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Emerging from the software crisis of the 1960s, conventional software systems have vastly improved through Software
Engineering (SE) practices. Simultaneously, Artiicial Intelligence (AI) endeavors to augment or replace human decision-
making. In the contemporary landscape, Machine Learning (ML), a subset of AI, leverages extensive data from diverse sources,
fostering the development of ML-enabled (intelligent) software systems. While ML is increasingly utilized in conventional
software development, the integration of SE practices in developing ML-enabled systems, especially across typical Software
Development Life Cycle (SDLC) phases and methodologies in the post-2010 Deep Learning (DL) era, remains underexplored.
Our survey of existing literature unveils insights into current practices, emphasizing the interdisciplinary collaboration
challenges of developing ML-enabled software, including data quality, ethics, explainability, continuous monitoring and
adaptation, and security. The study underscores the imperative for ongoing research and development with focus on data-
driven hypotheses, non-functional requirements, established design principles, ML-irst integration, automation, specialized
testing, and use of agile methods.

CCS Concepts: · Software engineering → Software development life cycle; · Artiicial intelligence → Machine

learning.

Additional Key Words and Phrases: Conventional software, ML-enabled software, ML-powered systems, SDLC phases, Process
areas, Software development models

1 Introduction

Driven by the software crisis of the 1960s, the Software Engineering (SE) discipline was coined and enabled the
production of high-quality software [142]. SE aims to adopt methodical approaches to software development,
thereby achieving success in implementing software projects. In other words, SE is the application of engineering
principles to software, as described in the terminology of the IEEE standard glossary [20]. In seminal work, Wirth
[142] pointed out that software systems were promised but could not be completed and delivered on time due to
high complexity, particularly after the introduction of time-sharing systems. The SE discipline has introduced
systematic and quantiiable approaches to software development, operation, maintenance, and retirement, thereby
tackling software complexity. In SE, the Software Development Life Cycle (SDLC) provides a structured process
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to produce high-quality software according to prescribed production quality, cost, and time. The SDLC works
based on the core phases, including requirements gathering, software design, development, test and integration,
deployment, operation, and maintenance [114].
Artiicial Intelligence (AI) has also been used to create autonomous systems with an attempt to replace and

or augment human decision-making, which eventually led to the development of Machine Learning (ML), as a
means of achieving that same AI goals [34]. Although there have been periods called AI winters throughout its
history where AI research and development was quiet [86], today, ML, along with the large amounts of data being
produced by diverse types of systems like the Internet of Things (IoT), web applications, corporate databases,
smartphones, and sensors is a popular subset of AI. It enables computers to generate actionable insights and
build ML-enabled (intelligent) software systems based on previous experiences. In ML-enabled systems, modules
or functionalities that incorporate ML techniques and algorithms, namely ML components, are introduced to
perform tasks that traditionally require human intelligence. The ML component provides partial autonomy to
the automated units, evaluates and optimizes processes, and forecasts future trends [84]. The development of
ML is a multi-phase process and uses various types of algorithms (and models like neural networks) to support
the decision-making process. The phases in ML model development include data collection, data preparation,
model selection, training, evaluating, parameter tuning, and deployment [95]. Although ML algorithms initially
focused on solving mathematical problems and object recognition [34], nearest neighbor and K-Nearest Neighbor
algorithms have been introduced for pattern recognition and deep learning (DL), which imitates the human
thinking process, and has known renewed impetus post 2010, in what is widely considered to be the start of the
modern DL era, when increased GPU speed enabled the advent of novel convolutional neural network (CNN)
architectures such as AlexNet [68]. Lately, ML’s advancement on a global scale has been driven by the emergence
of Large Language Models (LLM) and generative AI [36, 135]. According to Wang et al. [135], these models have
the ability to generate coherent and contextually relevant text, enabling them to perform various tasks, including
text completion, text generation, and serving as conversational AI, among others.

The interaction between elements of the SE and ML disciplines is not a novel subject of study, and numerous
pieces of literature have discussed their mutual inluence. As an illustration, the research highlighted in [84, 89]
explored how these ields intersect, particularly for addressing the challenges in software architectural design,
which provide high-level descriptions of software components and their interaction. In this context, ML serves
as a tool for enhancing the architectural design of conventional software systems. By conventional software,
we mean the classical software-based automation of speciic tasks like business functions, websites, etc. In this
regard, the literature provides valuable perspectives on the utilization of ML-based tools, techniques, and methods
to enhance the ield of SE and, consequently, to create high-quality software systems. For instance, ML has found
application in automating speciic phases of the SDLC, such as software testing, as demonstrated in [148]. There
is also a need to create architectural styles, patterns, and frameworks to seamlessly incorporate ML components
into the design of ML-enabled software systems[89]. This architectural focus on the interaction between elements
of the SE and ML disciplines represents only one aspect of the wide spectrum of SE practices. Nevertheless,
existing studies have yet to comprehensively examine how SE tools, techniques, and methods are employed in
the development of ML-enabled software systems (i.e., systems powered by ML), particularly across typical life
cycle phases and methodologies in the DL era (i.e. post 2010). Thus, in the study reported herein, we adopted a
holistic view of SE practices, as will be described next.
We have reviewed the state-of-the-art and challenges concerning SE practices in the development of ML-

enabled software systems. This study contributes by conducting a thorough review of the existing literature,
ofering insights into how the SE discipline is practiced in the context of developing ML-enabled software systems,
particularly focusing on the typical SDLC phases (hereafter also referred to as SE process areas) and software
development methodologies. By analyzing the indings presented in the prior research, this study provides a
comprehensive understanding of the current state of knowledge in the ield.
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The remainder of the paper is organized as follows. Sections 2 and 3 present the background and methodology
of the study. Next, the results of the current practices and challenges of engineering ML-enabled software are
provided in Section 4, while Section 5 discusses the results. Finally, Section 6 concludes the paper.

2 Background

Software, designed and custom-built, degrades over time and leverages technological frameworks. Thus, SE
integrates processes, methods, and tools, emphasizing an organizational commitment to quality standards using
principles like TQM, CMMI, Six Sigma, and ISO [31, 51, 71, 108, 121]. The SDLC phases, partition development into
manageable activities- requirements speciication[131], design[104], development, testing[52], deployment[25],
and maintenance[97]- thereby achieving the standards. SE methods ofer technical guidelines, addressing defects,
schedules, resources, and costs. Examples include waterfall, prototyping, spiral, and agile. SE tools, like Computer
Aided Software Engineering (CASE) tools, automate tasks, enhancing productivity and quality through structural
or object-oriented paradigms such as diagramming tools, automated testers and code generators [17, 50, 107ś109].
In the subsequent subsections, we introduce the core concepts and modern approaches in ML as well as their
interaction with SE in the development of ML-enabled software.

2.1 Core Concepts and Applications in Machine Learning

Before delving into the development of ML-enabled systems, it is essential to provide an explanation of what
AI entails. The literature indicates that AI is a diicult term to deine robustly [30]. However, various authors
have made a few historical attempts to deine it. For example, one of the most commonly used deinitions of AI is
stated as "the simulation of human intelligence in computers that are programmed to think like humans and
mimic their actions" [110].

AI systems can be designed as rule-based systems or learning-based systems. Rule-based systems (also known
as expert systems) are the simplest forms of AI, which are created using a set of rules along with basic data
as knowledge representation. These form AI models that mimic the reasoning capability of human experts in
solving knowledge-intensive problems [39]. AI-based on computer learning, or ML, generates its models through
extensive datasets representing the domain. That is, AI is an umbrella discipline that covers everything related to
making machines smarter, while ML refers to the subset of AI that implements models that can self-learn based
on algorithms and get smarter over time without human intervention.

2.1.1 Principles and applications of ML. Sarker [115] describes today’s digital world as being endowed with data
obtained from IoT, cyber security, mobile, business, social media, health applications, etc. ML plays a key role in
analyzing these data and developing smart applications.
ML methods are commonly categorized as supervised, unsupervised, semi-supervised, and reinforcement

learning in the area. Such models are used to enhance the intelligence and capabilities of applications in various
real-world domains, such as cyber security systems, smart cities, healthcare, e-commerce, agriculture, and more
[115].
Linear regression, logistic regression, decision tree, support vector machines (SVM), Naive Bayes, neural

networks, K-means clustering, and random forest are among the algorithms used in the development of ML
models [115]. Examples of common ML applications include traic alerts, social media, automated language
translation, transportation and Commuting, dynamic pricing and product recommendations, virtual personal
assistants, self-driving cars, etc.

DL and deep neural networks are also part of ML methods that can intelligently analyze data on a large scale
[113, 115]. The major phases of ML development are data collection, data pre-processing, model selection, training
the model, model evaluation, parameter tuning, and making predictions.
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In the development of ML models, the quality of the resultant model is signiicantly inluenced by the data
pre-processing phase. This crucial step involves evaluating and improving the quality of data through operations
such as data cleaning, transformation, and reduction. These processes aim to address various issues like missing
data, data inconsistency, incorrect formats, and data types, among others, as highlighted by Samek et al. [113].
Despite its importance, the data pre-processing phase often receives inadequate attention in ML development.

2.1.2 The need for large datasets. Data is of paramount importance throughout various phases of the development
of ML models. The general consensus is that a larger training dataset contributes to improved model performance.
Consequently, substantial data collection from diverse sources, including enterprise applications, websites, emails,
IoT devices, smartphones, and sensors, is imperative for ML model development [90, 120, 134]. Samek et al. [113]
emphasize the necessity of selecting representative features during training, avoiding sample sizes that are too
small or too large. Ensuring model performance involves scrutinizing data through train-test-validate splits and
ine-tuning after each training phase.

