
Academic Editor: Gianluca Traversi

Received: 11 February 2025

Revised: 13 March 2025

Accepted: 13 March 2025

Published: 17 March 2025

Citation: Spinelli, G.; Ennes, K.P.;

Chauvet, L.; Kilbride, C.; Jesutoye, M.;

Harabari, V. A Wearable Device

Employing Biomedical Sensors for

Advanced Therapeutics: Enhancing

Stroke Rehabilitation. Electronics 2025,

14, 1171. https://doi.org/10.3390/

electronics14061171

Copyright: © 2025 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license

(https://creativecommons.org/

licenses/by/4.0/).

Article

A Wearable Device Employing Biomedical Sensors for Advanced
Therapeutics: Enhancing Stroke Rehabilitation
Gabriella Spinelli 1,* , Kimon Panayotou Ennes 1, Laura Chauvet 2, Cherry Kilbride 2 , Marvellous Jesutoye 2

and Victor Harabari 3

1 Brunel Design School, Brunel University of London, Uxbridge UB8 3PH, UK;
kimon.panayotou-ennes@brunel.ac.uk

2 Department of Health Science, Brunel University of London, Uxbridge UB8 3PH, UK;
2230866@brunel.ac.uk (L.C.); cherry.kilbride@brunel.ac.uk (C.K.); 2255078@brunel.ac.uk (M.J.)

3 Reneural Technologies Limited, Leeds LS1 2HL, UK; office@reneural.tech
* Correspondence: gabriella.spinelli@brunel.ac.uk

Abstract: Stroke is a leading cause of disability worldwide. The long-term effects of a
stroke depend on the location and size of the affected brain area, resulting in diverse
disabilities and experiences for survivors. More than 70% of people experiencing stroke
suffer upper-limb dysfunction, which can significantly limit independence in daily life.
The growing strain on national healthcare resources, coupled with the rising demand
for personalised, home-based rehabilitation, along with increased familiarity with digital
technologies, has set the stage for developing an advanced therapeutics system consisting
of a wearable solution aimed at complementing current stroke rehabilitation to enhance
recovery outcomes. Through a user-centred approach, supported by primary and secondary
research, this study has developed an advanced prototype integrating electromyography
smart sensors, functional electrical stimulation, and virtual reality technologies in a closed-
loop system that is capable of supporting personalised recovery journeys. The outcome is a
more engaging and accessible rehabilitation experience, designed and evaluated through
the participation of stroke survivors. This paper presents the design of the therapeutic
platform, feedback from stroke survivors, and considerations regarding the integration of
the proposed technology across the stroke pathway, from early days in a hospital to later
stage rehabilitation in the community.

Keywords: stroke; rehabilitation; smart sensors; electromyography; functional electrical
stimulation; user-centred design; digital health; med-tech; virtual reality

1. Introduction
Stroke is one of the leading causes of disability, and the second most common cause

of death worldwide [1,2]. Depending on the size and location of the stroke, survivors
can present with a variety of symptoms. The middle cerebral artery (MCA) is the most
commonly affected vessel, which is the major vascular supply to the area of the brain
responsible for the upper limbs [3]. According to the Stroke Association [4], 70% of stroke
survivors present with lasting symptoms of functional difficulty within the upper limbs.
This loss in motor and sensory control of the upper limbs can lead to potential alterations of
muscle length and strength and the inability to engage in fine or dextrous hand movement,
which is essential for bimanual tasks that affect function and therefore, quality of life [5].

Taub et al. [6] coined the term learned non-use to describe the phenomenon whereby
people recovering from neurological insult, such as stroke, learn to compensate for the loss
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in function of the affected upper limb, and as such, no longer attempt to use it for everyday
activities. After a sufficient period without using this limb, the muscles atrophy, and the
efficiency of the motor areas of the brain corresponding to this limb will fade [7]. Conversely,
the ability of the brain to re-adapt and re-adjust to form new connections in response to
local injury and received neural input is known as neuroplasticity [8]. These changes are
regulated by the “use it or lose it” principle [9]. In other words, high-repetition movements
produce a high level of motor input and output to and from the brain. This elicits the
formation of neural pathways in the specific brain areas, i.e., those responsible for upper-
limb movements. However, these newly formed pathways require regular motor input;
otherwise, they may fade [9]. Therefore, maintaining a rehabilitation plan that reflects this
biological need for high repetition exercise is crucial for recovery in stroke survivors until
the affected limb has been successfully re-incorporated into daily function/tasks [8,10].

In a systematic review by Serrada, McDonnell, and Hillier [11], it was found that
only 21% of inpatient therapy time for people post-stroke was devoted to the upper limbs.
More specifically, this equated to 24% of occupational therapy sessions and only 15% of
physiotherapy sessions. Likewise, less than 20% of patients in the United Kingdom receive
the recommended level of upper-limb rehabilitation [12,13], with the upper limb largely
deprioritised in place of balance and walking practise [14]. Other factors limiting upper-
limb rehabilitation include organisational drivers such as pressure for quicker discharge
times, a shortage of quality research, and the limited resources of the healthcare system [15].
In stroke units, in the average upper-limb-focused rehabilitation session, the number of
repetitions for each movement ranges from 23 to 86 [16]. However, animal studies have
shown that neuroplastic changes are not seen within the motor cortex until approximately
400 or more repetitions are completed [17]. In the absence of a sufficient rehabilitation
programme for the upper limbs, stroke survivors will not be able to meet the number of
repetitions required to induce and maintain the neuroplastic changes that bring about
recovery [8,10]. This highlights the need to develop and implement effective therapy
adjuncts to support functional recovery of the upper limb post-stroke, thereby reducing
dependency and improving quality of life post-stroke.

