is rewarded or penalised based on
a given reward policy. RL is the subfield of machine learning (ML) in which the agent aims
to maximise the reward by starting with arbitrary trials [195]. A Markov decision process
has been used to model the primary reinforcement [195]. RL is frequently employed in
autonomous robotic operation manufacturing [196]; furthermore, Q-learning and deep
learning are often used to create RL agents [197].

An emerging trend in scheduling research is the integration of AI and Machine Learn-
ing (ML) techniques with traditional scheduling methods. For instance, machine learning
models can be used to predict job processing times or machine availability, which can
feed into deterministic scheduling algorithms for more dynamic performance. AI-based
optimisers, such as genetic algorithms or RL agents, can enhance heuristic rules by learning
from past scheduling scenarios. This hybridisation can enable real-time adaptability and
improve robustness in uncertain environments. However, the integration requires care-
ful design to maintain interpretability and ensure computational efficiency, especially in
industrial settings where response time is critical [22,37,198].
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Many RL techniques are being used to improve JSSPs [22]. For instance, Shahrabi
et al. [199] created an RL with the Q-factor method to solve JSSP. Shen et al. [200] suggested
a multi-objective dynamic software project scheduling based on Q-learning. Chen et al. [37]
proposed a self-learning GA for addressing the FJSP. This method incorporates both the
state-action-reward-state-action (SARSA) algorithm and Q-learning within the self-learning
framework. Shi et al. [198] adopted a DRL strategy for intelligently scheduling discrete
automated production lines. In another study, Chen et al. [37] suggested using a self-
learning genetic algorithm (SLGA) based on RL to reduce the FJSP makespan.

6. Research Gap in the Current State of Knowledge
6.1. Identifying the Knowledge Gap

Various intelligent optimisation methodologies have been discussed in this paper,
including GA, PSO, SA, DE, TS, ABC, CS, GSA, ACO, and RL. After reviewing the relevant
literature on JSSPs, and specifically FJSPs, it is evident that there are distinct differences
and challenges in each model. This highlights a research gap, underscoring the need
for greater clarity on the effectiveness of intelligent algorithms in optimizing job shop
scheduling. This article focuses specifically on FJSPs because of their flexibility in the
production process, particularly in the allocation of machines and resources. Numerous
algorithms have been used to solve FJSPs. However, the effectiveness and quality of the
solutions can be improved by parameter modifications in the algorithms. The key features
of the knowledge gap in this area are outlined below.

1. Scheduling using MH algorithms: MH algorithms are promising methods for lo-
cating excellent answers to optimisation issues. JSSPs are ideally suited to them,
mainly when the solution space is large and complex. However, depending on the
problem’s features and the particular settings of the algorithm, the efficacy of MH can
vary dramatically. They are mostly slow, which is why there is a need to find more
advanced solutions [18,21,23,201–204].

2. Hybrid models: There are numerous methods for solving scheduling problems, each
with their own benefits and drawbacks. However, there is limited research on hybrid
models that combine multiple methods to enhance performance. These models offer
potential benefits but also present certain challenges. It would be valuable to focus
on addressing these challenges to fully harness the advantages of hybrid approaches.
For instance, a hybrid model combining genetic algorithms and simulated annealing
could optimise job shop scheduling by leveraging both the exploration capabilities of
genetic algorithms and the refinement abilities of simulated annealing. While these
hybrid approaches show promise, they also present challenges, such as finding the
best way to integrate the methods and avoid excessive computational complexity.
Addressing these challenges could unlock the full potential of hybrid models. The
following section compares the advantages and disadvantages of some popular MHs
discussed earlier.

Compared to ACO and GA, CS and HS could be more straightforward to deploy and
require less parameter adjustment [162,169]. Unlike the more recent CS and HS, GA and
ACO have been extensively used for job shop scheduling and are backed by substantial
research outlining strategies to improve their performance [80,190]. GA and ACO are
known to be computationally expensive because of their complicated processes, such as
crossover and mutation [90,190].