2.1.3 uality considerations in ML. Both data and algorithms play critical roles in ensuring the quality of
ML-enabled systems in terms of performance, robustness, reliability, fairness, scalability, etc. However, most
researchers and practitioners concentrate more on algorithms while undervaluing the impact of data quality. Many
domain-speciic techniques are used to assess and improve the quality of data stored in relational databases, which
necessitates evaluating their suitability in ML. In addition, there are trans-domain and generic dimensions of data
quality in the context of ML, including business rules and governance standards for data quality; documented
data speciications and integrity maintenance; data consistency, currency, duplication, completeness, provenance,
and heterogeneity; data streaming, sampling, dimension reduction, and outliers; feature selection and extraction;
data accuracy and bias; and security, namely, conidentiality, privacy, availability and access control [40]. In the
case of security, McGraw et al. [79] mentioned the topmost important security risks among several ML-related
risks identiied in the literature. A description of these risks is provided in Table 1.

The emergence of IoT has also raised several concerns due to smart devices impacting data quality, particularly
security and privacy. For example, a study in [16] identiied concerns and policy frameworks relating to IoT
systems that collect individuals’ data through unauthorized surveillance, uncontrolled data generation and
use, and inadequate authentication. The study showed that classical privacy policies do not provide adequate
protection for the collection and use of individuals’ personal data in the context of IoT. Moreover, the diverse
data types, data harvesting granularity, and user demographics generated by sensors in IoT systems inluence the
security and privacy associated with data sharing [2]. Additionally, researchers have investigated IoT quality
characteristics relating to commercial voice user interfaces, namely, smart speakers. For example, the study of
Pyae and Joelsson [100] investigated the usability, user experiences, and usefulness of Google Home.

2.1.4 ML applications in sotware development. A study by Meinke and Bennaceur [80] pointed out that ML
has been successfully applied in various areas of SE, ranging from software behavior extraction to testing and
bug ixing. ML, DL, and LLM applications are foreseeable in software speciication extraction, design pattern
recognition, code generation, test case generation, bug detection, and learning adaptation strategies in software
coniguration[32, 80, 136, 137, 145, 150]. ML methods can also be used to predict or estimate software quality,
software size, development cost, development efort, reliability, software defect, reusability, release timing, and
testability [148].
In regards to the application of ML in software maintenance, Panichella et al. [97] pointed out the following

interesting insights for the maintenance and evolution of mobile apps. First of all, ML can provide a high-level
taxonomy of categories of sentences contained in the reviews by users that are relevant for maintenance and
evolution. Furthermore, it enables the extraction of users’ intentions expressed in app store reviews relevant to
the maintenance and evolution of apps based on natural language processing (NLP). Similarly, the large amounts
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Table 1. Top security risks in Machine Learning

Risk Type Characteristic

Adversarial examples Adversarial examples are among the popular ML risks where malicious
input lead to false prediction.

Data poisoning In data poisoning, an attacker intentionally manipulates the data in order
to compromise the ML system.

Online system manipula-
tion

This is another kind of attack where an attacker can nudge a system in
operation (still-learning) through wrong input thereby slowly behaving
incorrectly.

Compromised base A compromised base system may be used in transfer learning, thereby a
risk by unanticipated behavior deined by an attacker.

Data conidentiality These kinds of attacks may extract sensitive and conidential information
from ML-enabled systems that used such data during the training.

Data trustworthiness Lack of data trustworthiness can cause risk due to limitations in the data
source like unreliable sensors and lack of data integrity.

Lack of reproducibility In ML-enabled systems, lack of reproducibility of results due to poor
description and reporting can cause risks as a compromise may happen
unnoticed.

Overitting An ML system may łmemorizež its training data set through a lookup
table due to overitting (not generalize to new data) which leads to an
adversarial examples attack.

Encoding integrity Encoding integrity (e.g., metadata) issues can bias a model to solve a
categorization problem by overemphasizing the metadata and ignoring
the real issue.

Output integrity Output integrity can cause risk due to unveriied output from opaque
models where an interposing attacker may hide in plain sight.

of accessible data generated as source code (and other software artifacts) by the software industry can be used to
learn patterns and develop productivity tools like NLP-based software code searching, code recommendation, and
automatic bug ixing [9]. According to Bader et al. [9], such large amounts of source code are available in GitHub
as well as in other proprietary repositories. It also exists in the form of other software artifacts, such as incremental
changes between repository code versions, continuous integration tests with outcomes, and developers’ replies
on online forums such as Stack Overlow. Abubakar et al. [1] also discussed aspects of the interplay between SE
and ML in regard to the estimation of efort and quality in software projects. Furthermore, the authors foresee
exploring the possibility of SE-ML fusion in terms of scaling-up operations, tool integration, and performance
evaluation. Meinke and Bennaceur [80] also describe a trend towards agile software development to leverage the
potential of ML in incremental and exploratory coding.
Search-based SE (SBSE) is another area of application of ML in SE which enables meta-heuristic search

techniques to generate adequate software tests evaluated with respect to the itness function. Harman [46]
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describes this as an approach to solving SE problems of developing noisy, ill-deined software systems, competing,
conlicting, connected, complex, and interactive. In this context, the introduction of ML in SE plays a signiicant
role in realizing the move from an unrealistic utopia of perfection into a more realistic but imperfect software
development practice.
Overall, ML in SE ofers streamlined processes for tasks like software behavior extraction, testing, and bug

ixing [80]. For NLP-based software code searching, ML enhances the precision and speed of code retrieval [9]. It
also enhances cost, size, efort, and quality estimation in SE projects, improving planning and decision-making,
thereby simplifying complex tasks and contributing to the realization of a realistic software development practice
[1, 46, 148]. Moreover, ML aids in predicting software reliability, reusability, testability, and release timing,
optimizing resource allocation [148]. However, its application in design pattern recognition and code generation
can be intricate, requiring careful modeling and specialized expertise. ML excels in test case generation and bug
detection but may lack transparency in decision-making. Data quality and specialized knowledge are essential
considerations, highlighting the trade-ofs and complexities of ML in SE.

2.2 Engineering Machine Learning-Enhanced Sotware Systems

In the context of this research, we deine ML-enabled software as software augmented with ML components.
This type of software leverages ML to carry out tasks that typically demand human intelligence, such as language
translation, image recognition, or decision-making. The ML component can be trained with extensive data to
execute these tasks with exceptional precision. Consequently, the integration of ML into software enhances its
ability to perform intricate tasks swiftly and efectively, surpassing the capabilities of traditional software in
isolation.
Engineering ML-enabled software is another dimension of the SE and ML disciplines’ interplay. In light

of this, various authors claimed that special treatment is needed when developing ML-enabled systems. For
instance, according to Martínez-Fernández et al. [78], ML-enabled systems are software with functionalities
enabled by at least one ML component. Such components may be used for image recognition, speech recognition,
traic prediction, product recommendations, self-driving vehicles, email spam iltering, malware iltering, virtual
personal assistant, and fraud detection. All of these factors lead to the need to pay special consideration to
technical, ethical, and social concerns in the engineering of ML-enabled systems. Accordingly, Gasser and
Almeida [35] proposed a layered model for ML governance and introduced principles for developing accountable
ML algorithms (namely, responsibility, explainability, accuracy, auditability, and fairness), which have a signiicant
social impact.
Amershi et al. [4], in their study, pointed out that there is widespread interest in integrating ML into con-

ventional software, which in turn necessitates a change in the software development process. The authors also
mentioned aspects of ML that make it fundamentally diferent from conventional software development. These
aspects include much more complex discovery and management of data, very diferent skill requirements for
model customization and reuse, and components that are more diicult to handle as distinct modules. In a related
context, Ozkaya [93] explained those inherently diferent characteristics of ML-enabled systems, which she
described as software-reliant systems that include data and components that implement algorithms mimicking
learning and problem-solving- due to their probabilistic nature (as opposed to the deterministic nature con-
ventional software systems). Although they have many commonalities with regard to building, deploying, and
sustaining conventional software systems, the author pointed out that systems with ML components can have a
high margin of error (due to the uncertainty that often follows predictive algorithms), which makes ML-enabled
systems hard to test and verify.

It has also been highlighted that requirements engineering needs a tailored software development process when
applied to the development of ML-based complex systems [11]. However, according to Belani et al. [11], there is
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no process in place speciically tailored to deal with requirements suitable for specifying such software solutions.
From the perspective of software quality and testing, Lenarduzzi et al. [72] asserted that ML applications are
produced by developers who lack in-depth knowledge regarding SE processes, which resulted in poorly tested
and very low-quality ML-enabled software systems.

2.3 Background Summary

This section provides an overview of SE principles and their integration with ML, highlighting their interplay in
modern software development. SE encompasses processes, methods, and tools aimed at maintaining software
quality. The SDLC partitions development into phasesÐrequirements speciication, design, development, testing,
deployment, andmaintenanceÐeach essential for achieving quality standards and improving productivity. Focused
on self-learning algorithms, ML enhances machine intelligence using supervised, unsupervised, semi-supervised,
and reinforcement learning methods, facilitating advancements in cybersecurity, healthcare, e-commerce, and
more. Techniques such as linear regression, neural networks, and DL underpin ML’s ability to process and derive
insights from vast datasets. The integration of ML into SE practices has shown considerable promise through task
automation, such as software testing and cybersecurity solutions. Additionally, studies have explored adapting
SE principles to address the distinct challenges posed by ML-enabled systems, known for their probabilistic ML
algorithms. Despite these advancements, the literature lacks a detailed exploration of how SE principles can
efectively support the development of ML-enabled software systems, ensuring robustness, reliability, and ethical
standards in their deployment. Addressing this gap, our research aims to investigate the seamless integration of
SE and ML, thereby contributing to the advancement of both disciplines. The following section will outline the
methodology used to review existing literature, aiming to identify current trends and gaps in this ield.

