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Abstract: Depression is one of the most common mental health disorders in the world,
affecting millions of people. Early detection of depression is crucial for effective medical
intervention. Multimodal networks can greatly assist in the detection of depression, es-
pecially in situations where in patients are not always aware of or able to express their
symptoms. By analyzing text and audio data, such networks are able to automatically
identify patterns in speech and behavior that indicate a depressive state. In this study,
we propose two multimodal information fusion networks: early and late fusion. These
networks were developed using convolutional neural network (CNN) layers to learn local
patterns, a bidirectional LSTM (Bi-LSTM) to process sequences, and a self-attention mecha-
nism to improve focus on key parts of the data. The DAIC-WOZ and EDAIC-WOZ datasets
were used for the experiments. The experiments compared the precision, recall, f1-score,
and accuracy metrics for the cases of using early and late multimodal data fusion and
found that the early information fusion multimodal network achieved higher classification
accuracy results. On the test dataset, this network achieved an fl-score of 0.79 and an
overall classification accuracy of 0.86, indicating its effectiveness in detecting depression.

Keywords: depression detection; multimodal networks; early fusion; late fusion; mental
health; deep learning

1. Introduction

Depression is one of the most common mental health disorders worldwide. According
to the World Health Organization (WHO) [1], more than 280 million people, or approxi-
mately 5% of the adult population, suffer from this condition. The impact of depression
goes beyond emotional distress, significantly affecting a person’s ability to perform daily
tasks, maintain personal relationships, and stay physically and mentally healthy. Symptoms
of depression can include feelings of persistent sadness, loss of interest in usual activities,
fatigue, sleep problems, changes in appetite, and concentration [1]. Identifying depression
early is critical, as this mental disorder tends to worsen without proper treatment. Undiag-
nosed or untreated depression can lead to serious physical and mental complications, such
as chronic illness, reduced quality of life, and even suicidal thoughts or actions. People
suffering from depression often lose the ability to work productively, maintain healthy
relationships, and even perform basic daily tasks.

Artificial intelligence can be of great help in detecting depression, especially in sit-
uations wherein patients are not always aware of or able to express their symptoms.
Multimodal approaches combine different types of data, such as analyzing how a person
speaks (audio) and what they say (text), to identify patterns related to depression. The
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multimodal approach (combining audio and text) was chosen over unimodal analysis
because it provides more complete data about the participant’s emotional and mental state.
While text-only analysis focuses on the content of what is said, it does not take into account
important paralinguistic cues present in the audio, such as tone, pitch, and rhythm, which
can be strong indicators of emotional distress. Similarly, audio-only analysis does not take
into account linguistic patterns in spoken language, such as specific word usage or sentence
structure, which can reveal cognitive signs of depression.

By integrating audio and textual modalities, the model can detect subtle clues that
would otherwise be missed if it focused on only one type of data. This approach provides
a more holistic view of the participant’s state, significantly increasing the accuracy of
depression detection, especially in cases wherein one modality alone may not be sufficient
to detect depression.

The contribution of this work is highlighted as follows:

e This work outlines an effective data preprocessing pipeline, addressing the issue of
class imbalance.

e  The study proposes and develops two multimodal networks for depression detection—
early fusion and late fusion models. These models combine both audio and text
modalities to capture a more holistic set of features relevant to identifying depres-
sive symptoms.

e  The performance of the developed models is rigorously evaluated using multiple
performance measures, including accuracy, recall, precision, and f1-score.

e A detailed interpretation of its results on both validation and test datasets, illustrating
its effectiveness in detecting depression across various scenarios.

2. Related Work

Depression detection using artificial intelligence has been an active area of research
in recent years. Various approaches have been applied, utilizing different types of data
such as text, audio, and even visual information. Early works in this domain focused
predominantly on single-modality data (either text or audio) for classification tasks.

This article could be improved by integrating a broader and more representative range
of literature sources that cover the development and evaluation of depression detection
models using artificial intelligence. The current review primarily references a limited
selection of studies and does not fully capture the diversity of approaches in the field,
particularly when it comes to multimodal detection, dataset balancing, and model perfor-
mance evaluation. To demonstrate a more comprehensive understanding of the field, this
article could incorporate references to key papers that explore recent advancements in both
single-modality and multimodal approaches.

While studies such as [2-5] provide valuable insights into the use of speech-related
features like log spectrograms, MFCC, COVAREP, and HOSA for detecting depression,
this article overlooks some of the more recent methods in this area, such as newer feature
extraction techniques or improved neural network architectures. Including references to
works that explore deep learning models beyond CNNs and RNNs [6], such as attention-
based mechanisms or self-supervised learning for speech-based depression detection,
would broaden the discussion.