Functional electrical stimulation (FES) is one of the therapy adjuncts recommended
to increase functional recovery of the upper limb after stroke [14,18]. Electromyogram-
triggered functional electrical stimulation (EMG-FES) has been developed to enable motor
activity to synchronise with motor intention [19]. The EMG responds to the nerve signal at
the neuromuscular junction, even in patients with severe paresis [20]. EMG-FES triggers
a motor response, but also creates a sensory stimulus to the corresponding region of the
brain. This motor and sensory stimulation can impact neuroplasticity, thus impacting the
formation and maintenance of the neural pathways necessary for targeted function [21].

Another therapy adjunct gaining traction within the field of stroke rehabilitation
is virtual reality (VR) devices. With VR technology, users immerse themselves in fully
interactive artificial worlds through goggles [22]. VR can deliver engaging and task-specific
exercises in a supportive environment by providing multimodal (visual, auditory, and
proprioceptive) feedback [23]. This gives clinicians the ability to prescribe a rehabilitation
programme that is entertaining for the user and can replicate common therapy exercises,
as well as mirroring everyday functional tasks. This makes it possible to personalise
rehabilitation sessions by practising a task that is relevant to each person’s goals, while
being able to control the sensitivity and difficulty through controlled virtual parameters.
A combination of EMG-FES and VR opens the opportunity for stroke survivors with a
range of impairments to enjoy the therapeutic effect of VR by reducing the effort required
when carrying out activities [23]. Thus, the combination of FES and VR provides patients
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with an engaging strategy of attaining the necessary intensity and repetition that their
rehabilitation requires.

The paper is structured into six main sections. Section 2, Related Work, provides
a critical evaluation of previous research in the field. Section 3, Methods, outlines the
research methodology, including the aims and objectives of the developed system, an
overview of the interdisciplinary expertise of the team, and participant recruitment details.
Section 4, Results, presents key insights derived from interviews with stroke survivors,
including design personas, rehabilitation experiences captured through user journeys, and
product requirement specifications based on both primary and secondary data. Section 5,
System Development and Evaluation, details the iterative design and evaluation of the
advanced therapeutics system, covering its key components such as sensors, functional
electrical stimulation (FES), virtual reality (VR), wearable technology, and the companion
app. Finally, Sections 6 and 7 provide a discussion and the conclusions of the study,
including limitations and further work.

2. Related Work
2.1. The Stroke Rehabilitation Pathway

Following a stroke, clinical guidelines [14,24] recommend that rehabilitation be com-
menced as soon as the person is medically stable. Instigating rehabilitation early after stroke
is important, as the first six months post-stroke are characterised by heightened levels of
potential for neuroplastic change [25]. Treatments that help to capitalise on this window
of optimised recovery involve physical, functional, and cognitive rehabilitation and can
be provided on an in-patient, in the home (through day programs), or in the community
basis, depending on the needs of the person and the available facilities and resources of the
healthcare system [14].

The user journey normally starts at the hyper acute stroke unit (HASU), where the
goal is to achieve the medical stability of the patient and to determine the underlying
cause of the stroke as soon as possible [26,27]. Stroke survivors typically stay in a HASU
for 1–3 days, and those requiring further treatment are transferred to their local acute
stroke unit (ASU), where in-patient rehabilitation is provided by the multidisciplinary team.
Alternatively, patients are transferred directly home, with treatment from the stroke early
supported discharge (ESD) team. Depending on the complexities of the person’s needs
and/or goals, they can be further transferred to a Level 2 (more complex care) or Level 1
(most complex care) rehabilitation unit for specialist in-patient rehabilitation. Community
rehabilitation teams may also see stroke survivors if they have ongoing needs (see Figure 1).
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 Figure 1. Pathways for rehabilitation following stroke. ESD = early supported discharge; ASU = acute
stroke unit.

The National Institute for Health and Care Excellence (NICE) guidelines recommend
that stroke survivors in the United Kingdom receive a minimum of three hours of daily
rehabilitation at least five days per week [14]. This includes occupational, speech, and
physiotherapy services. Sessions are suggested to address strength and functional deficits,
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pain, activity limitation, cognition, and overall mental health. FES is further recommended
as a therapy-adjunct for those presenting with inferior shoulder subluxation, strength
deficits of 3 or less on the Oxford Muscle Scale (OMS), or for strength deficits in the wrist
and finger extensors or ankle dorsiflexors (muscles located in the dorsum of the foot) which
impact function [14].

There is no definitive evidence on what comprises a high-quality rehabilitation plan
or the best therapeutic approach for recovery of the upper limbs post-stroke. However,
therapeutic approaches and/or treatment modalities that involve progressive recruitment
of motor units, repetitive re-training of motor skills combined with sensory interventions,
and practice of functional tasks over weeks or months with high dose (at least 2 h per
session) have been associated with better recovery [28–34]. A single-blinded randomised
intervention study by Daly et al. [33] examined the effect of long-dose intensive therapy on
upper-limb function and any gains retained in moderate and severely impaired chronic
stroke survivors (n = 36). Results from 300 h of therapy over 12 weeks (5 h per day,
5 days/week) showed a statistically and clinically significant improvement in the Fugl-
Meyer score (mean gain = 5.1 points; 95% CI 3 to 6; p < 0.0001; effect size(d) 0.59) compared
to the results for 150 h of therapy (mean gain = 4.7 points; 95% CI 4 to 6; p < 0.0001; effect
size(d) 0.54) which was sustained 3 months post-treatment (n = 31; mean gain = 9.4 points;
95% CI 5–13; p < 0.0001; effect size(d) 0.61). This highlights the need, importance, and
potential benefit of increased therapy time.