3 Methodology

In this study, our objective is to distill the core insights derived from the empirical experiences of researchers
regarding the interaction between the ields of SE and ML. Speciically, we focus on exploring the current
landscape and challenges in SE practices related to the development of ML-enabled software systems. Our goal is
to analyze and amalgamate existing research to gain a deeper understanding of fundamental principles and draw
conclusions regarding the layered technology[108], focusing on the SE process areas and software development
methodologies. In this section, we present our review guideline, literature selection strategy, and method of
analysis.

3.1 The Adopted Review Guideline

A review guideline serves as a fundamental framework that shapes our methodology for structuring the review
process. In this section, we have summarized existing review guidelines [59, 63, 92, 105], which are instrumental
in ensuring the integrity and reliability of our study.

The guidelines put forth by Keele et al. [59] and Kitchenham and Charters [63] emphasize the critical milestones
in the review process, encompassing the deinition of objectives, the execution of the review, and the reporting
of indings. These comprehensive guidelines outline a series of detailed activities, which include establishing a
review protocol, conducting systematic searches, making selection decisions (such as inclusion and exclusion
criteria), data extraction, analysis of results, and the subsequent discussion and conclusion. In addition, Okoli and
Schabram [92] proposed an extended guideline that incorporates quality appraisal and synthesis as supplementary
components.

Furthermore, there is a qualitative (phenomenological) review guideline, as described by Randolph [105] and
Creswell and Poth [21], with the speciic aim of elucidating the "lived experiences" of individuals in relation to a
particular phenomenon. This guideline encompasses a sequence of steps, including bracketing, data collection,
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identiication of meaningful statements, interpretation, and the comprehensive description of the observed
phenomena.

For our study, we have chosen to adopt a review guideline that encompasses the deinition of objectives, litera-
ture searching, selection processes (inclusion criteria), data extraction, analysis of indings, and the subsequent
discussion and conclusion. In line with the phenomenological approach, as suggested by Randolph [105], we have
deliberately set aside our own personal experiences, biases, and preconceived notions related to the introduction
of ML-enabled software as a phenomenon. This approach ensures that our review maintains an objective and
unbiased perspective in exploring the subject matter as it appears in the studies we have examined.

3.2 Literature Search and Selection Strategy

In line with our review objective and the adopted review guideline, ive reputable digital libraries, SpringerLink,
Scopus, ScienceDirect, IEEExplore, and ACM-DL, were chosen to collect the related studies from January 2010.
This time frame was selected as it marked the beginning of the modern DL era, prompting the establishment of
thousands of AI startups dedicated to DL [26].
In the literature search, we employed several keywords relating to requirements speciication, design, de-

velopment, testing, deployment, maintenance, and development methodologies- in the context of engineering
ML-enabled software (see Section 2). Additionally, we employed inclusion criteria as part of our literature
search strategy and formulated search queries to perform an advanced search on the digital libraries. The search
queries consisted of alternative search terms or synonyms as operands as well as the ’AND’ and ’OR’ operators.
Accordingly, we ran the search queries below and collected journal and conference articles from the chosen
digital libraries. The search string is constructed according to the general pillars adopted in this study- "software
development phases" AND "integration with ML" AND "software development methodologies".

"software engineering" OR "requirement speciication" OR "requirements engineering" OR "software construction"
OR "software design" OR "software architecture" OR "software implementation" OR "software testing" OR "software
deployment" OR "software maintenance" OR "user support" OR "software release" OR "software analysis" OR "software
coniguration management" OR "software quality" AND

"AI-based" OR "AI-powered" OR "AI-enabled" OR "artiicial intelligence-based" OR "artiicial intelligence-powered"
OR "artiicial intelligence-enabled" OR "ML-based" OR "ML-powered" OR "ML-enabled" OR "intelligent software" OR
"AI-augmented" or "ML-augmented" OR "AI-infused" OR "ML software" OR "AI software" AND

"agile OR scrum OR kanban OR waterfall OR spiral OR "component-based" OR DevOps OR iterative OR lean
OR "extreme programming"

Additionally, we formulated the below search query to address the shorter string length requirement of ScienceDi-
rect. In the search string, we used two AND operators on three operands based on variants of terminologies
related to "software engineering", "ML-enabled" or "AI-based", and "agile".

"software engineering" AND ("AI-based" OR "AI-powered" OR "AI-enabled" OR "ML-based" OR "intelligent soft-
ware" OR "AI-infused" OR "AI software") AND łagilež

Table 2 outlines the criteria for selecting and excluding primary literature in the study, ensuring a focus on
relevant, high-quality, peer-reviewed work.
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Table 2. Inclusion and exclusion criteria for the primary studies

Criteria Inclusion Exclusion

Time Frame Studies published from January 2010 onwards Studies published before 2010

Source Journal and conference papers from Springer-
Link, Scopus, ScienceDirect, IEEExplore, and
ACM-DL

Papers from sources outside
these ive digital libraries

Type of Publi-
cations

Peer-reviewed journal articles and conference
and workshop papers

Non-peer-reviewed articles,
books, theses, grey literature

Keywords and
Scope

Focus on software development phases and
integration with ML, software development
methodologies (see search string)

Studies not related to ML-
enabled software development
or methodologies

Language English-language papers Papers in languages other
than English

Consequently, a total of 412 journal and conference articles were gathered. Figure 1 illustrates the distribution
of these acquired articles across various years within each digital library. Subsequently, we applied ilters based
on title, abstract, and full-text content to focus on papers related to software engineering practices in developing
ML-enabled systems. Papers related to the application of ML-based tools in software engineering were excluded,
leading to the identiication and selection of 40 articles that were deemed pertinent to our research.
In addition to using the above search strings, we have conducted forward and backward snowballing by

selecting initial papers guided by our data extraction process, which involved iltering based on title, abstract,
and full text. Snowballing served as a validation method for our search, resulting in a total of 26 papers added
to our analysis. A summary of the number of queried and selected primary studies from each digital library is
provided in Appendix A.

3.3 Analysis of Secondary Studies

Several systematic literature reviews and mapping studies highlight various aspects of SE practices for ML-enabled
systems, covering areas such as non-functional requirements, architecture, project management, and software
quality assurance.

• Non-functional requirements in ML-enabled systems. De Martino and Palomba [24] classify and
discuss challenges in managing non-functional requirements (NFRs) in ML-enabled software. The authors
highlight key concerns such as fairness, transparency, security, and performance optimization, emphasizing
the necessity of automated tools to handle these aspects. The study underscores that ML systems require
continuous monitoring and adaptation to ensure compliance with NFRs.

• Architectural considerations. Nazir et al. [89] explore architectural challenges and best practices for
ML-enabled systems. They identify major design trade-ofs, such as balancing model accuracy with compu-
tational eiciency, handling uncertainty in ML predictions, and ensuring API consistency across diferent
ML components. The study also stresses the importance of modularizing ML functionalities to improve
maintainability and scalability.

• SE practices for ML. Nascimento et al. [88] provide a systematic review of SE practices applied to ML
software. The authors identiied gaps in traditional SE methodologies when applied to ML-enabled systems,
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Fig. 1. The yearly distribution of the collected papers in each digital library included in the study.

particularly in requirements engineering, testing, and continuous integration. The study suggests for
adapting SE frameworks to better accommodate the iterative and data-driven nature of ML development.

• Software project management. Cerdeiral and Santos [17] examine software project management in
high-maturity settings, providing insights relevant to ML-enabled systems. The study highlights the need
for lexible project management approaches that accommodate the experimental nature of ML development,
emphasizing iterative cycles and continuous feedback loops.

• ML in SE practices.Wang et al. [137] investigate the role of ML in SE itself, reviewing how ML models
are being used to enhance various SE tasks, including defect prediction, code generation, and automated
testing. The authors suggested that while ML techniques can improve software quality, they also introduce
new challenges related to interpretability and reliability.

• ML for automated software maintenance. Zhang et al. [150] focus on the application of LLMs for
automated program repair. The indings indicate that LLMs can signiicantly enhance software maintenance
processes, but the authors also highlighted issues such as hallucination, lack of explainability, and the
diiculty of integrating ML-driven repair techniques into traditional SE worklows.

• ML in domain-speciic applications. Antonopoulos et al. [6] conduct a systematic review of ML ap-
proaches in energy demand-side response. Although domain-speciic, the study provides broader insights
into how ML engineering practices must adapt based on industry-speciic constraints, data availability, and
operational requirements.

Overall, the reviewed secondary studies collectively highlight the complexities and evolving nature of engineering
ML-enabled software. While traditional SE practices provide a foundational framework, they often fall short in
addressing ML-speciic challenges such as data dependencies, evolving model behavior, and NFR compliance.
Moreover, there is a strong need for automated tools to streamline NFR management, testing, and continuous
integration. Flexible architectural patterns are essential to support modularization, uncertainty management, and
scalable deployment of ML models. Interdisciplinary collaboration between ML practitioners and software engi-
neers is crucial to bridging the gap between model development and software system requirements. Additionally,
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enhanced project management approaches are required to align with the iterative and experimental nature of ML
worklows.

