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Self-Supervised Hyperbolic Spectro-Temporal
Graph Convolution Network for Early 3D Behavior

Prediction

Abstract—3D human behavior is a highly nonlinear spatio-
temporal interaction process. Therefore, early behavior pre-
diction is a challenging task, especially prediction with low
observation rates in unsupervised mode. To this end, we propose
a novel self-supervised early 3D behavior prediction frame-
work that learns graph structures on hyperbolic manifold.
Firstly, we employ the sequence construction of multi-dynamic
key information to enlarge the key details of spatio-temporal
behavior sequences, addressing the high redundancy between
frames of spatio-temporal interaction. Secondly, for capturing
dependencies among long-distance joints, we explore a unique
graph Laplacian on hyperbolic manifold to perceive the subtle
local difference within frames. Finally, we leverage the learned
spatio-temporal features under different observation rates for
progressive contrast, forming self-supervised signals. This fa-
cilitates the extraction of more discriminative global and local
spatio-temporal information from early behavior sequences in
unsupervised mode. Extensive experiments on three behavior
datasets have demonstrated the superiority of our approach at
low to medium observation rates.

Index Terms—Self-supervised learning, Early 3D behavior
prediction, Hyperbolic manifold, Spatio-temporal interaction

I. INTRODUCTION

UNLIKE behavior recognition, which classifies behaviors

after they are completed, the primary goal of early

behavior prediction [1] is to classify behaviors during their

execution. It brings unique challenges for early behavior pre-

diction: semantic ambiguity and uncertainty resulting from the

incompleteness of actions. Although existing early behavior

prediction methods have achieved high accuracy by leveraging

labeled data, there is still one problem that is unavoidable:

with the rise of visual big data, the prior knowledge and cost

required for labeling data are rapidly increasing, and existing

methods may struggle to exploit their advantages without

labeled samples. Therefore, early behavior prediction without

sample labels has become one of the key issues that needs to

be addressed.

Behavior understanding can be divided into two types based

on data: video and skeleton. Video, as the most common form

of behavior sequences, is intuitive and contains rich envi-

ronmental information. However, it is susceptible to various

factors such as lighting and occlusion during collection and

processing. In contrast, skeleton consists of a series of 3D

coordinates, which can abstractly represent the ”core state”

of human behavior with minimal storage and is not affected

by environmental noise. It makes 3D behavior understanding

more popular. Graph Convolutional Networks (GCNs) have

emerged as a powerful tool for analyzing and understanding

3D human data across a multitude of applications. Their ability

to capture spatial hierarchies and relationships within data

has significantly advanced the state-of-the-art in areas like

action recognition, where the temporal evolution of human

poses is crucial [2]. GCNs are widely used in various fields

to process 3D human data, such as human skeleton data

representation learning [3], [4], human pose estimation and

action Recognition [5], [6], self-supervised learning [7] and

anomaly detection [8], interactive behavior analysis and crowd

Analysis [9], etc.

However, these GCN-based methods have shortcomings.

Firstly, they mainly rely on spatial graph convolution. Adja-

cency matrix is divided into multiple sub-matrices to aggregate

spatial information within the first-order neighborhood of

joints [10], [11]. However, various partitioning strategies can-

not be directly applied to adjacency matrices, resulting in inef-

ficiency in capturing spatial information between long-distance

joints. Secondly, even if a node is removed, its information

can still be conveyed through neighbors, potentially causing

the network to over-rely on noise or irrelevant data during

training. Lastly, the construction of temporal graphs by linking

joint nodes across frames and using one-dimensional tempo-

ral convolution to aggregate temporal information might be

straightforward [12]–[14]. However, given the high similarity

often present between adjacent frames in human behavior, this

direct aggregation can be disrupted by redundant information,

impacting the accurate interpretation. All of those lead to

the model not performing well when applied to intelligent

surveillance and situations with unclear skeletal distributions.

In surveillance scenarios, the movement range and speed of

objects are affected by parameters such as frame rate and

resolution, which makes it difficult for the model to learn the

details in the video. Unclear skeletal distributions can interfere

with the flow of information in graph convolutions, ultimately

leading to a significant decline in performance.

Therefore, we propose a novel self-supervised network for

early 3D behavior prediction. Firstly, we introduce a novel

self-supervised network. Our approach employs trajectory

functions to model behavior sequences, incorporating physical

concepts such as displacement, velocity, and acceleration

through Taylor expansions of behavior functions. This method

is beneficial for constructing multi-dynamic key information

sequences while enhancing the essential details in spatio-

temporal interactions. Secondly, we introduce hyperbolic spec-

tral graph convolution, which leverages the hierarchical struc-

ture of hyperbolic space. This convolutional approach is

adept at capturing dependencies between long-distance joints

and utilizes the hyperbolic Laplacian to significantly boost

the representational power of graph data. Furthermore, we
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progressively compare spatio-temporal features learned under

various observation rates, and leverage these contrastive results

as self-supervised signals. This enables the network to deeply

understand intrinsic patterns and regularities within early be-

havior sequences without supervision, thereby extracting more

discriminative global and local spatio-temporal information.

The main contributions of this paper lie in three aspects:

• We define Multi-dynamic key information sequences by

employing trajectory functions to model behavior se-

quences and conducting Taylor expansion with displace-

ment, velocity and acceleration, which not only elimi-

nates high redundancy between frames, but also enhances

core motion details and dynamic changes.

• We propose an innovative graph Laplacian on hyperbolic

manifold to model the dependencies among long-distance

joints. Specifically, by defining Fourier transform and

spectral analysis on hyperbolic manifold, we implement

hyperbolic spectral graph convolution to perceive sub-

tle local difference information within the behavior se-

quences.

• We design a self-supervised early 3D behavior prediction

framework to leverage graph structures on hyperbolic

manifold. This framework generates self-supervised sig-

nals by progressively contrasting spatio-temporal features

at different observation rates, revealing the hidden hi-

erarchical structure and dynamic changes in behavior

sequences.

II. RELATED WORK

A. Early 3D Behavior Prediction

Compared to early behavior prediction from 2D videos

[15]–[18], early 3D behavior prediction has gained the atten-

tion of researchers in recent years. Ke et al. [19] employed

adversarial learning to minimize the difference between early

sequences and complete sequences, thereby obtaining poten-

tial global information in early sequences. Weng et al. [20]

leveraged the diversity information from different negative

categories and employing category exclusion approach. Start-

ing from early similar segments of different behaviors, Li

et al. [21] designed a Hard Instance-Interference Class (HI-

IC) bank to record these similar segments and corresponding

error categories, enabling the model to perceive details. To

solve the same problem, Wang et al. [22] introduced a guided

metric learning module for extracting category discrimination

from initial sequences. This module minimizes within-class

distances using a full-length guidance approach and maximizes

between-class differences across varying observation rates. In

order to fully leverage the information of early sequences,

Chen et al. [23] developed a generative model to utilize early

sequence data, enhancing motion tendency analysis. They

also regulated the generation process recurrently to emphasize

behavioral discriminative cues.

