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Abstract: Federated learning (FL) enables deep learning models to be trained locally on de-
vices without the need for data sharing, ensuring data privacy. However, when clients have
uneven or imbalanced data distributions, it leads to data heterogeneity. Data heterogeneity
can appear in different ways, often due to variations in label, data distributions, feature
variations, and structural inconsistencies in the images. This can significantly impact FL
performance, as the global model often struggles to achieve optimal convergence. To
enhance training efficiency and model performance, a common strategy in FL is to exclude
clients with limited data. However, excluding such clients can raise fairness concerns,
particularly for smaller populations. To understand the influence of data heterogeneity, a
self-evaluating federated learning framework for heterogeneity, Fed-Hetero, was designed
to assess the type of heterogeneity associated with the clients and provide recommendations
to clients to enhance the global model’s accuracy. Fed-Hetero thus enables the clients with
limited data to participate in FL processes by adopting appropriate strategies that enhance
model accuracy. The results show that Fed-Hetero identifies the client with heterogeneity
and provides personalized recommendations.

Keywords: federated learning; data heterogeneity; quantity skew; label distribution skew;
image skew; Fed-Hetero; good health and well being; partnership for the goals

1. Introduction
Deep learning (DL) models can learn from massive amounts of data, improving au-

tomation and performing various tasks without human intervention. Building an efficient
deep learning model requires enormous amounts of data and it is essential to highlight
the significance of having a large amount of data from relevant categories, particularly
when it comes to its critical role in enabling well-informed healthcare decision-making
processes. In the healthcare domain, ensuring the privacy of medical data is a significant
concern. To address this, a decentralized approach known as federated learning (FL) was
developed. FL [1] is a machine learning approach wherein the numerous users distribu-
tively or collaboratively train the AI models over remote data centers while keeping data
localized. The FL process begins when a server initiates communication with the clients.
Each client trains a model using the data available with them and sends the updates to the
server, which aggregates all the updates. This approach allows clients to benefit from the
insights of other clients’ data without directly sharing their actual data. FL is essential in
many applications as it protects sensitive information and provides diversity by collecting
data from various locations.
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Most existing studies [2,3] compare centralized and federated approaches without
considering real-time settings, where data from the same datasets are distributed across
different clients. For a federated learning setup to be applicable in real-time settings,
the model must be capable of handling data from different geographical locations with
varying distributions. Training AI models in heterogeneous and large FL networks presents
several challenges such as device heterogeneity, data heterogeneity, and communication
overhead [4]. In federated learning, the variability in data distributions among various
clients is referred to as data heterogeneity. Data heterogeneity may be due to various
reasons, such as incorrect labeling, imbalance in the number of samples, and also due to
data collection from multiple sources.

Existing works have explored various federated learning strategies to address data
heterogeneity, including assigning higher priority to weights with greater contributions in
global updates, enabling them to have a more significant influence on the aggregated model.
Techniques such as weighted averaging [5], importance-based aggregation [5], or adaptive
weighting [6] are often employed to assign greater importance to clients whose updates
significantly impact the global model. Prioritizing clients with larger or higher-quality
datasets can enhance the global model’s accuracy. However, if clients with limited data
are disregarded or their contributions are reduced, the global model may become skewed
toward more prevalent data distributions, reducing its ability to generalize to diverse or
rare scenarios. To ensure fair participation, FL systems need mechanisms that balance
the importance of well-represented and underrepresented clients. The proposed system,
Fed-Hetero, addresses the issue by identifying the type of heterogeneity present in the
client data and recommends the clients with limited data to perform data augmentation or
clustering, which enhances their contribution to the weight aggregation process.

In the context of healthcare systems, various types of data such as imaging data, patient
records, and genetic information can be leveraged for further analysis. This study focuses
on heterogeneous data, which is diverse in nature, and investigates the influence of quantity
skew, label distribution skew, and image skew. While quantity skew and label distribution
skew can be analyzed using any heterogeneous dataset, image skew specifically requires
imaging data. Therefore, the study emphasizes on use case of glaucoma prediction, which
uses retinal fundus images to explore these skews in detail.

The key contributions of Fed-Hetero are the following:

• Analyze the influence of data volume on federated learning performance in the context
of glaucoma prediction using retinal fundus images.

• Identify clients affected by data heterogeneity due to variations in labels, quantities,
and image skew.

• Recommend strategies to the clients for addressing data heterogeneity which improves
federated learning performance.

2. Related Works
2.1. Federated Learning

The literature survey gives an introduction to FL, challenges faced by FL, and various
applications of FL. FL [7,8] is a collaborative machine learning approach where models are
trained across multiple devices or servers in a decentralized manner. Instead of sharing
data, each client independently performs training on its data and transmits the resulting
weights to a server. The aggregation of all the weights from the clients is performed
by the server using the Federated Averaging (FedAvg) algorithm to generate a global
model. This approach helps to maintain data privacy, as sensitive data do not need to leave
the client devices. In certain federated learning studies, the same dataset is partitioned
and distributed among multiple clients. While this method is commonly employed in
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experimental setups, it may not be well-suited for real-world applications [3]. A comparison
of FL to centralized learning was carried out [2] and the study demonstrates that the
centralized approach delivers superior accuracy in IID setting. Federated learning faces
several challenges, including communication overhead, privacy and security concerns,
and data distribution issues. One of them is the high communication cost associated with
transmitting model weights between clients and the server. This can be exacerbated when
large models are involved or when clients are frequently disconnected from the training
process due to connectivity issues. While federated learning aims to preserve data privacy,
certain vulnerabilities may still exist, particularly when it comes to adversarial attacks or
issues related to data leakage during the aggregation process [9]. In many studies, data
distribution among clients is considered to be uniformly distributed (IID), which does not
reflect real-world scenarios. Non-uniformly distributed (Non-IID) data distribution, where
data are uneven or imbalanced across clients, can lead to poorer model performance. This
issue has been observed in medical image classification [10], where different clients had
varying distributions of labels, affecting model accuracy.

Federated learning has diverse applications, including areas such as healthcare, facial
expression recognition, medical image classification, and binary supervised classification.
FL has shown great potential in healthcare [11], as it enables the training of models while
preserving patient data privacy. Studies have explored how FL can be applied in healthcare
data to avoid the high costs and risks associated with centralized data storage. A healthcare-
focused federated learning architecture helps to preserve data privacy by keeping sensitive
data localized on clients, while the central server only aggregates model updates. A
federated learning model was proposed for facial expression recognition in advertisements,
allowing a system to predict user interests in real time [12]. A graphical user interface
(GUI) was developed to facilitate this real-time prediction, with suggestions to refine
feature extraction techniques for better model performance. FL has been applied to medical
image classification [10], showcasing its effectiveness in handling distributed datasets. In
a federated SVM architecture [13], it was utilized for binary classification tasks using the
MNIST and COVID-19 datasets, with results compared to centralized approaches. These
comparisons highlighted the limitations of using random data splits across clients, which
may not reflect practical real-world scenarios.