This article acknowledges the use of traditional NLP methods such as Bag of Words
(BoW) and TF-IDF, as well as more recent deep learning models like LSTM for text-based
depression detection. However, there is a growing body of work on pre-trained transformer
models (e.g., BERT, RoBERTa, S-RoBERTa), which have shown significant improvements in
understanding linguistic cues from textual data. Citing studies that explore these advanced
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transformer models for better accuracy in depression detection through text analysis would
enhance this article’s coverage of text-based approaches.

While studies like [7-9] are cited for their multimodal fusion approaches, this article
could benefit from incorporating additional works that investigate the use of multimodal
systems combining not only speech and text but also visual cues, such as facial expressions
and body language, for more holistic depression detection. Including studies that explore
early fusion or hybrid fusion models could expand the discussion on how different data
modalities can be leveraged together.

This article rightly points out the issue of dataset imbalance in studies like [7,8], but
it could strengthen this point by discussing techniques for addressing class imbalance,
such as oversampling, undersampling, and data augmentation, which are commonly
used in depression detection research. Additionally, incorporating literature on fairness
and model generalizability would highlight the importance of ensuring that models are
not biased toward over-represented classes and can effectively perform across diverse
patient populations.

Some of the studies reviewed (e.g., [9]) achieve low accuracy, indicating that such
models may not be reliable enough for practical use in clinical settings or everyday use.

Finally, this article could deepen its analysis of model performance, particularly
with reference to accuracy and reliability in clinical or real-world settings. While studies
like [9] report lower performance metrics, a more nuanced discussion of evaluation metrics
beyond accuracy—such as precision, recall, f1-score, and area under the ROC curve—would
provide a clearer picture of how these models perform in various contexts. By expanding
the citation range and including these relevant works, this article would demonstrate a more
thorough understanding of the state of the field and provide a more balanced overview of
the challenges and opportunities in depression detection using artificial intelligence.

Thus, the main challenge in the field of depression diagnosis is to develop reliable,
accurate, and fair models that can effectively detect signs of depression. Existing method-
ologies have several serious problems, including unbalanced datasets, dependence on
a single data modality, and generally low prediction accuracy. Addressing these issues
will significantly increase the reliability of depression detection tools, making them more
effective for clinical and personal health monitoring.

3. Proposed Approach
3.1. Dataset

This study uses the DAIC-WOZ (Depression and Anxiety Interview Corpus—Wizard
of Oz) dataset [10], which is one of the key datasets used for research in the field of detecting
depression and anxiety disorders based on multimodal data.

DAIC-WOZ contains recordings of interviews between participants and a virtual
agent named Ellie, who was programmed as an interlocutor to collect information about a
person’s mental state. The virtual agent asks participants a variety of questions about their
mental health, emotional state, life events, etc.

The DAIC-WOZ dataset contains multimodal interview recordings, including
the following:

e  Textual data. Interview transcripts that provide a detailed record of verbal commu-
nication between the patient and the virtual interviewer. The transcripts contain the
exact start and end time of each cue, which makes it possible to synchronize the audio
with the text.

e Audio recordings. The set contains audio files that record the voice of patients dur-
ing interviews.
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The DAIC-WOZ contains several important features that make it unique for a study
of depression detection:

e The dataset includes 189 interviews, which is a small dataset size for model training.

e  The length of the interview audio recordings can vary from a few minutes to half an
hour, depending on the pace of the conversation and the number of questions asked
to the patient.

e Each text file has time annotations that allow you to synchronize text and audio.
These annotations are important for analysis because they allow us to more accurately
identify specific moments in the interview where the patient shows signs of depression.
They also simplify the procedure of removing interviewer questions from the text and
audio, as these annotations contain the beginning and end of each line.

One of the key problems with the DAIC-WOZ dataset is the imbalance of classes
between patients with and without depression.

The extended dataset EDAIC-WOZ (Extended Depression and Anxiety Interview
Corpus—Wizard of Oz) [10] is an additional resource to the basic DAIC-WOZ dataset. It
contains more records of interviews with patients diagnosed with depression, which were
not included in the original dataset (Figure 1).

Distribution of depression classes (DAIC-WOZ & EDAIC-WOZ)

EDAIC-WOZ
DAIC-WOZ

200 1

Depression

Figure 1. Comparative plot of depression class distribution in DAIC-WOZ and EDAIC-WOZ datasets.

The purpose of this extended dataset is to increase the amount of data available for
depression analysis and provide researchers with more opportunities to train models on
multimodal data.

At the same time, the extended EDAIC-WQOZ dataset has some drawbacks related to
transcript quality. Although the transcripts in this dataset contain the exact start and end
times of each replica, there are several serious problems that make them difficult to process:

1.  Lack of speaker separation. The EDAIC-WOZ transcripts do not clearly indicate
whether a particular line belongs to the patient or the interviewer. This creates
confusion, as sometimes the interviewer’s question and the patient’s answer may be
combined in one text segment.