Li et al. [24] designed an adaptive graph convolution

network with adversarial learning, which applied adversarial

learning to make the features of early sequences as similar

as possible to the features of complete sequences, thereby

learning the potential global information in early sequences.

Wang et al. [25] focused on the uncertainty and diversity

of future sequences and proposed a diversified early action

recognition network that is capable of outputting multiple

reasonable action classes for each early sequence. Foo et al.

[26] further considered the method of [21] and argued that not

all samples should be used to train the network parameters.

Therefore, they designed an Expert Retrieval and Assembly

(ERA) module to generate a set of experts most specialized at

using discriminative subtle differences, to distinguish samples

with high similarity. Liu et al. [27] aimed at the problem

of lack of discriminative information in the early stages of

action sequences. They designed a graph convolution network

suitable for 3D skeleton sequences, and developed an early

attention module to encourage the model to focus more on

the early parts of the motion. Wang et al. [28] analyzed the

shortcomings of graph convolution-based prediction methods

in graph construction and message passing, and proposed

a dynamic dense graph convolution network. The network

constructs a dense graph with 4D adjacency modeling and

employed the designed dynamic message passing method to

dynamically transfer information between multi-scale spatio-

temporal skeletal joints.

Those methods focus on Euclidean feature extraction for

action sequences, which may not capture dynamic changes

due to nonlinear interactions. We use hyperbolic manifolds

to analyze joint dependencies and enhance action analysis

accuracy and efficiency with differential geometry.

B. Self-supervised 3D Behavior Recognition

In recent years, unsupervised learning has made significant

progress in the field of artificial intelligence. Early works

primarily involve training models through pretext tasks. Zheng

et al. [29] firstly explored an unsupervised representation

learning method to capture the long-term global motion dy-

namics in 3D sequences and proposed a learning framework

consisting of encoder, decoder, and discriminator. Similarly,

Su et al. [30] also tried to use an encoder-decoder structure

while they used a strategy of weakening decoder to strengthen

the learning ability of encoder, enabling the encoder to learn

better skeleton feature representation.

Most subsequent works have adopted the concept of con-

trastive learning. This approach involves guiding sample fea-

tures to be similar to corresponding positive sample features

and far away from negative sample features to generate self-

supervised signals. Li et al. [31] exploited multi-view infor-

mation for mining positive samples and pursuing cross-view

consistency in unsupervised contrastive learning. Yang et al.

[32] introduced the MG-AL framework for self-supervised

learning, using motion cues to guide attention and reduce

dependence on large datasets or augmentation.

Hua et al. [33] proposed an attention-based contrastive

learning framework SkeAttnCLR to learn the relationship

between local and global features. The framework integrates

local similarity and global features for skeleton-based action

representations, and an attention mechanism is employed to

highlight local salient features, thereby enhancing 3D action

representation. Jin et al. [34] designed a self-supervised spatio-
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temporal representation learning network, SSRL, to mine long-

range semantic information with two inference tasks. The tem-

poral inference task learns the temporal persistence through

temporally incomplete sequences, while the spatial inference

task learns the spatially coordinated nature through spatially

partially sequences. Pang et al. [35] suggested that while

retaining the human skeleton structure, capturing long-distance

joint connections can enhance 3D behavior recognition. How-

ever, this method fails to fully capture the complex spatial

relationships in human behavior. In contrast, spectral graph

convolution can effectively extract spatial features between

joint points in the irregular graph structure. Therefore, we

employ spectral graph convolution to address this issue from

a different perspective in this work.

C. Self-Supervised Graph Neural Networks and Contrastive
Learning

Using Graph Neural Networks for self-supervised learning

leverages the inherent graph structure and positional infor-

mation of skeleton data as a supervisory signal for learning

[36], [37], thereby efficiently completing learning based on 3D

skeleton data.
The application of contrastive learning on graph structures

mainly involves these steps: using data augmentation to gen-

erate different views of skeleton data, encoding with Graph

Neural Networks to obtain node feature vectors and designing

contrastive loss functions, and designing effective contrastive

learning supervision signals to assist model learning. Thus,

research on Graph Neural Network contrastive learning in

various fields centers around these three stages:
Focuses on different data augmentation methods. Guo et

al. [38] proposed a method leveraging extreme augmentation

for motion patterns, mixing various augmentations for rich

unsupervised action info. Yet, training instability of extreme

augmentation and risk of image/skeleton distortion remain

challenges. Therefore, the subsequent work [39] employed a

progressive augmentation strategy to create ordered positive

pairs, ensuring representation consistency across views, buffer-

ing against semantic loss from direct strong augmentation.
Using a special Graph Neural Network encoder can effec-

tively. Zeng et al. [40] proposed a hybrid network of Graph

Neural Networks and MLPs for encoding, diversifying the

distribution of negative samples, and using spatiotemporal

occlusion to reduce information redundancy after data aug-

mentation. Pang et al. [35] proposed a hybrid architecture

of GCN and Transformer, trying to mix the spatial-temporal

graph convolution stream and the spatial-temporal transformer

stream in parallel.
Special unsupervised tasks can do a good job, Guo et al.

[41] developed a graph representation supervision mechanism

to enhance the intrinsic consistency between joint and skeletal

information flows. Gao et al. [42] provided different spa-

tiotemporal observation scenes and pulled them together in

the embedding space to obtain action-specific features. This

new type of pretext task has achieved good results under the

condition of smaller model size and higher training efficiency.
The research trend of graph contrastive learning also in-

cludes exploring how to adapt to different graph data char-

TABLE I
NOTATIONS AND DEFINITIONS

Notations Definitions
X complete sequence
r the observation rate
T the toal number of frames in complete sequence
Xt 3D coordinate matrix of complete sequence at frame t
f the spatio-temporal feature in complete sequence
ϑ the parameter of encoder
L contrast loss
ζ the size of subsequence
F the behavior implicit function
ξ physical meanings, like dis, vel and acc
Φi

ξ the ξ representation sequence under the i-th subsequence

A the adjacency matrix of joint points
L graph Laplacian matrix

H
d,c a d-dimensional hyperbolic manifold with curvature − 1

c
TxHd,c the tangent space at a point x in H

d,c

⊗ Kronecker product
⊕c Möbius summation

acteristics [43]. Sheng et al. [44] has constructed a triple-

layer lncRNA-miRNA-disease heterogeneous graph, integrat-

ing the complex relationships among these entities. Work [45]

enhanced the representation of user behavior sequences by

constructing a global weighted item transition graph and intro-

duces contrastive learning objectives to improve recommenda-

tion performance. Cai et al. [46] proposed that singular value

decomposition can be used to process the adjacency matrix

to obtain a new graph structure with low-rank approximation,

emphasizing the main components of the graph and retaining

the global collaborative signal. Different from the above work,

we attempt to explore the graph structure characteristics in

geometric space and construct an encoder that can effectively

capture spatio-temporal relationships through knowledge of

differential manifolds.