2.2. Algorithms for Handling Data Heterogeneity

The literature explores several studies in the area of data heterogeneity, emphasizing
different types such as quantity skew, label distribution skew, feature skew, and image skew.
It also explores various strategies for addressing data heterogeneity [14]. These algorithms
can be classified as client-side or server-side approaches and few researchers have looked
into developing personalized solutions [15] for the same. Data heterogeneity [16] poses a
significant challenge in federated learning, as it reduces model effectiveness across diverse
client devices. Data heterogeneity may be due to various factors such as variations in data
distribution, client device capabilities, and communication constraints. These challenges
hinder the aggregation of local models into a global model that performs effectively across
all clients. Quantity skew refers to an imbalance in the number of data samples distributed
among clients. Some clients may have large amount of data, while others have significantly
smaller amounts of data. This imbalance can result in poorly generalized global models, as
clients with limited data contribute less effectively to model training. Feature skew occurs
when clients have different sets of features, with each client potentially holding only a subset
of the features necessary for training. This can cause difficulties in model convergence and
performance consistency across clients. Label distribution skew refers to situations where
the distribution of labels varies across clients. Some clients may have an over-representation
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of certain classes, while others may be biased toward other classes. This imbalance can lead
to poor global model performance, especially on underrepresented classes.

Federated recommendation systems (FedRS) represent a promising application of
federated learning, addressing key factors such as privacy, security, heterogeneity, and
communication costs. Recent research, as highlighted in the survey [17], provides a detailed
comparison of various approaches and solutions in the context of federated recommenda-
tion systems. This research also identifies promising future directions for advancing the
field. With their substantial potential, federated recommendation systems represent a field
that requires further development and exploration to improve personalized recommenda-
tions while ensuring privacy and reducing communication overhead.

To address quantity skew, solutions such as Zero-shot Data Generation (ZSDG) have
been introduced [18]. ZSDG generates synthetic labeled data based on knowledge learned
from trained models, helping to augment the data at the client level without requiring
real data. The data produced by the global model may be limited by the knowledge they
have already acquired. This can result in synthetic data that closely resemble the original
training data, reducing their diversity and novelty. Another limitation of this work is that
the starting point for data augmentation has been considered only in terms of local epochs,
whereas federated learning rounds should also be taken into account.

Federated Feature Distillation (FedFed) [19] handles feature skew by categorizing
features into performance-robust and performance-sensitive groups. By focusing on sharing
only performance-critical features, FedFed helps to mitigate the effects of feature mismatch
among clients, but it introduces communication and storage overheads, and poses potential
privacy concerns. Federated Augmented Feature Learning (FedAF) [20] tackles label
distribution skew by enabling clients to share condensed data and soft labels with the
server. By focusing on the most essential data points for training, FedAF mitigates the
impact of label distribution skew; again, privacy might remain a concern. FedICON [21]
uses contrastive learning to address data variability over time and between clients, focusing
on extracting invariant features to tackle shifts in image data and other modalities. The
FedLAW [5] approach uses a weight shrinking concept which is applied to the aggregation
weights used in federated learning. These weights determine the contribution of each
client’s model updates during the aggregation process to form the global model. This
adjustment impacts the influence of individual client updates on the global model by
excluding the clients with lesser weights.

FLAMA (Federated Learning with Adaptive Weighted Model Aggregation) [6] dy-
namically adjusts the model aggregation weights in each federated learning training round,
considering the number of useful data samples contributed by each client and the perfor-
mance of the global model. Clients with fewer or less useful data samples might receive
lower aggregation weights, potentially marginalizing under-represented data distributions.

The one-pass distribution sketch [22] analyzes the variations in data distributions
among clients, selects clients based on these differences, and personalizes tasks accordingly.
The client selection strategy excludes the clients with limited data. Federated daisy chain-
ing [23] enables clients to share information with other clients via a server, which raises
privacy concerns. Table 1 presents the summary of the federated learning algorithms and
their limitations.
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Table 1. Summary of existing works.

Reference Algorithm/Approach Client
Side

Server
Side

Privacy
Issues

Communication
Overhead

Data
Sharing

Importance-
Based
Aggregation

[18] Fed-ZDA ✓ ✓

[19] FedFed ✓ ✓ ✓ ✓

[20] FedAF ✓ ✓ ✓

[21] FedICON ✓ ✓

[5] FedLAW ✓ ✓

[6] FLAMA ✓ ✓ ✓ ✓ ✓

[22] One Pass
Distribution Sktech ✓ ✓

[23] Federated Daisy
Chaining ✓ ✓ ✓

The observations from the related works are given below:

• The main challenges in federated learning are data heterogeneity, communication
overhead, and privacy concerns.

• Data heterogeneity can occur due to various factors, including quantity imbalance,
label distribution imbalance, feature variability, and image variation.

• Various algorithms are proposed to address the quantity skew, label distribution, and
feature skew data heterogeneity.

• In most existing studies, the same datasets are shared among different clients, which
does not accurately reflect real-world scenarios.

The limitations of the existing works are as follows:

• The literature reveals that most existing studies tend to exclude the clients with limited
data by using strategies such as weighted averaging, importance-based aggregation,
or adaptive weighting.

• Most approaches use an information-sharing strategy that compromises privacy and
performs client selection and personalization based on data distributions.

• The existing works have not fully explored the potential of a server-based feedback
system to notify clients with reduced performance.

3. Notations and Preliminaries
This section explains the fundamental concepts of federated learning along with the as-

sociated terminologies for Fed-Hetero. Section 3.1 discusses federated learning, Section 3.2
focuses on data heterogeneity, and Section 3.3 deals with metrics used to measure data
heterogeneity. Section 3.4 deals with recommendations suggested to clients.

3.1. Federated Learning

Consider an FL system with m clients, each having distinct distributions of data. The
clients used for this study are represented as client 1, . . . , client m. Each client is associated
with distinct datasets represented as D with n samples distributed across K classes which
are divided into training and testing data. Let

D = {(x1, y1), (x2, y2), . . . , (xn, yn)}
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be the data where xi denotes the features of the i-th sample, and class is denoted as
yi ∈ {0, 1, . . . , K− 1}. A local model trained by each client m using the dataset D. Once the
training is complete, the parameters of the local model are sent to the server for aggregation.
These parameters are combined by server to update the global model. The objective of
federated learning can be represented as minimizing the global loss function with model
parameters w and loss function for client i L(w; Di):

min
w

m

∑
i=1

ni
n
L(w; Di) (1)

where n = ∑m
i=1 ni is the total number of samples in all clients.

