
State-of-the-Art and Challenges of Engineering ML- Enabled Sotware

Systems in the Deep Learning Era

GEBREMARIAM ASSRES∗, Kristiania University of Applied Sciences, Oslo, Norway

GURU BHANDARI, Kristiania University of Applied Sciences, Oslo, Norway

ANDRII SHALAGINOV, Kristiania University of Applied Sciences, Oslo, Norway

TOR-MORTEN GRONLI, Kristiania University of Applied Sciences, Oslo, Norway

GHEORGHITA GHINEA, Computer Science, Brunel University London, London, United Kingdom of Great

Britain and Northern Ireland

Emerging from the software crisis of the 1960s, conventional software systems have vastly improved through Software
Engineering (SE) practices. Simultaneously, Artiicial Intelligence (AI) endeavors to augment or replace human decision-
making. In the contemporary landscape, Machine Learning (ML), a subset of AI, leverages extensive data from diverse sources,
fostering the development of ML-enabled (intelligent) software systems. While ML is increasingly utilized in conventional
software development, the integration of SE practices in developing ML-enabled systems, especially across typical Software
Development Life Cycle (SDLC) phases and methodologies in the post-2010 Deep Learning (DL) era, remains underexplored.
Our survey of existing literature unveils insights into current practices, emphasizing the interdisciplinary collaboration
challenges of developing ML-enabled software, including data quality, ethics, explainability, continuous monitoring and
adaptation, and security. The study underscores the imperative for ongoing research and development with focus on data-
driven hypotheses, non-functional requirements, established design principles, ML-irst integration, automation, specialized
testing, and use of agile methods.

CCS Concepts: · Software engineering → Software development life cycle; · Artiicial intelligence → Machine

learning.

Additional Key Words and Phrases: Conventional software, ML-enabled software, ML-powered systems, SDLC phases, Process
areas, Software development models

1 Introduction

Driven by the software crisis of the 1960s, the Software Engineering (SE) discipline was coined and enabled the
production of high-quality software [142]. SE aims to adopt methodical approaches to software development,
thereby achieving success in implementing software projects. In other words, SE is the application of engineering
principles to software, as described in the terminology of the IEEE standard glossary [20]. In seminal work, Wirth
[142] pointed out that software systems were promised but could not be completed and delivered on time due to
high complexity, particularly after the introduction of time-sharing systems. The SE discipline has introduced
systematic and quantiiable approaches to software development, operation, maintenance, and retirement, thereby
tackling software complexity. In SE, the Software Development Life Cycle (SDLC) provides a structured process

Authors’ Contact Information: Gebremariam Assres, Kristiania University of Applied Sciences, Oslo, Norway; e-mail: Gebremariam.Assres@
kristiania.no; Guru Bhandari, Kristiania University of Applied Sciences, Oslo, Norway; e-mail: guru.bhandari@kristiania.no; Andrii Shalaginov,
Kristiania University of Applied Sciences, Oslo, Norway; e-mail: andrii.shalaginov@kristiania.no; Tor-Morten Gronli, Kristiania University of
Applied Sciences, Oslo, Norway; e-mail: tor-morten.gronli@kristiania.no; Gheorghita Ghinea, Computer Science, Brunel University London,
London, United Kingdom of Great Britain and Northern Ireland; e-mail: george.ghinea@brunel.ac.uk.

This work is licensed under a Creative Commons Attribution International 4.0 License.

© 2025 Copyright held by the owner/author(s).
ACM 1557-7341/2025/4-ART
https://doi.org/10.1145/3731597

ACM Comput. Surv.

HTTPS://ORCID.ORG/0000-0002-6760-690X
HTTPS://ORCID.ORG/0000-0003-4032-7465
HTTPS://ORCID.ORG/0000-0003-1980-6875
HTTPS://ORCID.ORG/0000-0002-2026-4551
HTTPS://ORCID.ORG/0000-0003-2578-5580
https://orcid.org/0000-0002-6760-690X
https://orcid.org/0000-0003-4032-7465
https://orcid.org/0000-0003-1980-6875
https://orcid.org/0000-0002-2026-4551
https://orcid.org/0000-0003-2578-5580
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3731597
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3731597&domain=pdf&date_stamp=2025-04-19


2 • G. Assres et al.

to produce high-quality software according to prescribed production quality, cost, and time. The SDLC works
based on the core phases, including requirements gathering, software design, development, test and integration,
deployment, operation, and maintenance [114].
Artiicial Intelligence (AI) has also been used to create autonomous systems with an attempt to replace and

or augment human decision-making, which eventually led to the development of Machine Learning (ML), as a
means of achieving that same AI goals [34]. Although there have been periods called AI winters throughout its
history where AI research and development was quiet [86], today, ML, along with the large amounts of data being
produced by diverse types of systems like the Internet of Things (IoT), web applications, corporate databases,
smartphones, and sensors is a popular subset of AI. It enables computers to generate actionable insights and
build ML-enabled (intelligent) software systems based on previous experiences. In ML-enabled systems, modules
or functionalities that incorporate ML techniques and algorithms, namely ML components, are introduced to
perform tasks that traditionally require human intelligence. The ML component provides partial autonomy to
the automated units, evaluates and optimizes processes, and forecasts future trends [84]. The development of
ML is a multi-phase process and uses various types of algorithms (and models like neural networks) to support
the decision-making process. The phases in ML model development include data collection, data preparation,
model selection, training, evaluating, parameter tuning, and deployment [95]. Although ML algorithms initially
focused on solving mathematical problems and object recognition [34], nearest neighbor and K-Nearest Neighbor
algorithms have been introduced for pattern recognition and deep learning (DL), which imitates the human
thinking process, and has known renewed impetus post 2010, in what is widely considered to be the start of the
modern DL era, when increased GPU speed enabled the advent of novel convolutional neural network (CNN)
architectures such as AlexNet [68]. Lately, ML’s advancement on a global scale has been driven by the emergence
of Large Language Models (LLM) and generative AI [36, 135]. According to Wang et al. [135], these models have
the ability to generate coherent and contextually relevant text, enabling them to perform various tasks, including
text completion, text generation, and serving as conversational AI, among others.

The interaction between elements of the SE and ML disciplines is not a novel subject of study, and numerous
pieces of literature have discussed their mutual inluence. As an illustration, the research highlighted in [84, 89]
explored how these ields intersect, particularly for addressing the challenges in software architectural design,
which provide high-level descriptions of software components and their interaction. In this context, ML serves
as a tool for enhancing the architectural design of conventional software systems. By conventional software,
we mean the classical software-based automation of speciic tasks like business functions, websites, etc. In this
regard, the literature provides valuable perspectives on the utilization of ML-based tools, techniques, and methods
to enhance the ield of SE and, consequently, to create high-quality software systems. For instance, ML has found
application in automating speciic phases of the SDLC, such as software testing, as demonstrated in [148]. There
is also a need to create architectural styles, patterns, and frameworks to seamlessly incorporate ML components
into the design of ML-enabled software systems[89]. This architectural focus on the interaction between elements
of the SE and ML disciplines represents only one aspect of the wide spectrum of SE practices. Nevertheless,
existing studies have yet to comprehensively examine how SE tools, techniques, and methods are employed in
the development of ML-enabled software systems (i.e., systems powered by ML), particularly across typical life
cycle phases and methodologies in the DL era (i.e. post 2010). Thus, in the study reported herein, we adopted a
holistic view of SE practices, as will be described next.
We have reviewed the state-of-the-art and challenges concerning SE practices in the development of ML-

enabled software systems. This study contributes by conducting a thorough review of the existing literature,
ofering insights into how the SE discipline is practiced in the context of developing ML-enabled software systems,
particularly focusing on the typical SDLC phases (hereafter also referred to as SE process areas) and software
development methodologies. By analyzing the indings presented in the prior research, this study provides a
comprehensive understanding of the current state of knowledge in the ield.

ACM Comput. Surv.



State-of-the-Art and Challenges of Engineering ML- Enabled Sotware Systems in the Deep Learning Era • 3

The remainder of the paper is organized as follows. Sections 2 and 3 present the background and methodology
of the study. Next, the results of the current practices and challenges of engineering ML-enabled software are
provided in Section 4, while Section 5 discusses the results. Finally, Section 6 concludes the paper.

2 Background

Software, designed and custom-built, degrades over time and leverages technological frameworks. Thus, SE
integrates processes, methods, and tools, emphasizing an organizational commitment to quality standards using
principles like TQM, CMMI, Six Sigma, and ISO [31, 51, 71, 108, 121]. The SDLC phases, partition development into
manageable activities- requirements speciication[131], design[104], development, testing[52], deployment[25],
and maintenance[97]- thereby achieving the standards. SE methods ofer technical guidelines, addressing defects,
schedules, resources, and costs. Examples include waterfall, prototyping, spiral, and agile. SE tools, like Computer
Aided Software Engineering (CASE) tools, automate tasks, enhancing productivity and quality through structural
or object-oriented paradigms such as diagramming tools, automated testers and code generators [17, 50, 107ś109].
In the subsequent subsections, we introduce the core concepts and modern approaches in ML as well as their
interaction with SE in the development of ML-enabled software.

2.1 Core Concepts and Applications in Machine Learning

Before delving into the development of ML-enabled systems, it is essential to provide an explanation of what
AI entails. The literature indicates that AI is a diicult term to deine robustly [30]. However, various authors
have made a few historical attempts to deine it. For example, one of the most commonly used deinitions of AI is
stated as "the simulation of human intelligence in computers that are programmed to think like humans and
mimic their actions" [110].

AI systems can be designed as rule-based systems or learning-based systems. Rule-based systems (also known
as expert systems) are the simplest forms of AI, which are created using a set of rules along with basic data
as knowledge representation. These form AI models that mimic the reasoning capability of human experts in
solving knowledge-intensive problems [39]. AI-based on computer learning, or ML, generates its models through
extensive datasets representing the domain. That is, AI is an umbrella discipline that covers everything related to
making machines smarter, while ML refers to the subset of AI that implements models that can self-learn based
on algorithms and get smarter over time without human intervention.

2.1.1 Principles and applications of ML. Sarker [115] describes today’s digital world as being endowed with data
obtained from IoT, cyber security, mobile, business, social media, health applications, etc. ML plays a key role in
analyzing these data and developing smart applications.
ML methods are commonly categorized as supervised, unsupervised, semi-supervised, and reinforcement

learning in the area. Such models are used to enhance the intelligence and capabilities of applications in various
real-world domains, such as cyber security systems, smart cities, healthcare, e-commerce, agriculture, and more
[115].
Linear regression, logistic regression, decision tree, support vector machines (SVM), Naive Bayes, neural

networks, K-means clustering, and random forest are among the algorithms used in the development of ML
models [115]. Examples of common ML applications include traic alerts, social media, automated language
translation, transportation and Commuting, dynamic pricing and product recommendations, virtual personal
assistants, self-driving cars, etc.

DL and deep neural networks are also part of ML methods that can intelligently analyze data on a large scale
[113, 115]. The major phases of ML development are data collection, data pre-processing, model selection, training
the model, model evaluation, parameter tuning, and making predictions.

ACM Comput. Surv.



4 • G. Assres et al.

In the development of ML models, the quality of the resultant model is signiicantly inluenced by the data
pre-processing phase. This crucial step involves evaluating and improving the quality of data through operations
such as data cleaning, transformation, and reduction. These processes aim to address various issues like missing
data, data inconsistency, incorrect formats, and data types, among others, as highlighted by Samek et al. [113].
Despite its importance, the data pre-processing phase often receives inadequate attention in ML development.

2.1.2 The need for large datasets. Data is of paramount importance throughout various phases of the development
of ML models. The general consensus is that a larger training dataset contributes to improved model performance.
Consequently, substantial data collection from diverse sources, including enterprise applications, websites, emails,
IoT devices, smartphones, and sensors, is imperative for ML model development [90, 120, 134]. Samek et al. [113]
emphasize the necessity of selecting representative features during training, avoiding sample sizes that are too
small or too large. Ensuring model performance involves scrutinizing data through train-test-validate splits and
ine-tuning after each training phase.

2.1.3 uality considerations in ML. Both data and algorithms play critical roles in ensuring the quality of
ML-enabled systems in terms of performance, robustness, reliability, fairness, scalability, etc. However, most
researchers and practitioners concentrate more on algorithms while undervaluing the impact of data quality. Many
domain-speciic techniques are used to assess and improve the quality of data stored in relational databases, which
necessitates evaluating their suitability in ML. In addition, there are trans-domain and generic dimensions of data
quality in the context of ML, including business rules and governance standards for data quality; documented
data speciications and integrity maintenance; data consistency, currency, duplication, completeness, provenance,
and heterogeneity; data streaming, sampling, dimension reduction, and outliers; feature selection and extraction;
data accuracy and bias; and security, namely, conidentiality, privacy, availability and access control [40]. In the
case of security, McGraw et al. [79] mentioned the topmost important security risks among several ML-related
risks identiied in the literature. A description of these risks is provided in Table 1.

The emergence of IoT has also raised several concerns due to smart devices impacting data quality, particularly
security and privacy. For example, a study in [16] identiied concerns and policy frameworks relating to IoT
systems that collect individuals’ data through unauthorized surveillance, uncontrolled data generation and
use, and inadequate authentication. The study showed that classical privacy policies do not provide adequate
protection for the collection and use of individuals’ personal data in the context of IoT. Moreover, the diverse
data types, data harvesting granularity, and user demographics generated by sensors in IoT systems inluence the
security and privacy associated with data sharing [2]. Additionally, researchers have investigated IoT quality
characteristics relating to commercial voice user interfaces, namely, smart speakers. For example, the study of
Pyae and Joelsson [100] investigated the usability, user experiences, and usefulness of Google Home.

2.1.4 ML applications in sotware development. A study by Meinke and Bennaceur [80] pointed out that ML
has been successfully applied in various areas of SE, ranging from software behavior extraction to testing and
bug ixing. ML, DL, and LLM applications are foreseeable in software speciication extraction, design pattern
recognition, code generation, test case generation, bug detection, and learning adaptation strategies in software
coniguration[32, 80, 136, 137, 145, 150]. ML methods can also be used to predict or estimate software quality,
software size, development cost, development efort, reliability, software defect, reusability, release timing, and
testability [148].
In regards to the application of ML in software maintenance, Panichella et al. [97] pointed out the following

interesting insights for the maintenance and evolution of mobile apps. First of all, ML can provide a high-level
taxonomy of categories of sentences contained in the reviews by users that are relevant for maintenance and
evolution. Furthermore, it enables the extraction of users’ intentions expressed in app store reviews relevant to
the maintenance and evolution of apps based on natural language processing (NLP). Similarly, the large amounts

ACM Comput. Surv.



State-of-the-Art and Challenges of Engineering ML- Enabled Sotware Systems in the Deep Learning Era • 5

Table 1. Top security risks in Machine Learning

Risk Type Characteristic

Adversarial examples Adversarial examples are among the popular ML risks where malicious
input lead to false prediction.

Data poisoning In data poisoning, an attacker intentionally manipulates the data in order
to compromise the ML system.

Online system manipula-
tion

This is another kind of attack where an attacker can nudge a system in
operation (still-learning) through wrong input thereby slowly behaving
incorrectly.

Compromised base A compromised base system may be used in transfer learning, thereby a
risk by unanticipated behavior deined by an attacker.

Data conidentiality These kinds of attacks may extract sensitive and conidential information
from ML-enabled systems that used such data during the training.

Data trustworthiness Lack of data trustworthiness can cause risk due to limitations in the data
source like unreliable sensors and lack of data integrity.

Lack of reproducibility In ML-enabled systems, lack of reproducibility of results due to poor
description and reporting can cause risks as a compromise may happen
unnoticed.

Overitting An ML system may łmemorizež its training data set through a lookup
table due to overitting (not generalize to new data) which leads to an
adversarial examples attack.

Encoding integrity Encoding integrity (e.g., metadata) issues can bias a model to solve a
categorization problem by overemphasizing the metadata and ignoring
the real issue.