Intensity is another important theme in post-stroke upper-limb rehabilitation that
is rarely or inconsistently defined across studies [29,35] but which forms an important
component of neuroplasticity [36] and motor re-learning [37]. Intensity is defined as the
perceived level of difficulty of an activity based on a person’s ability and/or the conditions
under which the task is performed [37–39]. Different techniques have been proposed
to determine the appropriate level of intensity for maximising motor learning in stroke
survivors [37,39,40]. The consensus is to employ a level of training that maximises perfor-
mance by identifying current ability and providing progressively difficult, yet achievable
functional tasks, without eliciting compensation. This allows for sensorimotor feedback,
implicit error detection, and motor strategising [37,39,40]. Technology-based innovation
offers the opportunity for users to adjust intensity through detailed guidance provided by
the data analysis performed by the device. This is further explored in the article.

2.2. Innovation in Stroke Rehabilitation

An interesting and developing paradigm in stroke rehabilitation is the use of existing
and emerging technologies (e.g., robotics, EMG-FES, virtual reality, etc.) to help drive
and support neuroplasticity and motor learning in a cost-effective manner [30,34]. Recent
studies and guidelines have recommended exploring the synergistic effects of combining
these technologies in post-stroke upper-limb rehabilitation [14,30,34,35]. This is important,
given that the global burden of stroke is expected to rise, and there are limited resources in
healthcare systems, along with an increasing demand for ways to support rehabilitation.
This study explored the process of designing a therapeutic device for the upper-limbs post-
stroke that combines virtual reality with EMG-FES in a single device using a user-centred
design approach.

3. Methods
3.1. User-Centred Design Approach

User-centred design (UCD) is an approach that actively involves end-users throughout
the development process to uncover value propositions and create technology devices
that directly address user needs. In healthcare, there is a growing emphasis on engaging
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end-users—especially patients—in the design of medical devices, a priority reinforced by
NHS publications that highlight the value of a user-centred approach for enhancing care
quality [41]. Previous research underscores that the successful use of healthcare devices
hinges on user acceptance, which is more likely when users are engaged in the design
process [42].

This study implemented a UCD approach that prioritised the needs of stroke sur-
vivors, followed by those of their carers. Embedding safety, effectiveness, efficiency, and
learnability in the wearable rehabilitation device was paramount to this study, as the team
aimed to support stroke survivors’ rehabilitation, including in unassisted settings. The
practical application of a UCD approach is detailed in the following sections. Given the
gap identified in design literature regarding the meaningful involvement of users in the
development process [43], the following sections provide a detailed description of partici-
pant involvement in the study methods. An overview of the research design is reported
in Figure 2 below, highlighting the three key components in the approach: desk research,
primary research, and iterative design and evaluation with stroke survivors.
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Figure 2. Research design.

3.2. Aim and Objective for the Advanced Therapeutics Platform

The wrist is an important focus in post-stroke rehabilitation, as it plays a critical role
in functional hand and arm movements, including gripping, lifting, and manipulating
objects. Stroke survivors often experience spasticity, weakness, or reduced motor control in
the wrist and hand, which can significantly affect their ability to perform daily activities
independently [44]. For these reasons, the aim of the project became to design and develop
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advanced therapeutics for the support of upper-limb rehabilitation, specifically for the
following three muscle groups: wrist extensors, ulnar deviators, and radial deviators.

In considering the upper-limb rehabilitative aim of the project that the device was
required to support, the team also took into account the latest guidelines for stroke rehabili-
tation issued by the Intercollegiate Stroke Working Party [14]. The instrumental objectives
of the project, selected on the basis of the latest guidelines were as follows:

- Significantly increasing rehabilitation time offered to stroke survivors from 45 min per
day to three hours per day, five days a week (4.2A).

- Supporting those unable to exercise against gravity independently through additional
support (such as neuromuscular or functional electrical stimulation) to enhance their
participation in exercise training (4.17G).

- Integrating repetition of functional tasks and targeted exercise in the therapeutic
platform, since it leverages neuroplasticity (4.18).

3.3. The Interdisciplinary Research and Development Team

The interdisciplinary development team for the project comprised five key skill areas:

• Stroke rehabilitation and physiotherapy: Experts in post-stroke care and rehabilitation
were included to ensure that the solution aligned with clinical best practices and
effectively addressed the needs of stroke survivors.

• Design and product development: Specialists in creating and refining the physical
and digital aspects of the solution ensured that functionality, usability, and experience
were included in bringing the concepts to market.

• Technology and engineering: Team members with technical expertise in advancing
designs from concept to implementation were involved to integrate innovation and
ensure reliability in the final product.

• Innovation and commercialisation knowledge: Professionals with expertise in un-
derstanding market trends, consumer needs, and the competitive landscape were
included, ensuring that the product was viable and met real-world demands.

• Expert users (stroke survivors): Involving individuals with lived experiences provided
invaluable insights into user needs, preferences, and challenges. Stroke survivor carers
took part in the study to provide their perspective on the system’s requirements.

• Stroke survivors advocate: a charity in North West London supported the recruitment
of participants to the study and advised on optimising the design of data collection
tools to provide an educational, yet comfortable, experience to stroke survivors.

3.4. Recruiting Representative End Users

The study recruited 11 participants through convenience and snowball sampling
from a single stroke charity (Different Strokes West London Group). Two of the primary
researchers were randomly allocated to interview four participants each, analyse the data,
and extract insights for the design and development stage. The third researcher undertook
a thematic analysis of the interviews and engaged with three additional stroke survivors in
the usability testing of the prototypes. The research team travelled to a venue provided by
the charity to undertake the interviews, thus ensuring a familiar and comfortable setting for
the participants. Participants were also offered the opportunity to have a ‘communication
buddy’, often their carer, if they felt unsure about their ability to communicate in the
study. Participants were not paid for their participation in the research, but received a GBP
20 voucher as a token of thanks.