3.1.1. Local FL Model

The local model is trained on data from individual clients and local accuracy measures
the performance of a model trained specifically on a client’s local data. Let:

• Dm: Local dataset of a client (with n samples).
• yi: The actual label for the i-th sample in Dlocal.
• ŷi: Predicted label for the i-th sample by the local model.

The formula for calculating local accuracy Alocal is

Alocal =
1
n

n

∑
i=1

I(yi = ŷi)× 100 (2)

where I(yi = ŷi) is a binary function that outputs 1 if the predicted label matches the true
label and 0 otherwise.

3.1.2. Global FL Model

The global model is an aggregated version of the local models, created by combining
the weights gathered from all participating clients. Global accuracy measures how well
the global model (aggregated from multiple clients) performs on a specific client’s local
dataset. Let:

• globalg: Aggregated weights from multiple clients.

• ŷglobal
i : Predicted label for the i-th sample using the global model.

The formula for calculating global accuracy Aglobal is

Aglobal =
1
n

n

∑
i=1

I(yi = ŷglobal
i )× 100 (3)

3.1.3. FedAVG

FedAvg is a basic algorithm in federated learning that balances the need for collab-
orative model training with the requirement for data privacy. Algorithm 1 shows the
working of FedAVG [7]. After the first client server interaction, the server collects the
updated model parameters from the selected clients. The server computes the new model
parameters by averaging the model parameters received from clients. The aggregation
is usually performed using a weighted average, using the weights corresponding to the
number of samples on each client.
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Algorithm 1 Federated Learning Algorithm

1. Input:
• Number of clients (m)
• Number of global rounds (t)
• Local epochs (E)
• Learning rate (η)
• Initial global model parameters (w0)

2. Output:
• Final global model parameters (wt)

3. Initialize global model w0
4. For each global round rt = 1 to t:

(a) Server sends the current global model wrt to the participating clients
(b) For each client k = 1 to m (in parallel):

i. Client initializes local model with the global model parameters
ii. For each local epoch e = 1 to E:

A. Perform local training on client k’s data
B. Update the local model using gradient descent with learning rate

η

iii. Client sends updated local model to the server
(c) Server aggregates all clients’ local models by averaging them
(d) Update the global model with the aggregated model

5. Return: Final global model wt

3.2. Data Heterogeneity

In FL, data heterogeneity refers to the differences in data distributions across various
clients. Heterogeneous data refer to data collected from diverse sources and presented in
various formats, differing in quantity and labeling. Heterogeneity can manifest in different
forms, such as quantity skew, label distribution skew, and image skew. These factors can
significantly influence both the training process and the performance of the resulting model.
Various types of heterogeneity are discussed in the following sections.

3.2.1. Quantity Skew

The uneven distribution of data samples in different clients is known as quantity skew.
This skew arises when certain clients have considerably more data than others, which can
impact the training process and model performance.

3.2.2. Label Distribution Skew

The uneven distribution of classes across different clients is referred to as label distri-
bution skew. This skew occurs when certain clients have a disproportionate representation
of specific labels, leading to challenges in training a robust and generalized model.

3.2.3. Image Skew

Image skew refers to differences in luminance, contrast, and structural information of
images across different clients. Variations in the structural representation can impact the
training accuracy of federated learning models.

3.3. Metrics to Measure Data Heterogeneity
3.3.1. Weight Divergence

Weight divergence between clients is a technique used in FL to assess and monitor
variations in model updates sent to the server by different clients. This approach provides
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the server with insights into the consistency of model updates, acting as an indicator of
model performance, convergence, or accuracy. When the divergence is minimal, it implies
that the model is performing uniformly across the various clients.

The weight divergence for the client i can be defined as follows:

WDi = ∥Wi(t + 1)−Wglobal(t + 1)∥2 (4)

where:

• WDi: Weight divergence for client i.
• Wi(t + 1): Model weights from client i.
• Wglobal(t + 1): Aggregated global model weights.
• ∥ · ∥2: L2 norm (Euclidean distance) of the difference between two weight vectors.

3.3.2. Jensen–Shannon Divergence (JSD)

Jensen–Shannon Divergence (JSD) [24,25] is a statistical measure used to compare
similarity between two probability distributions. This helps to find how similar class
distributions are between a pair of distributions. The Jensen–Shannon Divergence between
two probability distributions S and R is defined as follows:

JSD(S ∥ R) =
1
2

KLD(S ∥ M) +
1
2

KLD(R ∥ M) (5)

where:

• M = 1
2 (S + R) is the average of the two distributions.

• KLD(S||M) is the Kullback–Leibler divergence from S to M:

KLD(S||M) = ∑
x

S(x) log
(

S(x)
M(x)

)
(6)

• KLD(R||M) is the Kullback–Leibler divergence from R to M:

KLD(R||M) = ∑
x

R(x) log
(

R(x)
M(x)

)
(7)

JSD range values are displayed in Table 2.

Table 2. JSD threshold.

JSD Range Interpretation

JSD < 0.1 High degree of similarity
0.1 ≤ JSD < Threshold Moderate divergence
JSD ≥ Threshold Significant divergence

A JSD value near zero indicates similar distributions, and as the value moves toward
1, it indicates dissimilar distributions. The choice of the upper-limit threshold is specific
to the dataset used in the study. The details of the threshold are given in the Experiment
Setup section in Section 5.

3.3.3. Sub Sample Sharing

The sub-sample sharing refers to a strategy where clients selectively share small
portions (sub-samples) of their local datasets with the central server. Each client i holds a
local dataset DPi , which contains input–label pairs:

DPi = {(xj, yj) | j = 1, . . . , ni}
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where xj is the input data sample, yj is the corresponding class, and ni is the number of
samples in the dataset.

Client i selects a subset Dsub
Pi
⊂ DPi for sharing.

Dsub
Pi

= {(xj, yj) | j ∈ Si ⊂ {1, . . . , ni}}

where Si is the index set of the selected sub-samples. This allows clients to limit the amount
of data they share while still contributing to the improvement in the global model.

3.3.4. Structural Similarity Index

The Structural Similarity Index (SSIM) [26] is a measure used to compare and quantify
the similarity between two images. It evaluates differences in structural details, factoring in
elements such as brightness, contrast, and overall structure. The SSIM index is calculated
using the following formula as defined in [26].

SSIM(y, z) =
(2µyµz + C1)(2σyz + C2)

(µ2
y + µ2

z + C1)(σ2
y + σ2

z + C2)
(8)

where the variables used in Equation (8) as defined in [27] are the following:

• µy, µz are the average values of the images y and z.
• σ2

y , σ2
z are the variances of the images y and z.