Output integrity Output integrity can cause risk due to unveriied output from opaque
models where an interposing attacker may hide in plain sight.

of accessible data generated as source code (and other software artifacts) by the software industry can be used to
learn patterns and develop productivity tools like NLP-based software code searching, code recommendation, and
automatic bug ixing [9]. According to Bader et al. [9], such large amounts of source code are available in GitHub
as well as in other proprietary repositories. It also exists in the form of other software artifacts, such as incremental
changes between repository code versions, continuous integration tests with outcomes, and developers’ replies
on online forums such as Stack Overlow. Abubakar et al. [1] also discussed aspects of the interplay between SE
and ML in regard to the estimation of efort and quality in software projects. Furthermore, the authors foresee
exploring the possibility of SE-ML fusion in terms of scaling-up operations, tool integration, and performance
evaluation. Meinke and Bennaceur [80] also describe a trend towards agile software development to leverage the
potential of ML in incremental and exploratory coding.
Search-based SE (SBSE) is another area of application of ML in SE which enables meta-heuristic search

techniques to generate adequate software tests evaluated with respect to the itness function. Harman [46]

ACM Comput. Surv.



6 • G. Assres et al.

describes this as an approach to solving SE problems of developing noisy, ill-deined software systems, competing,
conlicting, connected, complex, and interactive. In this context, the introduction of ML in SE plays a signiicant
role in realizing the move from an unrealistic utopia of perfection into a more realistic but imperfect software
development practice.
Overall, ML in SE ofers streamlined processes for tasks like software behavior extraction, testing, and bug

ixing [80]. For NLP-based software code searching, ML enhances the precision and speed of code retrieval [9]. It
also enhances cost, size, efort, and quality estimation in SE projects, improving planning and decision-making,
thereby simplifying complex tasks and contributing to the realization of a realistic software development practice
[1, 46, 148]. Moreover, ML aids in predicting software reliability, reusability, testability, and release timing,
optimizing resource allocation [148]. However, its application in design pattern recognition and code generation
can be intricate, requiring careful modeling and specialized expertise. ML excels in test case generation and bug
detection but may lack transparency in decision-making. Data quality and specialized knowledge are essential
considerations, highlighting the trade-ofs and complexities of ML in SE.

2.2 Engineering Machine Learning-Enhanced Sotware Systems

In the context of this research, we deine ML-enabled software as software augmented with ML components.
This type of software leverages ML to carry out tasks that typically demand human intelligence, such as language
translation, image recognition, or decision-making. The ML component can be trained with extensive data to
execute these tasks with exceptional precision. Consequently, the integration of ML into software enhances its
ability to perform intricate tasks swiftly and efectively, surpassing the capabilities of traditional software in
isolation.
Engineering ML-enabled software is another dimension of the SE and ML disciplines’ interplay. In light

of this, various authors claimed that special treatment is needed when developing ML-enabled systems. For
instance, according to Martínez-Fernández et al. [78], ML-enabled systems are software with functionalities
enabled by at least one ML component. Such components may be used for image recognition, speech recognition,
traic prediction, product recommendations, self-driving vehicles, email spam iltering, malware iltering, virtual
personal assistant, and fraud detection. All of these factors lead to the need to pay special consideration to
technical, ethical, and social concerns in the engineering of ML-enabled systems. Accordingly, Gasser and
Almeida [35] proposed a layered model for ML governance and introduced principles for developing accountable
ML algorithms (namely, responsibility, explainability, accuracy, auditability, and fairness), which have a signiicant
social impact.
Amershi et al. [4], in their study, pointed out that there is widespread interest in integrating ML into con-

ventional software, which in turn necessitates a change in the software development process. The authors also
mentioned aspects of ML that make it fundamentally diferent from conventional software development. These
aspects include much more complex discovery and management of data, very diferent skill requirements for
model customization and reuse, and components that are more diicult to handle as distinct modules. In a related
context, Ozkaya [93] explained those inherently diferent characteristics of ML-enabled systems, which she
described as software-reliant systems that include data and components that implement algorithms mimicking
learning and problem-solving- due to their probabilistic nature (as opposed to the deterministic nature con-
ventional software systems). Although they have many commonalities with regard to building, deploying, and
sustaining conventional software systems, the author pointed out that systems with ML components can have a
high margin of error (due to the uncertainty that often follows predictive algorithms), which makes ML-enabled
systems hard to test and verify.

It has also been highlighted that requirements engineering needs a tailored software development process when
applied to the development of ML-based complex systems [11]. However, according to Belani et al. [11], there is

ACM Comput. Surv.



State-of-the-Art and Challenges of Engineering ML- Enabled Sotware Systems in the Deep Learning Era • 7

no process in place speciically tailored to deal with requirements suitable for specifying such software solutions.
From the perspective of software quality and testing, Lenarduzzi et al. [72] asserted that ML applications are
produced by developers who lack in-depth knowledge regarding SE processes, which resulted in poorly tested
and very low-quality ML-enabled software systems.

2.3 Background Summary

This section provides an overview of SE principles and their integration with ML, highlighting their interplay in
modern software development. SE encompasses processes, methods, and tools aimed at maintaining software
quality. The SDLC partitions development into phasesÐrequirements speciication, design, development, testing,
deployment, andmaintenanceÐeach essential for achieving quality standards and improving productivity. Focused
on self-learning algorithms, ML enhances machine intelligence using supervised, unsupervised, semi-supervised,
and reinforcement learning methods, facilitating advancements in cybersecurity, healthcare, e-commerce, and
more. Techniques such as linear regression, neural networks, and DL underpin ML’s ability to process and derive
insights from vast datasets. The integration of ML into SE practices has shown considerable promise through task
automation, such as software testing and cybersecurity solutions. Additionally, studies have explored adapting
SE principles to address the distinct challenges posed by ML-enabled systems, known for their probabilistic ML
algorithms. Despite these advancements, the literature lacks a detailed exploration of how SE principles can
efectively support the development of ML-enabled software systems, ensuring robustness, reliability, and ethical
standards in their deployment. Addressing this gap, our research aims to investigate the seamless integration of
SE and ML, thereby contributing to the advancement of both disciplines. The following section will outline the
methodology used to review existing literature, aiming to identify current trends and gaps in this ield.

3 Methodology

In this study, our objective is to distill the core insights derived from the empirical experiences of researchers
regarding the interaction between the ields of SE and ML. Speciically, we focus on exploring the current
landscape and challenges in SE practices related to the development of ML-enabled software systems. Our goal is
to analyze and amalgamate existing research to gain a deeper understanding of fundamental principles and draw
conclusions regarding the layered technology[108], focusing on the SE process areas and software development
methodologies. In this section, we present our review guideline, literature selection strategy, and method of
analysis.

3.1 The Adopted Review Guideline

A review guideline serves as a fundamental framework that shapes our methodology for structuring the review
process. In this section, we have summarized existing review guidelines [59, 63, 92, 105], which are instrumental
in ensuring the integrity and reliability of our study.

The guidelines put forth by Keele et al. [59] and Kitchenham and Charters [63] emphasize the critical milestones
in the review process, encompassing the deinition of objectives, the execution of the review, and the reporting
of indings. These comprehensive guidelines outline a series of detailed activities, which include establishing a
review protocol, conducting systematic searches, making selection decisions (such as inclusion and exclusion
criteria), data extraction, analysis of results, and the subsequent discussion and conclusion. In addition, Okoli and
Schabram [92] proposed an extended guideline that incorporates quality appraisal and synthesis as supplementary
components.

Furthermore, there is a qualitative (phenomenological) review guideline, as described by Randolph [105] and
Creswell and Poth [21], with the speciic aim of elucidating the "lived experiences" of individuals in relation to a
particular phenomenon. This guideline encompasses a sequence of steps, including bracketing, data collection,

ACM Comput. Surv.



8 • G. Assres et al.

identiication of meaningful statements, interpretation, and the comprehensive description of the observed
phenomena.

For our study, we have chosen to adopt a review guideline that encompasses the deinition of objectives, litera-
ture searching, selection processes (inclusion criteria), data extraction, analysis of indings, and the subsequent
discussion and conclusion. In line with the phenomenological approach, as suggested by Randolph [105], we have
deliberately set aside our own personal experiences, biases, and preconceived notions related to the introduction
of ML-enabled software as a phenomenon. This approach ensures that our review maintains an objective and
unbiased perspective in exploring the subject matter as it appears in the studies we have examined.

3.2 Literature Search and Selection Strategy

In line with our review objective and the adopted review guideline, ive reputable digital libraries, SpringerLink,
Scopus, ScienceDirect, IEEExplore, and ACM-DL, were chosen to collect the related studies from January 2010.
This time frame was selected as it marked the beginning of the modern DL era, prompting the establishment of
thousands of AI startups dedicated to DL [26].
In the literature search, we employed several keywords relating to requirements speciication, design, de-

velopment, testing, deployment, maintenance, and development methodologies- in the context of engineering
ML-enabled software (see Section 2). Additionally, we employed inclusion criteria as part of our literature
search strategy and formulated search queries to perform an advanced search on the digital libraries. The search
queries consisted of alternative search terms or synonyms as operands as well as the ’AND’ and ’OR’ operators.
Accordingly, we ran the search queries below and collected journal and conference articles from the chosen
digital libraries. The search string is constructed according to the general pillars adopted in this study- "software
development phases" AND "integration with ML" AND "software development methodologies".

"software engineering" OR "requirement speciication" OR "requirements engineering" OR "software construction"
OR "software design" OR "software architecture" OR "software implementation" OR "software testing" OR "software
deployment" OR "software maintenance" OR "user support" OR "software release" OR "software analysis" OR "software
coniguration management" OR "software quality" AND

"AI-based" OR "AI-powered" OR "AI-enabled" OR "artiicial intelligence-based" OR "artiicial intelligence-powered"
OR "artiicial intelligence-enabled" OR "ML-based" OR "ML-powered" OR "ML-enabled" OR "intelligent software" OR
"AI-augmented" or "ML-augmented" OR "AI-infused" OR "ML software" OR "AI software" AND

"agile OR scrum OR kanban OR waterfall OR spiral OR "component-based" OR DevOps OR iterative OR lean
OR "extreme programming"

Additionally, we formulated the below search query to address the shorter string length requirement of ScienceDi-
rect. In the search string, we used two AND operators on three operands based on variants of terminologies
related to "software engineering", "ML-enabled" or "AI-based", and "agile".

"software engineering" AND ("AI-based" OR "AI-powered" OR "AI-enabled" OR "ML-based" OR "intelligent soft-
ware" OR "AI-infused" OR "AI software") AND łagilež

Table 2 outlines the criteria for selecting and excluding primary literature in the study, ensuring a focus on
relevant, high-quality, peer-reviewed work.

ACM Comput. Surv.



State-of-the-Art and Challenges of Engineering ML- Enabled Sotware Systems in the Deep Learning Era • 9

Table 2. Inclusion and exclusion criteria for the primary studies

Criteria Inclusion Exclusion

Time Frame Studies published from January 2010 onwards Studies published before 2010

Source Journal and conference papers from Springer-
Link, Scopus, ScienceDirect, IEEExplore, and
ACM-DL

Papers from sources outside
these ive digital libraries

Type of Publi-
cations

Peer-reviewed journal articles and conference
and workshop papers

Non-peer-reviewed articles,
books, theses, grey literature

Keywords and
Scope

Focus on software development phases and
integration with ML, software development
methodologies (see search string)

Studies not related to ML-
enabled software development
or methodologies

Language English-language papers Papers in languages other
than English

Consequently, a total of 412 journal and conference articles were gathered. Figure 1 illustrates the distribution
of these acquired articles across various years within each digital library. Subsequently, we applied ilters based
on title, abstract, and full-text content to focus on papers related to software engineering practices in developing
ML-enabled systems. Papers related to the application of ML-based tools in software engineering were excluded,
leading to the identiication and selection of 40 articles that were deemed pertinent to our research.
In addition to using the above search strings, we have conducted forward and backward snowballing by

selecting initial papers guided by our data extraction process, which involved iltering based on title, abstract,
and full text. Snowballing served as a validation method for our search, resulting in a total of 26 papers added
to our analysis. A summary of the number of queried and selected primary studies from each digital library is
provided in Appendix A.

3.3 Analysis of Secondary Studies

Several systematic literature reviews and mapping studies highlight various aspects of SE practices for ML-enabled
systems, covering areas such as non-functional requirements, architecture, project management, and software
quality assurance.

• Non-functional requirements in ML-enabled systems. De Martino and Palomba [24] classify and
discuss challenges in managing non-functional requirements (NFRs) in ML-enabled software. The authors
highlight key concerns such as fairness, transparency, security, and performance optimization, emphasizing
the necessity of automated tools to handle these aspects. The study underscores that ML systems require
continuous monitoring and adaptation to ensure compliance with NFRs.

• Architectural considerations. Nazir et al. [89] explore architectural challenges and best practices for
ML-enabled systems. They identify major design trade-ofs, such as balancing model accuracy with compu-
tational eiciency, handling uncertainty in ML predictions, and ensuring API consistency across diferent
ML components. The study also stresses the importance of modularizing ML functionalities to improve
maintainability and scalability.

• SE practices for ML. Nascimento et al. [88] provide a systematic review of SE practices applied to ML
software. The authors identiied gaps in traditional SE methodologies when applied to ML-enabled systems,

ACM Comput. Surv.



10 • G. Assres et al.

2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024
Publication Years

ACM-DL

IEEExplore

ScienceDirect

Scopus

SpringerLink

Di
gi

ta
l L

ib
ra

rie
s

1 1 1 2 1 2 1 6 4 3 1

1 1 10 5 9 6

2 2 4 3 7 1 8 10 18 27 46

1 2 1 4 7 3 2 3 13 14 28 40 78

1 1 5 3 7 16

3

17

53

14

83

2

15

76

16

87

Fig. 1. The yearly distribution of the collected papers in each digital library included in the study.

particularly in requirements engineering, testing, and continuous integration. The study suggests for
adapting SE frameworks to better accommodate the iterative and data-driven nature of ML development.

• Software project management. Cerdeiral and Santos [17] examine software project management in
high-maturity settings, providing insights relevant to ML-enabled systems. The study highlights the need
for lexible project management approaches that accommodate the experimental nature of ML development,
emphasizing iterative cycles and continuous feedback loops.

• ML in SE practices.Wang et al. [137] investigate the role of ML in SE itself, reviewing how ML models
are being used to enhance various SE tasks, including defect prediction, code generation, and automated
testing. The authors suggested that while ML techniques can improve software quality, they also introduce
new challenges related to interpretability and reliability.

• ML for automated software maintenance. Zhang et al. [150] focus on the application of LLMs for
automated program repair. The indings indicate that LLMs can signiicantly enhance software maintenance
processes, but the authors also highlighted issues such as hallucination, lack of explainability, and the
diiculty of integrating ML-driven repair techniques into traditional SE worklows.

• ML in domain-speciic applications. Antonopoulos et al. [6] conduct a systematic review of ML ap-
proaches in energy demand-side response. Although domain-speciic, the study provides broader insights
into how ML engineering practices must adapt based on industry-speciic constraints, data availability, and
operational requirements.

Overall, the reviewed secondary studies collectively highlight the complexities and evolving nature of engineering
ML-enabled software. While traditional SE practices provide a foundational framework, they often fall short in
addressing ML-speciic challenges such as data dependencies, evolving model behavior, and NFR compliance.
Moreover, there is a strong need for automated tools to streamline NFR management, testing, and continuous
integration. Flexible architectural patterns are essential to support modularization, uncertainty management, and
scalable deployment of ML models. Interdisciplinary collaboration between ML practitioners and software engi-
neers is crucial to bridging the gap between model development and software system requirements. Additionally,

ACM Comput. Surv.



State-of-the-Art and Challenges of Engineering ML- Enabled Sotware Systems in the Deep Learning Era • 11

enhanced project management approaches are required to align with the iterative and experimental nature of ML
worklows.