The study received ethics approval by the University Research Ethics Committee
prior to the engagement with the participants. Inclusion criteria for the selection of study
participants were as follows:
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• Adults (18 years or over) who have had a stroke;
• Individuals capable of providing informed consent;
• Stroke survivors who have experienced and/or currently experience problems with

moving their upper limbs;
• Adults with sufficient communication skills to take part in the interview.

Exclusion criteria comprised significant dysphasia, lack of capacity to give consent
to participate in the study, and the presence of significant cognitive problems. Table 1
captured some of the key attributes of the study participants.

Table 1. Participant characteristics.

Pseudonyms Gender Time from Stroke
Length of Stay in

Hospital (Total Time
Spent In-Patient)

Most Affected
Upper-Limb Joint(s)

User Research Phase

Participant 1 Cate Female 151 months (13 years) 16 weeks Left elbow

Participant 2 Arthur Male 14 months 1 week (self-discharged) Right hand

Participant 3 Lace Female 20 months 8 weeks Right elbow, wrist,
and hand

Participant 4 Maya Female 18 months 12 weeks Right wrist and hand

Participant 5 Jan Female 113 months (9.5 years) 22 weeks Right hand

Participant 6 Michael Male 66 months (5.5 years) 1 week Left shoulder

Participant 7 Kelly Female 16 months (1.5 years) 5 weeks Left wrist and hand

Participant 8 Angela Female 17 months (1.5 years) 1 week Right arm; all joints
equally affected

Evaluation Phase

Participant 1 Theo Male 54 months (4.5 years) 13 weeks Left arm and hand

Participant 2 Adam Male 120 months
(10 years) 17 weeks Right arm and hand

Participant 3 Jan Female 113 months (9.5 years) 22 weeks Right hand

4. Results
4.1. Identifying Intended Users (Persona)

Personas are fictitious, archetypal representations of users. They are created based on
real observations and insights from actual users [45]. The creation of persona in design is a
process that aids the designers in contextualising their initial user research and in better
understanding their audience’s goals, behaviours, needs, and pain points, creating a user-
centred approach to product or service development [46]. Two personas were identified
based on the profile information of the 11 study participants:

Alison, a 64-year-old woman, suffered a severe stroke eight months ago. She spent two
months in an acute stroke unit (ASU), where she received limited rehabilitation, primarily in
group settings, due to constrained clinical resources. During her inpatient care, functional
electrical stimulation (FES), a therapy known to support motor function recovery, was not
implemented. This was attributed to the perceived complexity and the time required for
accurate electrode placement. Now at home, Alison has begun FES-based rehabilitation.
However, she struggles to place the FES electrodes correctly, a task made difficult by her
reduced dexterity in the affected arm. Her partner, although willing to assist, lacks proper
guidance and training, adding to the challenges of correctly setting up the device for
effective therapy.
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Benjamin, a 53-year-old man, suffered a mild stroke two years ago. His hospital stay
was brief, lasting only a week due to the less severe nature of the stroke. However, in
the years since, Benjamin has struggled to manage his recovery independently at home.
He faces challenges in maintaining motivation and engagement with his rehabilitation
exercises. Lacking consistent support, he finds it difficult to stay on track with his recovery
regimen, which has led to a gradual decline in the use of his affected arm. The absence
of engaging rehabilitation tools further compounds his struggle, as the exercises feel
monotonous and lack the stimulation needed to keep him motivated. Despite his initial
progress, Benjamin now finds himself at risk of losing further function in the affected arm
due to a lack of sustained effort and guidance.

4.2. Patients Experience with Post-Stroke Rehabilitation

The rehabilitation experiences of the user personas, Allison and Benjamin, expose
significant gaps in post-stroke recovery systems and pathways like those shown in Figure 3.
Allison benefits from structured hospital support within the hyper acute stroke unit (HASU)
and in the acute stroke unit (ASU), where she notices improvements in her symptoms.
Upon discharge, she transitions home without early supported discharge (ESD) and strug-
gles with unclear exercise guidance. Over time, she joins a community rehabilitation
programme, aiding long-term recovery, although she ultimately misses the optimal neuro-
plasticity window.
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female stroke survivor, described her inpatient journey below.

In contrast, Benjamin, who had a mild stroke, was discharged without receiving much
structured assistance. Without adequate support, he faces challenges in adhering and
progressing with his home exercises, leading to learned non-use of his hand. Eventually,
Benjamin engages in self-directed online exercises, gradually improving, although like
Allison, he also misses the optimal neuroplasticity window. Both cases emphasise the
critical need for clear, accessible, and timely rehabilitation support to sustain motivation
and optimise recovery trajectories, particularly through structured interventions during
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and after the patients’ time in hospital. Figure 3 displays the user journeys of the two
design personas identified in the study. The level of motivation and the timeline of stroke
survivors pathway represent, respectively, the vertical and the horizontal dimensions in
the figure. Declines in the motivation level are characterised as user pain points.

“. . .I went to the hyper acute stroke unit after my stroke and I was there for about three or
four days. And then I went to the stroke ward back to the local hospital. . . they decided
I would benefit from rehabilitation. So, I went to a regional rehabilitation unit... All
together, my experience was four months in a hospital.”

4.3. Product Specifications

The product requirements for a solution supporting post-stroke rehabilitation were
defined based on the personas’ needs and findings from primary and secondary research.
The identified essential and desirable requirements include the following.

Essential:

• Increase the number of repetitions performed by users to enhance rehabilitation
outcomes, promoting muscle strengthening and motor learning [8,10,16,17].

• Initiate and support wrist extension, as well as ulnar and radial deviation, through
cyclic FES, targeting key muscle groups essential for daily activities and functional
independence [44].

• Utilise FES to facilitate muscle movement in the upper limb, enabling users to regain
control and strength in their affected limb [19–21].

• Serve as an adjunct to existing rehabilitation programs, seamlessly integrating into
current clinical practices and home-based exercises [14].