• σyz is the covariance of y and z.
• C1 and C2 are small constants.

The similarity range is shown in Table 3.

Table 3. SSIM similarity range.

SSIM Range Similarity Description

SSIM < 0.5 Poor similarity

0.5 ≤ SSIM < Threshold Moderate similarity

Threshold ≤ SSIM < 0.95 Good similarity

SSIM ≥ 0.95 Excellent similarity

An SSIM value of 1 indicates perfect similarity (identical images), 0 means no similarity,
and values closer to 1 indicate greater similarity. The threshold values are specific to the
dataset used in the study to identify clients with close similarity and details are mentioned
in the Experiment Setup section in Section 5.

3.4. Recommendations

The server notifies the clients about the type of heterogeneity present in their data and
recommends strategies to address the heterogeneity. The recommendations send to clients
are denoted as RQ, which indicates quantity skew, Rl means label distribution skew, and
Ri means image skew. Data augmentation and clustering are the strategies recommended
based on the type of data heterogeneity associated with client data. The recommendations
based on JSD and SSIM are shown in Equations (9) and (10).

RQ, Rl =

JSDd < 0.1 0−No quantity Skew, No Label distribution Skew

JSDd > Threshold 1− RQ, Rl
(9)

Ri =

Threshold < SSIM > 0.95 0−No image skew

SSIM < Threshold 1− Ri
(10)
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4. System Architecture
Fed-Hetero is a self-evaluating framework that provides recommendations to clients,

guiding them to perform clustering or data augmentation to enhance accuracy when-
ever the performance of federated learning is decreased due to the diversity in the data.
Fed-Hetero enables clients with limited data to actively participate in the FL process by
employing appropriate strategies that improve the accuracy of the model. Clients with
limited data may represent rare or critical cases and also provide valuable insight that is
essential to improve the generalization of the model in diverse scenarios. The federated
learning process begins when the server makes a request to the clients with initial global
model parameters w0. The clients participating in the study, ranging from client 1 to client
m (where m = 4), train the CNN model. Each client then sends its model weights Wm

t
(where “t” indicates the number of rounds) to the server, which uses the FEDAVG algorithm
to aggregate the weights and sends Wm

(t+1) to the clients after each round. After “nt” rounds
of the federated learning process, the server calculates the weight divergence (WD) factor
between clients. Based on WD, the server requests the data distributions, subset of samples
from each client. The client then sends the probability of data distributions—PDm, proba-
bility distributions between classes—PDm0, PDm1, and subset of samples—Dpm(Sub),
and the server computes the JSD between clients—JSDd, JSD between classes in the
clients—DJS, 0, DJS, 1 and SSIM between the subset of images from the clients—SSIM
values. The server notifies the clients about the heterogeneity present in their data and
recommends data augmentation and clustering to mitigate it. The system architecture
diagram in Figure 1 illustrates the flow of communication and data exchange between the
clients and the server during the federated learning process.

Figure 1. System architecture for Fed-Hetero recommendation system for clients.

4.1. Fed-Hetero Algorithm

This section presents a comprehensive overview of the modules in Fed-Hetero. The
process begins with Algorithm 2, which serves as the foundational step for the self eval-
uating framework. Algorithm 2 is composed of several sub-modules designed to handle
specific tasks. The sub-modules functionalities are specified in Algorithms 3–6. Algorithm 3
identifies the weight divergence between the clients, followed by Algorithm 4 for estimat-
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ing quantity skew, Algorithm 5 for computing label distribution skew, and Algorithm 6 for
identifying image skew. These algorithms estimate the type of heterogeneity associated
with data in the clients and recommend strategies to mitigate it.

Algorithm 2 FEDHetero

1: Input:
2: Number of clients m, number of global rounds t, local epochs E, learning rate η, initial

global model w0, predefined number of rounds nt
3: Output:
4: Recommended strategies for: quantity skew RQ, label skew Rl and image skew Ri
5: Initialize: Set global model w = w0
6: for each round t1 = 1 to t do
7: Server sends global model w to all clients
8: for each client k ∈ {1, . . . , m} in parallel do
9: Initialize local model wk = w

10: Train wk on client k’s local data for E epochs using learning rate η
11: Client sends updated model wk to server
12: end for
13: Server aggregates client models to update global model:

w← 1
K

K

∑
k=1

wk

14: if t1 == nt then
15: Server invokes the function Weight_Divergence(Wclients)
16: if weight_divergence_ f ound== TRUE then
17: Server requests PDm, PDm0, PDm1 from all the clients.
18: Server invokes JSD_Data(PDm) to compute the JSD between clients.
19: Receive the variables for data distributions and store it in JSDd list.
20: end if
21: for each L in JSDd do
22: if L > Threshold then
23: Send RQ to the corresponding clients and recommend data augmentation [28].
24: end if
25: end for
26: Server invokes JSD_10(PDm0, PDm1) to compute the JSD between classes in clients.

27: Receive the dictionary CJSD and iterate the dictionary to check if it exceeds the
threshold value.

28: for (key, DJS, x) IN in the CJSD do
29: if DJS, x > Threshold then
30: Send Rl0 or Rl1 to the corresponding clients and recommend data augmenta-

tion [28].
31: end if
32: end for
33: Server requests for Dpm(Sub) from Clients
34: Server invokes SSIM(Dpm(Sub)) to compute SSIM between subset of samples in the clients.
35: Recive the SSIM values store it in SSIMImages
36: for (key, SSIM) IN in the SSIMImages do
37: if SSIM < Threshold then
38: Send Ri to the corresponding clients and recommend clustering for the clients

with similar distributions [29].
39: end if
40: end for
41: end if
42: end for
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Algorithm 3 Weight_Divergence(Wclients)

1: Initialize an empty list divergences
2: Initialize a boolean flag weight_divergence_found← false
3: for each client i in Wclients do
4: Wi(t + 1)←Wclients[i](t + 1)
5: Compute WDi = ∥Wi(t + 1)−Wglobal(t + 1)∥2
6: Append the computed divergence WDi to divergences
7: end for
8: Set a threshold value θ (a predefined constant or dynamic threshold)
9: Initialize an empty list clients_above_threshold

10: for each divergence Di in divergences do
11: if Di > θ then
12: Set weight_divergence_found← true
13: Append Di to clients_above_threshold
14: end if
15: end for
16: Return weight_divergence_found which indicates if any divergence exceeded the threshold.