3.4 Method of Analysis and Interpretation

In this research, we adopted the chosen articles as our units of analysis rather than conducting direct interviews
with individual experts who are ailiated with the domain [105]. Essentially, we relied on existing studies as
secondary data sources to elucidate the prevailing engineering practices for developing ML-enabled software
within the realm of the interaction between ML and SE.

The chosen studies were subjected to further review aimed at identifyingmeaningful statements relevant to each
area within the SE practices. To achieve this, we gathered empirical assertions presented by the authors regarding
the practices and challenges associated with the development of ML-enabled software systems, preserving them
verbatim in a spreadsheet. Subsequently, these empirical claims were rephrased to provide clarity and context, as
discussed in Section 5. The indings are presented through tables, line charts, donuts and pie charts to ofer a
visual representation.

4 Results and Analysis

In this section, we delve into the core results of our review concerning the state-of-the-art and challenges
encountered in the realm of engineering ML-enabled software. Our aim is to provide insight into the current
practices of SE process areas and methodologies in the development of ML-enabled software systems while
shedding light on the challenges that researchers, developers, and industry practitioners face. Our analysis
not only ofers an overview of the ield but also paves the way for a deeper understanding of the interplay
between SE and ML. Accordingly, results concerning the SE process, each process area, and software development
methodologies will be presented next.

4.1 SE Process Areas

Our analysis of the selected studies indicate that research on the engineering practices for developing ML-enabled
software has increased in the last decade, as shown in the bubble chart in Figure 1, and we anticipate for this
trend to continue growing. Next, we investigated the distribution of the selected studies focusing on each of the
typical SDLC phases. The donut chart in Figure 2 illustrates each process area and corresponding percentage
distribution in the selected studies.
The analysis includes a citation map graph (Figure 3) that delineates the interconnection of selected studies

within the SE process areas- requirements, design, coding, testing, deployment, and maintenance. This graph
provides an overview of the citations associated with each process area, revealing additional information on
whether a study addresses general concerns pertaining to the process area for ML-enabled software or delves
into aspects speciic to ML components. The examination of selected studies extends to a detailed exploration,
emphasizing the authors’ viewpoints on the current practices in implementing the typical SDLC phases in the
development of ML-enabled software. Below, we ofer a description of the authors’ perspectives concerning
requirements speciication, design, coding, testing, deployment, and maintenance.

4.2 Requirements Specification

The authors of the selected studies have presented diverse perspectives on the prevailing practices in implementing
requirements speciications for the development of ML-enabled software, particularly in terms of the integration
level between conventional software components and ML components. In this regard, Rahman et al. [103] is
among the studies that attempted to relect on requirement speciications for both components. As per the
authors’ insights, crafting requirement speciications for ML-enabled applications entails a blend of ML-speciic

ACM Comput. Surv.



12 • G. Assres et al.

Fig. 2. Percent distribution of the selected studies in SE process areas.

and traditional requirements engineering activities utilized in developing conventional software. They highlight
that the speciications for the ML component may undergo frequent changes, posing a challenge in precisely
describing the requirements.
Czarnecki [23] also pointed out insights regarding the nature of requirements engineering in the context

of software for autonomous vehicles (AV). The functionality of AV needs to be data-driven, which requires
expert-assisted and continuous extraction of driving speciications from traic data. Similarly, Muhammad [85]
considers AV in urban environments and presents the importance of specifying human factors such as trust,
acceptance, and safety as requirements for the communication between pedestrians and AV. This enables the
building of AV with enhanced safety, trust, driving performance, as well as AV-driver interaction.
A review by Martínez-Fernández et al. [78] noted that 60% of their selected studies concentrated speciically

on non-functional requirements for ML components. The authors highlighted that these studies predominantly
aimed at introducing new ML-speciic quality attributes and speciication notations to address probabilistic
results or ambiguity challenges. Moreover, the review revealed that only a limited number of studies ofered a
comprehensive perspective on the requirements engineering process for the development of ML-enabled systems.
When ML components are added to conventional software, software developers sustain more challenges in

appropriately identifying and comprehending such complex and heterogeneous contexts. In this regard, Wolf and
Paine [143] proposed a sense-making theory for conducting requirements speciication, thereby making sense
of the interaction situation between the requirements speciication phases of the development of conventional
software and ML-enabled systems.

ACM Comput. Surv.



State-of-the-Art and Challenges of Engineering ML- Enabled Sotware Systems in the Deep Learning Era • 13

SE process
areas

Requirements

Conventional
software & ML
[23, 74, 78, 85,
103, 126, 143]

Focus on ML
component
[28, 37, 43, 61,
87, 99, 133, 147]

Design

Conventional
software & ML
[33, 58, 74, 78,
81, 125, 126]

Focus on ML
component
[22, 23, 47, 54,
66, 70, 73, 103,

119, 140]

Coding

Conventional
software & ML
[74, 78, 126]

Focus on ML
component
[23, 44, 103,

116]

Testing

Other tests
[3, 28, 42, 43, 70,
74, 75, 78, 83,
126, 128, 146]

Integration
[13, 15, 45, 48,
58, 62, 65, 69,

82, 88, 103, 124]
Deployment

Continuous ex-
perimentation

[74, 124]

Other methods
[7, 76, 94, 103,

146]

Maintenance

Predictive
maintenance
[60, 106, 118,

151]

Other methods
[78, 82, 126]

Fig. 3. List of citations under each SE process area.

According to Lu et al. [74], the existing practice of requirements speciication often omits or vaguely states the
special requirements for building responsible AI. Given the crucial ethical aspect of safety, particularly in ML-
enabled systems handling culture-sensitive data, the authors advocate for a more thorough exploration of these
requirements. They propose the use of elicitation techniques such as ethical user stories, workshops, interviews,
demos, and prototypes. They also suggest categorizing ethical principles into non-functional quality requirements,
ensuring veriiability, and maintaining data requirements throughout the SDLC. The practices related to the
speciication of requirements particular to the ML components are elucidated further in the following studies:

• In a technical brieing on trustworthy AI software, Vakkuri et al. [133] highlighted the incorporation of
ethical principles and regulations, such as the General Data Protection Regulation (GDPR), focusing on ML
components. The authors outlined commonly featured AI ethics principles, including transparency, justice,
fairness, equity, nonmaleicence, responsibility, accountability, privacy, beneicence, freedom, autonomy,
trust, sustainability, dignity, and solidarity.

ACM Comput. Surv.



14 • G. Assres et al.

• Habibullah et al. [43] emphasized that ML-reliant systems impose distinct demands on non-functional re-
quirements compared to conventional systems. Traditional requirements like model accuracy are augmented
with the addition of explainability.

• Addressing the challenges in planning ML projects due to uncertainty, Nahar et al. [87] proposed mitiga-
tion strategies, including incorporating bufer times. They highlighted data security as a non-functional
requirement and stressed the beneits of a managerial understanding of SE and ML to align product and
model teams toward common goals.

• Dey and Lee [28] underscored safety and robustness as crucial ML requirements, noting the absence of
adequate requirements analysis and modeling techniques to handle uncertainty. The authors advocated for
explicit requirements speciication related to data, ML model, and ML process. Furthermore, they suggested
the establishment of quantitative and measurable qualitative targets for explainability, ethical, legal, and
robustness aspects of non-functional requirements.

4.3 Design

Similar to the requirements speciication, authors portrayed various perspectives concerning the existing practices
of performing the design phase in the development of ML-enabled software- conventional software components
and ML components. According to a study [126], 73% of development projects for ML-based systems apply
conventional software design approaches, partially or in full, by adjusting to match user needs on the low of the
design process. The authors also added that the use of SE methods in the development of ML-based systems will
increase user satisfaction.

In the domain of software design for ML-enabled systems, Meyer and Gruhn [81] highlighted the application
of well-established design principles such as separation of concerns, design patterns, and object-oriented and
component-oriented development. The authors introduced the concept of concept-based SE, a fusion of design
objectives from component-based SE, encompassing productivity and extensibility with ML considerations,
particularly focusing on reinforcement learning accuracy. However, Subramonyam et al. [125] argues that the
Human-AI interaction prohibits separation of concerns between user experience designers and developers.
According to the authors, this is because human needs must shape the design of ML interfaces, the underlying
ML sub-components, and the training data.
In related work, Jüngling et al. [58] advocates for the application of design patterns as a means to visualize

ML system designs. They exemplify this with a use case involving a passenger counting system, employing
a strategy design pattern that integrates rule-based and ML components. Additionally, the authors propose
the adoption of a uniied modeling language (UML) to facilitate communication of design descriptions among
software engineers, ML experts, and knowledge engineers. Furthermore, Lu et al. [74] delves into trustworthiness-
by-design, identifying critical factors such as data, algorithm, architecture, and the entire software. They also
highlight ongoing eforts in designing user interfaces for Explainable AI (XAI). Broadly, as highlighted in [78],
ML-enabled systems’ design, development, and operation difer signiicantly from conventional software systems.
Further insights from various authors on existing practices in software design, with a speciic emphasis on ML
components, are outlined below.

• In their work, Hartikainen et al. [47] delve into human-computer interaction (HCI) design practices
within the realm of ML application development. Their focus on HCI for AI (HCAI) underscores critical
design constraints such as trustworthiness and usability, alongside key principles including explainability,
transparency, ethics, fairness, responsibility, and sustainability. The authors illustrate these concepts
through various ML application domains, ranging from customer service chatbots to enterprise resource
planning (ERP) systems and IoT solutions.

ACM Comput. Surv.



State-of-the-Art and Challenges of Engineering ML- Enabled Sotware Systems in the Deep Learning Era • 15

• The integration of deep neural network models into software architectures, coexisting with classical code,
is addressed by Kusmenko et al. [70]. Their methodology automates the ML development process when
incorporating neural networks, emphasizing the design of mathematically intensive algorithms to address
complex problems without decomposition.

• Czarnecki [23] explores modular and reconigurable architectures, employing dependability patterns for an
automated driving system utilizing a publish-subscribe framework. The author exempliies this approach
using the Robot Operating System (ROS), where components possess message-based interfaces and support
easy runtime reconiguration.

• Discussing challenges, Rahman et al. [103] emphasize the necessity for lexible design in ML-enabled
systems to accommodate swift changes in algorithms and frameworks. They note that the performance
of ML-enabled systems may degrade over time due to shifts in data patterns, independent of changes in
requirements or the presence of bugs. This dynamic nature makes predicting maintenance requirements
challenging, highlighting the importance of design lexibility.

4.4 Coding

The coding phase in conventional software involves software integration and the construction of functions,
objects, etc. In the context of developing ML-enabled software, coding extends to tasks such as data pre-processing
and model training. Authors ofer diverse perspectives on existing practices related to coding as presented next.

• For Martínez-Fernández et al. [78], the ML component in ML-enabled software is viewed as embedded ML
code or library, serving as a tangible implementation of ML algorithms.

• Lu et al. [74] introduces ethical knowledge graphs as a tool for implementing ethical principles and
guidelines (e.g., GDPR) in ML-enabled systems, automatically assessing application programming interface
(API) compliance against AI ethics regulations.

• In the study of Rahman et al. [103], the focus is on the ML component, emphasizing that coding frameworks,
libraries, and methods for ML applications should align with the requirements of the target platform.
Practices such as code reuse, careful framework selection (e.g., scikit-learn, TensorFlow, Keras), and
continuous integration of ML models are advocated. This approach ensures implementation choices that
consider portability, compatibility, and adaptability to navigate the rapidly evolving hardware-software
ecosystem.

• In the context of automated driving systems, Czarnecki [23] underscores the integration of supervised
learning with deep neural networks for implementing ML-based perception functions.

4.5 Testing

In the conventional SDLC, testing serves to evaluate and validate the resulting software[53], focusing on aspects
such as bug ixing[49, 57], reduction of development costs, and performance improvement. As ML becomes
increasingly integrated into software systems, testing methodologies must evolve to address the unique chal-
lenges and requirements posed by ML-enabled applications. Next, we present our analysis of secondary studies
categorized as overview of various testing strategies, and challenges in the context of ML systems.

• Testing approaches. Authors of the selected studies presented various levels of functional and non-
functional testing of ML-enabled systems (i.e., acceptance, unit, performance, regression, and scalability
testing), as depicted in Table 3. For example, Syahputri et al. [126] compiled testing methods observed
in current studies within the agile methodology. Additionally, Gutierrez et al. [42] introduced fuzzy-
based testing as an approach to accelerate operational testing, ensuring the integrity of light software
without system interruption. Similarly, other studies highlighted testing methods such as canary testing,
an automated quality assurance approach in the DevOps context[3].

ACM Comput. Surv.



16 • G. Assres et al.

• Model validation. Testing in ML, often referred to as model validation, involves assessing the performance
of an ML model using data that the model has not been exposed to during training[83, 128]. In DevOps,
the validation is usually performed before committing the code and running tests locally. Once the model
evaluation meets the performance requirement, the ML code needs to be integrated into the system code
for production. Furthermore, testing activities for ML-based software components do not only focus on
detecting bugs in source code but also on inherent issues that arise from model errors and uncertainty[4].
Thus, automating the testing process is an important strategy in SE, where testing teams create test cases
that capture the required behavior of the ML model.

• Automation and integration testing. Furthermore, in distributed environments, integration testing
is required and performed after ML model testing aimed at validating and verifying the quality of the
developed model[28, 70, 103].
n this regard, Steidl et al. [124] discussed testing as part of the CI/CD (continuous integration- continuous
delivery) pipeline, which can be performed either manually, semi-automatically, or automatically- on data,
data schema, and models.

• Early testing and user feedback. Ensuring the functionality of ML-enabled software through early
testing in the development process is essential, especially considering the inherent uncertainty in ML [47].
Employing expert evaluation and gathering feedback from end-users in the initial phases facilitates the
early detection of model faults during the iterative ML development process [43, 125, 138, 139].

• Ethical and quality assurance challenges. Veriication and validation testing plays a pivotal role in
meeting the requirement speciications of ML-enabled systems, with ethical acceptance testing ofering
a means to identify and verify ethics-related design laws in ML-enabled systems [45, 74]. However,
testing ML-enabled software is fraught with challenges. The intricate nature of ML-enabled systems poses
numerous testing and quality assurance challenges for both ML components and the entire software product
or service [38, 41, 43, 87]. Common challenges include the absence of a clear testing strategy, the low
priority assigned to model testing, an unclear commitment to system testing, and a lack of transparency in
testing processes and results within teams.

• Unique quality standards. The inherent uncertainty in ML models demands specialized expertise for the
implementation of rigorous testing, particularly for non-functional requirements in ML-enabled systems
[43]. The development of test cases for ML-enabled systems requires unique quality standards to account
for the uncertainty associated with ML model outputs [78]. Indeed, Rahman et al. [103] highlighted the
formidable challenge of testing and rectifying errors in ML applications, exacerbated by the opacity of ML
models, which hampers the understanding and explanation of erroneous behavior.

In the context of DL, advanced techniques in testing and debugging are crucial for improving reliability
and performance in ML systems. Comprehensive studies focusing on DL bug characteristics [56, 138, 139] and
repairing [49, 57, 149] reveal common bug patterns and challenges in DL systems, as presented next.

• Advanced techniques such as DeepLocalize for fault localization with DNNs[139], UMLAUT for debugging
DL programs using program structure[117], and DeepDiagnosis for automatically diagnosing faults and
recommending actionable ixes in DL programs[138, 149] to include detailed discussions on automated fault
diagnosis and the actionable ixes recommended by these systems. These studies emphasize the importance
of structural analysis and automated diagnosis for localizing faults in DL models.

• An automated bug debugger systemÐ MODE[77] focuses on debugging by using state diferential analysis
and strategic input selection to identify and correct anomalies within the model.

• Similarly, AUTOTRAINER[152] automates the detection and repair of common training issues in deep
neural networks, such as vanishing gradients and incorrect data preprocessing, by implementing solutions
like adjusting learning rates and modifying architectures.

ACM Comput. Surv.