3.4 Method of Analysis and Interpretation

In this research, we adopted the chosen articles as our units of analysis rather than conducting direct interviews
with individual experts who are ailiated with the domain [105]. Essentially, we relied on existing studies as
secondary data sources to elucidate the prevailing engineering practices for developing ML-enabled software
within the realm of the interaction between ML and SE.

The chosen studies were subjected to further review aimed at identifyingmeaningful statements relevant to each
area within the SE practices. To achieve this, we gathered empirical assertions presented by the authors regarding
the practices and challenges associated with the development of ML-enabled software systems, preserving them
verbatim in a spreadsheet. Subsequently, these empirical claims were rephrased to provide clarity and context, as
discussed in Section 5. The indings are presented through tables, line charts, donuts and pie charts to ofer a
visual representation.

4 Results and Analysis

In this section, we delve into the core results of our review concerning the state-of-the-art and challenges
encountered in the realm of engineering ML-enabled software. Our aim is to provide insight into the current
practices of SE process areas and methodologies in the development of ML-enabled software systems while
shedding light on the challenges that researchers, developers, and industry practitioners face. Our analysis
not only ofers an overview of the ield but also paves the way for a deeper understanding of the interplay
between SE and ML. Accordingly, results concerning the SE process, each process area, and software development
methodologies will be presented next.

4.1 SE Process Areas

Our analysis of the selected studies indicate that research on the engineering practices for developing ML-enabled
software has increased in the last decade, as shown in the bubble chart in Figure 1, and we anticipate for this
trend to continue growing. Next, we investigated the distribution of the selected studies focusing on each of the
typical SDLC phases. The donut chart in Figure 2 illustrates each process area and corresponding percentage
distribution in the selected studies.
The analysis includes a citation map graph (Figure 3) that delineates the interconnection of selected studies

within the SE process areas- requirements, design, coding, testing, deployment, and maintenance. This graph
provides an overview of the citations associated with each process area, revealing additional information on
whether a study addresses general concerns pertaining to the process area for ML-enabled software or delves
into aspects speciic to ML components. The examination of selected studies extends to a detailed exploration,
emphasizing the authors’ viewpoints on the current practices in implementing the typical SDLC phases in the
development of ML-enabled software. Below, we ofer a description of the authors’ perspectives concerning
requirements speciication, design, coding, testing, deployment, and maintenance.

4.2 Requirements Specification

The authors of the selected studies have presented diverse perspectives on the prevailing practices in implementing
requirements speciications for the development of ML-enabled software, particularly in terms of the integration
level between conventional software components and ML components. In this regard, Rahman et al. [103] is
among the studies that attempted to relect on requirement speciications for both components. As per the
authors’ insights, crafting requirement speciications for ML-enabled applications entails a blend of ML-speciic
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Fig. 2. Percent distribution of the selected studies in SE process areas.

and traditional requirements engineering activities utilized in developing conventional software. They highlight
that the speciications for the ML component may undergo frequent changes, posing a challenge in precisely
describing the requirements.
Czarnecki [23] also pointed out insights regarding the nature of requirements engineering in the context

of software for autonomous vehicles (AV). The functionality of AV needs to be data-driven, which requires
expert-assisted and continuous extraction of driving speciications from traic data. Similarly, Muhammad [85]
considers AV in urban environments and presents the importance of specifying human factors such as trust,
acceptance, and safety as requirements for the communication between pedestrians and AV. This enables the
building of AV with enhanced safety, trust, driving performance, as well as AV-driver interaction.
A review by Martínez-Fernández et al. [78] noted that 60% of their selected studies concentrated speciically

on non-functional requirements for ML components. The authors highlighted that these studies predominantly
aimed at introducing new ML-speciic quality attributes and speciication notations to address probabilistic
results or ambiguity challenges. Moreover, the review revealed that only a limited number of studies ofered a
comprehensive perspective on the requirements engineering process for the development of ML-enabled systems.
When ML components are added to conventional software, software developers sustain more challenges in

appropriately identifying and comprehending such complex and heterogeneous contexts. In this regard, Wolf and
Paine [143] proposed a sense-making theory for conducting requirements speciication, thereby making sense
of the interaction situation between the requirements speciication phases of the development of conventional
software and ML-enabled systems.
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Fig. 3. List of citations under each SE process area.

According to Lu et al. [74], the existing practice of requirements speciication often omits or vaguely states the
special requirements for building responsible AI. Given the crucial ethical aspect of safety, particularly in ML-
enabled systems handling culture-sensitive data, the authors advocate for a more thorough exploration of these
requirements. They propose the use of elicitation techniques such as ethical user stories, workshops, interviews,
demos, and prototypes. They also suggest categorizing ethical principles into non-functional quality requirements,
ensuring veriiability, and maintaining data requirements throughout the SDLC. The practices related to the
speciication of requirements particular to the ML components are elucidated further in the following studies:

• In a technical brieing on trustworthy AI software, Vakkuri et al. [133] highlighted the incorporation of
ethical principles and regulations, such as the General Data Protection Regulation (GDPR), focusing on ML
components. The authors outlined commonly featured AI ethics principles, including transparency, justice,
fairness, equity, nonmaleicence, responsibility, accountability, privacy, beneicence, freedom, autonomy,
trust, sustainability, dignity, and solidarity.
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• Habibullah et al. [43] emphasized that ML-reliant systems impose distinct demands on non-functional re-
quirements compared to conventional systems. Traditional requirements like model accuracy are augmented
with the addition of explainability.

• Addressing the challenges in planning ML projects due to uncertainty, Nahar et al. [87] proposed mitiga-
tion strategies, including incorporating bufer times. They highlighted data security as a non-functional
requirement and stressed the beneits of a managerial understanding of SE and ML to align product and
model teams toward common goals.

• Dey and Lee [28] underscored safety and robustness as crucial ML requirements, noting the absence of
adequate requirements analysis and modeling techniques to handle uncertainty. The authors advocated for
explicit requirements speciication related to data, ML model, and ML process. Furthermore, they suggested
the establishment of quantitative and measurable qualitative targets for explainability, ethical, legal, and
robustness aspects of non-functional requirements.

4.3 Design

Similar to the requirements speciication, authors portrayed various perspectives concerning the existing practices
of performing the design phase in the development of ML-enabled software- conventional software components
and ML components. According to a study [126], 73% of development projects for ML-based systems apply
conventional software design approaches, partially or in full, by adjusting to match user needs on the low of the
design process. The authors also added that the use of SE methods in the development of ML-based systems will
increase user satisfaction.

In the domain of software design for ML-enabled systems, Meyer and Gruhn [81] highlighted the application
of well-established design principles such as separation of concerns, design patterns, and object-oriented and
component-oriented development. The authors introduced the concept of concept-based SE, a fusion of design
objectives from component-based SE, encompassing productivity and extensibility with ML considerations,
particularly focusing on reinforcement learning accuracy. However, Subramonyam et al. [125] argues that the
Human-AI interaction prohibits separation of concerns between user experience designers and developers.
According to the authors, this is because human needs must shape the design of ML interfaces, the underlying
ML sub-components, and the training data.
In related work, Jüngling et al. [58] advocates for the application of design patterns as a means to visualize

ML system designs. They exemplify this with a use case involving a passenger counting system, employing
a strategy design pattern that integrates rule-based and ML components. Additionally, the authors propose
the adoption of a uniied modeling language (UML) to facilitate communication of design descriptions among
software engineers, ML experts, and knowledge engineers. Furthermore, Lu et al. [74] delves into trustworthiness-
by-design, identifying critical factors such as data, algorithm, architecture, and the entire software. They also
highlight ongoing eforts in designing user interfaces for Explainable AI (XAI). Broadly, as highlighted in [78],
ML-enabled systems’ design, development, and operation difer signiicantly from conventional software systems.
Further insights from various authors on existing practices in software design, with a speciic emphasis on ML
components, are outlined below.

• In their work, Hartikainen et al. [47] delve into human-computer interaction (HCI) design practices
within the realm of ML application development. Their focus on HCI for AI (HCAI) underscores critical
design constraints such as trustworthiness and usability, alongside key principles including explainability,
transparency, ethics, fairness, responsibility, and sustainability. The authors illustrate these concepts
through various ML application domains, ranging from customer service chatbots to enterprise resource
planning (ERP) systems and IoT solutions.
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• The integration of deep neural network models into software architectures, coexisting with classical code,
is addressed by Kusmenko et al. [70]. Their methodology automates the ML development process when
incorporating neural networks, emphasizing the design of mathematically intensive algorithms to address
complex problems without decomposition.

• Czarnecki [23] explores modular and reconigurable architectures, employing dependability patterns for an
automated driving system utilizing a publish-subscribe framework. The author exempliies this approach
using the Robot Operating System (ROS), where components possess message-based interfaces and support
easy runtime reconiguration.

• Discussing challenges, Rahman et al. [103] emphasize the necessity for lexible design in ML-enabled
systems to accommodate swift changes in algorithms and frameworks. They note that the performance
of ML-enabled systems may degrade over time due to shifts in data patterns, independent of changes in
requirements or the presence of bugs. This dynamic nature makes predicting maintenance requirements
challenging, highlighting the importance of design lexibility.