2. Inaccuracy of transcripts. Transcripts in the extended dataset may be inaccurate. This
means that what is written in the transcript does not always accurately reflect what
was actually said by the interviewee. This mismatch between the actual audio data
and the text complicates the data preparation process, as it is necessary to manually
double-check the transcripts against the audio. This is especially important for the
accurate extraction of textual features, which can significantly affect the overall quality
of the model.

For this study, only those recordings that are labeled as depression and do not belong
to the regular DAIC-WOZ dataset were taken from the extended EDAIC-WOZ dataset
(Figure 2).
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Distribution of depression classes (DAIC-WOZ & EDAIC-WOZ)

DAIC-WOZ
EDAIC-WOZ
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Figure 2. Graph of the final distribution of the depression classes.

The final data distribution consists of 120 non-depression cases from the DAIC-WOZ
dataset, 40 depression cases from the DAIC-WOZ dataset, and 20 depression cases from
the EDAIC-WOZ dataset. This approach effectively increases the number of examples in
the depression class without duplicating existing data from the original DAIC-WOZ set. By
including additional depression cases from the extended EDAIC-WOZ dataset, this method
addresses the problem of class imbalance, where the depression class is underrepresented
compared to non-depression cases. The adjusted distribution ensures a more balanced
representation of both classes for analysis.

This will effectively increase the number of examples of the class “depression” without
duplicating existing data from the original set. This approach can help to address the prob-
lem of imbalanced classes, wherein data with depression are significantly less represented
compared to data without depression.

3.2. Data Processing

Audio. When working with audio data in depression detection tasks, it is important
to properly prepare the data to ensure the accuracy of the model. The audio preprocessing
process includes several important steps, each of which is aimed at improving data quality
and increasing the efficiency of further feature analysis (Figure 3).

Preprocessing
Audio data

Division into training and
test samples

Deleting virtual agent
segments

Removal of extraneous

noises

Training sample expansion
(tone change)

Calculation of audio
features (mel spectrogram,
mfcc, spectral contrast)

Data normalization

Division into 1-minute
segments

Division of the training
sample into training and
validation

Figure 3. Audio data preprocessing algorithm.

According to the diagram above, the stages of audio data preprocessing include
the following:
1. Removal of interviewer segments. First of all, all segments where the interviewer
speaks are removed. This is important for analyzing only the participant’s speech, as
we are interested in identifying signs of depression in the patients’ responses.

N

Dividing into training and test samples. In the next step, the data are divided into
training and test samples for training and evaluation of the model in the ratio of 80:20.
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The training set is used to train the model, and the test set is used to check its accuracy
on new data.

Training sample augmentation (tone change). To increase the amount of data in the
training set and balance the classes, audio data are augmented by changing the tone
of speech, which allows you to create new variations of data without losing meaning.
In this case, the tone is changed by shifting the signal frequencies by 1.5 semitones.
This means that the pitch of the participant’s voice was lowered by 1.5 semitones.
It is important to note that changing the pitch within a small range, in this case by
1.5 semitones, allows us to preserve the naturalness of the voice while providing new
audio variations.

Removal of extraneous noise. At this stage, background noise is removed from the
audio. This includes clearing the audio of unwanted sounds such as noise, hum, or
extraneous conversations.

Divide into segments of 1 min duration. Audio recordings are divided into 1 min seg-
ments. Segments that are too short (e.g., 5-10 s) may not contain enough information
about the emotional state or tone of the respondent. When broken down into one-
minute segments, the context of the conversation is preserved, which is important for
understanding changes in the participant’s tone and mood during the conversation.

Calculating audio features (Mel spectrograms, MFCC, spectral contrast). For each
segment, audio features such as Mel spectrograms, MFCC coefficients (Mel frequency
cepstral coefficients), and spectral contrast are calculated.

O A Mel spectrogram is a spectrum of audio frequencies calculated on the Mel
scale [11]. The Mel spectrogram shows the distribution of energy across fre-
quencies over time, reflecting changes in voice and intonation in speech. It is
well suited for analyzing temporal changes in audio.

@) MFCC are coefficients derived from the Mel spectrogram, which is a numerical
representation of the sound spectrum on the Mel scale [12]. They allow for
even more accurate characterization of audio signals. MFCCs are well suited
for analyzing speech data because they capture the features of the speaker’s
articulation. They are able to distinguish tone, rhythm, intonation, and other
speech aspects.

O Spectral contrast is a method that measures the difference between the max-
imum and minimum amplitudes in different frequency bands [13]. In the
case of speech analysis for depression, it is useful for recognizing changes in
the voice, such as monotony or lack of expression, which are typical signs
of depression.

These features make it possible to identify voice and speech characteristics that may

indicate a depressive state. These features will be used as input for training the model.

7.