State-of-the-Art and Challenges of Engineering ML- Enabled Sotware Systems in the Deep Learning Era • 17

• These security-related studies on ML-enabled software also discuss the limitations of the recent advances
in software security.

This structured overview of testing methodologies and their implications in ML-enabled software development
highlights the importance of adapting existing practices while addressing the unique challenges posed by ML
technologies.

Table 3. Authors’ insights on ML-enabled sotware testing practices

Testing Methods Characteristics

Fuzzy testing Fuzzy testing utilizes random input data to identify vulnerabilities and
enhance robustness without interrupting operations[42].

Canary testing Allows users to assist in a live environment to validate features before
full deployment[3].

ML testing/evaluation Evaluation of ML model, and used for ML optimization[43, 75, 83, 128].

System veriication Veriication of the developed system in pre-production environments,
semi-automated or automated processes. Formal models and various types
of testing[28, 75].

Integration testing of hy-
brid system

The deployment is followed by real-time monitoring[58].

Integration testing of dis-
tributed systems

Testing occurs after testing the ML model. Testing by integrating with
the TORCS simulator[70].

Unit testing Unit testing frameworks (e.g., PyUnit for Python)[103].

ML cross-validation test-
ing

To ensure the statistical relevance of the results. Avoid overitting and
biases[146].

(Semi-)automatic and it-
erative validation

Testing of data, data schemas, and models in the CI/CD pipeline[82, 124].

Ethical acceptance test-
ing

Deine testable acceptance criteria for ethical principles, integrating tests
for ML and non-ML component interactions while considering AI quotient
and human factors[45, 74].

4.6 Deployment

The deployment phase describes the process of making a software system available for use on a target environment,
such as a production server or end-user device[29]. The deployment process can vary depending on the type
of software, the target platform, and the project’s speciic requirements. In ML-enabled software, deployment
involves placing a working ML model in an environment where it should do the task as it is intended to do. Our
analysis of secondary studies concerning this is presented next.

• Nguyen-Duc and Abrahamsson [91] pointed out that deployment can be considered as a part of the CD/CD
pipeline of DevOps. Moreover, it can be achieved by exposing APIs associated with the ML models and
using them as standard libraries when developing other ML-enabled solutions [127].

ACM Comput. Surv.



18 • G. Assres et al.

• Lwakatare et al. [75] pointed out that the deployment of ML-enabled software can be performed as a manual,
semi-automated, or automated process in pre-production environments. In a related context, research has
examined diferent deployment approaches for engineering ML-enabled systems, elucidating the associated
challenges. This information is succinctly encapsulated in the initial section of Table 4.

• Additionally, a survey presented by Alnafessah et al. [3] summarized continuous re-deployment in a
production environment via run-time service management for dynamic resource scheduling of micro-
services for ML models.

• In DevOps, CI/CD are key enablers to stabilize, optimize, and automate the deployment process of ML
models [38, 124]. These facilitate the provision of an automated infrastructure, higher availability, better
support, and incident response for the ML system. However, efective automation requires the provision of
consistent APIs, thereby avoiding dependencies with other libraries. Thus, CI deals with merging code into
the main branch and automating the system’s build and testing.

• The other challenge in DevOps is that the development pipeline can change frequently, making it diicult
to reproduce the process outside the local environment without the assistance of specialized data and
code version control systems (e.g., git, DVC, etc.) [38, 74, 78, 153]. Thus, monitoring the ML model after
deployment and testing must take into account the DevOps (MLOps for ML projects) worklow [38, 83, 128].
Therefore, ML deployment needs proper planning, monitoring, and documentation.

• Lu et al. [74] also presented challenges relating to deployment strategies for responsible AI addressing
continual learning based on new data, high uncertainty, and other risks. The strategies include a phased
deployment of a subset of the ML-enabled software, initially for a certain group of users, thereby reducing
ethical risk and homogeneous redundancy.

4.7 Maintenance

Like in conventional software, maintenance, and support in ML-enabled software consist of performance mon-
itoring and horizontal and vertical scaling [3]. In this regard, once the trained ML component is operational
in the actual environment, the system should be continuously monitored to detect issues such as performance
degradation, compatibility, portability, and scalability problems [75, 103]. However, ML model deployment and
performance optimization introduce maintenance challenges due to large datasets and knowledge transfer. Thus,
we present our analysis of secondary studies on this topic as follows.

• Yang and Rossi [146] explained open-set recognition as a key building block for judging the itness of a
trained ML model to its production environment while detecting novelty in individual inferences. It also
ensures timely and accurate detection of model performance degradation by tracking multiple inferences
of the same model.

• Similarly, studies such as in [8, 124] emphasized the importance of getting collective feedback or alerts
during runtime, which can be used to trigger the maintenance subsystem.

• Additionally, minor modiications to the ML model structure and data can exert a substantial inluence,
causing noteworthy shifts in the performance attributes of theMLmodules. Consequently, there is a demand
for ongoing maintenance, customization, and reuse of the end-to-end pipeline while it is in production,
requiring diverse expertise [4, 94].

• The subsequent segment of Table 4 encapsulates the viewpoints of the authors concerning the operation,
maintenance, and support within the domain of engineering ML-enabled systems.

4.8 Development Methodologies

Software development methodologies constitute the integral components of layered technology, playing a vital
role in the engineering of high-quality software products or services. Among these methodologies, Agile and its

ACM Comput. Surv.



State-of-the-Art and Challenges of Engineering ML- Enabled Sotware Systems in the Deep Learning Era • 19

Table 4. Authors’ insights on deployment, maintenance, and support of ML-enabled sotware

Methods Description

Deployment

Open-set recognition Checking the itting of a trained ML model. Identiication of overall model
degradation [146].

Continuous experi-
mentation

Allows gathering user feedback during run-time [74, 124].

Continuous monitor-
ing and validation

Dynamic, adaptive, and extensible ethical risk assessment. Version-based
feedback, and incentives [74, 82].

Non-critical and criti-
cal deployment

Cascading deployment of ML components and autonomous ML components
[76].

Maintenance, and support

Collective feedback
during runtime

Get feedback from the end-users (Ops) as soon as possible. Monitoring quality
requirements in near real-time [8, 124].

Predictive mainte-
nance (PdM)

Establish action possibilities aforded by PdM systems. Implement the actu-
alization process of these afordances focusing on conceptual adaption and
constraint mitigation [60].

Tests tracing and ver-
iication

Trace the tests veriied in any of the previous phases. Support the domain
experts and the technicians to identify faulty components [82].

variants (such as SCRUM) stand out for their recognized attributes of lexibility, dynamism, and adaptability to
speciic circumstances. These quality attributes are achieved through active customer involvement, incremental
delivery, a people-focused approach (i.e., the focus on individuals over processes), embracing change as well
as prioritizing simplicity [122, 123]. Considering the aforementioned, there is a noticeable inclination towards
incorporating traditional software development methodologies, notably agile frameworks, in ML projects [67, 112].
Therefore, we investigated the development patterns, speciically the adoption of lightweight, scalable, and
automated (agile-like) methodologies for ML-enabled software projects. It was observed that 57% of all the
selected studies concentrated on the prevailing practices of integrating ML-enabled software development
projects with established development methodologies, as delineated below.

A subset of studies [3, 75, 83, 144, 146]tackled the challenges and potential solutions in developing complex sys-
tems incorporating ML components. These studies delved into the practices of utilizing DevOps and ML worklow
processes concurrently. Other related literature in [8, 23, 38, 82] demonstrated the adoption of newer DevOps-like
terminologies such as AIOps, MLOps, and DataOps to integrate ML into traditional DevOps processes. In a
second category, inspired by the agile methodology, studies explored contexts like "Agile for ML-based systems"
[128], "Agile4ML" [132], and "Agile-like engineering processes" [4] to assimilate the distinctive characteristics of
ML-enabled software projects into modern agile frameworks. Additionally, a study by Halme [45] introduced
a method to accommodate the unique ethical requirements of ML projects, namely ethical user stories (EUS),
within the agile process.

ACM Comput. Surv.



20 • G. Assres et al.

DevOps-like

42.11%

Agile-like
21.05%

Other

36.84%

Fig. 4. Percent distribution of selected studies relating to development methodologies.

The third category of studies aimed at envisioning various other software development methodologies, provid-
ing general insights into adapting existing methodologies to suit ML-enabled software development projects.
This included perspectives such as implementing regulations like GDPR [133], team organization for component-
based development [41], and continuous development pipelines for specifying, orchestrating data, training, and
integrating (safety-critical) ML-based applications [102, 124]. Moreover, these studies addressed the identiication
of diverse patterns of approaches in practical ML development projects, projects involving neural networks, and
acceptance-oriented continuous experimentation [70, 91, 127].

The distribution of studies among DevOps-like, Agile-like, and other development methodologies is illustrated
in Figure 4, where 42.11% of the selected studies concerning software development methodologies focused on
DevOps-like methodologies, while Agile-like and other methodologies constituted 21.05% and 36.84%, respectively.

5 Discussion

This section discusses the results (Section 4) and highlights the current practices and challenges in engineering
ML-enabled software, focusing on SE process areas and development methodologies.

5.1 Trend Analysis of the Studies

Our analysis, illustrated in Figure 1, underscores an increasing trend in the annual distribution of selected studies,
with ScienceDirect and Scopus emerging as dominant repositories in this thematic area. This surge in research
activity within ML-enabled software is driven by several contributing factors. There is a growing demand for
ML-enabled solutions that aim to enhance eiciency, streamline processes, and extract valuable insights [6, 130].
Consequently, software engineering researchers are delving into the potential of ML to craft intelligent systems,

ACM Comput. Surv.



State-of-the-Art and Challenges of Engineering ML- Enabled Sotware Systems in the Deep Learning Era • 21

automating routine tasks, optimizing intricate processes, and enhancing overall system performance. Secondarily,
the integral role of ML algorithms and data analytics techniques in the ield is prompting researchers to explore
novel algorithms, models, and methodologies to improve accuracy and eicacy [76]. This interdisciplinary nature
of engineering ML-enabled software, often involving collaboration among software engineers, programmers,
data scientists, and domain experts [58], fosters knowledge exchange, innovation, and the development of holistic
solutions.

The availability of open-source ML tools and frameworks like TensorFlow, PyTorch, and scikit-learn constitutes
another driving force, expediting ML development [103]. Researchers can harness these tools to build and test
ML-enabled software more eiciently, catalyzing research progress in the ield. Furthermore, the imperative
to establish industry standards and regulations to ensure safety, reliability, and ethical considerations [133] is
steering researchers toward studying the impact of ML and contributing to the formulation of guidelines and
best practices.
In general, the escalating trend in studies on ML-enabled software engineering practices is driven by the

demand for intelligent solutions, advancements in ML, interdisciplinary collaboration[14], accessibility of ML
tools, and evolving industry standards. This trajectory is poised to persist as ML technologies continue to evolve,
ofering new possibilities in the development of ML-enabled software. Moreover, our detailed exploration of
the authors’ perspectives has provided valuable insights into the existing practices across each SE process area.
This discussion on the selected studies, segmented by the focus on software as conventional, combined software
(conventional and ML), or ML alone, forms the basis of our analysis of existing practices in each process area.

5.2 Examining the SE Process Areas

The review results concerning the requirements speciication, design, coding, testing, deployment, and mainte-
nance in the development of ML-enabled software are discussed below.

5.2.1 Requirements specification. The analysis of the requirements speciication reveals a noteworthy shift in
software engineering practices, particularly the addition of new attributes in the domain of non-functional
requirements for ML components. These attributes, which include trust, acceptance, safety, transparency, justice,
fairness (equity), non-maleicence, responsibility (accountability), privacy, security, beneicence, freedom/auton-
omy, sustainability, dignity, solidarity, accuracy, and explainability, relect the evolving landscape of ML-enabled
software development. This paradigm shift introduces challenges such as complexity in specifying requirements
in adherence to regulations like GDPR [129] and ethical principles inherent to ML, exacerbated by the dynamic
nature of requirements, uncertainty, and a lack of efective analysis and modeling techniques. Furthermore, the
study underscores the recognition that ML imposes distinct demands on non-functional requirements, measured
and deined with respect to the model, data, or the entire system. While the indings highlight a current deiciency
in a holistic view of the requirements engineering process for ML-enabled software, it is equally noteworthy
that ongoing eforts by researchers and practitioners are actively addressing these challenges. Initiatives include
the development of techniques for capturing requirements in the interaction situation between SE and ML
practices by leveraging sense-making theory [27, 141]. Additionally, frameworks such as ethical user stories,
the incorporation of extra bufer time in project planning to accommodate uncertainty, and the introduction of
speciication notations capable of handling probabilistic results [54] or ambiguity are indicative of the industry’s
commitment to overcoming the complexities introduced by the integration of ML components’ speciications
into conventional software.

5.2.2 Design. On the other hand, our exploration of the design phase shows a prevalent trend wherein established
design principles developed for conventional software are also applied to the design of ML components[126].
These principles include separation of concerns, design patterns, and object-oriented or component-oriented

ACM Comput. Surv.



22 • G. Assres et al.

approaches. However, ongoing endeavors aim to tailor design artifacts speciic to ML, introducing innovations
such as visual design patterns, concept-based design, strategy design patterns, and the integration of UML
for ML-based systems. Noteworthy contributions extend to the realm of user interface design, particularly
geared towards XAI, relecting a nuanced approach to the unique challenges posed by the integration of ML.
Additionally, the existing practices underscore a commitment to deining design constraints and principles for
ML, emphasizing trustworthiness and usability, and incorporating vital considerations such as explainability,
transparency, ethics, fairness, responsibility, and sustainability. Eforts are noticeable in setting architectural design
patterns with objectives for seamlessly integrating ML components into classical code, promoting modularity,
runtime reconigurability, and ensuring dependability through message-based interfaces. Furthermore, initiatives
addressing the lexibility required to accommodate rapid changes in algorithms and frameworks and proactively
managing performance degradation due to evolving data patterns are evident. Yet, despite these strides, the
analysis reveals a notable gap, namely the absence of generic design frameworks, architecture styles, and patterns
that comprehensively address the unique quality attributes inherent in the development of ML-enabled software.

5.2.3 Coding. In the coding phase, our analysis recognizes that practitioners perceive the ML component in ML-
enabled software like an embedded code or library, embodying concrete implementation of ML algorithms[78]. A
noteworthy ongoing efort within this ield involves the implementation of ethical principles in ML, ensuring that
APIs are automatically scrutinized for compliance with regulations governing AI ethics before consumption. This
includes the integration of perception functions utilizing deep neural networks. Analogous to established practices
in conventional software development, ML developers showcase a commitment to select coding frameworks,
libraries, and methods tailored to the nuances of ML software. This ensures the resultant software product or
service aligns seamlessly with the requirements of the target platform. Moreover, a recognizable trend in ML
coding practices involves the embrace of code reuse [23] strategies, model re-engineering [101], and the adoption
of continuous integration methodologies. These approaches are instrumental in navigating the swiftly evolving
landscape of ML, fostering adaptability and responsiveness. However, despite these commendable practices, a
clear gap remains - the absence of a comprehensive framework that seamlessly integrates ML and conventional
software into the cohesive entity, ML-enabled software.

5.2.4 Testing. In ML, testing exposes code bugs, assesses data quality, validates models, and confronts un-
certainties prior to code commitment. Our analysis indicates that the practices in ML testing draw upon the
existing conventional testing methods, encompassing acceptance, unit, performance, regression, scalability,
and integration testing, often seamlessly integrated into CI/CD pipelines[38, 124]. Noteworthy ongoing eforts
in this space involve the development and application of specialized ML-centric testing methods, exempliied
by fuzzy testing, a dynamic approach performed while the ML system is in operation, and canary testing[3],
an automated mechanism for quality assurance within DevOps worklows. Similarly, techniques like fault lo-
calization, automated debugging and other metrics are proposed for testing DL- and LLM- enabled software
systems[18, 77, 138, 149, 152]. However, ML-enabled software’s complex and heterogeneous nature introduces
unique testing challenges. The opacity of ML models poses diiculties in achieving explainability, complicating
the testing of the entire ML-enabled system. Moreover, the lack of clear test processes, explicit requirements
for model development, and robust strategies for system-wide testing further compound the testing landscape.
Additionally, the creation of test cases tailored for ML-enabled software necessitates the establishment of quality
standards capable of accommodating the inherent uncertainties associated with system outputs.