4.4 Coding

The coding phase in conventional software involves software integration and the construction of functions,
objects, etc. In the context of developing ML-enabled software, coding extends to tasks such as data pre-processing
and model training. Authors ofer diverse perspectives on existing practices related to coding as presented next.

• For Martínez-Fernández et al. [78], the ML component in ML-enabled software is viewed as embedded ML
code or library, serving as a tangible implementation of ML algorithms.

• Lu et al. [74] introduces ethical knowledge graphs as a tool for implementing ethical principles and
guidelines (e.g., GDPR) in ML-enabled systems, automatically assessing application programming interface
(API) compliance against AI ethics regulations.

• In the study of Rahman et al. [103], the focus is on the ML component, emphasizing that coding frameworks,
libraries, and methods for ML applications should align with the requirements of the target platform.
Practices such as code reuse, careful framework selection (e.g., scikit-learn, TensorFlow, Keras), and
continuous integration of ML models are advocated. This approach ensures implementation choices that
consider portability, compatibility, and adaptability to navigate the rapidly evolving hardware-software
ecosystem.

• In the context of automated driving systems, Czarnecki [23] underscores the integration of supervised
learning with deep neural networks for implementing ML-based perception functions.

4.5 Testing

In the conventional SDLC, testing serves to evaluate and validate the resulting software[53], focusing on aspects
such as bug ixing[49, 57], reduction of development costs, and performance improvement. As ML becomes
increasingly integrated into software systems, testing methodologies must evolve to address the unique chal-
lenges and requirements posed by ML-enabled applications. Next, we present our analysis of secondary studies
categorized as overview of various testing strategies, and challenges in the context of ML systems.

• Testing approaches. Authors of the selected studies presented various levels of functional and non-
functional testing of ML-enabled systems (i.e., acceptance, unit, performance, regression, and scalability
testing), as depicted in Table 3. For example, Syahputri et al. [126] compiled testing methods observed
in current studies within the agile methodology. Additionally, Gutierrez et al. [42] introduced fuzzy-
based testing as an approach to accelerate operational testing, ensuring the integrity of light software
without system interruption. Similarly, other studies highlighted testing methods such as canary testing,
an automated quality assurance approach in the DevOps context[3].
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• Model validation. Testing in ML, often referred to as model validation, involves assessing the performance
of an ML model using data that the model has not been exposed to during training[83, 128]. In DevOps,
the validation is usually performed before committing the code and running tests locally. Once the model
evaluation meets the performance requirement, the ML code needs to be integrated into the system code
for production. Furthermore, testing activities for ML-based software components do not only focus on
detecting bugs in source code but also on inherent issues that arise from model errors and uncertainty[4].
Thus, automating the testing process is an important strategy in SE, where testing teams create test cases
that capture the required behavior of the ML model.

• Automation and integration testing. Furthermore, in distributed environments, integration testing
is required and performed after ML model testing aimed at validating and verifying the quality of the
developed model[28, 70, 103].
n this regard, Steidl et al. [124] discussed testing as part of the CI/CD (continuous integration- continuous
delivery) pipeline, which can be performed either manually, semi-automatically, or automatically- on data,
data schema, and models.

• Early testing and user feedback. Ensuring the functionality of ML-enabled software through early
testing in the development process is essential, especially considering the inherent uncertainty in ML [47].
Employing expert evaluation and gathering feedback from end-users in the initial phases facilitates the
early detection of model faults during the iterative ML development process [43, 125, 138, 139].

• Ethical and quality assurance challenges. Veriication and validation testing plays a pivotal role in
meeting the requirement speciications of ML-enabled systems, with ethical acceptance testing ofering
a means to identify and verify ethics-related design laws in ML-enabled systems [45, 74]. However,
testing ML-enabled software is fraught with challenges. The intricate nature of ML-enabled systems poses
numerous testing and quality assurance challenges for both ML components and the entire software product
or service [38, 41, 43, 87]. Common challenges include the absence of a clear testing strategy, the low
priority assigned to model testing, an unclear commitment to system testing, and a lack of transparency in
testing processes and results within teams.

• Unique quality standards. The inherent uncertainty in ML models demands specialized expertise for the
implementation of rigorous testing, particularly for non-functional requirements in ML-enabled systems
[43]. The development of test cases for ML-enabled systems requires unique quality standards to account
for the uncertainty associated with ML model outputs [78]. Indeed, Rahman et al. [103] highlighted the
formidable challenge of testing and rectifying errors in ML applications, exacerbated by the opacity of ML
models, which hampers the understanding and explanation of erroneous behavior.

In the context of DL, advanced techniques in testing and debugging are crucial for improving reliability
and performance in ML systems. Comprehensive studies focusing on DL bug characteristics [56, 138, 139] and
repairing [49, 57, 149] reveal common bug patterns and challenges in DL systems, as presented next.

• Advanced techniques such as DeepLocalize for fault localization with DNNs[139], UMLAUT for debugging
DL programs using program structure[117], and DeepDiagnosis for automatically diagnosing faults and
recommending actionable ixes in DL programs[138, 149] to include detailed discussions on automated fault
diagnosis and the actionable ixes recommended by these systems. These studies emphasize the importance
of structural analysis and automated diagnosis for localizing faults in DL models.

• An automated bug debugger systemÐ MODE[77] focuses on debugging by using state diferential analysis
and strategic input selection to identify and correct anomalies within the model.

• Similarly, AUTOTRAINER[152] automates the detection and repair of common training issues in deep
neural networks, such as vanishing gradients and incorrect data preprocessing, by implementing solutions
like adjusting learning rates and modifying architectures.
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• These security-related studies on ML-enabled software also discuss the limitations of the recent advances
in software security.

This structured overview of testing methodologies and their implications in ML-enabled software development
highlights the importance of adapting existing practices while addressing the unique challenges posed by ML
technologies.

Table 3. Authors’ insights on ML-enabled sotware testing practices

Testing Methods Characteristics

Fuzzy testing Fuzzy testing utilizes random input data to identify vulnerabilities and
enhance robustness without interrupting operations[42].

Canary testing Allows users to assist in a live environment to validate features before
full deployment[3].

ML testing/evaluation Evaluation of ML model, and used for ML optimization[43, 75, 83, 128].

System veriication Veriication of the developed system in pre-production environments,
semi-automated or automated processes. Formal models and various types
of testing[28, 75].

Integration testing of hy-
brid system

The deployment is followed by real-time monitoring[58].

Integration testing of dis-
tributed systems

Testing occurs after testing the ML model. Testing by integrating with
the TORCS simulator[70].

Unit testing Unit testing frameworks (e.g., PyUnit for Python)[103].

ML cross-validation test-
ing

To ensure the statistical relevance of the results. Avoid overitting and
biases[146].

(Semi-)automatic and it-
erative validation

Testing of data, data schemas, and models in the CI/CD pipeline[82, 124].

Ethical acceptance test-
ing

Deine testable acceptance criteria for ethical principles, integrating tests
for ML and non-ML component interactions while considering AI quotient
and human factors[45, 74].

4.6 Deployment

The deployment phase describes the process of making a software system available for use on a target environment,
such as a production server or end-user device[29]. The deployment process can vary depending on the type
of software, the target platform, and the project’s speciic requirements. In ML-enabled software, deployment
involves placing a working ML model in an environment where it should do the task as it is intended to do. Our
analysis of secondary studies concerning this is presented next.

• Nguyen-Duc and Abrahamsson [91] pointed out that deployment can be considered as a part of the CD/CD
pipeline of DevOps. Moreover, it can be achieved by exposing APIs associated with the ML models and
using them as standard libraries when developing other ML-enabled solutions [127].
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• Lwakatare et al. [75] pointed out that the deployment of ML-enabled software can be performed as a manual,
semi-automated, or automated process in pre-production environments. In a related context, research has
examined diferent deployment approaches for engineering ML-enabled systems, elucidating the associated
challenges. This information is succinctly encapsulated in the initial section of Table 4.

• Additionally, a survey presented by Alnafessah et al. [3] summarized continuous re-deployment in a
production environment via run-time service management for dynamic resource scheduling of micro-
services for ML models.

• In DevOps, CI/CD are key enablers to stabilize, optimize, and automate the deployment process of ML
models [38, 124]. These facilitate the provision of an automated infrastructure, higher availability, better
support, and incident response for the ML system. However, efective automation requires the provision of
consistent APIs, thereby avoiding dependencies with other libraries. Thus, CI deals with merging code into
the main branch and automating the system’s build and testing.

• The other challenge in DevOps is that the development pipeline can change frequently, making it diicult
to reproduce the process outside the local environment without the assistance of specialized data and
code version control systems (e.g., git, DVC, etc.) [38, 74, 78, 153]. Thus, monitoring the ML model after
deployment and testing must take into account the DevOps (MLOps for ML projects) worklow [38, 83, 128].
Therefore, ML deployment needs proper planning, monitoring, and documentation.

• Lu et al. [74] also presented challenges relating to deployment strategies for responsible AI addressing
continual learning based on new data, high uncertainty, and other risks. The strategies include a phased
deployment of a subset of the ML-enabled software, initially for a certain group of users, thereby reducing
ethical risk and homogeneous redundancy.

4.7 Maintenance

Like in conventional software, maintenance, and support in ML-enabled software consist of performance mon-
itoring and horizontal and vertical scaling [3]. In this regard, once the trained ML component is operational
in the actual environment, the system should be continuously monitored to detect issues such as performance
degradation, compatibility, portability, and scalability problems [75, 103]. However, ML model deployment and
performance optimization introduce maintenance challenges due to large datasets and knowledge transfer. Thus,
we present our analysis of secondary studies on this topic as follows.