Normalize the data. This step transforms the data so that they have a mean value of 0
and a standard deviation of 1. As a result, all features are brought to the same scale,
which is critical for some machine learning models.

Dividing the training sample into training and validation samples. The training
sample is further divided into training and validation samples in the ratio of 80:20.
This makes it possible to evaluate the model performance on the validation data
during the training process in order to adjust the model parameters.

Thus, this sequence of steps helps to prepare the audio data properly, which ensures

high-quality training and subsequent classification of depression signs.

Text. Text data preprocessing (Figure 4) is an important step as it prepares textual cues

for further feature extraction and removes redundant or uninformative information. This
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helps the model to focus on the relevant data, which improves the quality of training and

the accuracy of the results.

Text data

Preprocessing

\ 4

S
Deleting virtual agent

S —
Correction of errors in the

replicas

—
Expansion of the training

participant's answers

v

Division into training and test

sample (replacement with
synonyms)

A

samples

Division into segments by »| Expansion of contractions
length
S v
Text feature calculation | R:;?nogsspl:&i;u::rin\%?;?

(TF-IDF)

\with less than 2 characters

Division of the training
sample into training and
validation

Figure 4. Text data preprocessing algorithm.

According to the diagram below, the stages of text data preprocessing include

the following:

1.

Removal of interviewer’s remarks. The first step is to remove all questions asked
by the interviewer. For data from the extended dataset (EDAIC-WOZ), where the
annotations are inaccurate, the interviewer’s remarks are not separated and com-
pletely removed. In this case, the removal of interviewer questions is conducted
manually to ensure consistency between text and audio and to focus the analysis on
the participants’ responses.

Correction of errors in the participant’s answers. Transcripts from the extended
dataset sometimes contain errors or inconsistencies between what was said and what
was recorded. At this stage, a manual check is performed to correct these errors and
bring the text in line with the actual answers. This provides a more accurate analysis
of the text data.

Dividing into training and test samples. To ensure the reliability of the results, the
data are divided into training and test samples in the ratio of 80:20. This helps to
check how the model will work on new data and prevents overfitting.

Training sample augmentation. Text augmentation is used to increase the amount
of data and improve model accuracy. In this case, replacing words with synonyms
makes it possible to generate new text variants while maintaining the meaning. Each
text fragment is analyzed to identify words that can be replaced with synonyms. For
this purpose, the WordNet lexical database is used, which contains synonyms for
various words. In addition, not all words can be replaced. The text is processed in
parts of 100 words, and the probability of replacing words with their synonyms is 15%.
The 15% probability was chosen as a compromise that allows for adding variability
to the data without changing the text too radically. A higher percentage can change
the semantics of the text, which is undesirable, especially when analyzing mental
states, where every detail is important. In addition, stop words (e.g., “1”, “you”,
“depression”) are specifically excluded from the list of replacement words. This is
done to avoid changing keywords that may have a significant impact on the model or
are critical to the analysis of depression. Augmentation is applied to all data with the
depression class in the training set.

Split into segments by length. Based on the number of segments when splitting audio
data, the text is divided into the same number of segments by word count.
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6.  Expanding contractions. During the interview, contractions may be used that need to
be expanded to better understand the model.

7. Removal of punctuation marks, symbols, numbers, and words with less than two
characters. This step involves removing non-informative characters such as punctua-
tion, numbers, and words that are too short and do not have a meaningful impact on
the analysis.

8.  Calculation of textual features (TF-IDF). At this stage, textual features are calculated
by increasing the weight of words related to depression and applying the TE-IDF
(term frequency-inverse document frequency) method, which measures the frequency
of each word in the text and its importance relative to other texts.

To increase the weight of words related to depression, a set of keywords (symptoms)
that are directly related to the depressive state and pre-trained GloVe vectors (Global
Vectors for Word Representation) are used, which represent words as numerical vectors in
a multidimensional space. For each keyword, GloVe vectors are used to find semantically
similar words. This is achieved by calculating the cosine similarity between the word
vectors, which allows us to determine how similar two words are in their contexts in the
texts. After that, for each keyword, the top 10 most similar words are determined and
added to the main list.

When the list of words related to depression is supplemented with similar words,
these words receive increased weight during text processing. This is achieved by repeating
the word several times so that the model gives them more weight compared to other words.

After the weights of important words are increased, TF-IDF is used to vectorize
the text.

9.  Dividing the training sample into training and validation samples. After all the stages
of text data preprocessing are completed, the training data are divided into training
and validation samples in the ratio of 80:20. The training set is used to train the
model, while the validation set is used to evaluate its performance and adjust the
hyperparameters.

After the text data preprocessing is completed, the data are ready for further use in the
model training process. It is important to ensure that the quality of the cleaned data is high,
as even minor errors at this stage can lead to distortion of the results during modelling and
reduce the accuracy of predictions.