5.2.5 Deployment. In the deployment phase, our results show an inclination towards adopting deployment
practices analogous to those employed in conventional software. This includes deploying ML models as part
of the CI/CD pipeline within the DevOps paradigm[38, 124]. Noteworthy practices also involve exposing APIs
as standard libraries and employing continuous runtime redeployment for dynamic resource scheduling of

ACM Comput. Surv.



State-of-the-Art and Challenges of Engineering ML- Enabled Sotware Systems in the Deep Learning Era • 23

microservices. However, deployment in the ML context is not without its challenges. Principal among these
challenges is the demand for a high degree of automation in target infrastructure, ensuring availability, providing
robust support, establishing efective incident responsemechanisms, andmaintaining consistency in API provision.
Reproducing processes in deployment environments proves challenging, particularly in the face of frequent
changes in the development pipeline. Additionally, developing deployment strategies for responsible AI, which
incorporates continuous learning and navigates high uncertainty, emerges as a particularly complex task.

5.2.6 Maintenance. Our analysis indicates that the operational phase of ML-enabled software, similar to conven-
tional software, necessitates continuous monitoring to identify defects, encompassing performance degradation
and bug detection. Notably, the performance characteristics of the ML component can be signiicantly altered by
minor changes in data or model architecture. Maintenance and support for ML-enabled software are ongoing pro-
cesses, particularly considering that changes in requirements may necessitate scaling. To address these challenges,
current practices include the implementation of open-set recognition for detecting performance degradation in
the ML component within its production environment[146]. This approach facilitates the timely initiation of
maintenance and support measures. However, our study underscores the heightened complexity of maintaining
ML-enabled software, primarily attributed to the large volumes of associated datasets. Moreover, the ML system
may need to collect alerts concerning runtime errors, triggering automated maintenance. Consequently, the
maintenance of ML-enabled software during its operational phase demands diverse expertise for end-to-end
pipeline management.

5.3 Development Methodologies

Our result shows that the selected studies are predominantly focused on software development methodologies.
Particularly, the studies portrayed the prevalent adoption of agile frameworks and their variants in ML projects,
revealing pivotal trends in the engineering practices of ML-enabled software (see Section 4). This inclination
towards established methodologies aligns with the agile principles of lexibility, adaptability, and iterative
development, deemed beneicial in the dynamic and evolving landscape of ML[67, 112]. The extensive exploration
of DevOps-like terminologies, such as AIOps and MLOps, emphasizes the recognition of ML worklows within
broader operational processes. Additionally, the integration of AI ethics through practices like EUS highlights an
understanding of ethical dimensions in ML projects within agile methodologies. While fostering adaptability,
the prevalence of these methodologies also raises questions about the extent to which they capture the unique
challenges and characteristics of ML-enabled software development.

5.4 Discussion Summary

Overall, our results indicate a growing trend in research within the ield (see Figure 1), highlighting state of the
art, challenges, and best practices- presented next.

5.4.1 State of the art. There is a signiicant shift towards prioritizing non-functional requirements and the use
of automated tools to handle the requirements[24] in the development of ML-enabled software, emphasizing
attributes such as trust, transparency, fairness, responsibility, and explainability. Design practices for ML compo-
nents often leverage established principles developed for conventional software, such as separation of concerns
and object-oriented approaches. In coding, ML components are treated as embedded code or libraries, embodying
speciic ML algorithms. Developers use established practices, frameworks, and methods tailored to ML, including
automatic scrutiny of APIs for compliance with AI ethics, code reuse, and continuous integration. ML-enabled
software testing integrates traditional and ML-centric approaches, such as fuzzy testing and canary testing, in
the CI/CD pipelines. Additionally, methods like fault localization, automated debugging, and various evaluation
metrics are suggested for testing DL- and LLM-enabled software systems. Deployment practices adopt CI/CD

ACM Comput. Surv.



24 • G. Assres et al.

pipelines akin to conventional software, focusing on API and continuous redeployment. Maintenance practices
like open-set recognition are adopted for timely detection of performance degradation due to changing require-
ments. Development methodologies often align ML projects with agile frameworks, demonstrating adaptability
in the dynamic ML landscape.

5.4.2 Challenges. Despite these established practices, several challenges persist. The dynamic nature and demand
for unique non-functional requirements such as adherence to regulations (e.g., GDPR) and ethical considerations
intrinsic to ML pose challenges[129]. Ongoing eforts seek to introduce innovative design artifacts for ML, such
as visual and strategy design patterns, to address distinctive design challenges. The complexity and opaque
nature (lack of explainability) of ML models, along with ambiguous test processes, unclear requirements, and the
absence of robust system-wide testing strategies, pose challenges for testing ML-enabled software. Deployment
faces challenges like high automation needs, ensuring availability, robust support, maintaining API consistency,
diiculties in reproducing processes due to frequent changes, developing strategies for responsible AI, and
dealing with continuous learning and uncertainty. Maintenance of ML-enabled software is complex due to large
datasets, and the requirements for diverse expertise for automated maintenance triggered by runtime errors
and comprehensive end-to-end pipeline management introduce more challenges. There is a lower emphasis on
innovative methodologies speciic to ML integration, underscoring the need for a nuanced approach that adapts
existing methodologies and explores innovative strategies. The results highlight that testing receives the most
attention among the phases, while deployment and maintenance phases are comparatively underrepresented.
However, the deployment and maintenance of ML models should also be given signiicant emphasis due to the
challenges associated with data management, learning, veriication, ethics, end-user trust, legal considerations,
and security [96].

5.4.3 General Insights and Best Practices. Based on current SE practices in ML-enabled software development,
the following best practices are essential for establishing SE tools, techniques and methods as well as for future
research in the ield:

• Requirements should begin with hypothesizing potential outcomes from data, reining them
through experimentation. Additionally, strive to align ML performance metrics with business objectives
and metrics [37].

• Prioritize non-functional requirements such as trust, transparency, fairness, and explainability to
ensure ethical and responsible ML component.

• Leverage established design principles like separation of concerns, treatingML components as embedded
libraries for better modularity. In addition, monitoring performance degradation and handling high-volume
data are key ML design considerations, requiring robust architectural patterns.

• Integrate ML with a two-step process, irst combining ML sub-components, then integrating ML with
non-ML system components. Deined interfaces and evolving models require continuous integration
support [103].

• Utilize automated tools for AI ethics compliance, code reuse, and integrate CI/CD pipelines to streamline
development.

• Implement specialized testing approaches, including fuzzy and canary testing, alongside automated
debugging and performance evaluation metrics. Moreover, automated regression testing and test case
prioritization are essential for ML-enabled systems, demanding advanced tools and techniques.

• Adopt agile frameworks to foster adaptability and enable continuous integration in dynamic ML compo-
nent environments.

In general, existing practices in engineering ML-enabled software are often perceived as a fusion of practices
from conventional software and ML components, with insuicient recognition of the nuanced interplay between

ACM Comput. Surv.



State-of-the-Art and Challenges of Engineering ML- Enabled Sotware Systems in the Deep Learning Era • 25

the two. Practitioners do not fully acknowledge the unique characteristics of ML-enabled software, viewing it
as a mere collection of separate entitiesÐconventional software and ML. This often results in loose integration,
with a focus on developing interfaces to facilitate interaction with the ML component. Thus, there is a need for
specialized approaches to ensure seamless integration and delivery of desired quality and functionality across
both conventional software and ML components. As ML continues to drive automation across various industries
and applications, there will be a growing need to automate various tasks using ML-enabled software.
Appendix B provides an overview of the current practices, challenges, and implications associated with the

various process areas and development methodologies in engineering ML-enabled software systems.

5.5 Limitations of the study

Our approach in this study is more like the State-of-the-Art review method [10], concentrating on the latest
research in the SE practices for developing ML-enabled software. Thus, insuicient rigor in performing systematic
literature review may introduce a potential validity threat (including issues related to internal, external, and
construct validity [5]) by potentially limiting the comprehensiveness and replicability of indings. Such common
threats to validity in SE may include selection bias, data extraction inconsistencies, and publication bias in the
selected studies [64]. However, our study still provides valuable insights based on a structured and thorough
analysis of relevant literature.
When gathering related studies, we considered those published after 2010 due to the paradigm shift towards

DL, which signiicantly inluenced the proliferation of ML-enabled software systems. However, this criterion may
exclude earlier foundational work, potentially limiting completeness, though it enhances relevance by focusing
on DL-driven advancements in the larger ield of ML.
Our paper selection process for snowballing, based on focus rather than using concrete relevance statistical

data, may have also introduced bias. However, aligning with life cycle phases in SE practices ensures contextual
validity, while future work could enhance rigor by incorporating quantitative selection criteria.

6 Conclusion

This review paper explores research in engineering ML-enabled software, highlighting state of the art, challenges,
best practices, and future research directions. The results indicate a growing trend of research in the ield,
driven by demand, advancements, collaboration, and evolving standards. In addition, there is emphasis on
special non-functional requirements for ML-enabled software and the use of automated approaches to handle
them. The indings also highlighted that the development of ML-enabled software integrates both conventional
and ML-speciic development practices with key challenges being the dynamic nature of ML, opaque models,
and complex maintenance requirements, underscoring the need for specialized integration approaches. The
replication package of this review study is included on GitHub [12]. Our insights include the need to begin with
data-driven hypotheses, prioritize non-functional requirements, apply established design principles, integrate the
ML component irst, automate, implement specialized testing, and adopt agile methods. Future research should
address potential limitations in this study, such as potential biases in literature selection, attrition, and outcome
reporting. It is recommended that the review process be rerun with varied contexts, including incorporating more
studies from other digital libraries. Additionally, further research is necessary to investigate how the degree of ML
integration afects the development process and the quality attributes of ML-enabled (augmented) software. This
also includes a thorough analysis of each phase of the SDLC. The engineering of DL- and LLM-enabled software
also requires thorough investigation. As the ield evolves, challenges such as data quality, ethics, explainability,
adaptation, security, legal issues, sustainability, and governance will emerge. Hence, integrating ML, DL, and
LLM into existing systems will require careful design, highlighting the need for interdisciplinary collaboration
and ongoing research.

ACM Comput. Surv.



26 • G. Assres et al.

References

[1] HamzaAbubakar, Mohammad SObaidat, AaryanGupta, Pronaya Bhattacharya, and Sudeep Tanwar. 2020. Interplay ofMachine Learning
and Software Engineering for Quality Estimations. In 2020 International Conference on Communications, Computing, Cybersecurity, and

Informatics (CCCI). IEEE, 1ś6.
[2] Akash Aggarwal, Waqar Asif, Habibul Azam, Milan Markovic, Muttukrishnan Rajarajan, and Peter Edwards. 2019. User Privacy Risk

Analysis for the Internet of Things. In 2019 Sixth International Conference on Internet of Things: Systems, Management and Security

(IOTSMS). IEEE, 259ś264.
[3] Ahmad Alnafessah, Alim Ul Gias, Runan Wang, Lulai Zhu, Giuliano Casale, and Antonio Filieri. 2021. Quality-Aware DevOps Research:

Where Do We Stand? IEEE access : practical innovations, open solutions 9 (2021), 44476ś44489. doi:10.1109/ACCESS.2021.3064867
[4] Saleema Amershi, Andrew Begel, Christian Bird, Robert DeLine, Harald Gall, Ece Kamar, Nachiappan Nagappan, Besmira Nushi,

and Thomas Zimmermann. 2019. Software Engineering for Machine Learning: A Case Study. In 2019 IEEE/ACM 41st International

Conference on Software Engineering: Software Engineering in Practice (ICSE-SEIP). 291ś300. doi:10.1109/ICSE-SEIP.2019.00042
[5] Apostolos Ampatzoglou, Stamatia Bibi, Paris Avgeriou, Marijn Verbeek, and Alexander Chatzigeorgiou. 2019. Identifying, categorizing

and mitigating threats to validity in software engineering secondary studies. Information and software technology 106 (2019), 201ś230.
[6] Ioannis Antonopoulos, Valentin Robu, Benoit Couraud, Desen Kirli, Sonam Norbu, Aristides Kiprakis, David Flynn, Sergio Elizondo-

Gonzalez, and Steve Wattam. 2020. Artiicial intelligence and machine learning approaches to energy demand-side response: A
systematic review. Renewable and Sustainable Energy Reviews 130 (2020), 109899.

[7] Anders Arpteg, Björn Brinne, Luka Crnkovic-Friis, and Jan Bosch. 2018. Software engineering challenges of deep learning. In 2018 44th

euromicro conference on software engineering and advanced applications (SEAA). IEEE, 50ś59.
[8] Claudia Ayala, Besim Bilalli, Cristina Gómez, and Silverio Martínez-Fernández. 2022. DOGO4ML: Development, Operation and Data

Governance for ML-based Software Systems. In CEUR Workshop Proceedings, Vol. 3144.
[9] Johannes Bader, Sonia Seohyun Kim, Frank Sifei Luan, Satish Chandra, and Erik Meijer. 2021. AI in Software Engineering at Facebook.

IEEE Software 38, 4 (2021), 52ś61.
[10] Erin S Barry, Jerusalem Merkebu, and Lara Varpio. 2022. State-of-the-art literature review methodology: A six-step approach for

knowledge synthesis. Perspectives on Medical Education 11, 5 (2022), 281ś288.
[11] Hrvoje Belani, Marin Vukovic, and Željka Car. 2019. Requirements Engineering Challenges in Building AI-based Complex Systems. In

2019 IEEE 27th International Requirements Engineering Conference Workshops (REW). IEEE, 252ś255.
[12] Guru Bhandari and Gebremariam Assres. 2024. State-of-the-art and Challenges of Engineering ML-enabled Software Systems.

https://github.com/SmartSecLab/ML-enabled-software-literature-review.
[13] Houssem Ben Braiek and Foutse Khomh. 2020. On testing machine learning programs. Journal of Systems and Software 164 (2020),

110542.
[14] Gabriel Busquim, Hugo Villamizar, Maria Julia Lima, and Marcos Kalinowski. 2024. On the Interaction Between Software Engineers and

Data Scientists When Building Machine Learning-Enabled Systems. In International Conference on Software Quality. Springer, 55ś75.
[15] Junming Cao, Bihuan Chen, Longjie Hu, Jie Gao, Kaifeng Huang, and Xin Peng. 2023. Understanding the Complexity and Its Impact on

Testing in ML-Enabled Systems. arXiv preprint arXiv:2301.03837 (2023).
[16] Xavier Caron, Rachelle Bosua, Sean B Maynard, and Atif Ahmad. 2016. The Internet of Things (IoT) and Its Impact on Individual

Privacy: An Australian Perspective. Computer Law & Security Review 32, 1 (2016), 4ś15.
[17] Cristina T Cerdeiral and Gleison Santos. 2019. Software Project Management in High Maturity: A Systematic Literature Mapping.

Journal of Systems and Software 148 (2019), 56ś87.
[18] Yupeng Chang, Xu Wang, Jindong Wang, Yuan Wu, Linyi Yang, Kaijie Zhu, Hao Chen, Xiaoyuan Yi, Cunxiang Wang, Yidong Wang,

et al. 2024. A survey on evaluation of large language models. ACM Transactions on Intelligent Systems and Technology 15, 3 (2024), 1ś45.
[19] Ricardo Colomo-Palacios. 2019. Towards a Software engineering framework for the design, construction and deployment of machine

learning-based solutions in digitalization processes. In The International Research & Innovation Forum. Springer, 343ś349.
[20] IEEE Computer Society. Software Engineering Technical Committee. 1983. IEEE Standard Glossary of Software Engineering Terminology.