• Yang and Rossi [146] explained open-set recognition as a key building block for judging the itness of a
trained ML model to its production environment while detecting novelty in individual inferences. It also
ensures timely and accurate detection of model performance degradation by tracking multiple inferences
of the same model.

• Similarly, studies such as in [8, 124] emphasized the importance of getting collective feedback or alerts
during runtime, which can be used to trigger the maintenance subsystem.

• Additionally, minor modiications to the ML model structure and data can exert a substantial inluence,
causing noteworthy shifts in the performance attributes of theMLmodules. Consequently, there is a demand
for ongoing maintenance, customization, and reuse of the end-to-end pipeline while it is in production,
requiring diverse expertise [4, 94].

• The subsequent segment of Table 4 encapsulates the viewpoints of the authors concerning the operation,
maintenance, and support within the domain of engineering ML-enabled systems.

4.8 Development Methodologies

Software development methodologies constitute the integral components of layered technology, playing a vital
role in the engineering of high-quality software products or services. Among these methodologies, Agile and its
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Table 4. Authors’ insights on deployment, maintenance, and support of ML-enabled sotware

Methods Description

Deployment

Open-set recognition Checking the itting of a trained ML model. Identiication of overall model
degradation [146].

Continuous experi-
mentation

Allows gathering user feedback during run-time [74, 124].

Continuous monitor-
ing and validation

Dynamic, adaptive, and extensible ethical risk assessment. Version-based
feedback, and incentives [74, 82].

Non-critical and criti-
cal deployment

Cascading deployment of ML components and autonomous ML components
[76].

Maintenance, and support

Collective feedback
during runtime

Get feedback from the end-users (Ops) as soon as possible. Monitoring quality
requirements in near real-time [8, 124].

Predictive mainte-
nance (PdM)

Establish action possibilities aforded by PdM systems. Implement the actu-
alization process of these afordances focusing on conceptual adaption and
constraint mitigation [60].

Tests tracing and ver-
iication

Trace the tests veriied in any of the previous phases. Support the domain
experts and the technicians to identify faulty components [82].

variants (such as SCRUM) stand out for their recognized attributes of lexibility, dynamism, and adaptability to
speciic circumstances. These quality attributes are achieved through active customer involvement, incremental
delivery, a people-focused approach (i.e., the focus on individuals over processes), embracing change as well
as prioritizing simplicity [122, 123]. Considering the aforementioned, there is a noticeable inclination towards
incorporating traditional software development methodologies, notably agile frameworks, in ML projects [67, 112].
Therefore, we investigated the development patterns, speciically the adoption of lightweight, scalable, and
automated (agile-like) methodologies for ML-enabled software projects. It was observed that 57% of all the
selected studies concentrated on the prevailing practices of integrating ML-enabled software development
projects with established development methodologies, as delineated below.

A subset of studies [3, 75, 83, 144, 146]tackled the challenges and potential solutions in developing complex sys-
tems incorporating ML components. These studies delved into the practices of utilizing DevOps and ML worklow
processes concurrently. Other related literature in [8, 23, 38, 82] demonstrated the adoption of newer DevOps-like
terminologies such as AIOps, MLOps, and DataOps to integrate ML into traditional DevOps processes. In a
second category, inspired by the agile methodology, studies explored contexts like "Agile for ML-based systems"
[128], "Agile4ML" [132], and "Agile-like engineering processes" [4] to assimilate the distinctive characteristics of
ML-enabled software projects into modern agile frameworks. Additionally, a study by Halme [45] introduced
a method to accommodate the unique ethical requirements of ML projects, namely ethical user stories (EUS),
within the agile process.
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Fig. 4. Percent distribution of selected studies relating to development methodologies.

The third category of studies aimed at envisioning various other software development methodologies, provid-
ing general insights into adapting existing methodologies to suit ML-enabled software development projects.
This included perspectives such as implementing regulations like GDPR [133], team organization for component-
based development [41], and continuous development pipelines for specifying, orchestrating data, training, and
integrating (safety-critical) ML-based applications [102, 124]. Moreover, these studies addressed the identiication
of diverse patterns of approaches in practical ML development projects, projects involving neural networks, and
acceptance-oriented continuous experimentation [70, 91, 127].

The distribution of studies among DevOps-like, Agile-like, and other development methodologies is illustrated
in Figure 4, where 42.11% of the selected studies concerning software development methodologies focused on
DevOps-like methodologies, while Agile-like and other methodologies constituted 21.05% and 36.84%, respectively.

5 Discussion

This section discusses the results (Section 4) and highlights the current practices and challenges in engineering
ML-enabled software, focusing on SE process areas and development methodologies.

5.1 Trend Analysis of the Studies

Our analysis, illustrated in Figure 1, underscores an increasing trend in the annual distribution of selected studies,
with ScienceDirect and Scopus emerging as dominant repositories in this thematic area. This surge in research
activity within ML-enabled software is driven by several contributing factors. There is a growing demand for
ML-enabled solutions that aim to enhance eiciency, streamline processes, and extract valuable insights [6, 130].
Consequently, software engineering researchers are delving into the potential of ML to craft intelligent systems,
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automating routine tasks, optimizing intricate processes, and enhancing overall system performance. Secondarily,
the integral role of ML algorithms and data analytics techniques in the ield is prompting researchers to explore
novel algorithms, models, and methodologies to improve accuracy and eicacy [76]. This interdisciplinary nature
of engineering ML-enabled software, often involving collaboration among software engineers, programmers,
data scientists, and domain experts [58], fosters knowledge exchange, innovation, and the development of holistic
solutions.

The availability of open-source ML tools and frameworks like TensorFlow, PyTorch, and scikit-learn constitutes
another driving force, expediting ML development [103]. Researchers can harness these tools to build and test
ML-enabled software more eiciently, catalyzing research progress in the ield. Furthermore, the imperative
to establish industry standards and regulations to ensure safety, reliability, and ethical considerations [133] is
steering researchers toward studying the impact of ML and contributing to the formulation of guidelines and
best practices.
In general, the escalating trend in studies on ML-enabled software engineering practices is driven by the

demand for intelligent solutions, advancements in ML, interdisciplinary collaboration[14], accessibility of ML
tools, and evolving industry standards. This trajectory is poised to persist as ML technologies continue to evolve,
ofering new possibilities in the development of ML-enabled software. Moreover, our detailed exploration of
the authors’ perspectives has provided valuable insights into the existing practices across each SE process area.
This discussion on the selected studies, segmented by the focus on software as conventional, combined software
(conventional and ML), or ML alone, forms the basis of our analysis of existing practices in each process area.

5.2 Examining the SE Process Areas

The review results concerning the requirements speciication, design, coding, testing, deployment, and mainte-
nance in the development of ML-enabled software are discussed below.

5.2.1 Requirements specification. The analysis of the requirements speciication reveals a noteworthy shift in
software engineering practices, particularly the addition of new attributes in the domain of non-functional
requirements for ML components. These attributes, which include trust, acceptance, safety, transparency, justice,
fairness (equity), non-maleicence, responsibility (accountability), privacy, security, beneicence, freedom/auton-
omy, sustainability, dignity, solidarity, accuracy, and explainability, relect the evolving landscape of ML-enabled
software development. This paradigm shift introduces challenges such as complexity in specifying requirements
in adherence to regulations like GDPR [129] and ethical principles inherent to ML, exacerbated by the dynamic
nature of requirements, uncertainty, and a lack of efective analysis and modeling techniques. Furthermore, the
study underscores the recognition that ML imposes distinct demands on non-functional requirements, measured
and deined with respect to the model, data, or the entire system. While the indings highlight a current deiciency
in a holistic view of the requirements engineering process for ML-enabled software, it is equally noteworthy
that ongoing eforts by researchers and practitioners are actively addressing these challenges. Initiatives include
the development of techniques for capturing requirements in the interaction situation between SE and ML
practices by leveraging sense-making theory [27, 141]. Additionally, frameworks such as ethical user stories,
the incorporation of extra bufer time in project planning to accommodate uncertainty, and the introduction of
speciication notations capable of handling probabilistic results [54] or ambiguity are indicative of the industry’s
commitment to overcoming the complexities introduced by the integration of ML components’ speciications
into conventional software.

5.2.2 Design. On the other hand, our exploration of the design phase shows a prevalent trend wherein established
design principles developed for conventional software are also applied to the design of ML components[126].
These principles include separation of concerns, design patterns, and object-oriented or component-oriented
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approaches. However, ongoing endeavors aim to tailor design artifacts speciic to ML, introducing innovations
such as visual design patterns, concept-based design, strategy design patterns, and the integration of UML
for ML-based systems. Noteworthy contributions extend to the realm of user interface design, particularly
geared towards XAI, relecting a nuanced approach to the unique challenges posed by the integration of ML.
Additionally, the existing practices underscore a commitment to deining design constraints and principles for
ML, emphasizing trustworthiness and usability, and incorporating vital considerations such as explainability,
transparency, ethics, fairness, responsibility, and sustainability. Eforts are noticeable in setting architectural design
patterns with objectives for seamlessly integrating ML components into classical code, promoting modularity,
runtime reconigurability, and ensuring dependability through message-based interfaces. Furthermore, initiatives
addressing the lexibility required to accommodate rapid changes in algorithms and frameworks and proactively
managing performance degradation due to evolving data patterns are evident. Yet, despite these strides, the
analysis reveals a notable gap, namely the absence of generic design frameworks, architecture styles, and patterns
that comprehensively address the unique quality attributes inherent in the development of ML-enabled software.