Algorithm 4 JSD_Data(PDm)

1: Input: Distributions D1, D2, . . . , Dm indicates datasets associated with the clients.
2: Output: A dictionary storing Jensen-Shannon Divergence values and client pairs
3: Initialize: an empty dictionary JSD_dict
4: for each pair of distributions Di, Dj where i ̸= j do
5: Compute the average distribution: M = 1

2 (Di + Dj)
6: Compute the Kullback-Leibler divergence for i and j KLD(Di∥M), KLD(Dj∥M)
7: Compute the Jensen-Shannon Divergence:

JSD(Di, Dj) =
1
2
(KLD(Di∥M) + KLD(Dj∥M))

8: Add the JSD value and the client pair to the dictionary:

JSD_dict[(i, j)] = JSD(Di, Dj)

9: end for
10: Return: JSD_dict

Algorithm 5 JSD_10(PDm0, PDm1)

1: Input: The probability distribution for class 0 and class 1 in both Di and Dj where i and
j are client pairs with in m(no.of clients).

2: Output: Dictionary with JSD values between each pair of datasets for class 0 and class 1
3: Initialize: an empty dictionary JSD_10_dict
4: for each pair of datasets Di, Dj where i ̸= j do
5: Compute the average distribution Mi using the distributions of class 0 and class 1 in Di
6: Compute the average distribution Mj using the distributions of class 0 and class 1 in Dj
7: Compute the Kullback–Leibler divergence between class 0 in Di and Mj, class 1 in

Di and Mj.
8: Compute the Kullback–Leibler divergence between class 0 in Dj and Mi, class 1 in

Dj and Mi.
9: Compute the Jensen–Shannon Divergence between Di and Dj for each class.

10: Store the JSD value in the dictionary with the client pair (i, j):

JSD_10_dict[(i, j)] = JSD(Di, Dj)

11: end for
12: Return: JSD_10_dict
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Algorithm 6 SSIM(Dpm(Sub))

Require: For client datasets Dm1 and Dm2, subset indices Sm1 ⊆ Dm1, Sm2 ⊆ Dm2 where
m1 and m2 are clients within m(where m is the no.of clients=4).

Ensure: A dictionary SSIMI storing SSIM values
1: Initialize SSIMI ← {} {Empty dictionary for results}
2: for all i ∈ Sm1 do
3: for all j ∈ Sm2 do
4: I1 ← Dm1[i] {Get image i from dataset Dm1}
5: I2 ← Dm2[j] {Get image j from dataset Dm2}
6: ssim← ComputeSSIMValue(I1, I2) {Calculate SSIM}
7: SSIMI [(i, j)]← ssim {Store result in dictionary}
8: end for
9: end for

10: return SSIMI

5. Experiment Setup
This section provides a detailed discussion of each module in Fed-Hetero, the self-

evaluating framework which estimates the type of heterogeneity present in each client and
suggests appropriate measures to reduce it. It includes the dataset details in Section 5.1,
client and server modules in Sections 5.2 and 5.3, and the mathematical definitions for
estimating quantity skew, label skew, and image skew in Section 5.4 and finally discusses
the recommendation module in Section 5.5 and the ablation study in Section 5.6.

5.1. Dataset Description

The datasets considered for the study include retinal fundus images for glaucoma
prediction. The datasets are denoted as D1, D2, D3, and Dk where k = 4 with the same K
classes associated with client 1 to client m where m = 4. The datasets considered for the
study are Riga [30] , Dhristi [31], Rim-one [32], and HRF [33]. These datasets consists of
two classes, class 0 for non-glaucoma and class 1 for glaucoma. Table 4 show the details of
the datasets used for the study.

Table 4. Dataset details.

Datasets Reference Place Resolution No. of Images Year Format
Camera
Specifi-
cations

D1 (RIGA) [30] Riyadh, Saudi Arabia 2240 × 1488 460 2018 JPG and TIFF NA

D2 (Drishti) [31] Aravind Eye Hospital, Madurai 2896 × 1944 101 2015 PNG NA

D3 (Rim-one) [32]

Hospital
Universitario
de Canarias,

Clínico San Carlos
and Universitario

Miguel Servet,
Spain

2144 × 1424 159 2011 NA
Nidek
AFC-
210

D4 (hrf) [33] Eye Clinic Zlin, Czech Rep 3304 × 2336 45 NA NA Canon
CR-1

Data pre-processing is performed in all clients to convert all dataset images into
standard format because they may vary in size. To bring all images to the same size, a
rescale function is used, which normalizes all pixel values to the range [0, 1]. A 20% shear
and zoom ise applied to the images on all clients as an initial pre-processing step.
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This study could be expanded to incorporate eye-tracking datasets, as they also exhibit
quantity skew due to the limited number of images. The experiment can also be conducted
on the optic disc detection dataset, which includes radiologists’ gaze patterns as they
locate optic discs in retinal fundus images [34–36]. Another dataset related to eye-tracking
data focuses on analyzing how individuals with glaucoma navigate their environment,
specifically examining how they perceive and process visual stimuli [37].

5.2. Fed-Hetero Client Local Models

The clients client 1 to client m, where m = 4, train the models locally with the data
associated with them. The model used for training is a CNN network which consists of six
layers; the first four are convolutional and pooling, and the last two are fully connected.
The convolutional layer has 32 filters of kernel size 3, and the activation function used is
ReLu. Subsequently, max pooling is employed to decrease the spatial dimensions of the
output volume. The last layer is the fully connected layer which predicts as glaucoma or
non-glaucoma. At defined intervals, a local update is generated and transmitted from each
client to the server. The Fed-Hetero local model architecture is shown in Table 5.

Table 5. Fed-Hetero local model.

Layer Details Output Shape Parameters

Convolutional 32 filters, 3 × 3 kernel, ReLU
activation (None, 254, 254, 32) 896

Max Pooling Pool size 2 × 2 (None, 127, 127, 32) 0

Convolutional 32 filters, 3 × 3 kernel, ReLU
activation (None, 125, 125, 32) 9248

Max Pooling Pool size 2 × 2 (None, 62, 62, 32) 0

flatten (Flatten) (None, 123008) 0

Fully
Connected

(Dense)
ReLU activation (None, 128) 15,745,152

Output Layer Sigmoid activation, predicts
glaucoma/non-glaucoma (None, 1) 129

5.3. Fed-Hetero Server Global Model

The server sends the initial global parameters to all clients. After each round of fed-
erated learning process, a server accumulates the weights from the clients and computes
their average, and integrates it into the evolving global model. These improved global
model parameters are returned to the clients, who employ it to conduct further training in
subsequent communication rounds. Iterations persist until the desired level of convergence
is achieved or the predetermined communication rounds are concluded, ensuring a coop-
erative and iterative learning process. After “nt” rounds, the server calculates the weight
divergence for each client to see how far their local updates differ from the new aggregated
global model.