Researchers aim to develop more robust, interpretable and

generalized self-supervised learning frameworks to address

practical challenges. Self-supervised graph neural networks

combined with contrastive learning offer an effective technical

means for 3D early action recognition. By mining internal

structure and attribute information, they learn feature represen-

tations for understanding complex 3D scenes and behaviors.

III. PROPOSED METHOD

In this section, we present our proposed self-supervised hy-

perbolic spectro-temporal graph convolution network. Firstly,

we provide an overview of our proposed network and

the designed progressive contrastive self-supervised learn-

ing method. Next, we introduce the sequence construction

of multi-dynamic key information and hyperbolic spectro-

temporal graph convolution network, respectively. Table I

shows the notations and their corresponding definitions.

A. Overview

In this paper, the proposed network uses Hyperbolic

Spectro-Temporal Graph Convolution Network (HSTGCN)

as encoder to enhance the feature aggregation process. At

the same time, in order to remove the high similarity of

consecutive frames, the behavior sequences are modeled via
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Fig. 1. The framework of self-supervised hyperbolic spectro-temporal graph convolution network (HSTGCN) for early 3D behavior prediciton. Firstly, Taylor
difference operator is employed to transform input sequences into multi-dynamic key information sequences. Then, HSTGCN is used as an encoder to extract
spatio-temporal features. HSTGCN converts spatial and spectral domains of spatio-temporal signals in hyperbolic manifold. Finally, a progressive contrast
between behavior features with various observation rates is employed to bring their probability distributions closer.

implicit functions, and Taylor difference operator is employed

to explore subtle changes with various physical meanings,

thereby forming multi-dynamic key information sequences.

Furthermore, the network adopts progressive contrast of 3D

behavior sequences under different observation rates as self-

supervised signals, avoiding errors caused by direct contrast

between complete sequences and early sequences. The frame-

work is illustrated in Figure 1.

Assuming X = [X1, X2, · · · , Xt, · · · , XT ] represents the

complete sequence, where T is the total number of frames

in X , and Xt is the coordinate matrix of 3D behavior

at frame t. r ∈ (0, 1) represents the observation rate, so

early behavior sequence can be expressed as rX . For these

sequences under different observation rates, as shown in Figure

1, Taylor difference operator is firstly applied to extract be-

havior representation with various physical meanings, forming

a multi-dynamic key information sequence. Subsequently, the

proposed HSTGCN is employed to extract spatio-temporal in-

formation, resulting in corresponding spatio-temporal features

denoted as f , fr, respectively:

f = HSTGCN(TD(X);ϑ)

fr = HSTGCN(TD(rX);ϑr)
(1)

where, TD(·) denotes the transformation of input sequence

into a multi-dynamic key information sequence through Taylor

difference operator, and HSTGCN(·) represents the encoder,

which leverages hyperbolic spectro-temporal graph convolu-

tion to extract rich spatio-temporal features contained in multi-

dynamic key information sequence. Additionally, ϑ and ϑr are

the parameters of these two encoders. Then we utilize Multi-

layer Perceptrons (MLP) to map the features f, fr into the

output space, enabling us to obtain p, pr. In order to ensure

consistency between complete sequence and early sequence,

we employ Mean Squared Error (MSE) loss function [34] to

minimize the distance between them in feature space, defined

as follows:

L = ‖p− pr‖22 = 2− 2 · < p, pr >

‖p‖2 · ‖pr‖2
(2)

where ‖ · ‖2 denotes the operation of taking modulus, and

< ·, · > represents the inner product between vectors.

Due to significant content differences between complete

sequence and low observation rate sequence, direct con-

trast between them may lead to misleading results. Because

low observation rate sequence may lacks crucial information

present in complete sequence. Notably, medium observation

rate sequence, falling between the two, retains some of the

key information from complete sequence while providing a

higher observation rate compared to low observation rate

sequence. Therefore, medium observation rate sequence could

serve as a better transitional solution. This also means that

we will introduce two loss functions during training. The first

loss function is employed to measure the feature variance

between complete sequence and medium observation rate

sequence, ensuring that model can extract enough information

from complete sequence. The second loss function is used to

evaluate the feature discrepancy between medium observation

rate sequence and low observation rate sequence, aiming to

enable model to make the accurate prediction even under low

observation rates. So the total loss function is given by:

Ltotal = Lcm + αLml (3)

where, α represents the weight of Lml. Lcm and Lml rep-

resent MSE loss between complete sequence and medium

observation rate sequence, and between medium observation

rate sequence and low observation rate sequence, respectively.
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Here, we define rmed as medium observation rate and rlow as

low observation rate. Therefore, the corresponding behavior

sequences are rmedX and rlowX . According to the similar

process, the spatio-temporal features of them are denoted as

frmed
and frlow . By substituting them into Eq.2, we can obtain

Lcm and Lml.

Lcm = ‖p− prmed
‖22

Lml = ‖prmed
− prlow‖22

(4)

For the parameter update methods of these three encoders,

we ensure the parameter sharing between encoder correspond-

ing to f and encoder corresponding to frmed
, allowing them

to extract and represent features consistently. The parameter

sharing ensures that these two encoders perform consistently in

feature extraction and representation learning. During training,

the model adjusts parameters based on the common features

of X and rmedX , enabling these two encoders to adapt

to changes in both sequences simultaneously. This approach

allows the encoder parameters trained on medium observation

rate and complete sequences to be used for extracting useful

features and enhancing the prediction accuracy when process-

ing early 3D behavior sequences. As for the parameters in

encoder corresponding to frlow , they are updated via momen-

tum update. Because momentum update can prevent network

from collapsing during the learning process. Therefore, the

parameter update method of three encoders can be expressed

as:

ϑrmed
= ϑ

ϑrlow ← βϑrlow + (1− β)ϑ
(5)

where, ϑ, ϑmed and ϑlow represent the parameters of three

encoders respectively, and β ∈ [0, 1] is the momentum factor.

In the subsequent evaluation stage, we introduce classifiers

behind encoders corresponding to frmed
and frlow . These

classifiers aim to predict the category of behavior sequence

based on the features extracted by encoders and output the

category probabilities. Considering that prediction result only

relying on a single encoder and classifier might have some

limitations and biases, we mitigate it by averaging the category

probabilities obtained from both encoders, yielding a more

robust and reliable final prediction classification result.

B. Sequence Construction of Multi-Dynamic Key Information

Human behavior, as a natural and continuous process,

contains both diverse and unique attributes. Its diversity shows

various expressions due to individual differences, environ-

mental dynamics, and temporal evolution. Conversely, its

uniqueness lies in fundamental physical concepts such as dis-

placement, velocity, and acceleration. These concepts together

constitute the essential characteristics. With these properties, it

is possible to model human behavior using trajectory function.

Trajectory functions can capture the changes in behavior

across temporal and spatial domains simultaneously, providing

a comprehensive understanding of the dynamics of behavior.

By employing trajectory functions, we can accurately describe

and predict nonlinear and complex motion patterns inherent in

human behavior.