Vol. 729. IEEE.
[21] JohnW Creswell and Cheryl N Poth. 2016. Qualitative Inquiry and Research Design: Choosing among Five Approaches. Sage publications.
[22] Pablo Cruz, Gustavo Ulloa, Daniel San Martin, and Alejandro Veloz. 2023. Software Architecture Evaluation of a Machine Learning

Enabled System: A Case Study. In 2023 42nd IEEE International Conference of the Chilean Computer Science Society (SCCC). IEEE, 1ś8.
[23] Krzysztof Czarnecki. 2019. Software Engineering for Automated Vehicles: Addressing the Needs of Cars That Run on Software and

Data. In Proceedings of the 41st International Conference on Software Engineering: Companion Proceedings (ICSE ’19). IEEE Press, Montreal,
Quebec, Canada, 6ś8. doi:10.1109/ICSE-Companion.2019.00024

[24] Vincenzo De Martino and Fabio Palomba. 2023. Classiication, Challenges, and Automated Approaches to Handle Non-Functional
Requirements in ML-Enabled Systems: A Systematic Literature Review. arXiv preprint arXiv:2311.17483 (2023).

[25] Alan Dearle. 2007. Software Deployment, Past, Present and Future. In Future of Software Engineering (FOSE’07). IEEE, 269ś284.

ACM Comput. Surv.

https://doi.org/10.1109/ACCESS.2021.3064867
https://doi.org/10.1109/ICSE-SEIP.2019.00042
https://github.com/SmartSecLab/ML-enabled-software-literature-review
https://doi.org/10.1109/ICSE-Companion.2019.00024


State-of-the-Art and Challenges of Engineering ML- Enabled Sotware Systems in the Deep Learning Era • 27

[26] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. 2009. Imagenet: A large-scale hierarchical image database. In 2009

IEEE conference on computer vision and pattern recognition. Ieee, 248ś255.
[27] Brenda Dervin. 1998. Sense-making theory and practice: An overview of user interests in knowledge seeking and use. Journal of

knowledge management (1998).
[28] Sangeeta Dey and Seok-Won Lee. 2021. Multilayered Review of Safety Approaches for Machine Learning-Based Systems in the Days of

AI. Journal of Systems and Software 176 (2021). doi:10.1016/j.jss.2021.110941
[29] Ionut-Catalin Donca, Ovidiu Petru Stan, Marius Misaros, Dan Gota, and Liviu Miclea. 2022. Method for continuous integration and

deployment using a pipeline generator for agile software projects. Sensors 22, 12 (2022), 4637.
[30] Wolfgang Ertel. 2018. Introduction to Artiicial Intelligence. Springer.
[31] John Estdale and Elli Georgiadou. 2018. Applying the ISO/IEC 25010 Quality Models to Software Product. In European Conference on

Software Process Improvement. Springer, 492ś503.
[32] Angela Fan, Beliz Gokkaya, Mark Harman, Mitya Lyubarskiy, Shubho Sengupta, Shin Yoo, and Jie M Zhang. 2023. Large language

models for software engineering: Survey and open problems. In 2023 IEEE/ACM International Conference on Software Engineering:

Future of Software Engineering (ICSE-FoSE). IEEE, 31ś53.
[33] S. Feldmann, S. Rösch, D. Schütz, and B. Vogel-Heuser. 2013. Model-Driven Engineering and Semantic Technologies for the Design of

Cyber-Physical Systems. IFAC Proceedings Volumes 46, 7 (may 2013), 210ś215. doi:10.3182/20130522-3-BR-4036.00050
[34] Keith D Foote. 2022. The History of Machine Learning and Its Convergent Trajectory towards AI. Machine Learning and the City:

Applications in Architecture and Urban Design (2022), 129ś142.
[35] Urs Gasser and Virgilio AF Almeida. 2017. A Layered Model for AI Governance. IEEE Internet Computing 21, 6 (2017), 58ś62.
[36] A Shaji George and AS Hovan George. 2023. A review of ChatGPT AI’s impact on several business sectors. Partners Universal

International Innovation Journal 1, 1 (2023), 9ś23.
[37] Görkem Giray. 2021. A Software Engineering Perspective on Engineering Machine Learning Systems: State of the Art and Challenges.

Journal of Systems and Software 180 (Oct. 2021), 111031. doi:10.1016/j.jss.2021.111031
[38] Tuomas Granlund, Vlad Stirbu, and TommiMikkonen. 2021. Towards Regulatory-Compliant MLOps: Oravizio’s Journey from aMachine

Learning Experiment to a Deployed Certiied Medical Product. SN Computer Science 2, 5 (2021). doi:10.1007/s42979-021-00726-1
[39] Crina Grosan and Ajith Abraham. 2011. Rule-Based Expert Systems. In Intelligent Systems. Springer, 149ś185.
[40] Venkat Gudivada, Amy Apon, and Junhua Ding. 2017. Data Quality Considerations for Big Data and Machine Learning: Going beyond

Data Cleaning and Transformations. International Journal on Advances in Software 10, 1 (2017), 1ś20.
[41] Rajeev K. Gupta, B. Balaji, V. Mekanathan, and J. Ferose Khan. 2020. Challenges in Scaling AI-powered Distributed Software Product: A

Case Study of a Healthcare Organization. In Proceedings - 2020 ACM/IEEE 15th International Conference on Global Software Engineering,

ICGSE 2020. 6ś10. doi:10.1145/3372787.3389300
[42] Tamara Gutierrez, Alexandre Bergel, Carlos E. Gonzalez, Camilo J. Rojas, and Marcos A. Diaz. 2021. Systematic Fuzz Testing Techniques

on a Nanosatellite Flight Software for Agile Mission Development. IEEE access : practical innovations, open solutions 9 (2021), 114008ś
114021. doi:10.1109/ACCESS.2021.3104283

[43] Khan Mohammad Habibullah, Gregory Gay, and Jennifer Horkof. 2023. Non-Functional Requirements for Machine Learning:
Understanding Current Use and Challenges among Practitioners. Requirements Engineering (2023). doi:10.1007/s00766-022-00395-3

[44] Gaétan Hains, Arvid Jakobsson, and Youry Khmelevsky. 2018. Towards formal methods and software engineering for deep learning:
security, safety and productivity for dl systems development. In 2018 Annual IEEE international systems conference (syscon). IEEE, 1ś5.

[45] Erika Halme. 2022. Ethical Tools, Methods and Principles in Software Engineering and Development: Case Ethical User Stories. In
Product-Focused Software Process Improvement, Davide Taibi, Marco Kuhrmann, Tommi Mikkonen, Jil Klünder, and Pekka Abrahamsson
(Eds.). Vol. 13709. Springer International Publishing, Cham, 631ś637. doi:10.1007/978-3-031-21388-5_48

[46] Mark Harman. 2012. The Role of Artiicial Intelligence in Software Engineering. In 2012 First International Workshop on Realizing AI

Synergies in Software Engineering (RAISE). IEEE, 1ś6.
[47] Maria Hartikainen, Kaisa Väänänen, Anu Lehtiö, Saara Ala-Luopa, and Thomas Olsson. 2022. Human-Centered AI Design in Reality: A

Study of Developer Companies’ Practices A Study of Developer Companies’ Practices. In ACM International Conference Proceeding

Series. doi:10.1145/3546155.3546677
[48] Alaa Houerbi, Chadha Siala, Alexis Tucker, Dhia Elhaq Rzig, and Foyzul Hassan. 2024. Empirical Analysis on CI/CD Pipeline Evolution

in Machine Learning Projects. arXiv preprint arXiv:2403.12199 (2024).
[49] Kai Huang, Su Yang, Hongyu Sun, Chengyi Sun, Xuejun Li, and Yuqing Zhang. 2022. Repairing Security Vulnerabilities Using Pre-

trained Programming Language Models. In 2022 52nd Annual IEEE/IFIP International Conference on Dependable Systems and Networks

Workshops (DSN-W). 111ś116. doi:10.1109/DSN-W54100.2022.00027 https://ieeexplore.ieee.org/document/9833850.
[50] Watts S Humphrey. 1988. The Software Engineering Process: Deinition and Scope. In Proceedings of the 4th International Software

Process Workshop on Representing and Enacting the Software Process. 82ś83.
[51] Watts S Humphrey. 1995. A Discipline for Software Engineering. Pearson Education India.

ACM Comput. Surv.

https://doi.org/10.1016/j.jss.2021.110941
https://doi.org/10.3182/20130522-3-BR-4036.00050
https://doi.org/10.1016/j.jss.2021.111031
https://doi.org/10.1007/s42979-021-00726-1
https://doi.org/10.1145/3372787.3389300
https://doi.org/10.1109/ACCESS.2021.3104283
https://doi.org/10.1007/s00766-022-00395-3
https://doi.org/10.1007/978-3-031-21388-5_48
https://doi.org/10.1145/3546155.3546677
https://doi.org/10.1109/DSN-W54100.2022.00027
https://ieeexplore.ieee.org/document/9833850


28 • G. Assres et al.

[52] Timo Hynninen, Jussi Kasurinen, Antti Knutas, and Ossi Taipale. 2018. Software Testing: Survey of the Industry Practices. In 2018 41st

International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO). IEEE, 1449ś1454.
[53] IBM. 2023. What Is Software Testing and How Does It Work? | IBM. https://www.ibm.com/topics/software-testing.
[54] Vladislav Indykov. 2024. Component-based Approach to Software Engineering of Machine Learning-enabled Systems. In Proceedings of

the IEEE/ACM 3rd International Conference on AI Engineering-Software Engineering for AI. 250ś252.
[55] Fuyuki Ishikawa and Nobukazu Yoshioka. 2019. How do engineers perceive diiculties in engineering of machine-learning systems?-

questionnaire survey. In 2019 IEEE/ACM Joint 7th International Workshop on Conducting Empirical Studies in Industry (CESI) and 6th

International Workshop on Software Engineering Research and Industrial Practice (SER&IP). IEEE, 2ś9.
[56] Md Johirul Islam, Giang Nguyen, Rangeet Pan, and Hridesh Rajan. 2019. A Comprehensive Study on Deep Learning Bug Characteristics.

In Proceedings of the 2019 27th ACM Joint Meeting on European Software Engineering Conference and Symposium on the Foundations of

Software Engineering (ESEC/FSE 2019). Association for ComputingMachinery, New York, NY, USA, 510ś520. doi:10.1145/3338906.3338955
https://dl.acm.org/doi/10.1145/3338906.3338955.

[57] Md Johirul Islam, Rangeet Pan, Giang Nguyen, and Hridesh Rajan. 2020. Repairing Deep Neural Networks: Fix Patterns and Challenges.
In Proceedings of the ACM/IEEE 42nd International Conference on Software Engineering (ICSE ’20). Association for Computing Machinery,
New York, NY, USA, 1135ś1146. doi:10.1145/3377811.3380378 https://dl.acm.org/doi/10.1145/3377811.3380378.

[58] Stephan Jüngling, Martin Peraic, and Cheng Zhu. 2022. Using the Strategy Design Pattern for Hybrid AI System Design. In CEUR

Workshop Proceedings, Vol. 3121.
[59] Stafs Keele et al. 2007. Guidelines for performing systematic literature reviews in software engineering. Technical Report. Technical

report, ver. 2.3 ebse technical report. ebse.
[60] Robert Keller, Alexander Stohr, Gilbert Fridgen, Jannik Lockl, and Alexander Rieger. 2019. Afordance-Experimentation-Actualization

Theory in Artiicial Intelligence Research - A Predictive Maintenance Story. In 40th International Conference on Information Systems,

ICIS 2019.
[61] Foutse Khomh, Bram Adams, Jinghui Cheng, Marios Fokaefs, and Giuliano Antoniol. 2018. Software engineering for machine-learning

applications: The road ahead. IEEE Software 35, 5 (2018), 81ś84.
[62] Miryung Kim, Thomas Zimmermann, Robert DeLine, and Andrew Begel. 2018. Data scientists in software teams. In Proceedings of the

40th International Conference on Software Engineering. ACM.
[63] Barbara Kitchenham and Stuart Charters. 2007. Guidelines for performing Systematic Literature Reviews in Software Engineering.

Keele University and Durham University Joint Report 2 (jan 2007).
[64] Barbara Kitchenham, Stuart Charters, et al. 2007. Guidelines for performing systematic literature reviews in software engineering

version 2.3. Engineering 45, 4ve (2007), 1051.
[65] Michael Kläs and Anna Maria Vollmer. 2018. Uncertainty in machine learning applications: A practice-driven classiication of

uncertainty. In Computer Safety, Reliability, and Security: SAFECOMP 2018 Workshops, ASSURE, DECSoS, SASSUR, STRIVE, and WAISE,

Västerås, Sweden, September 18, 2018, Proceedings 37. Springer, 431ś438.
[66] Holger Klus, Christoph Knieke, Andreas Rausch, and Stefan Wittek. 2023. Software Engineering Meets Artiicial Intelligence. Electronic

Communications of the EASST 82 (2023).
[67] Iva Krasteva and Sylvia Ilieva. 2020. Adopting Agile Software Development methodologies in big data projectsśa systematic literature

review of experience reports. In 2020 IEEE International Conference on Big Data (Big Data). IEEE, 2028ś2033.
[68] Alex Krizhevsky, Ilya Sutskever, and Geofrey E Hinton. 2012. Imagenet classiication with deep convolutional neural networks.

Advances in neural information processing systems 25 (2012).
[69] Fumihiro Kumeno. 2019. Software engineering challenges for machine learning applications: A literature review. Intelligent Decision

Technologies 13, 4 (2019), 463ś476.
[70] Evgeny Kusmenko, Svetlana Pavlitskaya, Bernhard Rumpe, and Sebastian Stüber. 2019. On the Engineering of AI-Powered Systems. In

2019 34th IEEE/ACM International Conference on Automated Software Engineering Workshop (ASEW). 126ś133. doi:10.1109/ASEW.2019.
00042

[71] Ming-Chang Lee and To Chang. 2006. Applying TQM, CMM and ISO 9001 in Knowledge Management for Software Development
Process Improvement. International Journal of Services and Standards 2, 1 (2006), 101ś115.

[72] Valentina Lenarduzzi, Francesco Lomio, Sergio Moreschini, Davide Taibi, and Damian Andrew Tamburri. 2021. Software Quality for
Ai: Where We Are Now?. In International Conference on Software Quality. Springer, 43ś53.

[73] Grace A Lewis, Ipek Ozkaya, and Xiwei Xu. 2021. Software Architecture Challenges for ML Systems. In 2021 IEEE International

Conference on Software Maintenance and Evolution (ICSME). IEEE, 634ś638.
[74] Qinghua Lu, Liming Zhu, Xiwei Xu, Jon Whittle, and Zhenchang Xing. 2022. Towards a Roadmap on Software Engineering for

Responsible AI. In Proceedings - 1st International Conference on AI Engineering - Software Engineering for AI, CAIN 2022. 101ś112.
doi:10.1145/3522664.3528607

[75] Lucy Ellen Lwakatare, Ivica Crnkovic, and Jan Bosch. 2020. DevOps for AI ś Challenges in Development of AI-enabled Applications.
In 2020 International Conference on Software, Telecommunications and Computer Networks (SoftCOM). 1ś6. doi:10.23919/SoftCOM50211.