5.2.3 Coding. In the coding phase, our analysis recognizes that practitioners perceive the ML component in ML-
enabled software like an embedded code or library, embodying concrete implementation of ML algorithms[78]. A
noteworthy ongoing efort within this ield involves the implementation of ethical principles in ML, ensuring that
APIs are automatically scrutinized for compliance with regulations governing AI ethics before consumption. This
includes the integration of perception functions utilizing deep neural networks. Analogous to established practices
in conventional software development, ML developers showcase a commitment to select coding frameworks,
libraries, and methods tailored to the nuances of ML software. This ensures the resultant software product or
service aligns seamlessly with the requirements of the target platform. Moreover, a recognizable trend in ML
coding practices involves the embrace of code reuse [23] strategies, model re-engineering [101], and the adoption
of continuous integration methodologies. These approaches are instrumental in navigating the swiftly evolving
landscape of ML, fostering adaptability and responsiveness. However, despite these commendable practices, a
clear gap remains - the absence of a comprehensive framework that seamlessly integrates ML and conventional
software into the cohesive entity, ML-enabled software.

5.2.4 Testing. In ML, testing exposes code bugs, assesses data quality, validates models, and confronts un-
certainties prior to code commitment. Our analysis indicates that the practices in ML testing draw upon the
existing conventional testing methods, encompassing acceptance, unit, performance, regression, scalability,
and integration testing, often seamlessly integrated into CI/CD pipelines[38, 124]. Noteworthy ongoing eforts
in this space involve the development and application of specialized ML-centric testing methods, exempliied
by fuzzy testing, a dynamic approach performed while the ML system is in operation, and canary testing[3],
an automated mechanism for quality assurance within DevOps worklows. Similarly, techniques like fault lo-
calization, automated debugging and other metrics are proposed for testing DL- and LLM- enabled software
systems[18, 77, 138, 149, 152]. However, ML-enabled software’s complex and heterogeneous nature introduces
unique testing challenges. The opacity of ML models poses diiculties in achieving explainability, complicating
the testing of the entire ML-enabled system. Moreover, the lack of clear test processes, explicit requirements
for model development, and robust strategies for system-wide testing further compound the testing landscape.
Additionally, the creation of test cases tailored for ML-enabled software necessitates the establishment of quality
standards capable of accommodating the inherent uncertainties associated with system outputs.

5.2.5 Deployment. In the deployment phase, our results show an inclination towards adopting deployment
practices analogous to those employed in conventional software. This includes deploying ML models as part
of the CI/CD pipeline within the DevOps paradigm[38, 124]. Noteworthy practices also involve exposing APIs
as standard libraries and employing continuous runtime redeployment for dynamic resource scheduling of

ACM Comput. Surv.



State-of-the-Art and Challenges of Engineering ML- Enabled Sotware Systems in the Deep Learning Era • 23

microservices. However, deployment in the ML context is not without its challenges. Principal among these
challenges is the demand for a high degree of automation in target infrastructure, ensuring availability, providing
robust support, establishing efective incident responsemechanisms, andmaintaining consistency in API provision.
Reproducing processes in deployment environments proves challenging, particularly in the face of frequent
changes in the development pipeline. Additionally, developing deployment strategies for responsible AI, which
incorporates continuous learning and navigates high uncertainty, emerges as a particularly complex task.

5.2.6 Maintenance. Our analysis indicates that the operational phase of ML-enabled software, similar to conven-
tional software, necessitates continuous monitoring to identify defects, encompassing performance degradation
and bug detection. Notably, the performance characteristics of the ML component can be signiicantly altered by
minor changes in data or model architecture. Maintenance and support for ML-enabled software are ongoing pro-
cesses, particularly considering that changes in requirements may necessitate scaling. To address these challenges,
current practices include the implementation of open-set recognition for detecting performance degradation in
the ML component within its production environment[146]. This approach facilitates the timely initiation of
maintenance and support measures. However, our study underscores the heightened complexity of maintaining
ML-enabled software, primarily attributed to the large volumes of associated datasets. Moreover, the ML system
may need to collect alerts concerning runtime errors, triggering automated maintenance. Consequently, the
maintenance of ML-enabled software during its operational phase demands diverse expertise for end-to-end
pipeline management.

5.3 Development Methodologies

Our result shows that the selected studies are predominantly focused on software development methodologies.
Particularly, the studies portrayed the prevalent adoption of agile frameworks and their variants in ML projects,
revealing pivotal trends in the engineering practices of ML-enabled software (see Section 4). This inclination
towards established methodologies aligns with the agile principles of lexibility, adaptability, and iterative
development, deemed beneicial in the dynamic and evolving landscape of ML[67, 112]. The extensive exploration
of DevOps-like terminologies, such as AIOps and MLOps, emphasizes the recognition of ML worklows within
broader operational processes. Additionally, the integration of AI ethics through practices like EUS highlights an
understanding of ethical dimensions in ML projects within agile methodologies. While fostering adaptability,
the prevalence of these methodologies also raises questions about the extent to which they capture the unique
challenges and characteristics of ML-enabled software development.

5.4 Discussion Summary

Overall, our results indicate a growing trend in research within the ield (see Figure 1), highlighting state of the
art, challenges, and best practices- presented next.

5.4.1 State of the art. There is a signiicant shift towards prioritizing non-functional requirements and the use
of automated tools to handle the requirements[24] in the development of ML-enabled software, emphasizing
attributes such as trust, transparency, fairness, responsibility, and explainability. Design practices for ML compo-
nents often leverage established principles developed for conventional software, such as separation of concerns
and object-oriented approaches. In coding, ML components are treated as embedded code or libraries, embodying
speciic ML algorithms. Developers use established practices, frameworks, and methods tailored to ML, including
automatic scrutiny of APIs for compliance with AI ethics, code reuse, and continuous integration. ML-enabled
software testing integrates traditional and ML-centric approaches, such as fuzzy testing and canary testing, in
the CI/CD pipelines. Additionally, methods like fault localization, automated debugging, and various evaluation
metrics are suggested for testing DL- and LLM-enabled software systems. Deployment practices adopt CI/CD
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pipelines akin to conventional software, focusing on API and continuous redeployment. Maintenance practices
like open-set recognition are adopted for timely detection of performance degradation due to changing require-
ments. Development methodologies often align ML projects with agile frameworks, demonstrating adaptability
in the dynamic ML landscape.

5.4.2 Challenges. Despite these established practices, several challenges persist. The dynamic nature and demand
for unique non-functional requirements such as adherence to regulations (e.g., GDPR) and ethical considerations
intrinsic to ML pose challenges[129]. Ongoing eforts seek to introduce innovative design artifacts for ML, such
as visual and strategy design patterns, to address distinctive design challenges. The complexity and opaque
nature (lack of explainability) of ML models, along with ambiguous test processes, unclear requirements, and the
absence of robust system-wide testing strategies, pose challenges for testing ML-enabled software. Deployment
faces challenges like high automation needs, ensuring availability, robust support, maintaining API consistency,
diiculties in reproducing processes due to frequent changes, developing strategies for responsible AI, and
dealing with continuous learning and uncertainty. Maintenance of ML-enabled software is complex due to large
datasets, and the requirements for diverse expertise for automated maintenance triggered by runtime errors
and comprehensive end-to-end pipeline management introduce more challenges. There is a lower emphasis on
innovative methodologies speciic to ML integration, underscoring the need for a nuanced approach that adapts
existing methodologies and explores innovative strategies. The results highlight that testing receives the most
attention among the phases, while deployment and maintenance phases are comparatively underrepresented.
However, the deployment and maintenance of ML models should also be given signiicant emphasis due to the
challenges associated with data management, learning, veriication, ethics, end-user trust, legal considerations,
and security [96].

5.4.3 General Insights and Best Practices. Based on current SE practices in ML-enabled software development,
the following best practices are essential for establishing SE tools, techniques and methods as well as for future
research in the ield:

• Requirements should begin with hypothesizing potential outcomes from data, reining them
through experimentation. Additionally, strive to align ML performance metrics with business objectives
and metrics [37].

• Prioritize non-functional requirements such as trust, transparency, fairness, and explainability to
ensure ethical and responsible ML component.

• Leverage established design principles like separation of concerns, treatingML components as embedded
libraries for better modularity. In addition, monitoring performance degradation and handling high-volume
data are key ML design considerations, requiring robust architectural patterns.

• Integrate ML with a two-step process, irst combining ML sub-components, then integrating ML with
non-ML system components. Deined interfaces and evolving models require continuous integration
support [103].

• Utilize automated tools for AI ethics compliance, code reuse, and integrate CI/CD pipelines to streamline
development.

• Implement specialized testing approaches, including fuzzy and canary testing, alongside automated
debugging and performance evaluation metrics. Moreover, automated regression testing and test case
prioritization are essential for ML-enabled systems, demanding advanced tools and techniques.

• Adopt agile frameworks to foster adaptability and enable continuous integration in dynamic ML compo-
nent environments.