3.3. A Multimodal Network for Depression Detection

Multimodal networks are neural architectures that combine different types of data to
obtain deeper analysis and make predictions with increased accuracy [14,15]. In the context
of detecting participants” depression, a multimodal network is a tool that can combine data
from different formats, such as text interviews and audio recordings. This combination
allows for capturing not only the content of what was said (through textual data), but
also how it was said (through audio), which is especially important in the diagnosis of
depression. In particular, textual data can contain important depressive keywords or
phrases, while audio can provide information about the patient’s emotional state through
tone, speech rate, pauses, etc. An important aspect of multimodal networks is that different
data sources, such as audio and textual data, can interact with each other, providing the
model with more context for decision making.

There are two main approaches to data fusion in multimodal neural networks: early
and late fusion. These methods determine at what stage of processing features from
different modalities, such as audio and text, are combined.
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3.3.1. Early Fusion Model

The architecture of the early fusion model shown in Figure 5 combines audio and
textual features at an early stage, allowing for the efficient fusion of different types of data
for more accurate depression classification.

Dense Out features: 128
Layer Activation: ReLU

v

Kernel: [1, 3]
Stride: 1
Filters: 128
Activation: ReLU )

BatchNormalization

{ Dropout Dropout Rate: 0.3

Bi-LSTM layer Units: 64 @ Concatenation
operation

Num heads: 4
Embed dim: 64

Gloval Avg Pooling

[ Dense Out features: 64

‘ Conv layer

-

Audio
Features

Text features

{Self-anention

Layer Activation: ReLU

v

Dropout Dropout Rate: 0.5

Dense Out features: 1
Layer Activation: Sigmoid
L

Y

Prediction

Figure 5. Early fusion multimodal network architecture.

Input data:

e Audio: the model is fed with extracted features from the audio, such as Mel spec-
trograms, MFCC (Mel frequency cepstral coefficients), and spectral contrast. These
features reflect the acoustic characteristics of the signal.

o  Text: Text data are represented as feature vectors extracted using TF-IDF.

The model integrates audio and text features through a concatenation layer, allowing
for the combined processing of both data types. A dense layer with 128 neurons and ReLU
activation reduces the complexity of the input, capturing nonlinear feature relationships.
Next, a convolutional layer extracts important patterns, especially from audio data, with
batch normalization helping stabilize the learning process. Dropout layers (30% and
50%) prevent overfitting, while the Bi-LSTM layer with 64 neurons captures sequential
dependencies in both directions. A four-headed self-attention mechanism helps the model
focus on key aspects of the input. Global average pooling reduces data dimensionality;,
followed by a final dense layer with 64 neurons, which prepares the data for the binary
classification output via the Sigmoid function, determining the presence of depression.

This architecture combines the power of convolutional networks to learn local patterns,
Bi-LSTM for contextual sequence processing, and a self-attention mechanism to improve
focus on key parts of the data.

3.3.2. Late Fusion Model

The architecture of the late fusion model consists of two separate branches for pro-
cessing audio and text features, which are combined at a later stage (Figure 6). This makes
it possible to first extract specific features from each modality (audio and text), which
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improves the quality of processing for each data type, and then combine these features for
joint analysis.

|
! l
Kemel: [1, 3]

Conv layer Filters: 128 N
Activation: ReLU Bi-LSTM layer Units: 64

BatchNormalization l

Self-attention

Num heads: 4 J

LDropoul Dropout Rate: 0.3 | Embed dim: 64

Kernel [1, 3]
Conv layer Filters: 64
Activation: ReLU

BatchNormalization

‘ Dropout Dropout Rate: 0.3 ‘

Gloval Avg Pooling

Dense Out features: 64
Layer Activation: ReLU

Y
Bi-LSTM layer Units: 128 i .
Dense Outfeatures: 64
v Layer Activation: ReLU
Dense Out features: 64
Layer Activation: ReLU
‘ AR
kl/ Audio features
[ Dense Out features: 128
Layer Activation: ReLU Text features.
Dropout Dropout Rate: 0.5 @ Concatenation
> = operation
( Dense Out features: 1
Layer Activation: Sigmoid

Prediction

Figure 6. Late fusion multimodal network architecture.

The audio data are processed using a series of convolutional layers (CNNs) to extract
local features, followed by Bi-LSTM to capture long-term dependencies in the sequence.
The initial convolutional layers apply filters to detect patterns in the audio, with batch
normalization and dropout layers to maintain stability and prevent overfitting. The Bi-
LSTM layer, with 128 units, processes the sequential nature of audio data, extracting
temporal relationships from different segments. A final dense layer further reduces the
dimensionality of extracted features, preparing them for combination with text features.

For text data, a Bi-LSTM layer with 64 units is used to capture context in both forward
and backward directions. The self-attention mechanism then focuses on the most relevant
parts of the text, making it easier for the model to identify crucial indicators of depression.
Global average pooling reduces the number of features, retaining the essential information
for classification.