Algorithm 1 Training Algorithm for HSTGCN

Input: Set of skeleton data D,

encoder network E, projector q,

target encoder network Et, target projector qt,

momentum hyper-parameter β, weight parameters α ,

number of optimization steps K and batch size N
Output: Trained encoder Et

Randomly initialize ϑrmed
and copy to ϑrlow

for each epoch e from 1 to K do
for all data points X in D do

Obtain samples at different observation rates

X, rmedX, rlowX
Compute Υ,Υmed,Υlow from X, rmedX, rlowX re-

spectively

p = q(E(Υ;ϑrmed
))

pmed = q(E(Υmed;ϑrmed
))

plow = qt(Et(Υlow;ϑrlow))
Lcm = ‖p− prmed

‖22
Lml = ‖prmed

− prlow‖22
Ltotal = Lcm + αLml

end for
Update ϑrmed

by back-propagation

Update the ϑrlow with momentum β
end for

To represent a behavior sequence as an trajectory function,

we adopt a method starting with the generation of individual

subsequences. It is achieved by applying a sliding window

of size ζ and step size 1 on the original sequence X . As

a result, we obtain K = T − ζ + 1 subsequences, denoted

as {X1, X2, · · · , Xi, · · · , XK}, where each Xi represents a

subsequence of length ζ, i.e., Xi = [Xi
1, X

i
2, · · · , Xi

ζ ]. Next,

we construct the trajectory function of the behavior sequence

F . The purpose of F is to establish a mapping from input

space to feature space, allowing us to indirectly understand

and describe the nature of behavior by analyzing features.

Given a subsequence, our primary goal is to enhance the key

information within it. In order to accomplish this, we employ

Taylor series to expand the trajectory function:

F (Xi
ζ) = F (Xi

1) +
F

′
(Xi

1)

1
(Xi

ζ −Xi
1)

+
F

′′
(Xi

1)

2
(Xi

ζ −Xi
1)

2
+ o(Xi

ζ −Xi
1)

2

(6)

The calculation of this formula covers motion over the entire

subsequence, focusing mainly on long-range motion. However,

to fully understand the motion dynamics, it is not enough

to consider only long-range motion. The short-range motion

within subsequence also plays a crucial role. So we replace

Xi
ζ in Eq.6 with Xi

τ (τ < ζ) to capture short-range motion

details by analyzing the motion between Xi
τ and Xi

1. The long-

range and short-range motions are then averaged to provide

a more comprehensive and balanced description of behavior.

This process can be described as
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Fig. 2. The generation process of multiple dynamic key information sequences. The subsequence is Taylor expanded under three different physical concepts,
and then the generated new sequences are fused to obtain their dynamic key information.

Φi
ξ =

1

ζ

(
F (Xi

1)+F (Xi
2)+· · ·+F (Xi

ζ)
)
=

1

ζ

ζ∑

τ=1

F (Xi
τ ) (7)

Here, Φi
ξ represents the key motion in a subsequence starting

with Xi
1 and ending with Xi

ζ . The subscript ξ denotes a

specific physical concept. By defining different ξ, the new

subsequences under various motion concepts can be obtained.

Displacement, velocity and acceleration are three common

physical concepts in time series analysis. Together, they pro-

vide a comprehensive description of the motion process, of-

fering detailed information from the overall motion trajectory

to local dynamic changes. By combining these three concepts,

we can more accurately capture and analyze the complexity

of motion. We define the formulas for displacement, velocity,

and acceleration as shown in Eq.8. F
′

and F
′′

of these can

be obtained by calculating the differences between adjacent

terms. We notice that o(Xi
ζ −Xi

1)
2

might have impact on the

overall calculation, therefore, we adopt a small, learnable value

ε to balance this effect.

Fdis

(
Xi

k

)
= dis

(
Xi

k

)
= Xi

k+1 −Xi
k

Fvel

(
Xi

k

)
= vel

(
Xi

k

)
= dis(Xi

k+1)− dis
(
Xi

k

)

Facc

(
Xi

k

)
= acc

(
Xi

k

)
= vel(Xi

k+1)− vel
(
Xi

k

)
(8)

Displacement denotes the position change of a joint, char-

acterized by both magnitude and direction. According to Eq.7,

we can get the dynamic key information sequence about

displacement:

Φi
dis =

1

ζ

ζ∑

τ=1

Fdis(X
i
1) +

F
′
dis(X

i
1)

1
(Xi

ζ −Xi
1)

+
F

′′
dis(X

i
1)

2
(Xi

ζ −Xi
1)

2
+ εdis

(9)

where, Fdis is the trajectory function of displacement. In a

similar manner, Φi
vel and Φi

acc can be obtained through the

trajectory function of velocity Fvel and the trajectory function

of acceleration Facc. Φi
vel and Φi

acc share a similar structure

with Φi
dis.

Therefore, given a subsequence, we can calculate three

motion representation sequences: Φi
dis, Φi

vel and Φi
acc. These

three new sequences are then concatenated, and weighting ma-

trix are learned using a 3D convolution operation 	. It allows

for effective extraction of key information from the sequences

in different physical concepts, resulting in the generation of

multi-dynamic key information sequences. More specifically,

we use concat and batch normalization to combine these three

sequences:

Φi
concat = BN(concat(Φi

dis,Φ
i
vel,Φ

i
acc)) (10)

Then, a weight matrix is calculated to merge sequences of

different physical concepts in an optimal way:

W i
Φ = softmax(LeakyRELU(	(Φi

concat))) (11)

where, W i
Φ is responsible for calculating the appropriate

weights in units of frames to accurately merge sequences in

different physical senses. Finally, the output multi-dynamic

key information sequence Υi is calculated as follows:

Υi = W i
Φ ⊗ Φi

concat (12)

By generating multi-dynamic key information sequences of

all subsequences in a similar way, a final multi-dynamic key

information sequence Υ = [Υ1,Υ2, · · · ,Υi, · · · ,ΥK ] can be

constructed. Furthermore, by inputting Υ into feature encoder,

in-depth learning and understanding of behavior sequences can

be achieved.
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C. Hyperbolic Spectro-Temporal Graph Convolution Network

In this section, we propose a novel encoder, the Hyperbolic

Spectro-Temporal Graph Convolutional Network (HSTGCN).

The specific structure is shown in Figure 3. The architec-

ture of HSTGCN is composed of multiple HSTGCN blocks,

which are designed to progressively obtain high-level abstract

representations of the input skeletal sequence features. After

stacking the HSTGCN blocks, we incorporate a global pooling

layer and a fully connected layer to summarize the output and

generate the final representation. Within the HSTGCN block,

we employ a parallel structure, divided into a CNN stream

and a GCN stream. The CNN stream captures local features

within the skeletal representation through two-dimensional

convolutions and adjusts the spatial distribution of the rep-

resentation using Batch Normalization. On the other hand,

the GCN stream acquires global node representations with

hyperbolic graph topological structure information through

Hyperbolic Spectro-Temporal Graph Convolution. We add the

local feature representation from the CNN stream to the global

node representation from the GCN stream and gradually fuse

them through a Temporal Convolutional Network (TCN) to

obtain the temporal characteristics of the skeletal information.