ACM Comput. Surv.

https://doi.org/10.1145/3338906.3338955
https://dl.acm.org/doi/10.1145/3338906.3338955
https://doi.org/10.1145/3377811.3380378
https://dl.acm.org/doi/10.1145/3377811.3380378
https://doi.org/10.1109/ASEW.2019.00042
https://doi.org/10.1109/ASEW.2019.00042
https://doi.org/10.1145/3522664.3528607
https://doi.org/10.23919/SoftCOM50211.2020.9238323
https://doi.org/10.23919/SoftCOM50211.2020.9238323


State-of-the-Art and Challenges of Engineering ML- Enabled Sotware Systems in the Deep Learning Era • 29

2020.9238323
[76] Lucy Ellen Lwakatare, Aiswarya Raj, Jan Bosch, Helena Holmström Olsson, and Ivica Crnkovic. 2019. A Taxonomy of Software

Engineering Challenges for Machine Learning Systems: An Empirical Investigation. In Agile Processes in Software Engineering and

Extreme Programming, Philippe Kruchten, Steven Fraser, and François Coallier (Eds.). Vol. 355. Springer International Publishing, Cham,
227ś243. doi:10.1007/978-3-030-19034-7_14

[77] Shiqing Ma, Yingqi Liu, Wen-Chuan Lee, Xiangyu Zhang, and Ananth Grama. 2018. MODE: Automated Neural Network Model
Debugging via State Diferential Analysis and Input Selection. In Proceedings of the 2018 26th ACM Joint Meeting on European Software

Engineering Conference and Symposium on the Foundations of Software Engineering (ESEC/FSE 2018). Association for Computing
Machinery, New York, NY, USA, 175ś186. doi:10.1145/3236024.3236082 https://dl.acm.org/doi/10.1145/3236024.3236082.

[78] Silverio Martínez-Fernández, Justus Bogner, Xavier Franch, Marc Oriol, Julien Siebert, Adam Trendowicz, Anna Maria Vollmer, and
StefanWagner. 2022. Software Engineering for AI-Based Systems: A Survey. ACM Transactions on Software Engineering and Methodology

31, 2 (2022). doi:10.1145/3487043
[79] Gary McGraw, Richie Bonett, Victor Shepardson, and Harold Figueroa. 2020. The Top 10 Risks of Machine Learning Security. Computer

53, 6 (2020), 57ś61.
[80] Karl Meinke and Amel Bennaceur. 2018. Machine Learning for Software Engineering: Models, Methods, and Applications. In 2018

IEEE/ACM 40th International Conference on Software Engineering: Companion (ICSE-Companion). IEEE, 548ś549.
[81] Ole Meyer and Volker Gruhn. 2019. Towards Concept Based Software Engineering for Intelligent Agents. In Proceedings of the 7th

International Workshop on Realizing Artiicial Intelligence Synergies in Software Engineering (RAISE ’19). IEEE Press, Montreal, Quebec,
Canada, 42ś48. doi:10.1109/RAISE.2019.00015

[82] Iori Mitzutani, Ganesh Ramanathan, and Simon Mayer. 2021. Semantic Data Integration with DevOps to Support Engineering
Process of Intelligent Building Automation Systems. In Proceedings of the 8th ACM International Conference on Systems for Energy-

Eicient Buildings, Cities, and Transportation (BuildSys ’21). Association for Computing Machinery, New York, NY, USA, 294ś297.
doi:10.1145/3486611.3492413

[83] Sergio Moreschini, Francesco Lomio, David Hästbacka, and Davide Taibi. 2022. MLOps for Evolvable AI Intensive Software Systems. In
2022 IEEE International Conference on Software Analysis, Evolution and Reengineering (SANER). 1293ś1294. doi:10.1109/SANER53432.
2022.00155

[84] Henry Muccini and Karthik Vaidhyanathan. 2021. Software Architecture for Ml-Based Systems: What Exists and What Lies Ahead. In
2021 IEEE/ACM 1st Workshop on AI Engineering-Software Engineering for AI (WAIN). IEEE, 121ś128.

[85] Amna Pir Muhammad. 2021. Methods and Guidelines for Incorporating Human Factors Requirements in Automated Vehicles
Development (CEUR Workshop Proceedings, Vol. 2857).

[86] Nikesh Muthukrishnan, Farhad Maleki, Katie Ovens, Caroline Reinhold, Behzad Forghani, and Reza Forghani. 2020. Brief history of
artiicial intelligence. Neuroimaging Clinics 30, 4 (2020), 393ś399.

[87] Nadia Nahar, Shurui Zhou, Grace Lewis, and Christian Kastner. 2022. Collaboration Challenges in Building ML-Enabled Systems:
Communication, Documentation, Engineering, and Process. In Proceedings - International Conference on Software Engineering, Vol. 2022-
May. 413ś425. doi:10.1145/3510003.3510209

[88] Elizamary Nascimento, Anh Nguyen-Duc, Ingrid Sundbù, and Tayana Conte. 2020. Software engineering for artiicial intelligence and
machine learning software: A systematic literature review. arXiv preprint arXiv:2011.03751 (2020).

[89] Roger Nazir, Alessio Bucaioni, and Patrizio Pelliccione. 2024. Architecting ML-enabled systems: Challenges, best practices, and design
decisions. Journal of Systems and Software 207 (2024), 111860.

[90] Americo Talarico Neto, Renata Pontin M Fortes, and Adalberto G da Silva Filho. 2008. Multimodal Interfaces Design Issues: The Fusion
of Well-Designed Voice and Graphical User Interfaces. In Proceedings of the 26th Annual ACM International Conference on Design of

Communication. 277ś278.
[91] Anh Nguyen-Duc and Pekka Abrahamsson. 2020. Continuous Experimentation on Artiicial Intelligence Software: A Research Agenda.

In ESEC/FSE 2020 - Proceedings of the 28th ACM Joint Meeting European Software Engineering Conference and Symposium on the

Foundations of Software Engineering. 1513ś1516. doi:10.1145/3368089.3417039
[92] Chitu Okoli and Kira Schabram. 2010. A Guide to Conducting a Systematic Literature Review of Information Systems Research. SSRN

Electronic Journal (2010). doi:10.2139/ssrn.1954824
[93] Ipek Ozkaya. 2020. What Is Really Diferent in Engineering AI-enabled Systems? IEEE Software 37, 4 (2020), 3ś6.
[94] Andrei Paleyes, Christian Cabrera, and Neil D. Lawrence. 2022. An Empirical Evaluation of Flow Based Programming in the Machine

Learning Deployment Context. In Proceedings - 1st International Conference on AI Engineering - Software Engineering for AI, CAIN 2022.
54ś64. doi:10.1145/3522664.3528601

[95] Andrei Paleyes, Raoul-Gabriel Urma, and Neil D Lawrence. 2020. Challenges in Deploying Machine Learning: A Survey of Case Studies.
ACM Computing Surveys (CSUR) (2020).

[96] Andrei Paleyes, Raoul-Gabriel Urma, and Neil D Lawrence. 2022. Challenges in deploying machine learning: a survey of case studies.
Comput. Surveys 55, 6 (2022), 1ś29.

ACM Comput. Surv.

https://doi.org/10.23919/SoftCOM50211.2020.9238323
https://doi.org/10.23919/SoftCOM50211.2020.9238323
https://doi.org/10.23919/SoftCOM50211.2020.9238323
https://doi.org/10.1007/978-3-030-19034-7_14
https://doi.org/10.1145/3236024.3236082
https://dl.acm.org/doi/10.1145/3236024.3236082
https://doi.org/10.1145/3487043
https://doi.org/10.1109/RAISE.2019.00015
https://doi.org/10.1145/3486611.3492413
https://doi.org/10.1109/SANER53432.2022.00155
https://doi.org/10.1109/SANER53432.2022.00155
https://doi.org/10.1145/3510003.3510209
https://doi.org/10.1145/3368089.3417039
https://doi.org/10.2139/ssrn.1954824
https://doi.org/10.1145/3522664.3528601


30 • G. Assres et al.

[97] Sebastiano Panichella, Andrea Di Sorbo, Emitza Guzman, Corrado A Visaggio, Gerardo Canfora, and Harald C Gall. 2015. How Can i
Improve My App? Classifying User Reviews for Software Maintenance and Evolution. In 2015 IEEE International Conference on Software

Maintenance and Evolution (ICSME). IEEE, 281ś290.
[98] Derek Partridge and Yorick Wilks. 1987. Does AI have a methodology which is diferent from software engineering? Artiicial

intelligence review 1, 2 (1987), 111ś120.
[99] Zhongyi Pei, Lin Liu, Chen Wang, and Jianmin Wang. 2022. Requirements engineering for machine learning: A review and relection.

In 2022 IEEE 30th International Requirements Engineering Conference Workshops (REW). IEEE, 166ś175.
[100] Aung Pyae and Tapani N Joelsson. 2018. Investigating the Usability and User Experiences of Voice User Interface: A Case of Google

Home Smart Speaker. In Proceedings of the 20th International Conference on Human-Computer Interaction with Mobile Devices and

Services Adjunct. 127ś131.
[101] Binhang Qi, Hailong Sun, Xiang Gao, Hongyu Zhang, Zhaotian Li, and Xudong Liu. 2023. Reusing deep neural network models through

model re-engineering. In 2023 IEEE/ACM 45th International Conference on Software Engineering (ICSE). IEEE, 983ś994.
[102] Martin Rabe, Stefan Milz, and Patrick Mader. 2021. Development Methodologies for Safety Critical Machine Learning Applications in

the Automotive Domain: A Survey (IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops). 129ś141.
doi:10.1109/CVPRW53098.2021.00023

[103] Md Saidur Rahman, Foutse Khomh, Emilio Rivera, Yann-Gaël Guéhéneuc, and Bernd Lehnert. 2022. Challenges in Machine Learning
Application Development: An Industrial Experience Report. In 2022 IEEE/ACM 1st International Workshop on Software Engineering for

Responsible Artiicial Intelligence (SE4RAI). IEEE, 21ś28.
[104] Paul Ralph and Yair Wand. 2009. A Proposal for a Formal Deinition of the Design Concept. In Design Requirements Engineering: A

Ten-Year Perspective. Springer, 103ś136.
[105] Justus Randolph. 2009. A Guide to Writing the Dissertation Literature Review. Practical Assessment, Research, and Evaluation 14, 1

(2009), 13.
[106] Gilberto Recupito, Fabiano Pecorelli, Gemma Catolino, Valentina Lenarduzzi, Davide Taibi, Dario Di Nucci, and Fabio Palomba. 2024.

Code and Architectural Debt in Artiicial Intelligence-Enabled Systems: On the Prevalence, Severity, Impact, and Management Strategies.
Severity, Impact, and Management Strategies (2024).

[107] Steven P Reiss. 1996. Software Tools and Environments. ACM Computing Surveys (CSUR) 28, 1 (1996), 281ś284.
[108] S Pressman Roger and R Maxin Bruce. 2015. Software Engineering: A Practitioner’s Approach. McGraw-Hill Education.
[109] Nayan B Ruparelia. 2010. Software Development Lifecycle Models. ACM SIGSOFT Software Engineering Notes 35, 3 (2010), 8ś13.
[110] Stuart J Russell and Peter Norvig. 2010. Artiicial intelligence a modern approach. London.
[111] Dhia Elhaq Rzig, Foyzul Hassan, and Marouane Kessentini. 2022. An empirical study on ML DevOps adoption trends, eforts, and

beneits analysis. Information and Software Technology 152 (2022), 107037.
[112] Jefrey Saltz and Alex Suthrland. 2019. SKI: An Agile Framework for Data Science. In 2019 IEEE International Conference on Big Data

(Big Data). IEEE, 3468ś3476.
[113] Wojciech Samek, Grégoire Montavon, Sebastian Lapuschkin, Christopher J Anders, and Klaus-Robert Müller. 2021. Explaining Deep

Neural Networks and beyond: A Review of Methods and Applications. Proc. IEEE 109, 3 (2021), 247ś278.
[114] T Saravanan, Sumit Jha, Gautam Sabharwal, and Shubham Narayan. 2020. Comparative Analysis of Software Life Cycle Models. In

2020 2nd International Conference on Advances in Computing, Communication Control and Networking (ICACCCN). IEEE, 906ś909.
[115] Iqbal H Sarker. 2021. Machine Learning: Algorithms, Real-World Applications and Research Directions. SN Computer Science 2, 3

(2021), 1ś21.
[116] Sebastian Schelter, Felix Biessmann, Tim Januschowski, David Salinas, Stephan Seufert, and Gyuri Szarvas. 2015. On challenges in

machine learning model management. (2015).
[117] Eldon Schoop, Forrest Huang, and Bjoern Hartmann. 2021. UMLAUT: Debugging Deep Learning Programs Using Program Structure

and Model Behavior. In Proceedings of the 2021 CHI Conference on Human Factors in Computing Systems (CHI ’21). Association for
Computing Machinery, New York, NY, USA, 1ś16. doi:10.1145/3411764.3445538 https://dl.acm.org/doi/10.1145/3411764.3445538.

[118] David Sculley, Gary Holt, Daniel Golovin, Eugene Davydov, Todd Phillips, Dietmar Ebner, Vinay Chaudhary, Michael Young, Jean-
Francois Crespo, and Dan Dennison. 2015. Hidden technical debt in machine learning systems. Advances in neural information

processing systems 28 (2015).
[119] Yorick Sens, Henriette Knopp, Sven Peldszus, and Thorsten Berger. 2024. A Large-Scale Study of Model Integration in ML-Enabled

Software Systems. arXiv preprint arXiv:2408.06226 (2024).
[120] Amit Kumar Sikder, Giuseppe Petracca, Hidayet Aksu, Trent Jaeger, and A Selcuk Uluagac. 2018. A Survey on Sensor-Based Threats to

Internet-of-Things (Iot) Devices and Applications. arXiv preprint arXiv:1802.02041 (2018). arXiv:1802.02041
[121] Brijendra Singh and Suresh Prasad Kannojia. 2013. A Review on Software Quality Models. In 2013 International Conference on

Communication Systems and Network Technologies. IEEE, 801ś806.
[122] Ian Sommerville. 2011. Software Engineering, 9/E. Pearson Education India.

ACM Comput. Surv.

https://doi.org/10.1109/CVPRW53098.2021.00023
https://doi.org/10.1145/3411764.3445538
https://dl.acm.org/doi/10.1145/3411764.3445538
https://arxiv.org/abs/1802.02041


State-of-the-Art and Challenges of Engineering ML- Enabled Sotware Systems in the Deep Learning Era • 31

[123] Apoorva Srivastava, Sukriti Bhardwaj, and Shipra Saraswat. 2017. SCRUM Model for Agile Methodology. In 2017 International

Conference on Computing, Communication and Automation (ICCCA). IEEE, 864ś869.
[124] Monika Steidl, Michael Felderer, and Rudolf Ramler. 2023. The Pipeline for the Continuous Development of Artiicial Intelligence

ModelsÐCurrent State of Research and Practice. Journal of Systems and Software (jan 2023), 111615. doi:10.1016/j.jss.2023.111615
[125] Hariharan Subramonyam, Jane Im, Colleen Seifert, and Eytan Adar. 2022. Solving Separation-of-Concerns Problems in Collaborative

Design of Human-AI Systems through Leaky Abstractions. In Conference on Human Factors in Computing Systems - Proceedings.
doi:10.1145/3491102.3517537

[126] Irdina Wanda Syahputri, Ridi Ferdiana, and Sri Suning Kusumawardani. 2020. Does System Based on Artiicial Intelligence Need
Software Engineering Method? Systematic Review. In 2020 Fifth International Conference on Informatics and Computing (ICIC). 1ś6.
doi:10.1109/ICIC50835.2020.9288582

[127] Hironori Takeuchi, Kota Imazaki, Noriyoshi Kuno, Takuo Doi, and Yosuke Motohashi. 2022. Constructing Reusable Knowledge for
Machine Learning Projects Based on Project Practices. Intelligent Decision Technologies 16, 4 (2022), 725ś735. doi:10.3233/IDT-220252

[128] Hironori Takeuchi, Haruhiko Kaiya, Hiroyuki Nakagawa, and Shinpei Ogata. 2021. Reference Model for Agile Development of Machine
Learning-Based Service Systems. In 2021 28th Asia-Paciic Software Engineering Conference Workshops (APSEC Workshops). 17ś20.
doi:10.1109/APSECW53869.2021.00014

[129] Nguyen Truong, Kai Sun, Siyao Wang, Florian Guitton, and YiKe Guo. 2021. Privacy preservation in federated learning: An insightful
survey from the GDPR perspective. Computers & Security 110 (2021), 102402.

[130] Zaib Ullah, Fadi Al-Turjman, Leonardo Mostarda, and Roberto Gagliardi. 2020. Applications of artiicial intelligence and machine
learning in smart cities. Computer Communications 154 (2020), 313ś323.