5.4. Data heterogeneity Estimation

To understand type of data heterogeneity associated with each client and to provide
recommendations, we focus on measuring the quantity skew, label distribution skew, and
image skew.
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5.4.1. Estimate Quantity Skew

After a specified number of rounds “nt” based on the weight divergence factor, the
server accepts the additional parameters such as PDm , PDml where l = 0, 1, Dpm(Sub) along
with the Wm

(t+1) where m= client 1 to client 4. The class distributions of client 1 to client 4
are given below:

PD1 = [p1(0), p1(1), . . . , p1(K− 1)] (11)

PD2 = [p2(0), p2(1), . . . , p2(K− 1)] (12)

PD3 = [p3(0), p3(1), . . . , p3(K− 1)] (13)

PD4 = [p4(0), p4(1), . . . , p4(K− 1)] (14)

Here, p1(c), p2(c), p3(c), p4(c) is the probability of class c in dataset D1, D2, D3, D4. All
clients calculate the probability distributions of the data they possess. Each client has an
PDm , which is then sent to the server. The server computes the JSDd for the datasets from
client 1 to client 4.

The Jensen–Shannon Divergence (JSD) between the four class distributions PD1 , PD2 ,
PD3and PD4 is defined as follows:

M =
1
2

(
PDi + PDj

)
(15)

where i and j can be any of the dataset pairs from D1, D2, D3, D4.
JSD between each client pairs is calculated as shown in Equations (16)–(21).

JSD(PD1 ∥ PD2) =
1
2
(
KLD(PD1 ∥ M) + KLD(PD2 ∥ M)

)
(16)

JSD(PD1 ∥ PD3) =
1
2
(
KLD(PD1 ∥ M) + KLD(PD3 ∥ M)

)
(17)

JSD(PD1 ∥ PD4) =
1
2
(
KLD(PD1 ∥ M) + KLD(PD4 ∥ M)

)
(18)

JSD(PD2 ∥ PD3) =
1
2
(
KLD(PD2 ∥ M) + KLD(PD3 ∥ M)

)
(19)

JSD(PD2 ∥ PD4) =
1
2
(
KLD(PD2 ∥ M) + KLD(PD4 ∥ M)

)
(20)

JSD(PD3 ∥ PD4) =
1
2
(
KLD(PD3 ∥ M) + KLD(PD4 ∥ M)

)
(21)

where KLD is the Kullback–Leibler Divergence [38] as shown in Equations (22)–(25).

KLD(PD1 ∥ M) = ∑
i

PD1(i) log
P1(i)
M(i)

(22)

KLD(PD2 ∥ M) = ∑
i

PD2(i) log
P2(i)
M(i)

(23)

KLD(PD3 ∥ M) = ∑
i

PD3(i) log
P3(i)
M(i)

(24)

KLD(PD4 ∥ M) = ∑
i

PD4(i) log
P4(i)
M(i)

(25)

RQ =

JSDd < 0.1 0−No quantity Skew

JSDd > 0.4 1−Quantity Skew
(26)
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JSD is used to evaluate the differences in data distributions across multiple clients. A smaller
JSDd value indicates that the clients have similar distributions and larger value indicates
greater dissimilarity. The reported upper-limit thresholds are specific to the dataset used in
the study to identify clients with close similarity, with 0.4 determined as the upper limit for
JSD and the lower limit 0. Based on the JSDd value as shown in Equation (26), the server
can notify the clients using RQ about the type of heterogeneity associated in their data,
prompting them to explore methods such as data augmentation [28] for improving the
accuracy of their individual models.

5.4.2. Estimate Label Distribution Skew

To estimate label distribution skew, based on the weight divergence factor the server
requests the probability distribution PDm0

, PDm1
for each class from all the clients. The

comparison of the label distributions using the Jensen–Shannon Divergence (JSD) is given
below as follows:

Let PDm0 and PDm1 represent the probability distributions of class 0 and class 1 in client
m, respectively, where m = no. of the clients.

The probabilities can be defined as follows:

PDm0 =
n(D1)

0

N(D1)

PDm1 =
n(D1)

1

N(D1)

where n(D)
i is the count of instances for class i in client m, and N(m) is the total number of

instances in client C. Each client computes the PDm0
and PDm1

, which is then sent to the
server. Based on the probabilities received from the clients, the server calculates the JSD
between the four distributions for each class as follows:

P(0)
Dm1

, P(0)
Dm2

, P(1)
Dm1

, P(1)
Dm2

are the probability distributions for class 0 and class 1 in
datasets Dm1, Dm2 associated with clients 1 to m where m1, m2 represent a pair of clients.
JSDClass 0(P(0)

Dm1
∥ P(0)

Dm2
) and JSDClass 1(P(1)

Dm1
∥ P(1)

Dm2
) are calculated for each class. Assume

that the distributions P
D(0)

m1
, P

D(0)
m2

for class 0, and P
D(1)

m1
, P

D(1)
m2

for class 1 over the same

domain X .
For Class 0, compute the average distribution:

M(0)(x) =
1
2

(
P(0)

Dm1(x) + P(0)
Dm2(x)

)
∀x ∈ X (27)

Compute the KL divergences for Class 0:

KLD(P(0)
Dm1
∥ M(0)) = ∑

x∈X
P(0)

Dm1
(x) log

P(0)
Dm1

(x)

M(0)(x)
(28)

KLD(P(0)
Dm2
∥ M(0)) = ∑

x∈X
P(0)

Dm2
(x) log

P(0)
Dm2

(x)

M(0)(x)
(29)

Compute the Jensen–Shannon Divergence for Class 0:

DJS, 0 =
1
2

(
KL(P(0)

Dm1
∥ M(0)) + KL(P(0)

Dm2
∥ M(0))

)
(30)
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Similarly, compute the average distribution for Class 1:

M(1)(x) =
1
2

(
P(1)

Dm1
(x) + P(1)

Dm2
(x)

)
∀x ∈ X (31)

Compute the KL divergences for Class 1:

KLD(P(1)
Dm1
∥ M(1)) = ∑

x∈X
P(1)

Dm1
(x) log

P(1)
Dm1

(x)

M(1)(x)
(32)

KLD(P(1)
Dm2
∥ M(1)) = ∑

x∈X
P(1)

Dm2
(x) log

P(1)
Dm2

(x)

M(1)(x)
(33)

Compute the Jensen–Shannon Divergence for Class 1:

DJS, 1 =
1
2

(
KL(P(1)

Dm1
∥ M(1)) + KL(P(1)

Dm2
∥ M(1))

)
(34)

Rl0 =

DJS, 0 < 0.1 No label skew

DJS, 0 > 0.4 label skew
(35)

Rl1 =

DJS, 1 < 0.1 0−No label skew

DJS, 1 > 0.4 1− label skew
(36)

JSD [39] is a measure of similarity between two probability distributions. A JSD value
near to zero indicates similar distributions and, as the value moves toward 1, this indicates
dissimilar distributions. Based upon the DJS, 0, DJS, 1 value of each classes 0, 1 as shown in
Equations (35) and (36), the server can provide recommendations Rl to clients such that they
can improve the number of samples with respect to each class using data augmentation [28].