The output is a representation with excellent spatiotemporal

properties as the output of the HSTGCN block.

In ST-GCN, the most important operation is spatial graph

convolution, which aggregates features by computing the

weighted average of node features with the neighborhood

of each node. Let the feature of l-th layer be denoted as

f l ∈ R
C×T×N , and the feature of l + 1-th layer be denoted

as f l+1 ∈ R
C×T×N . Here, C is the channel dimension, and

N is the number of human joints. Then the spatial graph

convolution operation can be expressed as:

f l+1 = D− 1
2 (A+ I)D− 1

2 f lW l (13)

Among Eq.13, A is the adjacency matrix of joint points.

I is the identity matrix with same size as A, representing

self-connection between each joint. D is the degree matrix

of A + I , and it is also a diagonal matrix defined as

Dpp =
∑

q (A
pq + Ipq). p and q represent two joint points

of human body. W l is the weight matrix selected according

to partitioning strategy during convolution process.

The partitioning strategy employed in ST-GCN is spatial

configuration partitioning strategy, which divides the node

neighborhood into three parts: the root node, nodes adjacent

to the root node and closer to the center of gravity, and

nodes adjacent to the root node but farther from the center

of gravity. However, this strategy divides A into multiple

adjacency submatrices, then conducts different convolution

operations to learn spatial features under each submatrices,

and finally aggregates these features to obtain the result

of spatial graph convolution. While the approach calculates

within these three categories, it fails to establish relationships

between them, and ignores spatial information of long-distance

joints. Futhermore, it is important to note that spatial graph

convolution is a first-order local approximation of spectral

graph convolution. This paper attempts to better aggregate

spatial features of body joints through first-order spectral graph

convolution.

First, spectral graph convolution can be defined as the

product of input vector and filter in Fourier domain. This

process is typically implemented by Fourier transformation

of Laplacian matrix. Specifically, we define graph Laplacian

matrix as L = D − A, and the normalized Laplacian matrix

as Lsym = I − D− 1
2AD− 1

2 = UΛUT . Here, D is the

degree matrix of A. U is the eigenvector matrix, which can

be obtained by performing eigendecomposition on Lsym, and

Λ is the eigenvalue matrix corresponding to U . Then, spectral

graph convolution can be expressed as:

gθ 
 x = UgθU
Tx (14)

where, gθ represents a parameterized filter, θ denotes the

set of these parameters, and x is the input vector. The

symbol 
 represents the convolution operation. In Eq.14,

x is transformed from spatial domain to spectral domain

through graph Fourier transform UTx. Subsequently, gθU
Tx

evaluates the computations in spectral domain. And finally,

through the inverse Fourier transform, UgθU
Tx is converted

back to spatial domain. Considering that this graph structure

corresponds to human joints, the feature decomposition of

Lsym requires a large amount of computational resources.

To address this, Chebyshev polynomials are introduced to

approximate gθ, transforming the above formula into:

gθ 
 x = UgθU
Tx ≈

W∑

w=0

γwQw(L)x (15)

Among these parameters, γw is the sequence of coefficients

for Chebyshev polynomial, W is the number of terms of

polynomial, and Qw(L) is the w-order polynomial of L.

Additionally, for simplicity, only the first-order Chebyshev

inequality is considered, as follows:

gθ 
 x ≈ θ(D− 1
2AD− 1

2 + I)x (16)

This paper considers transforming Eq.16 into a potential

residual structure. In general, it involves directly adding the

input vector x to result through a shortcut connection without

multiplying by θ, which can be rewritten as:

gθ 
 x ≈ θD− 1
2AD− 1

2x+ x (17)

Finally, the above process is extended to the feature f l, as

follows

f l+1 = D− 1
2AD− 1

2 f lW l + f l (18)

Combined with one-dimensional temporal convolution, we

have implemented spectro-temporal graph convolution. Next,

we aim to extend this process to hyperbolic manifold, leverag-

ing the geometric properties in hyperbolic manifold to enhance

the representation of spatio-temporal relationships.

The hyperbolic manifold is a Riemannian manifold with

constant negative curvature. It possesses numerous straight

lines that are parallel to a given line and pass through a com-

mon point, offering a powerful representation of implication
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Fig. 3. The framework of hyperbolic spectro-temporal graph convolution network. By transforming the hyperbolic space and its tangent space, we extend
spectral graph convolution to the hyperbolic space, thereby realizing hyperbolic spectro-temporal graph convolution network.

relationships. We denote H
d,c as a d-dimensional hyperbolic

manifold with constant negative curvature − 1
c (c > 0), and its

tangent space at a point x is expressed as TxHd,c. The tangent

space is a linear space and exhibits Euclidean geometric

properties, enabling the transformation of operations that are

challenging on hyperbolic manifolds into its tangent space.

The transformation between these two spaces is achieved

through exponential mapping and logarithmic mapping:

expx(z) = x⊕c (tanh(
√
c
λ‖z‖2

2
)

z√
c‖z‖2

2)

logx(y) =
2√
cλ

tanh−1(
√
c‖x⊕c y‖2)

−x⊕c y

‖ − x⊕c y‖2

(19)

where, x, y ∈ H
d,c and z ∈ TxHd,c. expx(z) maps point z in

tangent space to hyperbolic space, while logx(y) maps point

y in hyperbolic space to tangent space. ⊕c denotes addition

in hyperbolic space, known as Möbius summation, defined as

v1⊕cv2 =
(1 + 2c < v1, v2 > +c‖v2‖22)v1 + (1− c‖v1‖22)v2

1 + 2c < v1, v2 > +c2‖v1‖22‖v2‖22
(20)

v1 and v2 are two points in hyperbolic space, λx = 2
1+c‖x‖2

2

serves as a conformal factor, used to describe the metric

structure on hyperbolic manifold.

Based on these two mappings, we apply spectral graph

convolution to tangent space, as shown in Figure 3. First, we

map the feature f l into the hyperbolic space.

f l
H
= expo(f

l) (21)

Define the linear operation function FH, which is an operation

performed in hyperbolic space and can be expressed as

F o
H
(f l

H
, X) = expo(Xlogo(f

l
H
)) (22)

This operation involves mapping features f l
H

to tangent space

for computation F (.) and then mapping them back to the

original hyperbolic space. o = {√c, 0, 0, · · · , 0} denotes the

origin in hyperbolic space. This operation function will aid

in understanding the subsequent formulas. For example, we

perform linearly transforming of f l
H

first, which is hyperbolic

Fourier transform and expressed as

f̂ l
H
= F o

H
(f l

H
,W l) (23)

Next, we apply spectral filtering operation to the result.