• Enable independent use and compatibility with supervised therapy sessions, provid-
ing flexibility and accommodating diverse user needs and preferences [47,48].

• Take into account existing comorbidities of user group, potential adverse effects,
and contraindications

• Promote neuroplasticity to achieve functional improvements by stimulating the brain
and encouraging the formation of new neural pathways [8,10,19,21].

Desirable:

• Incorporate goal-oriented tasks and/or gamification elements through integration
with the existing VR system, enhancing user engagement and motivation during
rehabilitation [48,49].

• Track progress and provide data accessible to medical professionals for monitoring and
evaluation, allowing for personalised feedback and adjustments to the rehabilitation
plan [48,50].

5. Development and Iterative Evaluation
To ensure that the proposed solution was beneficial and effective, the development

process, from concept design to advanced prototypes, revolved around an iterative eval-
uation with primary (stroke survivors) and secondary stakeholders (carers, occupational
therapists, and physiotherapists). The initial evaluation, at the stage of concept generation,
consisted of less structured conversation considering the wearability, intuitiveness, and
usability of the potential device. Such evaluation sessions became more structured as the
form and functions of the device became more precise.

In addition to the ongoing support of clinicians actively involved in the design team,
the final round of evaluation included three stroke survivors with varying levels of upper-
limb impairment. The evaluation sessions were video recorded for accuracy of analysis.
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A task-based protocol [51] was implemented, followed by the development of task
analysis trees for each executed task. This approach was applied because it effectively
addresses the identification of usage errors and performance malfunctions [52].

Task 1 consisted of the use of testing traditional FES pads. Participants were asked to
set up the hydrogel pads of a traditional FES device. This task was timed and used as a
control to evaluate the usability of the smart sensor concept in tasks 2 and 3.

Task 2 required participants to put the prototyped sleeve on their affected arm. Follow-
ing a demonstration from the researcher, the participants put on the wearable prototypes
twice to also identify optimization strategies used in donning. This task was timed.

The participants were asked to put on two variations of the wearable prototype; the
first prototype utilised a two-strap fastening to ensure that there was constant contact of the
fabric electrodes on the skin, whilst the second prototype was fashioned on a compression
sleeve, where the user would slide the device onto their forearm, rather than fasten it.
Table 2 presents the time taken by users to apply wearing existing FES hydrogel pads
compared to two prototype designs.

Table 2. Participants’ timings for applying wearable traditional hydrogel FES pads (control), wearable
devices with straps (sleeve 1), and slip-on wearable devices (sleeve 2).

Participants Control Test (s) Sleeve 1 (s) Sleeve 2 (s)

Theo 78 73 43

Adam 56 52 40

Jan 58 51.5 14

The final task aimed at understanding the participants’ understanding of the device
control unit, the puck. Following a brief explanation on how to turn on the device and how
to switch between function modes, the participants engaged in a ‘thinking aloud’ task [53],
verbalising the thought process guiding their decisions when interacting with the device.

The analysis of the qualitative comments from the Think Aloud task suggest a desire
for the users to feel in control of the device and of its functions. This was evidenced by
the unanimous preference for the puck, which had manual override controls of the muscle
location feature and FES intensity on the device itself. In addition, high contrast controls
buttons were preferred, as they could be easily spotted by participants with limited or
impaired vision. Fabric electrodes embedded in the sleeve were preferred, as they did not
press or irritate the skin.

5.1. Technical Specifications

The wearability and comfort of the device presented significant challenges during its
development. Similarly, the identification, development, and integration of the technical
elements required for the advanced rehabilitation proved to be equally complex. The
design process considered how the device would fit comfortably on the user’s arm, while
also ensuring that the electronic components and sensors would function effectively. The
resulting design is a sophisticated piece of technology that utilizes key electronic and sensor
technologies to achieve its functionality.

The sleeve incorporates FES to stimulate muscle contractions, EMG sensors to detect
muscle activity, and a microcontroller for real-time data processing and control. These
components are coupled with a VR platform or a companion app, creating a comprehensive
rehabilitation system. The stroke survivor can use Nura, the name given to the system,
alone, guided by clinical staff during in -person sessions, or can access the Reneural
platform, the gamified rehabilitation system, through the use of the VR and companion
app, as displayed in Figure 4.
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The following sections will describe the technological components in detail, explaining
how Nura has integrated them into a cohesive and effective rehabilitation tool.

5.2. Microcontroller

The Nura puck was developed using a system-on-chip (SoC). The ESP32 was selected
for its high processing power, reliable connectivity, and scalability, making it suitable for
integration in rehabilitation technologies where precision control is required. The dual-core
processor of the ESP32 allows for efficient multitasking, which is crucial for real-time data
processing from the VR to which Nura connects to engage in gamified rehabilitation and
the EMG sensors required to detect existing skeletal muscle signals. The microcontroller’s
integrated WiFi and Bluetooth capabilities enable connectivity across various platforms,
such as Android, iOS, Windows, and VR systems. Figure 5 shows the Nura puck, where
the function controls are visible on the user product interface.
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The ESP32 also supports Edge AI, allowing for the execution of lightweight machine
learning models directly on the device. This functionality enables on-device analytics and
adaptive responses, which are essential for processing data from VR and EMG sensors in
real time. Real-time processing is not feasible with cloud-based solutions due to inherent
latency issues, making on-device processing crucial for effective rehabilitation applications.
Figure 6 demonstrates the integration of the puck with the wearable sleeve.
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5.3. FES

Functional electrical stimulation was chosen over other technologies, such as pneu-
matic systems, due to its ability to prevent muscle wastage, reduce device complexity,
and integrate with electromyography. The recent development of multi-pad fabric elec-
trodes [54,55] have improved selectivity in muscle activation, allowing for more precise
targeting of specific muscles [56]. They also offer enhanced user comfort, as the system is
fabric-based and acts more like a traditional garment [57]. Most importantly here, however,
is the ability to simplify the pad application process, saving time, in order to enable easier
donning, especially for those with limited dexterity.