In general, existing practices in engineering ML-enabled software are often perceived as a fusion of practices
from conventional software and ML components, with insuicient recognition of the nuanced interplay between
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the two. Practitioners do not fully acknowledge the unique characteristics of ML-enabled software, viewing it
as a mere collection of separate entitiesÐconventional software and ML. This often results in loose integration,
with a focus on developing interfaces to facilitate interaction with the ML component. Thus, there is a need for
specialized approaches to ensure seamless integration and delivery of desired quality and functionality across
both conventional software and ML components. As ML continues to drive automation across various industries
and applications, there will be a growing need to automate various tasks using ML-enabled software.
Appendix B provides an overview of the current practices, challenges, and implications associated with the

various process areas and development methodologies in engineering ML-enabled software systems.

5.5 Limitations of the study

Our approach in this study is more like the State-of-the-Art review method [10], concentrating on the latest
research in the SE practices for developing ML-enabled software. Thus, insuicient rigor in performing systematic
literature review may introduce a potential validity threat (including issues related to internal, external, and
construct validity [5]) by potentially limiting the comprehensiveness and replicability of indings. Such common
threats to validity in SE may include selection bias, data extraction inconsistencies, and publication bias in the
selected studies [64]. However, our study still provides valuable insights based on a structured and thorough
analysis of relevant literature.
When gathering related studies, we considered those published after 2010 due to the paradigm shift towards

DL, which signiicantly inluenced the proliferation of ML-enabled software systems. However, this criterion may
exclude earlier foundational work, potentially limiting completeness, though it enhances relevance by focusing
on DL-driven advancements in the larger ield of ML.
Our paper selection process for snowballing, based on focus rather than using concrete relevance statistical

data, may have also introduced bias. However, aligning with life cycle phases in SE practices ensures contextual
validity, while future work could enhance rigor by incorporating quantitative selection criteria.

6 Conclusion

This review paper explores research in engineering ML-enabled software, highlighting state of the art, challenges,
best practices, and future research directions. The results indicate a growing trend of research in the ield,
driven by demand, advancements, collaboration, and evolving standards. In addition, there is emphasis on
special non-functional requirements for ML-enabled software and the use of automated approaches to handle
them. The indings also highlighted that the development of ML-enabled software integrates both conventional
and ML-speciic development practices with key challenges being the dynamic nature of ML, opaque models,
and complex maintenance requirements, underscoring the need for specialized integration approaches. The
replication package of this review study is included on GitHub [12]. Our insights include the need to begin with
data-driven hypotheses, prioritize non-functional requirements, apply established design principles, integrate the
ML component irst, automate, implement specialized testing, and adopt agile methods. Future research should
address potential limitations in this study, such as potential biases in literature selection, attrition, and outcome
reporting. It is recommended that the review process be rerun with varied contexts, including incorporating more
studies from other digital libraries. Additionally, further research is necessary to investigate how the degree of ML
integration afects the development process and the quality attributes of ML-enabled (augmented) software. This
also includes a thorough analysis of each phase of the SDLC. The engineering of DL- and LLM-enabled software
also requires thorough investigation. As the ield evolves, challenges such as data quality, ethics, explainability,
adaptation, security, legal issues, sustainability, and governance will emerge. Hence, integrating ML, DL, and
LLM into existing systems will require careful design, highlighting the need for interdisciplinary collaboration
and ongoing research.
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Search String Digital
Library

Queried
Studies

Selected
Studies

"software engineering" OR "requirement
speciication" OR "requirements engineering" OR
"software construction" OR "software design" OR

"software architecture" OR "software
implementation" OR "software testing" OR

"software deployment" OR "software
maintenance" OR "user support" OR "software
release" OR "software analysis" OR "software
coniguration management" OR "software

quality"
AND

"AI-based" OR "AI-powered" OR "AI-enabled" OR
"artiicial intelligence-based" OR "artiicial

intelligence-powered" OR "artiicial
intelligence-enabled" OR "ML-based" OR

"ML-powered" OR "ML-enabled" OR "intelligent
software" OR "AI-augmented" or "ML-augmented"

OR "AI-infused" OR "ML software" OR "AI
software"
AND

"agile OR scrum OR kanban OR waterfall OR
spiral OR "component-based" OR DevOps OR
iterative OR lean OR "extreme programming"

Scopus
SpringerLink
IEEExplore
ACM-DL

196
33
32
23

22
2
12
2

"software engineering" AND ("AI-based" OR
"AI-powered" OR "AI-enabled" OR "ML-based" OR
"intelligent software" OR "AI-infused" OR "AI

software") AND łagilež

ScienceDirect 128 2

Using forward and backward snowballing 26

Total 438 66

B Summary of general insights and best practices
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State of the art & Challenges General Insights & Best Practices

Requirements Speciication

There is a shift towards non-functional require-
ments [99, 147] such as data quality, trust, trans-
parency, fairness, safety, and explainability[78].
Eforts are ongoing to capture requirements
amid regulatory and ethical complexities.
Specifying ML requirements is not straight-
forward due to its dynamic and uncertain
nature[87] and lack of robust analysis tech-
niques. Such requirements are generated induc-
tively from training data which makes it chal-
lenging to test and verify [61].

New techniques are essential for efectively
capturing requirements and ensuring compli-
ance with regulations like GDPR[129]. How-
ever, best practices include clear prioritiza-
tion and documentation of non-functional
requirements like bias assessment tools, fair-
ness and performance metrics (aligning with
business objectives[37]), data lineage, and
regulatory compliance as well as emphasis
for involving stakeholders[22]. Overall, there
is a trend towards proposing ML speciic
guidelines and processes[99].

Design

Established design principles for conventional
software are being applied to ML[126]. Inno-
vations like visual and strategy patterns focus
on usability and ethical considerations. Thus,
ML models integration requires quality data and
explainability[66], and it is often ad hoc with
limited architectural patterns available[119, 140].
Has challenges like integrating ML-speciic de-
sign artifacts and managing rapid algorithmic
changes. Properly embedding ML models in
systems so that they can be easily maintained
or reused is far from trivial[119]. Additionally,
there is architecture challenge for addressing
monitorability, and co-architecting[73].

There is a need for enhancing modularity,
adaptability in design, addressing unique ML
software quality attributes, and evaluating
architectures for ML-enabled software, con-
sidering data abstraction[140], stakeholder
knowledge and diverse perspectives [22,
119]. Thus, tailoring traditional component-
based approaches[54] for the ML compo-
nents, and integrating ethical guidelines, us-
ability, visual design patterns for consis-
tency, and strategy patterns for lexible use
of algorithms are among the best practices.
The resulting complex architectural decision
can also be addressed using intelligent auto-
mated tools[66].

Coding

ML components are treated as embedded
code[78], implementing speciic algorithms with
code reuse and continuous integration. There
is a lack of comprehensive frameworks for inte-
gratingML code with conventional software[44].
Other challenges include multi-language code
base, and challenges in backwards compatibility
of trained models[116].

Demands fostering adaptability, responsive-
ness through code reuse and integration
for ML. Thus, best practices include writ-
ing modular, reusable code libraries for
the ML components, implementing version
control, and source code documentation
and code completion[78]. The evolving ML
components require support for continuous
integration[103].
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Testing

Sources of uncertainty to ML components useful in testing
are scope compliance, data quality, and model it[65]. Tradi-
tional testing methods are used integrated with ML-centric
approaches like fuzzy and canary testing[3]. Ensuring test-
ing aspects like explainability and system-wide strategies
for ML models is challenging. Additional challenges include
safety, security, veriication[69], data quality[62, 88], and
integrating ML components into larger systems[15].

There is a requirement for developing robust testing
frameworks to address opacity in ML models, ensuring
compliance with ethical standards. Thus far, employing
fuzzy and canary testing for robustness and gradual
rollout, and assessing ethical and fairness requirements
through detection tools, evaluation metrics, and use
of standardized testing frameworks[48] are among the
best practices.

Deployment

Current deployment practices mirror conventional soft-
ware, utilizing DevOps CI/CD pipelines for continuous
deployment[38, 124]. Challenges in performing automated
deployment of production ready models[7], maintaining
API consistency, handling continuous learning and uncer-
tainty in ML models.

Demands developing deployment strategies for respon-
sible AI, maintaining high automation levels in de-
ployment environments. However, best practices in-
clude using CI/CD pipelines for continuous deployment,
leveraging cloud platforms for scalability, implementing
APIs for integration, and ensuring rollback mechanisms
for conventional software to enhance deployment reli-
ability.

Maintenance

Continuous monitoring to detect performance degradation
in ML components. There are challenges like quality control
of the large datasets[106, 151], automating maintenance pro-
cess triggered by runtime errors. The ML landscape ofers
powerful tools for predictions, but often leads to signiicant
ongoing maintenance costs[118].

Implementing techniques like open-set recognition
for timely maintenance and support measures are
needed[146]. In general, continuous monitoring of per-
formance degradation of the ML component through
output monitoring, data drift detection, and perfor-
mance metrics tracking; using automated retraining
schedules[118], version control for model updates, and
logging tools to track metrics and user interactions are
among the best maintenance practices.

Development methodologies

Agile frameworks are prevalent in ML projects, fostering
lexibility and iterative development [67, 112]. Adapting
existing methodologies to capture unique characteristics
of ML-enabled software is challenging due to new system
requirements and imperfection, uncertainty, and lack of
vision among the development team[55].

There is a need for exploring new methodologies spe-
ciic to the integration of ML and AI ethics within agile.
However, best practices include adopting automated
frameworks[19] and DevOps[111] for lexibility and it-
erative development, and facilitating regular feedback
loops thereby integrate AI ethics into user stories. Ad-
ditionally, apply methods like RUDE to achieve reliable
and maintainable ML-enabled software[98].
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