After separate processing, the audio and text features are combined using a concate-
nation layer in a late fusion stage. The resulting feature set is then passed through dense
layers with ReLU activation to refine the combined features. A final output layer with a
Sigmoid activation function is used to classify the combined representation as indicating
the presence or absence of depression.

The chosen architecture makes it possible to first maximize the use of specific audio
and text features and then combine them efficiently, which can contribute to better overall
model performance.

4. Results

To implement multimodal data fusion models, the Google Colab environment was
used, which is a powerful tool for conducting experiments and training neural networks.
In this work, a T4 GPU with 15 GB of GPU RAM was used to train the models. Python
3.8 was chosen as the programming language for the project. The following libraries were
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used in the process: NumPy, Pandas, nltk (Natural Language Toolkit), nlpaug, noisereduce,
pydub, librosa, matplotlib, seaborn, scikit-learn, tensorflow, keras.

4.1. Performance of a Multimodal Early Fusion Network

The early fusion model was trained using the binary_crossentropy loss function for
binary classification (depression/non-depression) and the accuracy metric for evaluation
of model. The model was trained over 25 epochs. In addition, to ensure a stable learning
process, the Adam optimizer was used with a predefined learning rate set at 0.00001.

The plots (Figure 7) show the accuracy and loss of the model on the training and
validation data over the training epochs.

e  Graph of accuracy: The first graph shows how the accuracy of the model increases
over the epochs. The training set has a steady increase in accuracy to over 95%. The
validation sample also shows a high level of accuracy, exceeding 90%, which indicates
a good generalization of the model.

e  Graph of losses: The second graph shows the reduction in model loss on the training
and validation data. There is a significant decrease in loss during the first epochs,
which is an indicator that the model is learning well. The loss of the validation data
also decreases, indicating that there is no overfitting.

model accuracy model loss

—— train —— ftrain
095 valid valid
07
0.90

accuracy

0 5 10 15 20 25 0 5 10 15 20 25
epoch epoch

Figure 7. Training progress plots for the multimodal early fusion model.
Considering the confusion matrix for the validation data (Figure 8), we can see that the
model correctly predicted 138 samples from class 0 (without depression) and made 10 false

predictions. For class 1 (with depression), the model correctly classified 135 samples, and
nine samples were classified incorrectly.

Confusion Matrix

120
o 10
100
- 80
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- Ll - 40
-20
0 1
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Figure 8. Confusion matrix for validation data (early fusion model).

Table 1 shows the obtained values of the metrics for evaluating the early fusion model
performance on the validation data. The model has an accuracy of 0.94 for class 0 and 0.93
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for class 1, which means that the model makes few errors among the predictions. For both
classes, the model demonstrates high recall values (0.93 and 0.94), which shows that most
samples in each class were correctly classified. The high fl-score values for both classes
(0.94 and 0.93) indicate a balanced model that performs well in both precision and recall.
The area under the curve (AUC) score of 0.90 highlights moderate discriminative power
and strong correlation based on the Matthews correlation coefficient (MCC) of 0.87.

Table 1. Report on early fusion model performance metrics on validation data.

) Class
Metrics Non-Depression Depression

Precision 0.94 0.93

Recall 0.93 0.94
F1-score 0.94 0.93
Accuracy 0.93

AUC 0.90

MCC 0.87

In general, the model demonstrates high classification accuracy for both classes, which
indicates its effectiveness in solving this task.

4.2. Performance of a Multimodal Late Fusion Network

The late fusion model was trained for 50 epochs. The Adam optimizer was used to
train the model with the learning rate set to 0.01, which was configured to train faster than
the previous early fusion model. In addition, the binary_crossentropy loss function, which
is widely used for binary classification, was applied. The accuracy metric was used to
evaluate the model’s performance.

Figure 9 shows the improvement in accuracy and reduction in error over 50 epochs
of training.

e  Accuracy: The accuracy graph shows an increase for both training and validation
data, although there are fluctuations, especially in the validation sample, which may
indicate some problems in generalizing the model. The final accuracy of the model for
the validation data is about 85%.

e Loss: The loss plot shows a gradual decrease for both training and validation data,
which is a positive signal. However, again, there are some fluctuations, which
may indicate the complexity of the data or the insufficient number of epochs for
full stabilization.

model accuracy model loss

— train — train

valid
J\/\ / 07
o \/ﬁf\/\\/\/X//\;/ a6

Y forl |

,\/—\« Zos
0.775 /
" A
0.750

03 | \—“/\N/\/ e VW Ao

0.875
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o
@
3
S
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Figure 9. Training progress plots for the multimodal late fusion model.
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Thus, both graphs show that the model has gradually learned to distinguish between
depression, and although there are some fluctuations, the overall trend indicates good
progress and satisfactory accuracy.