The innovation integrated in Nura aims to stimulate the wrist extensors, as well as
the radial and ulnar deviator muscle groups, which together control the movement of
the wrist. The use of a multi-pad electrode has enabled one of the core advancements
in the Nura sleeve: the creation of virtual electrodes. A virtual electrode is a location
between the physical electrodes where stimulation is experienced. By superimposing
electrical stimulation from multiple electrodes and adjusting stimulation intensities, the
virtual electrode position can be dynamically altered to target specific motor units or
muscle fibres. This allows for customisable and precise muscle activation without the
need for exact physical placement of the electrodes. The FES system compensates for
minor misalignments of the pads by leveraging the virtual electrode, ensuring effective
stimulation, even under suboptimal conditions. This approach enhances usability and
adaptability, providing a more user-friendly and efficient method for wrist movement
rehabilitation. Figure 7 demonstrates the location of the FES pad around the user’s upper
arm when Nura is worn.

5.4. Electromyography Sensors

Electromyography (EMG) is a technique for evaluating and recording the electrical
activity produced by skeletal muscle in the body [58]. As stroke rehabilitation focuses on
redeveloping the voluntary control and functionality of the weak arm, EMG offers a unique
way of enhancing existing forms of rehabilitation. According to recent research [59], EMG
must be coupled with other forms of therapy, such as robots, VR, FES devices, or mirror
therapy, in order to improve neuroplasticity and motor function.
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When combined with EMG, FES systems can operate in a responsive, closed-loop
manner, where electrical stimulation is triggered based on the patient’s voluntary muscle ac-
tivity [60,61]. This feedback loop and synchronization facilitate personalised rehabilitation
based on individual muscle electrical activity detection and consequent cognitive response.
This means that neuroplasticity is further supported, enabling the brain to reorganize and
strengthen neural pathways essential for recovering more efficiently [62].

The system operates by detecting muscle activity through EMG sensors, which mea-
sure the amplitude and duration of muscle signals. If the EMG signal is insufficient to
achieve the desired movement, functional electrical stimulation (FES) is triggered to stimu-
late the appropriate muscles; a visualisation showing the relationship between voluntary
muscle activity and FES can be seen in Figure 8. The stimulation signal is generated based
on the EMG activity, the target muscles, and the required movement, ensuring that the
user receives the necessary assistance. Throughout this process, virtual reality (VR) sensors
continuously monitor whether the desired action has been successfully performed. Once
VR confirms that the movement is complete, the FES stimulation automatically stops, pre-
venting unnecessary activation. This closed-loop system ensures that electrical stimulation
is applied only when needed, making it an adaptive and responsive rehabilitation tool. The
equation below captures the closed-loop system implemented in the designed system.

S(t) =

{
K(Ae + Te + Mr + Ms + Da) if Vf b = 0

0 if Vf b = 1

S = electrical stimulation signal (activation level)
K = scaling factor (adjusts the strength of the stimulation)
Ae = EMG signal amplitude (mV)
Te = EMG signal duration (s)
Mr = muscle activation level from the EMG source (normalised from 0 to 1)
Ms = muscle activation needed for the stimulation (normalised from 0 to 1)
Da = action difficulty level (scaled from 0 to 1)
Vf b = VR feedback (1 = action complete; 0 = action not complete)

In Table 3, the procedure employed by the system in order to achieve a closed-loop
EMG-FES system is explained.
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Table 3. Procedural steps to achieve closed-loop EMG-FES.

Step Condition Action Taken

1. Detect EMG activity Ae is detected but weak Wait for strong enough
EMG signal

2. Check VR feedback Vf b = 0 (movement
not achieved) Prepare to trigger FES

3. Apply FES Ae is too low and Ms
needs activation Stimulate target muscle

4. VR confirms movement Vf b = 1 Stop FES
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For example, when a patient attempts wrist extension, EMG sensors detect initial
muscle activity, even if the movement is weak. As this signal can vary daily based on
the user’s voluntary control or the progression of her rehabilitation, additional data are
required to effectively adapt the therapy. Whilst previous research [63] has integrated angle
sensors to track wrist position data, the proposed system can integrate the hand tracking
capabilities using modern VR headsets [64], as described above. Based on the combined
input from the EMG sensors and the VR headset, the Nura sleeve triggers FES at the onset
of the user’s effort, stopping the FES stimulation when the VR headset confirms movement.
This real-time adjustment of the FES ensures that the user receives the appropriate amount
of stimulation based on their specific needs. The system synchronizes visual feedback
from the VR with the electrical stimulation, creating a cohesive and immersive experience
designed to aid the brain in relearning the neural pathways required to control movement.
By combining these technologies, Nura delivers a personalised FES therapy that is highly
responsive to the user’s specific needs and intentions, offering a significant advancement
over the results of less adaptable solutions.

This cohesive and immersive experience also provides valuable biofeedback for the
patients, allowing them to visualize their muscle activity in real time, providing motivation
to continue the rehabilitation. Figure 7 illustrates the layout of the electrode arrangement.
The central electrode is strategically positioned to detect muscle activity associated with
wrist extension by targeting the extensor muscles (extensor digitorum, extensor ulnaris,
and extensor radialis), while the side electrodes capture activity from the flexor muscles
and monitor radial/ulnar deviations (flexor ulnaris or flexor radialis). The reduction in the
number of sensors, yielding a more compact wearable device design, is possible because
the system only targets a wrist movement at a given time, in addition to targeting main the
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muscle groups rather than individual muscles in the arm, requiring only three extra EMG
sensing electrodes [65]. Another feature of the layout of the sleeve is its symmetry. As the
sleeve only targets larger muscle groups, the side electrodes can be mirrored, leading to a
fully ambidextrous design.