When calculating the adjacency matrix, we can leverage

hyperbolic distance to measure the relationship between two

nodes, and modify the weight based on the distance, given by:

AH(p, q) = exp(−d2
H
(p, q)

δ
) (24)

where, δ is an artificially specified radial range parameter, and

dH(p, q) represents the distance between two nodes p and q
in hyperbolic manifold, defined as

dH(p, q) = (
2√
c
) tanh−1(

√
c‖ − p⊕c q‖2) (25)

Subsequently, we calculate the degree matrix DH using a

method similar to that in Euclidean space, enabling spectral

filtering operation on the linear transformation results:

f l+1
H

= F
f l
H

H
(f̂ l

H
, D

− 1
2

H
AHD

− 1
2

H
)⊕c f

l
H

(26)

Here, f l+1
H

is the feature in hyperbolic manifold of layer l+1.

Finally, we have completed the extension of spectro-temporal

graph convolution to hyperbolic space.
However, hyperbolic spectro graph convolution can obtain

global representations with skeletal topological information.

We need to further employ convolutional layers to learn

the local information of the samples. Specifically, we use

batch normalization layers and convolutional layers for feature

processing.

f̂ l = BatchNorm(Conv2d(f l)) (27)
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We map f l+1
H

back to the flat space and add it with f̂ l,

obtaining a representation that contains both local and global

information. To further capture the temporal relationships

present in the sequence, we utilize Temporal Convolutional

Networks (TCNs) as the final part of our model, as follows:

f l+1 = TCN(f̂ l + logf l
H

(f l+1
H

)) (28)

With this, we have completed the construction of the Hyper-

bolic Spectro-Temporal Graph Convolution Network.

IV. EXPERIMENTS AND ANALYSIS

A. Datasets

In order to verify the effectiveness of our proposed method

on early 3D behavior prediction task, experiments are carried

out on three human-based 3D behavior datasets, namely NTU

RGB+D 60 dataset, NTU RGB+D 120 dataset and PKU-

MMD dataset. These three datasets are the largest benchmark

datasets, and the experimental results on them are more

convincing.

NTU RGB+D 60 [47]: This dataset contains RGB+D videos

and skeleton data for human behavior. The behavior data is

captured by 3 Microsoft Kinect V2 cameras from 40 human

subjects, with a total of 56,880 samples containing 60 cate-

gories totaling 4 million frames, where the maximum frame

for all samples is 300. 25 joints are recorded for each body

skeleton. The dataset provides two original settings, namely

two evaluation protocols, Cross-Subject (Xsub) and Cross-

View (Xview). In Xsub protocol, the training set contains

40,320 samples from 20 subjects, and the remaining 16,560

samples are used for testing. In Xview protocol, 37,920

samples captured by cameras 2 and 3 are used for training, and

camera 1 is used for training. The remaining 18960 samples

were used for testing. We follow these two settings and report

the Top-1 accuracy of experimental results.

NTU RGB+D 120 [48]: This dataset is an extended version

of NTU RGB+D 60, adding 57,367 skeleton sequences in

60 additional action categories, totaling 113,945 samples,

120 action category categories, captured from 106 different

subjects and 32 different cameras. Two evaluation protocols

are used: Cross-subject (Xsub) and Cross-setting (Xset). In

Xsub protocol, 63,026 samples from half of the participating

subjects were used for training, while the remaining 50919

samples were used for testing. In Xset protocol, 54468 samples

taken from half of the camera devices are used for training and

the remaining 59477 samples are used for testing.

PKU-MMD [49]: This dataset covers a wide range of com-

plex humanactivity categories, collecting 1,076 long video

sequences with 51 action categories. These sequences were

captured by 66 participating subjects from various perspectives

using three Kinect V2 cameras, totaling 21,545 behavior

instances across 5.4 million frames. The label of each long

sequence marks the behavior category of each action instance,

the start frame, endframe and label confidence of the action.

Additionally, the dataset offers two different settings, Part I

and Part II. We conduct experiments under the cross subject

protocol on Part I.

TABLE II
ABLATION OF DIFFERENT MODULES ON NTU-60 AND PKU-MMD

MS SC SL HM
NTU-60

PKU-MMD
Xsub Xview
38.8 41.2 70.5

� 44.5 49.3 73.8

� � 46.2 51.5 74.3

� � � 46.9 52.6 76.5

� � � � 48.6 53.9 78.4

B. Experimental Setup

All experiments are performed using the PyTorch frame-

work [50]. Following the standard methods in existing be-

havior prediction tasks [19], [24], [51], early 3D behavior

sequences are generated. For each complete 3D behavior

sequence within dataset, partial sequences are obtained at

observation rates ranging from 0.1 to 0.9 and these partial

sequences collectively form a 3D behavior prediction dataset.

The sample size in this dataset is 9 times larger than that

in original dataset, and we unify the total frame number of

all samples to 50 frames. For sequences with more than 50

frames, downsampling is used to reduce the number of frames.

For sequences with less than 50 frames, fill the blank frames

with 3D joint point coordinates of the last frame. The network

is trained on an NVIDIA RTX 3090 GPU with a batch size

of 128. Throughout all datasets and evaluation protocols, we

only report the Top-1 accuracy.

Self-supervised Pre-training: We feed complete sequence,

sequence with a random observation rate greater than 0.5, and

sequence with a random observation rate less than 0.5 into

the proposed network. Throughout the optimization process,

we employ Stochastic Gradient Descent (SGD), with a mo-

mentum of 0.9 and a weight decay of 0.0001. Additionally,

the momentum factor β is set to 0.99. The model is trained for

300 epochs with a fixed learning rate of 0.1, and the learning

rate remains unchanged throughout the training process.

Linear Evaluation: We evaluate model through linear

evaluation on self-supervised 3D behavior recognition methods

[52]–[54], where the encoder weights are kept frozen during

testing. Based on this evaluation, two linear classifiers, each

consisting of a fully connected layer and a softmax layer, are

appended to the encoders corresponding to medium observa-

tion rate and low observation rate sequences. The classifiers

are trained for 100 epochs with a learning rate of 3.0, which is

multiplied by 0.1 at 80-th epoch. Typically, existing supervised

early 3D behavior prediction methods evaluate prediction

accuracy under the observation rates of 0.2, 0.4, 0.6, and

0.8. We also compute the prediction accuracy under these

four observation rates and compare these results with some

self-supervised 3D behavior recognition methods for early

3D behavior prediction and some supervised 3D behavior

prediction. This comparison is particularly important given the

lack of research on unsupervised early 3D behavior prediction.

As part of our experiments, we also computed the average

accuracy at all observation rates as an outcome of ablation

experiments.
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(a) Momentum Factor (b) Loss Function Weight (c) Subsequence Length

Fig. 4. Ablation expermental results of main parameters on NTU-60 and PKU-MMD datasets.