At the same time, the training results of the late fusion model are somewhat worse
compared to the early fusion model. Although the validation accuracy of the late fusion
model reaches about 85%, it is inferior to the accuracy of the early fusion model, which has
shown much more stable results.

The confusion matrix (Figure 10) shows the distribution of model results on the
validation sample. The model correctly classified 130 samples into class 0 (no depression)
and 118 samples into class 1 (depression). However, there were errors: 18 samples in class
0 were misclassified as 1, and 26 samples in class 1 were misclassified as 0.

Confusion Matrix

Actual

- 60

- 40

-20

Predicted

Figure 10. Confusion matrix for validation data (late fusion model).

These results indicate some difficulties in correctly classifying depression, but overall
the model showed good accuracy in detecting both classes.

Analyzing the metrics report (Table 2), we can note the following:

For class 0 (without depression), the precision value is 0.83, which indicates a slightly
higher number of false positive predictions. In class 1 (with depression), the precision
value is higher—0.87, i.e., the model predicts depression somewhat better without too
many false positive predictions. The recall value for class 0 is 0.88, which means that
the model recognizes most patients without depression quite well. For class 1, the recall
value is slightly lower at 0.82, indicating that there are some cases of depression that the
model could not detect. For class 0, the f1-score value is 0.86, and for class 1, it is 0.84.
This means that the model performs slightly better in detecting the absence of depression
than its presence. The overall accuracy of the model is 0.85, which is a fairly good result
given the complexity of the depression classification task. The area under the curve (AUC)
score of 0.78 highlights moderate discriminative power and strong correlation based on the
Matthews correlation coefficient (MCC) of 0.70.

Table 2. Report on late fusion model performance metrics on validation data.

Class
Metri
ermes Non-Depression Depression
Precision 0.83 0.87
Recall 0.88 0.82
F1-score 0.86 0.84
Accuracy 0.85
AUC 0.78

MCC 0.70
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In general, the model performs well, although there is a slight difference in accuracy
between the two classes.

Thus, comparing the training results of the two developed models—early and late
fusion—we can see that the early fusion model shows better results in terms of metrics. It
demonstrates higher precision, recall, and f1-Score, which indicates that it is more effective
in detecting depression.

4.3. Interpretation of the Results of the Best Model

In order to interpret the results of the best model, the multimodal early fusion network,
it is necessary to conduct testing on a test dataset. Since the data of each participant were
divided into segments, the results for each participant must be summarized to obtain a
single answer regarding their status (presence or absence of depression).

The process of summarizing the results for each participant is performed using the
method of aggregating segment probabilities. In this case, the average value of segment
probabilities for each participant is used. This allows us to determine a single forecast
for the participant based on individual segments. If the average probability exceeds the
threshold of 0.5, the conclusion is made that depression is present. Below is an example of
the functions used for this purpose:

1.  Aggregate results function: for each participant, the average probability value is
calculated based on the forecasts for each segment.

2. Model evaluation function: after prediction on the segments of the test sample, the
results are aggregated to obtain a prediction at the participant level, after which the
model is evaluated by metrics such as accuracy, error matrix, and classification report.

This approach allows us to obtain more generalized results and correctly evaluate the
model’s performance at the participant level rather than at the individual segment level.

The confusion matrix (Figure 11) of the model testing on unknown data shows that
the model correctly classified 26 participants without depression and 11 participants with
depression. At the same time, the model made four errors when participants without
depression were classified as having depression and two errors when participants with
depression were classified as healthy.

Confusion Matrix

Actual

Predicted

Figure 11. Confusion matrix for test data.

Based on the classification report (Table 3) from testing on unknown data, it can be
seen that the model achieved an overall accuracy of 85%. Furthermore, the area under the
curve (AUC) score of 0.73 highlights moderate discriminative power, suggesting that the
model can distinguish between the two classes better than random guessing but leaves
room for improvement. The Matthews correlation coefficient (MCC) of 0.68 reflects a
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substantial level of correlation between the predicted and actual classifications, providing a
robust evaluation of model performance even in cases of imbalanced datasets.

Table 3. Report on model performance metrics on test data.

) Class
Metrics Non-Depression Depression
Precision 0.83 0.87
Recall 0.88 0.82
F1-score 0.86 0.84
Accuracy 0.85
AUC 0.73
MCC 0.68

The results by class demonstrate the following metrics:
For class 0 (no depression):

e  Precision: 0.93, which means that the model does a good job of correctly classifying
examples without depression.

e  Recall: 0.87, which means that the model detects most examples of this class.

e  Fl-score: 0.90, which indicates a good balance between precision and recall.

For class 1 (with depression):

e  Precision: 0.73, which indicates some errors in predicting this class (possibly due to
the smaller amount of data).

e  Recall: 0.85, the model is good at detecting examples of depression.

e  Fl-score: 0.79, which still indicates relatively high efficiency.