Wrist extension is detected solely by the central sensing electrode; radial/ulnar de-
viation involves both the central and one of the side electrodes; and flexion is detected
only by the side muscle groups, potentially reducing false sensor readings from flexion
movement. Figure 9 displays the position of all type of electrods in the sleeve. The existing
research posits that EMG sensors can function simultaneously with FES electrodes, as the
EMG sensor may start to detect the FES pulses rather than actual muscle activity, which can
lead to a positive feedback loop [63]. When linked with the virtual pad concept described
previously, the Nura sleeve can detect initial voluntary control from the whole muscle
group using the sensing electrodes, accurately stimulating the correct muscle group for the
intended movement.
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The combination of EMG sensors and FES in Nura is also implemented for more
precise remote monitoring. In addition to specific data on exercise performance, such as
repetitions and exercise intensity, additional non-tangible data, including voluntary control
and quality of movement (collected with hand and finger tracking through a VR headset),
help to provide recommendations for targeted improvements. Moreover, the use of EMG
with a VR platform enhances the rehabilitation experience. Synchronising muscle activity
with virtual tasks or games fosters an engaging therapy experience, helping patients
practice functional tasks in simulated scenarios. One such scenario may be the water
pouring exercise seen in existing exercise sheets, such as the GRASP training manual [66].
This approach aids motor recovery and builds confidence in daily activities. Although this
task may be performed solely with a VR headset, the incorporation of EMG and FES reduces
the need for significant voluntary muscle control, allowing patients to begin engaging with
it earlier in their recovery journey.

5.5. Integration with VR

VR systems, such as Meta Quest, leverage advanced, affordably priced sensors to
deliver effective, self-directed therapy options for stroke rehabilitation. Their compact,
portable design makes them easy to use at home. The Oculus Quest 2, in particular, was
chosen for its exceptional technical performance, robust developer support, and advanced
capabilities at the time.

Within the Nura system, VR technology was incorporated to enable hand tracking,
pose recognition, and when paired with EMG sensors, to monitor hand movements and
muscle activation.

The Nura FES sleeve integrates with the NeuroVive VR rehabilitation platform to
allow users to perform VR-based exercises while receiving FES. This combination enhances
the effectiveness of rehabilitation by creating an engaging experience that encourages user
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participation and improves therapeutic outcomes. By merging VR and FES, the system
supports neuroplasticity and aids stroke recovery.

The Meta Quest device uses hand-tracking technology to monitor 21 points on the
user’s hands. It processes this data and sends wireless commands to the Nura FES sleeve,
which stimulates specific muscles to facilitate desired movements. Through the Neuro-
Vive VR platform, users perform gamified physical activities that combine movement,
stimulation, and VR for a more effective rehabilitation process.

5.6. Companion App

Given that the average age of stroke survivors is between 68 and 78 years [67], and that
strokes often impact cognitive function, the application is designed to provide gamified
exercises without the extra complexity of the VR platform, along with intuitive control of
the sleeve. This includes incorporating user-friendly interfaces, simplified navigation, and
adaptive features to accommodate potential cognitive and physical impairments, ensuring
effective engagement and usability across the target population. Figure 10 shows key
wireframe of the companion app.
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The app was designed to control the sleeve and to provide additional functionality that
the puck alone could not implement, such as gamified rehabilitation exercises, employing
interactive games to increase user engagement and mitigate the monotony of repetitive
upper arm movements. The application was also designed to incorporate user feedback
through progress-tracking systems, encouraging adherence to rehabilitation routines, and
was designed to provide real-time visual feedback regarding muscle activity. A key design
decision of the app is its ability to monitor user progress, allowing medical professionals
to access rehabilitation data remotely in both clinical and home settings, while also trans-
mitting data wirelessly to hospital staff. This functionality supports clinical monitoring by
offering insights into subjective difficulty and adherence, enabling tailored adjustments
to exercises for optimal rehabilitation outcomes. Users are also able to view post-workout
summaries to track improvement over time. A storyboard capturing key functions enabled
by the app is shown in Figure 11. As the current system requires the hand tracking of a VR
headset, further research is required in order to develop a cost-effective solution.
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6. Discussion
Having observed the considerable potential held by sensors from their application in

gaming—where they enable more immersive, interactive, and responsive gameplay—the
healthcare sector is rapidly adopting similar technologies for advanced medical and re-
habilitation applications [68]. While the implementation of sensors in diagnostic devices,
such as electronic medical thermometers and electrocardiograms (ECG), is well-established
and widespread, the movement towards digital health is creating opportunities to integrate
sensors into cost-effective, digital, and sustainable solutions that are simultaneously safe
and adaptable to diverse population needs. This paper highlights one such case of integrat-
ing sensors in personalised rehabilitation therapy and in maximising their functionalities
by linking it with other technologies, namely FES and VR.

Current FES devices rely on fixed stimulation patterns that do not dynamically adjust
to a patient’s needs or recovery trajectory. In the proposed system, the integration of a
modest number of EMG sensors has amplified the impact of functional electrical stimulation
FES, marking significant progress in its application. This is achieved through a closed-
loop system, consisting of muscle electrical signal detection, real-time calibration of FES
support, and improved muscle movement range, as detected by the VR technologies.
Additionally, existing FES devices work on isolated muscle stimulation, which fails to
replicate the coordinated movements essential for daily life. The proposed location and
use of sensors overcome these limitations by focusing on coordinated muscle groups that
control the wrist joint, enhancing functional independence. The seamless integration with
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VR provides feedback to the advanced therapeutics platform regarding the movements
achieved by the patients; this reduces the need for operational supervision, making Nura
an effective solution for therapists and stroke survivors. This feedback loop represents a
key mechanism for delivering personalised rehabilitation, tailored to the specific needs of
each stroke survivor and supporting their long-term rehabilitation trajectory.