Careful parameter tuning is necessary for GA and ACO to work properly [193]. Com-
paring CS to other algorithms, the tuning procedure is more straightforward because there
are fewer parameters to change [171]. Additionally, HS needs precise parameter tweak-
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ing [168]. Moving on to PSO, it offers several advantages over other algorithms, such as
being easy to create, fast on computers, and requiring fewer changes to its parameters [83].
However, it frequently becomes trapped in local optima, and the quality of the solutions
may decline as the size of the problem grows [140]. Regarding DE, like many EAs, they
tend to be slow, particularly for challenging problems. Additionally, it can be difficult to
determine the ideal control parameters for DE [143].

1. Scheduling using RL models: RL effectively solves job shop schedulings. The most
significant advantage of developing RL models is their ability to enhance the system’s
performance without using many EA functions [24]. It is noted that the RL technique
in the literature has been applied to fewer studies of FJSP. As a result, it is possible to
determine the best FJSP scheme via RL.

A Unifying Framework for AI-Based Scheduling Methods

To organise the diversity of approaches covered in this review, a unifying framework
is proposed that classifies the algorithms into three broad categories:

1. Metaheuristic Algorithms: This group includes Evolutionary Algorithms (e.g., GA,
DE), Simulated Annealing (SA), and Tabu Search (TS). These methods typically rely
on biologically or physically inspired rules to search for global optima across complex
problem spaces.

2. Swarm Intelligence Methods: Algorithms like Particle Swarm Optimisation (PSO),
Ant Colony Optimisation (ACO), Artificial Bee Colony (ABC), and Cuckoo Search (CS)
fall under this category. Inspired by collective behaviours in nature, these methods
are suitable for distributed and multi-agent scheduling environments.

3. Learning-Based Approaches: This includes traditional Machine Learning (ML) tech-
niques, Reinforcement Learning (RL), and Deep Learning (DL). These models aim to
learn scheduling strategies from historical data and are increasingly used in real-time,
adaptive scheduling systems.

7. Conclusions
This article reviewed a comprehensive review of various types of Job JSSPs, including

(SM) job shops, parallel job shop scheduling, FJSPs, and flow shop scheduling. JSSPs are
typically categorized as NP-hard problems, highlighting their inherent complexity, which
stems from multiple constraints, diverse sets of objectives, and expansive search spaces.

JSSPs require meticulous planning and optimization. They involve scheduling a
sequence of jobs on a set of machines, each job consisting of a series of operations that
must be completed in a predefined order. The complexity of these scheduling problems
is exacerbated by constraints such as task non-preemption, machine availability, and
operation sequences, making efficient scheduling challenging.

Among the different types, FJSPs stand out due to their flexibility in handling op-
erations. Unlike traditional job shops, FJSPs allow an operation to be processed by any
machine from a given set, increasing the complexity of the problem but also providing a
greater scope for optimization. This flexibility results in a larger search space, requiring
more advanced and efficient optimization techniques.

In the later part of this paper, the most popular approaches to addressing these varied
scheduling challenges were explored. In conclusion, advancing algorithmic approaches in
JSSPs, particularly for FJSPs, indicates a promising direction for future research. With the
ongoing advancement of computational capabilities and AI-based algorithmic frameworks,
there is strong potential to develop more robust and scalable scheduling solutions. These
will be essential for meeting the dynamic and complex demands of smart and sustainable
manufacturing systems.



Electronics 2025, 14, 1663 17 of 25

Future Research Directions:

• Develop hybrid AI models that combine learning-based and rule-based approaches
for enhanced generalisability.

• Explore lightweight, real-time RL agents for industrial deployment, especially in
energy-aware and multi-objective scheduling.

• Investigate transfer learning and meta-learning techniques to apply trained models
across different job shop scenarios.

• Design benchmark datasets and simulation environments that reflect realistic job shop
constraints (e.g., machine breakdowns, dynamic job arrivals).

• Evaluate explainable AI methods for scheduling decisions to increase transparency in
industrial adoption.
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