Thus, the model demonstrates stable results with high accuracy for both classes,
although the accuracy for class 1 is slightly lower, which may indicate difficulties with
assessing the classification of depression due to the smaller amount of data for this class.
Nevertheless, the overall performance of the model on the test data is quite high, indicating
its potential in detecting depression based on multimodal information (audio and text).

5. Discussion

The experimental results of this research have demonstrated the potential of multi-
modal networks for depression detection. Specifically, the early fusion model has outper-
formed the late fusion model in terms of multiple evaluation metrics, including accuracy,
precision, recall, and fl-score. The early fusion model achieved an fl-score of 0.93 on the
validation set and 0.79 on the test set, compared to the late fusion model’s f1-score of 0.84
on validation data.

One of the key reasons for the superior performance of the early fusion model is the
immediate integration of audio and text data at the feature extraction stage. By combining
these modalities early, the model can learn joint feature representations, allowing it to
capture correlations between the audio and text modalities that might be missed when
processing them independently. This integration leads to a more holistic understanding
of the data, where both verbal (text) and non-verbal (audio) cues contribute to depression
detection. In addition, an important advantage of the early fusion model is the smaller
number of parameters, which reduces computational costs and training time, making it
more optimal for practical implementation.

However, the early fusion approach also has certain limitations. The early fusion
model demands more sophisticated handling of data preprocessing and input alignment
since both modalities must be preprocessed and fed into the network simultaneously.
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On the other hand, the late fusion model separates audio and text processing, allowing
for more specialized feature extraction for each modality. This modular approach offers
flexibility in learning modality-specific patterns but at the cost of not leveraging cross-
modality correlations as effectively as early fusion. While late fusion ensures that audio
and text features are treated independently, it loses valuable information that comes from
integrating them earlier in the process.

The practical implementation of depression detection models, especially those that use
multimodal approaches such as early and late fusion, must take into account a number of
ethical and privacy issues. In practice, the implementation of these models requires robust
safeguards to ensure patient confidentiality and avoid stigmatization.

When working with medical data, it is also important to pay attention to the imple-
mentation of secure data collection and storage protocols, anonymization of patient data,
and compliance with regulations such as GDPR or HIPAA. Additionally, it is worth noting
that the model results should serve as an advisory function and are not a full-fledged
diagnosis, i.e., they need additional validation by specialists (doctors) to prevent fault or
misinterpretation that may increase stigma.

Further improvements to the model can be made in several areas. First, additional
methods of data augmentation can be considered. This may help to reduce the problem
of limited data size. Secondly, to improve the model’s performance, more sophisticated
self-attention mechanisms, such as transformer or attention-based models, which can better
account for the interaction between text and audio data, should be integrated. We could also
consider using more advanced audio processing techniques, such as calculating additional
features that would better convey the emotional state of the speaker.

6. Conclusions

This research has demonstrated the effectiveness of multimodal networks for depres-
sion detection, specifically through the development and comparison of early and late
fusion models. The early fusion model, which integrates audio and text data at the feature
extraction stage, outperformed the late fusion model with higher accuracy and fl-score,
showcasing the advantage of early cross-modal interaction. Both models were designed
using advanced neural network techniques, including CNNs, Bi-LSTM layers, and attention
mechanisms, to capture relevant patterns from the audio and text modalities.

The key findings of this research highlight the importance of combining multiple
modalities to improve the robustness and accuracy of depression detection. The early
fusion model achieved an fl-score of 0.93 on validation data, while the late fusion model
scored 0.84. On the test set, the best-performing model (early fusion) achieved an f1-score
of 0.79 and an accuracy of 0.86.

The implications of this study extend beyond the immediate technical contributions:

1. Clinical Applications: The developed model provides a foundation for automated
depression screening systems. By identifying depressive signs from speech and text
data, it has the potential to assist clinicians in diagnosing depressive disorders early
and more efficiently. This can be particularly valuable in resource-constrained settings
where mental health professionals are limited.

2. Early Intervention: The system could empower individuals to monitor their psycho-
emotional states, encouraging them to seek help earlier when depressive symptoms
emerge. This aligns with public health goals of early intervention to mitigate the
progression of mental health disorders.

3. Integration into Broader Systems: Beyond clinical use, the model can be integrated
into wellness applications, virtual assistants, or workplace mental health monitoring
systems, fostering a more proactive approach to mental health care.
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Future work could focus on expanding the dataset size to include more diverse
populations and exploring different fusion architectures. The developed model can serve as
a basis for further development of automated depression screening systems that can detect
signs of depressive disorders in patients based on their speech and voice, helping doctors
and people themselves diagnose the disease at early stages. In addition, the system can be
used as part of integrated solutions for monitoring the psycho-emotional state of people.
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