C. Ablation Experiments

In this section, we perform ablation experiments on two

protocols of NTU-60 dataset and PKU-MMD dataset to assess

the effectiveness of each proposed module. Additionally, we

explore the optimal configuration of main parameters, and the

experimental results are thoroughly analyzed and discussed. In

Table II, ”MS” refers to medium observation rate sequence,

”SC” denotes the sequence construction of multi-dynamic

key information, ”SL” represents spectral graph convolution

based on laplacian operator, and ”HM” indicates hyperbolic

manifold.

We also employ the t-SNE algorithm to visualize the impact

of our proposed method on classification effects. Specifically,

we use the distance between cluster centers and the degree

of aggregation of samples within the same category to judge

the specific classification effects. We have conducted targeted

research on the influence of hyperbolic mapping and the

sequence construction of multi-dynamic key information on

our algorithm. As shown in the Fig. 7, the impact of hyperbolic

mapping on the overall data distribution is not significant. This

is because we used the exponential and logarithmic methods

during the hyperbolic mapping to ensure that data can be

correctly mapped between the hyperbolic space and other

spaces. Since we use the geodesic distance in the hyperbolic

space as a reference, our method can effectively identify

some outliers and bring them closer to the cluster centers.

The method of sequence construction of multi-dynamic key

information changes the overall distribution of the input data,

which also has a significant impact on the final visualization

results. It can be seen that this method can effectively prevent

the cluster centers from being too close to each other. In

contrast, the visualization results of our method exhibit more

distinct cluster centers, and the distribution of these centers is

more dispersed. , proving the effectiveness of our approach.

The effectiveness of the proposed modules: As shown in

Table II, the prediction performance is notably lower in the

absence of medium observation rate sequence input com-

pared to other methods. This suggests that the spatio-temporal

information provided by medium observation rate sequence

is critical for early 3D behavior prediction. Additionally,

the sequence construction of multi-dynamic key information,

applied on two evaluation protocols of NTU-60, contributes

to nearly a 2% improvement in prediction accuracy. The

similar results are observed on PKU-MMD. This operator aims

at reducing redundancy between adjacent frames and more

accurately capturing frame-to-frame differences to represent

dynamic changes in behavior sequence. Furthermore, with

the introduction of Laplacian-based spectral graph convolution

and hyperbolic manifold, the network achieves its highest

performance. It further validates the effectiveness of our de-

signed approach. The spectral graph convolution can establish

the dependencies of long-distance joints, while hyperbolic

manifold is suitable for extracting the complex relationships

within human 3D behavior sequences.

The effects of main parameters: Figure 7 shows our ablation

experiments on the main parameters. It can be seen from

Figure 4a, the proposed network exhibits a high sensitivity to

the choice of momentum factor. A small coefficient leads to

unstable learning of encoders during training, thus reducing

representation quality. Conversely, when the parameter is

close to 1, network learns minimal changes from contrastive

learning. Regarding the contrast loss weight α, we perform

ablation experiments as shown in Figure 4b. Excessively large

values cause model to overly focus on the feature differences

between medium and low observation rate, potentially leading

to overfitting to the features of medium observation rate

sequence while ignoring global information from complete

sequence. Conversely, excessively small values make model

insensitive to the feature differences and unable to effectively

leverage this information. Therefore, the experimental data

indicates that an appropriate balance point is achieved at 1.0.

In addition, the length of subsequence ζ is also ablated and

the results of Figure 4c show that the performance of model

is optimal when ζ = 20. This may be because in shorter sub-

sequence, i.e., 10 frames, model mainly encodes the dominant

motion information, thereby reducing the interference of noise.

However, this setup also has some limitations, namely that

model cannot fully capture the long-range dynamic features of

behavior. In contrast, extending the subsequence’s length to 30

frames may enhance the model’s ability to capture long-range

motion information, but it may also introduce unnecessary

noise, which may have a negative impact on the performance

of model.

Page 10 of 61

IEEE Transactions on Cognitive and Developmental Systems

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 11

TABLE III
COMPARISONS OF THE EARLY 3D BEHAVIOR PREDICTION ACCURACY WITH VARIOUS METHODS ON NTU-60

Method Backbone
Xsub Xview

0.2 0.4 0.6 0.8 1.0 0.2 0.4 0.6 0.8 1.0
Suspervised

Local+LGCN (TIP 2019) [19] CNN 32.1 63.8 77.0 82.5 83.2 - - - -
CEL (TCSVT 2020) [20] RNN 35.6 54.6 67.1 72.9 75.5 37.2 57.2 69.9 75.4 78.0

HARD-Net (ECCV 2020) [21] GCN 42.4 72.2 83.0 86.8 87.5 53.2 82.9 91.3 93.7 94.0
Local+AGCN-AL (TCDS 2021) [24] GCN 38.2 71.2 82.3 86.3 87.2 - - - - -

GA-Net (TMM 2021) [22] GCN 42.5 72.6 83.1 86.8 87.2 49.8 80.2 91.6 94.0 94.2
Dear-Net (TMM 2023) [25] CNN 32.7 69.7 80.2 83.5 - - - - - -

Self-supervised
SkeletonCLR (CVPR 2021) [31] GCN 19.1 45.6 59.9 65.9 65.3 21.0 48.1 64.1 70.0 68.4

AimCLR (AAAI 2022) [38] GCN 16.2 40.6 55.2 62.2 63.2 23.0 52.7 69.4 75.3 74.5
HiCLR (AAAI 2023) [39] GCN 21.2 50.1 65.7 71.9 72.3 24.3 54.6 70.3 76.3 76.0

SkeAttnCLR (IJCAI 2023) [33] GCN 20.2 48.0 63.7 70.6 71.1 18.2 46.8 62.5 70.0 67.6
SSRL (TCSVT 2024) [34] GCN 21.8 50.1 62.5 68.9 68.7 24.1 53.5 66.3 70.4 69.8

Ours GCN 21.9 51.8 66.4 71.5 72.8 25.8 55.6 69.3 75.7 76.2
±0.65 ±0.24 ±0.44 ±0.52 ±0.61 ±1.58 ±0.72 ±0.61 ±0.74 ±0.46

TABLE IV
COMPARISONS OF THE EARLY 3D BEHAVIOR PREDICTION ACCURACY WITH VARIOUS METHODS ON NTU-120

Method Backbone
Xsub Xset

0.2 0.4 0.6 0.8 1.0 0.2 0.4 0.6 0.8 1.0
Self-supervised

SkeletonCLR (CVPR 2021) [31] GCN 5.3 15.7 28.2 32.0 33.7 7.4 19.0 31.2 36.5 38.0
AimCLR (AAAI 2022) [38] GCN 4.6 14.5 24.7 30.0 46.4 8.5 22.1 37.0 42.4 38.4
HiCLR (AAAI 2023) [39] GCN 6.3 19.9 33.3 38.8 51.7 8.5 23.6 38.2 44.0 48.4

SkeAttnCLR (IJCAI 2023) [33] GCN 5.0 16.6 32.8 42.9 57.6 7.4 20.1 36.6 46.0 57.5
SSRL (TCSVT 2024) [34] GCN 4.3 11.5 17.8 21.3 32.2 6.1 15.9 24.2 26.6 28.5