5.4.3. Estimate Image Skew

To measure the image skew data heterogeneity, a predefined subset of samples is
shared from the clients to the server. The subsets are represented as s1, s2, s3, s4 such that
s1 ⊂ D1, s2 ⊂ D2, s3 ⊂ D3, s4 ⊂ D4. The server calculates the SSIM between the images in
the samples SSIM(I_1,I_2) to SSIM(I_3,I_4) using samples drawn from s1, s2, s3 and s4.

SSIM values vary from 0 to 1 and a value close to 1 indicates high similarity between
images. The range selected for the study considered a higher limit as 1 indicating that the
two images are identical and a lower limit as less than 0.8 meaning that the images have
significant differences. In medical use cases, it is preferable to consider images with greater
similarity, meaning SSIM values should be as close to 1 as possible. We set the threshold at
0.8, as it was the highest value observed in the study. We also examined existing studies [40]
that utilized SSIM to assess the structural similarity of medical images, which also define
the SSIM range. The threshold obtained and discussed in Fed-Hetero has been validated
with the chosen dataset. Detailed investigations of extending on different datasets to fix the
thresholds adaptively have not been considered in the current study.

Based on SSIM value as shown in Equation (37), the server recommends the clients
about image skew and also mentions the clients which it has to cluster [29].

Ri =

0.8 < SSIM > 0.95 0−No image skew

SSIM < 0.8 1− Image skew
(37)
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5.5. Recommendations

Based on JSDd, DJS, 0, DJS, 1 and SSIM values, the server sends the recommenda-
tions RQ, Rl , and Ri to the clients. The clients with limited representation in the global
update are informed about their low contribution, encouraging them to include methods
like data augmentation [28] and clustering [29] to enhance their participation in future
global updates.

5.6. Ablation Study

We aim to explore the the effect of changing the number of local training epochs (local
training steps) on global rounds. The experiment was conducted by altering the number
of local epochs while keeping the number of global rounds fixed at 3. The local epochs
considered are E = 30, 50, 70. It is observed that clients with limited data do not experience
an improvement in accuracy. In fact, their accuracy either remains unchanged or decreases.

Hyperparameter tuning was performed using Optuna over 20 trials to identify the
optimal values for learning rate, epochs, and batch size. The best-performing model
from this process was saved and later employed for training in a federated learning
setup. However, when each client utilized its optimized model, the performance of the
federated learning approach declined, potentially due to non-IID data characteristics. This
performance degradation might be attributed to quantity skew and image skew. From
both investigations, it is evident that data augmentation or clustering is necessary to
enhance performance.

6. Results and Discussions
Fed-Hetero provides recommendations to clients on the type of heterogeneity present

in the data. Based on type of heterogeneity, data augmentation or clustering is recom-
mended to clients, which improves the FL performance. The subsections explore the
performance of federated learning as outlined in Section 6.1, the heterogeneous nature of
data associated with clients highlighted under Section 6.2, the factors influencing client
performance detailed in Section 6.3, recommendations presented in Section 6.4, and a
comparison with existing works discussed in Section 6.5.

6.1. Performance of Fed-Hetero

The performance of Fed-Hetero for local and global accuracy after three rounds is
shown in Tables 6 and 7. Its noticed that the global accuracy of client 2 and client 4
is not improving, prompting an investigation into the type of data skew affecting the
performance of the federated learning models. The server notifies the clients with the
type of data heterogeneity and recommends the clients to perform data augmentation
or clustering.

Table 6. Local accuracy for clients across three rounds.

Client Round 1 Round 2 Round 3

client 1 85% 92% 95%
client 2 68% 81% 86%
client 3 86% 92% 96%
client 4 85% 80% 80%
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Table 7. Global accuracy for clients across three rounds.

Client Round 1 Round 2 Round 3

client 1 79% 89% 95%
client 2 57% 53% 57%
client 3 81% 88% 94%
client 4 69% 50% 60 %

6.2. Heterogeneous Nature of Data

The Table 8 displays sample images from the datasets [30–33] to highlight the varia-
tions in the structural patterns of the images.

Table 8. Heterogeneous data selected for Fed-Hetero [30–33].

(a) client 1 [30] (b) client 2 [31] (c) client 3 [32] (d) client 4 [33]

To analyze the heterogeneity in the data associated with clients, we plotted the images
based on the quantity shown in Figure 2.
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Figure 2. Heterogeneous nature of data with respect to quantity skew.

6.3. Heterogeneous Factors Effecting Client Performance

The effect of different skewness levels on the data was analyzed by examining the
distribution of quantities, labels, and image skew.

6.3.1. Quantity Skew

To understand the effect of quantity skew on the overall performance of FL JSDd

values between the samples in the clients are computed by the server and results are shown
in Table 9.
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Table 9. Evaluation of quantity skew based on JSD between clients.

Clients Client 1 Client 2 Client 3 Client 4

client 1 NA 0.70 0.22 0.17

client 2 NA 0.52 0.56

client 3 NA 0.046

client 4 NA

The inference from the Figure 3 and Table 9 (shown in bold) is that the Jensen–Shannon
Divergence (JSD) values of client 2 with client 1, client 3, client 4 indicate a high level of
divergence. This indicates that client 2 exhibits significant differences from client 1, client 3,
and client 4 in their distributions. Such critical divergence implies that the underlying
patterns or behaviors within client 2 differ substantially from those observed in client 1,
client 3, and client 4. Hence, we can infer that the decrease in global accuracy is attributed
to the participation of client 2.
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Figure 3. Evaluation of quantity skew based on JSD between clients depicted in bar graph.

6.3.2. Label Distribution Skew

The label distribution skew impact on the FL accuracy is assessed by calculating the
JSD between the classes(class 0 and class 1) DJS, 0, DJS, 1 for the samples associated with
the clients. Table 10 displays the JSD values between classes in the clients to evaluate label
distribution skew.