Through a user-centred design approach that identified a clear desire by stroke sur-
vivors to independently lead their rehabilitation journey, Nura has been designed to elimi-
nate the need for gel pads, offering a more comfortable and user-friendly experience. This
prevents skin irritation, eliminates the challenge of electrode repositioning, and enables
independent use.

The opportunities offered by advanced therapeutics such as the one presented here are
several, including: (i) increasing repetition in rehabilitation which without VR, may become
tedious and demotivate the users; (ii) reducing staff workload in monitoring patients’ pro-
gression and adjusting therapy accordingly; (iii) providing real-time personalised therapy
support, thanks to the closed-loop feedback between sensor, stimulation, and detection of
movements; (iv) offering a therapeutic device that stroke survivors can use independently.

Interconnected with a companion app, Nura enhances rehabilitation by creating
engaging settings where repetition, a central tenet for neuroplasticity, is less tedious and
can be embedded in gamified or functional daily tasks, thus providing users with a tangible
sense of improvement [69].

Theo, the first participant in the evaluation tests, had previously used a VR rehabili-
tation prototype developed by Reneural and provided the following comments on how
Nura, when linked with VR, could be utilized for rehabilitation:

“I can see this [Nura when linked with a VR headset] being used in rehabilitation, where
one nurse takes care of something like 12 patients at once”.

“I can definitely see myself using VR in my rehabilitation journey”.

Participants in this study expressed enthusiasm for adopting technology-enhanced
rehabilitation, particularly for systems that are easy to wear and use without requiring
third-party intervention, factors that significantly contribute to patient adherence.

Jan, the third participant in the evaluation, emphasised the importance of ease of use,
noting that setup time presents a significant barrier, as reflected in the following quotes
from her.

[Referring to the virtual electrode innovation introduced by the Nura sleeve] “You can do
that? I don’t have to keep changing it when it’s on?”.

“With that one [gesturing to a standard FES device with hydrogel electrode pads] I have
to constantly shift it around. I like how with this one [Nura Sleeve] can just press that
[muscle adjustment feature] and it’ll do it”.

The literature highlights three key priorities for advancing healthcare delivery:

1. Enhanced rehabilitation pathways that improve patient outcomes, supported by data
analytics capabilities [70].

2. Efficiency gains achieved via clinical remote monitoring, which alleviates pressure on
healthcare providers [71].

3. Cost savings and environmental benefits of digital health solutions through reduced
hospital visits and lower CO2 emissions [72].

In response to these needs, smart sensor-integrated medtech like Nura is driving a
shift towards decentralised care, bringing both diagnostic and therapeutic interventions
closer to primary care settings and directly into patients’ communities.
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A key limitation of this research is the lack of testing of the closed-loop system with
patients to demonstrate its ability to provide detect-calibrate-deliver functionalities. This
was not possible due to the absence of CE marking, which makes its use on study partici-
pants both unlawful and unethical. Consequently, the study relies on desk research [69],
market device appraisal, mathematical modelling, and empirical results obtained outside of
direct patient trials. Another limitation is the relatively limited engagement with therapists
during this phase of the research. This was, in part, due to the study’s focus on stroke
survivors and the patient-facing elements of the project. However, research funding has
since been secured to develop the clinical dashboard module, which will enhance clinician
involvement and ensure appropriate supervision in future iterations of the system.

Despite their potential, sensor-based medical technologies face several barriers to
wider adoption. Traditional rehabilitation methods are often preferred due to the high cost
of smart, personalised rehabilitation systems. In addition, the limited clinical evidence sup-
porting their efficacy and the lack of standardisation in protocols and sensor technologies
hinders comparability across studies. Concerns also persist regarding the perceived replace-
ment of human expertise, highlighting the need for sensor-based systems to enhance rather
than replace clinical care. Further research is essential to assess whether remote clinical
monitoring of advanced therapeutics like Nura can provide both patients and clinicians
with confidence, ensuring safe and effective integration into rehabilitation pathways.

7. Conclusions
The growing market of personal lifestyle devices, including privately purchased

medical technologies, is shifting the landscape of rehabilitation solutions. Consumers are
increasingly investing their personal finances in medical technologies that promise longer,
healthier lives. This trend has led to rising demands for devices that are intuitive, effective,
and aesthetically pleasing.

This research addresses the need for an advanced therapeutic solution that facilitates
repetitive movement, a critical factor in promoting neuroplasticity after a stroke. The proof
of concept presented distinguishes itself from existing functional electrical stimulation
(FES) technology for muscle stimulation. Through the integration of EMG sensors, FES,
and virtual reality (VR), a closed-loop system has been developed to detect, calibrate, and
deliver personalised rehabilitation therapy. The technical complexities of the device have
been minimised through an intuitive design that eliminates the need for elaborate FES pad
adjustments. Designed using a user-centred approach, the wearable sleeve—housing both
sensors and pads—has been positively received by stroke survivors.

The research and innovative rehabilitation system presented in this paper pave the
way for rehabilitation solutions that can be seamlessly integrated into home settings and
primary care, without compromising the clinical supervision necessary to strategically
guide patients’ progress. By ensuring that rehabilitation decisions remain under the
oversight of qualified clinical staff, this approach offers both effectiveness and confidence
in patient care. However, significant development is still required before the system can
reach the market, as several limitations must be addressed to fully validate and implement
the proof of concept outlined in this study.

8. Patents
A Patent Cooperation Treaty (PCT) application was submitted to secure intellectual

property protection for the innovative aspects of the system. The patent application,
registered under the number PCT/GB2024/051520, encompasses the unique technologies
and methods developed previously and within the project.
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