Ours GCN 6.2 20.5 34.6 42.7 55.6 8.9 24.1 38.3 45.5 56.0
±0.95 ±1.26 ±0.82 ±0.63 ±0.65 ±1.02 ±1.45 ±0.77 ±0.78 ±0.61

TABLE V
COMPARISONS OF THE EARLY 3D BEHAVIOR PREDICTION ACCURACY WITH VARIOUS METHODS ON PKU-MMD

Method Backbone
Xsub

0.2 0.4 0.6 0.8 1.0
Self-supervised

SkeletonCLR (CVPR 2021) [31] GCN 50.3 69.2 74.5 71.7 72.3
AimCLR (AAAI 2022) [38] GCN 61.7 74.5 80.4 79.3 76.7
HiCLR (AAAI 2023) [39] GCN 63.9 78.0 83.0 84.7 81.7

SkeAttnCLR (IJCAI 2023) [33] GCN 64.7 80.5 83.5 84.0 80.7
SSRL (TCSVT 2024) [34] GCN 73.8 85.1 88.4 89.1 87.8

Ours GCN 74.1 85.7 87.3 88.0 87.9
±0.61 ±0.70 ±0.45 ±0.51 ±0.45

TABLE VI
COMPARISONS OF THE 3D ACTION RECOGNITION ACCURACY ON DIFFERENT DATASETS

Methods Encoder
NTU-60 NTU-120

PKU-MMD
Xsub Xview Xsub Xset

Self-supervised
P&C (CVPR 2020) [30] GRU 50.7 76.3 42.7 41.7 59.9
MG-AL (TCSVT 2022) [32] GCN 64.7 68.0 46.2 49.5 -
ST-CL (TMM 2023) [42] GCN 68.1 69.4 54.2 55.6 -
HiCLR (AAAI 2023) [39] GCN 77.6 82.0 66.8 66.1 -
SDS-CL (TNNLS 2024) [55] DSTA [56] 73.6 78.9 50.6 55.6 -
IKEM (ICASSP 2024) [57] GCN 75.5 81.8 - - -
SSRL (TCSVT 2024) [34] GCN 80.4 82.0 68.0 68.6 89.9

Ours GCN 78.7 83.6 67.7 70.2 90.3
±0.23 ±0.41 ±0.21 ±0.41 ±0.36
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Fig. 5. Confusion matrix visualization results of NTU-60 dataset under Xsub protocol.

D. Comparison with Existing Methods

Since there are few studies on self-supervised learning in

early 3D behavior prediction, in order to make an effective

comparison, this paper simply modifies five common self-

supervised 3D behavior recognition methods to make them

suitable for early 3D behavior prediction task, including Skele-

tonCLR [31], AimCLR [38], HiCLR [39], SkeAttnCLR [33]

and SSRL [34].

Table III presents a comparison of the proposed method on

two protocols of NTU-60 dataset, while Table IV illustrates

the comparison on two protocols of NTU-120 dataset, and

Table V shows the comparison on PKU-MMD. According

to these two tables, it is evident that the proposed method

generally achieves higher prediction accuracy compared to

other self-supervised methods under the listed observation

rates. This fully demonstrates the benefits of the introduction

of medium observation rate sequences and the design of

HSTGCN. At an observation rate of 0.2, our method is only

0.1% higher than SSRL [34], but at the rest of observation

rates, SSRL lags behind the proposed method. This shows

that the proposed method has some advantages under medium

to high observation rates while maintaining high accuracy at

low observation rates. However, it is worth noting that the

performance gap between our method and others gradually

narrows with the increase of observation rate, even worse than

HiCLR [39] and SkeAttnCLR [33] at 0.8 observation rate. This

trend may arise because our method focuses more on capturing

features or patterns at the very beginning of behavior, which

may become less representative at high observation rates. At

the same time, our method also has good results on another

large dataset NTU-120, generally leading at four observation

rates. This illustrates the effectiveness and robustness of the

proposed self-supervised hyperbolic spectro-temporal graph

convolution network when dealing with large-scale datasets.

At the same time, the proposed method also achieves good

results under low observation rates on PKU-MMD, which

further shows the effectiveness of this approach in handling

early behavior sequences. This advantage is mainly due to

the utilization of the medium observation rate sequences and

hyperbolic spectro-temporal convolution.

Furthermore, we compare our proposed method with some

supervised early 3D behavior prediction methods. Since NTU-

120 is a large-scale dataset, we have not yet found the

prediction results of supervised methods. Therefore, we only

list some supervised methods in Table III. The results in-

dicate that our method is not much different from some

supervised methods under the four observation rates. This

further validates the feasibility of employing multi-dynamic

key information sequences and highlights the powerful feature

extraction capability of HSTGCN. Moreover, it also shows that

our method can effectively capture and leverage the potential

information in early 3D behavior sequences to obtain the

accurate prediction results. Our method also achieves excellent

results in action recognition, as shown in Table VI, where it

outperforms most datasets and shows significant improvements

over previous methods. Overall, our approach demonstrates

advanced performance in early action prediction and action

recognition.

Additionally, we visualize the prediction probability dis-

tributions under two protocols of NTU-60 using confusion

matrix, as shown in Figure 5 and Figure 6. These matrices

provide a more intuitive understanding of the performance of

self-supervised early 3D behavior prediction network proposed

in this paper. Notably, the network has better prediction ability
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Fig. 6. Confusion matrix visualization results of NTU-60 dataset under Xview protocol.

(a) HSTGCN on NTU-60 Xsub (b) w/o hyperbolic mapping

(c) w/o sequence construction of
multi-dynamic key information

Fig. 7. Ablation expermental results of main parameters on NTU-60 Xsub
protocol

when faced with behaviors exhibiting obvious discriminative

features, such as ”stand up” and ”cheer up”. For some be-

haviors that are initially similar, this method also has certain

discriminative capabilities, but there are still some limitations,

such as ”reading” and ”writing”. This may be because HST-

GCN does not take into account the interaction information

with interactive items. Overall, the proposed method effec-

tively addresses the challenges associated with self-supervised

learning in early 3D behavior prediction tasks.

V. CONCLUSION

In this paper, we propose a progressive contrastive self-

supervised framework for early 3D behavior prediction. This

framework leverages the contrast between spatio-temporal

sequences’ features under various observation rates to opti-

mize model learning. Additionally, we design the sequence

construction of multi-dynamic key information and hyperbolic

spectro-temporal graph convolution network. On one hand,

Taylor difference operator forms multi-dynamic key infor-

mation sequences by calculating motion sequences, which

have different physical meanings, enabling the capture of

subtle but important changes in motion sequence. On the

other hand, hyperbolic graph Laplacian operator employs the

geometric properties of hyperbolic manifold and the long-

distance feature aggregation of spectral graph convolution

to handle complex relationships within graph structure. The

proposed self-supervised prediction framework is evaluated on

three 3D behavior datasets, and the experimental results fully

demonstrate the effectiveness of each part of the proposed

method.
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