A JSD value below 0.1 suggests that the data associated with the clients are similar,
while a value greater than 0.4 indicates significant dissimilarity. The results, as shown in
Figure 4 and Table 10 (in bold), show significant divergence in the label distributions for
client 2 with other clients for classes 0 and 1. Thus, we can infer that client 2 participation
in the FL process affects the accuracy of the FL model.
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Table 10. Evaluation of label distribution skew based on JSD between clients

Clients Client 1
(Class 0, Class 1)

Client 2
(Class 0, Class 1)

Client 3
(Class 0, Class 1)

Client 4
(Class 0, Class 1)

client 1 (class 0, class 1) NA 0.34, 0.57 0.00, 0.00 0.00, 0.00

client 2 (class 0, class 1) NA 0.77, 0.77 0.77, 0.77

client 3 (class 0, class 1) NA 0.00, 0.00

client 4 (class 0, class 1) NA
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Figure 4. Evaluation of label distribution skew based on JSD values between clients depicted in
bar graph.

6.3.3. Image Skew

To evaluate image skew, the SSIM values are computed for the subset of images which
is shared to the server which is shown in Table 11.

Table 11. Evaluation of image skew based on SSIM values between clients.

Clients Client 1 Client 2 Client 3 Client 4

client 1 NA 0.6 0.8 0.7

client 2 NA 0.6 0.8

client 3 NA 0.7

client 4 NA

The inference from the study is that the clients client 1–client 3, client 2–client 4 have
good similarity, which indicates that they contain similar type of images. Client 2 exhibits
both quantity skew and label skew. Table 12 shows the inferences from the JSD and SSIM
across the clients.
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Table 12. Evaluation of various skews across clients in Fed-Hetero.

Clients JSDd DJS, 0 DJS, 1 SSIM

client 1-client 2 0.70 0.34 0.57 0.6
client 1-client 3 0.22 0.00 0.00 0.8
client 1-client 4 0.17 0.00 0.00 0.7
client 2-client 3 0.52 0.77 0.77 0.6
client 2-client 4 0.56 0.77 0.77 0.8
client 3-client 4 0.04 0.00 0.00 0.7

6.4. Recommendations-RQ, Rl and Ri

RQ, Rl , and Ri are the recommendations given to the client from the server. RQ

indicates quantity skew, Rl refers to label distribution skew, Ri represents image skew.
Based on this inference, to reduce the amount of data heterogeneity, the client performs data
augmentation or clustering. The recommendations mentioned for each client are shown
in Table 13. Based on JSDd, DJS, 0, DJS, 1 and SSIM values, similarity in the distributions
can be identified. The distributions of client 1 and client 3 are similar. Likewise, client 2
and client 4 exhibit a similarity in their distributions. Thus, clustering is recommended for
client 1 and client 3, client 2 and client 4. As the JSDd for client 2 with other clients is 0.5
to 0.7, which indicates higher divergence, the data augmentation [28] is recommended for
client 2.

Table 13. Recommendations by Fed-Hetero system to the clients.

Clients RQ Rl Ri Cluster Augmentation

client 1 0 0 1 ✓
client 2 1 1 1 ✓
client 3 0 0 1 ✓
client 4 0 0 1 ✓

Data augmentation can be achieved through various strategies, including the use
of synthetic data or basic transformations. However, when a synthetic data generator
is used to address data heterogeneity, there is no statistically significant evidence that
it outperforms standard baselines in correcting class imbalance [41]. Nonetheless, some
studies [42] suggest sharing synthetic data generated by clients with other participating
clients. Additionally, other research explores a method where a client utilizes a foundation
model [43] to generate synthetic data based on its local dataset. A subset of this synthetic
data is then transmitted to a central server, which aggregates it into a global synthetic
dataset. The server subsequently redistributes this dataset to clients, allowing them to
enhance their local data with more diverse and high-quality synthetic samples. While
careful generation and distribution of synthetic data can help mitigate under-representation
in augmented datasets, it may also raise privacy concerns.

The results after data augmentation with basic augmentation operations show a 10%
improvement in accuracy for clients with limited data. The experiment should be extended
to include more communication rounds in order to assess whether there is a further increase
in accuracy. This could be explored as part of future work. The clustering of clients based
on structural similarities in their images was proposed as a direction for future research.

6.5. Comparison with Existing Works

The proposed work Fed-Hetero addresses quantity skew, label distribution skew,
and image skew. FL-Hetero explored a client-based approach where clients are informed
about the type of data heterogeneity, enabling them to perform either data augmentation
or clustering with other clients of similar distributions. Rather than excluding clients with
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limited data, we focused on incorporating them effectively into the FL process and, instead
of sharing information with all clients, it is shared only with servers.

In the work [22], the clients are selected for the FL process based on the similarity
in the data distributions. The Federated Feature distillation (FedFed) [19] tackles the
data heterogeneity by generating and sharing performance-sensitive features. FedFed
raises potential privacy concerns as important features are shared. In federated daisy
chaining [23], a daisy chain of local datasets enables more efficient training in data-sparse
domains. The clients are sharing information with other clients that do not maintain privacy.
Table 14 shows the comparison of Fed-Hetero with the existing works. Most existing works
are focused on quantity skew and label distribution skew.

Table 14. Comparison of existing works with Fed-Hetero.

FL Algorithm/ Approach Ref Quantity
Skew

Label
Skew

Image
Skew

Feature
Skew

one-pass distribution [22] ✓ ✓

FedFed [19] ✓ ✓

federated daisy chaining [23] ✓ ✓

FedAF [20] ✓ ✓

FedIcon [21] ✓

FedZDA [18] ✓

Fed-Hetero ✓ ✓ ✓

Fed-Hetero additionally addresses image skew and incorporates a strategy for in-
cluding clients with limited data into the FL process where the existing works exclude
the limited data clients [22]. Fed-Hetero does not address feature skew, which refers to
the potential mismatch or imbalance between the features of training and testing data
that could affect the model’s generalization performance. The scalability of this approach
presents an opportunity for further exploration, particularly in scenarios with a growing
number of clients and increased communication rounds in federated learning.

7. Conclusions
A substantial amount of private data remains confined within clients, largely due

to privacy and security concerns. Federated learning frameworks generally achieve high
accuracy, but their performance may occasionally decline due to data heterogeneity, partic-
ularly when dealing with unbalanced and non-IID data distributions. This research aims to
explore the impact of data heterogeneity, including quantity skew, label distribution skew,
and image skew, on the performance of federated learning, particularly when working
with limited data. The proposed work Fed-Hetero, a self-evaluating framework, recom-
mends strategies for addressing data heterogeneity by first identifying the specific type of
heterogeneity associated with client data. Fed-Hetero evaluates client performance and
recommends techniques such as data augmentation or clustering to enhance outcomes.
This ensures the inclusion of clients with limited data in the federated learning process.
This study can be expanded to incorporate the feature distribution skew and analyze its
impact on the performance of the federated learning setup. Transferring a subset of images
to the server for estimating data skewness raises privacy concerns; therefore, we plan to
explore privacy-preserving methods as part of our future work.
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