[131] Tousif ur Rehman, Muhammad Naeem Ahmed Khan, and Naveed Riaz. 2013. Analysis of Requirement Engineering Processes,
Tools/Techniques and Methodologies. International Journal of Information Technology and Computer Science (IJITCS) 5, 3 (2013), 40.

[132] Karthik Vaidhyanathan, Anish Chandran, Henry Muccini, and Regi Roy. 2022. Agile4MLSÐLeveraging Agile Practices for Developing
Machine Learning-Enabled Systems: An Industrial Experience. IEEE Software 39, 6 (nov 2022), 43ś50. doi:10.1109/MS.2022.3195432

[133] Ville Vakkuri, Kai-Kristian Kemell, and Pekka Abrahamsson. 2021. Technical Brieing: Hands-on Session on the Development of
Trustworthy AI Software. In 2021 IEEE/ACM 43rd International Conference on Software Engineering: Companion Proceedings (ICSE-

Companion). 332ś333. doi:10.1109/ICSE-Companion52605.2021.00142
[134] Jayneel Vora, Sudeep Tanwar, Sudhanshu Tyagi, Neeraj Kumar, and Joel JPC Rodrigues. 2017. Home-Based Exercise System for

Patients Using IoT Enabled Smart Speaker. In 2017 IEEE 19th International Conference on E-Health Networking, Applications and Services

(Healthcom). IEEE, 1ś6.
[135] Fei-Yue Wang, Qinghai Miao, Xuan Li, Xingxia Wang, and Yilun Lin. 2023. What does ChatGPT say: The DAO from algorithmic

intelligence to linguistic intelligence. IEEE/CAA Journal of Automatica Sinica 10, 3 (2023), 575ś579.
[136] Junjie Wang, Yuchao Huang, Chunyang Chen, Zhe Liu, Song Wang, and Qing Wang. 2024. Software testing with large language

models: Survey, landscape, and vision. IEEE Transactions on Software Engineering (2024).
[137] Simin Wang, Liguo Huang, Amiao Gao, Jidong Ge, Tengfei Zhang, Haitao Feng, Ishna Satyarth, Ming Li, He Zhang, and Vincent Ng.

2022. Machine/deep learning for software engineering: A systematic literature review. IEEE Transactions on Software Engineering 49, 3
(2022), 1188ś1231.

[138] Mohammad Wardat, Breno Dantas Cruz, Wei Le, and Hridesh Rajan. 2022. DeepDiagnosis: Automatically Diagnosing Faults and
Recommending Actionable Fixes in Deep Learning Programs. In Proceedings of the 44th International Conference on Software Engineering

(ICSE ’22). Association for Computing Machinery, New York, NY, USA, 561ś572. doi:10.1145/3510003.3510071 https://dl.acm.org/doi/10.
1145/3510003.3510071.

[139] Mohammad Wardat, Wei Le, and Hridesh Rajan. 2021. DeepLocalize: Fault Localization for Deep Neural Networks. In Proceedings of the

43rd International Conference on Software Engineering (ICSE ’21). IEEE Press, Madrid, Spain, 251ś262. doi:10.1109/ICSE43902.2021.00034
https://dl.acm.org/doi/10.1109/ICSE43902.2021.00034.

[140] Hironori Washizaki, Hiromu Uchida, Foutse Khomh, and Yann-Gaël Guéhéneuc. 2019. Studying software engineering patterns for
designing machine learning systems. In 2019 10th International Workshop on Empirical Software Engineering in Practice (IWESEP). IEEE,
49ś495.

[141] Karl E Weick. 1995. Sensemaking in organizations. Vol. 3. Sage.
[142] Niklaus Wirth. 2008. A Brief History of Software Engineering. IEEE Annals of the History of Computing 30, 3 (2008), 32ś39.
[143] Christine T. Wolf and Drew Paine. 2020. Sensemaking Practices in the Everyday Work of AI/ML Software Engineering (Proceedings -

2020 IEEE/ACM 42nd International Conference on Software Engineering Workshops, ICSEW 2020). 86ś92. doi:10.1145/3387940.3391496
[144] Jie JWWu. 2024. An Exploratory Study of V-Model in Building ML-Enabled Software: A Systems Engineering Perspective. In Proceedings

of the IEEE/ACM 3rd International Conference on AI Engineering-Software Engineering for AI. 30ś40.
[145] HanXiang Xu, ShenAo Wang, Ningke Li, Yanjie Zhao, Kai Chen, Kailong Wang, Yang Liu, Ting Yu, and HaoYu Wang. 2024. Large

language models for cyber security: A systematic literature review. arXiv preprint arXiv:2405.04760 (2024).

ACM Comput. Surv.

https://doi.org/10.1016/j.jss.2023.111615
https://doi.org/10.1145/3491102.3517537
https://doi.org/10.1109/ICIC50835.2020.9288582
https://doi.org/10.3233/IDT-220252
https://doi.org/10.1109/APSECW53869.2021.00014
https://doi.org/10.1109/MS.2022.3195432
https://doi.org/10.1109/ICSE-Companion52605.2021.00142
https://doi.org/10.1145/3510003.3510071
https://dl.acm.org/doi/10.1145/3510003.3510071
https://dl.acm.org/doi/10.1145/3510003.3510071
https://doi.org/10.1109/ICSE43902.2021.00034
https://dl.acm.org/doi/10.1109/ICSE43902.2021.00034
https://doi.org/10.1145/3387940.3391496


32 • G. Assres et al.

[146] Lixuan Yang and Dario Rossi. 2021. Quality Monitoring and Assessment of Deployed Deep Learning Models for Network AIOps. IEEE
Network 35, 6 (nov 2021), 84ś90. doi:10.1109/MNET.001.2100227

[147] LI Yishu, Jacky Keung, Kwabena Ebo Bennin, Xiaoxue Ma, Yangyang Huang, and Jingyu Zhang. 2023. Towards Requirements
Engineering Activities for Machine Learning-Enabled FinTech Applications. In 2023 30th Asia-Paciic Software Engineering Conference

(APSEC). IEEE, 121ś130.
[148] Du Zhang and Jefrey JP Tsai. 2003. Machine Learning and Software Engineering. Software Quality Journal 11, 2 (2003), 87ś119.
[149] Hao Zhang and W.K. Chan. 2019. Apricot: A Weight-Adaptation Approach to Fixing Deep Learning Models. In 2019 34th IEEE/ACM

International Conference on Automated Software Engineering (ASE). 376ś387. doi:10.1109/ASE.2019.00043 https://ieeexplore.ieee.org/
document/8952197.

[150] Quanjun Zhang, Chunrong Fang, Yang Xie, YuXiang Ma, Weisong Sun, and Yun Yang Zhenyu Chen. 2024. A Systematic Literature
Review on Large Language Models for Automated Program Repair. arXiv preprint arXiv:2405.01466 (2024).

[151] Xufan Zhang, Yilin Yang, Yang Feng, and Zhenyu Chen. 2019. Software engineering practice in the development of deep learning
applications. arXiv preprint arXiv:1910.03156 (2019).

[152] Xiaoyu Zhang, Juan Zhai, ShiqingMa, andChao Shen. 2021. AUTOTRAINER: AnAutomatic DNNTraining ProblemDetection and Repair
System. In 2021 IEEE/ACM 43rd International Conference on Software Engineering (ICSE). 359ś371. doi:10.1109/ICSE43902.2021.00043
https://ieeexplore.ieee.org/document/9402077.

[153] Eduardo Zimelewicz, Marcos Kalinowski, Daniel Mendez, Görkem Giray, Antonio Pedro Santos Alves, Niklas Lavesson, Kelly Azevedo,
Hugo Villamizar, Tatiana Escovedo, Helio Lopes, et al. 2024. ML-Enabled Systems Model Deployment and Monitoring: Status Quo and
Problems. In International Conference on Software Quality. Springer, 112ś131.

Appendices

A Summary of queried and selected primary studies

ACM Comput. Surv.

https://doi.org/10.1109/MNET.001.2100227
https://doi.org/10.1109/ASE.2019.00043
https://ieeexplore.ieee.org/document/8952197
https://ieeexplore.ieee.org/document/8952197
https://doi.org/10.1109/ICSE43902.2021.00043
https://ieeexplore.ieee.org/document/9402077


State-of-the-Art and Challenges of Engineering ML- Enabled Sotware Systems in the Deep Learning Era • 33

Search String Digital
Library

Queried
Studies

Selected
Studies

"software engineering" OR "requirement
speciication" OR "requirements engineering" OR
"software construction" OR "software design" OR

"software architecture" OR "software
implementation" OR "software testing" OR

"software deployment" OR "software
maintenance" OR "user support" OR "software
release" OR "software analysis" OR "software
coniguration management" OR "software

quality"
AND

"AI-based" OR "AI-powered" OR "AI-enabled" OR
"artiicial intelligence-based" OR "artiicial

intelligence-powered" OR "artiicial
intelligence-enabled" OR "ML-based" OR

"ML-powered" OR "ML-enabled" OR "intelligent
software" OR "AI-augmented" or "ML-augmented"

OR "AI-infused" OR "ML software" OR "AI
software"
AND

"agile OR scrum OR kanban OR waterfall OR
spiral OR "component-based" OR DevOps OR
iterative OR lean OR "extreme programming"

Scopus
SpringerLink
IEEExplore
ACM-DL

196
33
32
23

22
2
12
2

"software engineering" AND ("AI-based" OR
"AI-powered" OR "AI-enabled" OR "ML-based" OR
"intelligent software" OR "AI-infused" OR "AI

software") AND łagilež

ScienceDirect 128 2

Using forward and backward snowballing 26

Total 438 66

B Summary of general insights and best practices

Received 22 November 2023; revised 11 March 2025; accepted 1 April 2025

ACM Comput. Surv.



34 • G. Assres et al.

State of the art & Challenges General Insights & Best Practices

Requirements Speciication

There is a shift towards non-functional require-
ments [99, 147] such as data quality, trust, trans-
parency, fairness, safety, and explainability[78].
Eforts are ongoing to capture requirements
amid regulatory and ethical complexities.
Specifying ML requirements is not straight-
forward due to its dynamic and uncertain
nature[87] and lack of robust analysis tech-
niques. Such requirements are generated induc-
tively from training data which makes it chal-
lenging to test and verify [61].

New techniques are essential for efectively
capturing requirements and ensuring compli-
ance with regulations like GDPR[129]. How-
ever, best practices include clear prioritiza-
tion and documentation of non-functional
requirements like bias assessment tools, fair-
ness and performance metrics (aligning with
business objectives[37]), data lineage, and
regulatory compliance as well as emphasis
for involving stakeholders[22]. Overall, there
is a trend towards proposing ML speciic
guidelines and processes[99].

Design

Established design principles for conventional
software are being applied to ML[126]. Inno-
vations like visual and strategy patterns focus
on usability and ethical considerations. Thus,
ML models integration requires quality data and
explainability[66], and it is often ad hoc with
limited architectural patterns available[119, 140].
Has challenges like integrating ML-speciic de-
sign artifacts and managing rapid algorithmic
changes. Properly embedding ML models in
systems so that they can be easily maintained
or reused is far from trivial[119]. Additionally,
there is architecture challenge for addressing
monitorability, and co-architecting[73].

There is a need for enhancing modularity,
adaptability in design, addressing unique ML
software quality attributes, and evaluating
architectures for ML-enabled software, con-
sidering data abstraction[140], stakeholder
knowledge and diverse perspectives [22,
119]. Thus, tailoring traditional component-
based approaches[54] for the ML compo-
nents, and integrating ethical guidelines, us-
ability, visual design patterns for consis-
tency, and strategy patterns for lexible use
of algorithms are among the best practices.
The resulting complex architectural decision
can also be addressed using intelligent auto-
mated tools[66].

Coding

ML components are treated as embedded
code[78], implementing speciic algorithms with
code reuse and continuous integration. There
is a lack of comprehensive frameworks for inte-
gratingML code with conventional software[44].
Other challenges include multi-language code
base, and challenges in backwards compatibility
of trained models[116].

Demands fostering adaptability, responsive-
ness through code reuse and integration
for ML. Thus, best practices include writ-
ing modular, reusable code libraries for
the ML components, implementing version
control, and source code documentation
and code completion[78]. The evolving ML
components require support for continuous
integration[103].

ACM Comput. Surv.



State-of-the-Art and Challenges of Engineering ML- Enabled Sotware Systems in the Deep Learning Era • 35

Testing

Sources of uncertainty to ML components useful in testing
are scope compliance, data quality, and model it[65]. Tradi-
tional testing methods are used integrated with ML-centric
approaches like fuzzy and canary testing[3]. Ensuring test-
ing aspects like explainability and system-wide strategies
for ML models is challenging. Additional challenges include
safety, security, veriication[69], data quality[62, 88], and
integrating ML components into larger systems[15].

There is a requirement for developing robust testing
frameworks to address opacity in ML models, ensuring
compliance with ethical standards. Thus far, employing
fuzzy and canary testing for robustness and gradual
rollout, and assessing ethical and fairness requirements
through detection tools, evaluation metrics, and use
of standardized testing frameworks[48] are among the
best practices.

Deployment

Current deployment practices mirror conventional soft-
ware, utilizing DevOps CI/CD pipelines for continuous
deployment[38, 124]. Challenges in performing automated
deployment of production ready models[7], maintaining
API consistency, handling continuous learning and uncer-
tainty in ML models.

Demands developing deployment strategies for respon-
sible AI, maintaining high automation levels in de-
ployment environments. However, best practices in-
clude using CI/CD pipelines for continuous deployment,
leveraging cloud platforms for scalability, implementing
APIs for integration, and ensuring rollback mechanisms
for conventional software to enhance deployment reli-
ability.

Maintenance

Continuous monitoring to detect performance degradation
in ML components. There are challenges like quality control
of the large datasets[106, 151], automating maintenance pro-
cess triggered by runtime errors. The ML landscape ofers
powerful tools for predictions, but often leads to signiicant
ongoing maintenance costs[118].

Implementing techniques like open-set recognition
for timely maintenance and support measures are
needed[146]. In general, continuous monitoring of per-
formance degradation of the ML component through
output monitoring, data drift detection, and perfor-
mance metrics tracking; using automated retraining
schedules[118], version control for model updates, and
logging tools to track metrics and user interactions are
among the best maintenance practices.

Development methodologies

Agile frameworks are prevalent in ML projects, fostering
lexibility and iterative development [67, 112]. Adapting
existing methodologies to capture unique characteristics
of ML-enabled software is challenging due to new system
requirements and imperfection, uncertainty, and lack of
vision among the development team[55].

There is a need for exploring new methodologies spe-
ciic to the integration of ML and AI ethics within agile.
However, best practices include adopting automated
frameworks[19] and DevOps[111] for lexibility and it-
erative development, and facilitating regular feedback
loops thereby integrate AI ethics into user stories. Ad-
ditionally, apply methods like RUDE to achieve reliable
and maintainable ML-enabled software[98].

ACM Comput. Surv.


	Abstract
	1 Introduction
	2 Background
	2.1 Core Concepts and Applications in Machine Learning
	2.2 Engineering Machine Learning-Enhanced Software Systems
	2.3 Background Summary

	3 Methodology
	3.1 The Adopted Review Guideline
	3.2 Literature Search and Selection Strategy
	3.3 Analysis of Secondary Studies
	3.4 Method of Analysis and Interpretation

	4 Results and Analysis
	4.1 SE Process Areas
	4.2 Requirements Specification
	4.3 Design
	4.4 Coding
	4.5 Testing
	4.6 Deployment
	4.7 Maintenance
	4.8 Development Methodologies

	5 Discussion
	5.1 Trend Analysis of the Studies
	5.2 Examining the SE Process Areas
	5.3 Development Methodologies
	5.4 Discussion Summary
	5.5 Limitations of the study

	6 Conclusion
	References
	Appendices
	A Summary of queried and selected primary studies
	B Summary of general insights and best practices

