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Abstract: Sustainable agriculture is pivotal to global food security and economic stability,
with plant disease detection being a key challenge to ensuring healthy crop production.
The early and accurate identification of plant diseases can significantly enhance agricultural
practices, minimize crop losses, and reduce the environmental impacts. This paper presents
an innovative approach to sustainable development by leveraging machine learning mod-
els to detect plant diseases, focusing on tomato crops—a vital and globally significant
agricultural product. Advanced object detection models including YOLOv8 (minor and
nano variants), Roboflow 3.0 (Fast), EfficientDetV2 (with EfficientNetB0 backbone), and
Faster R-CNN (with ResNet50 backbone) were evaluated for their precision, efficiency,
and suitability for mobile and field applications. YOLOv8 nano emerged as the optimal
choice, offering a mean average precision (MAP) of 98.6% with minimal computational
requirements, facilitating its integration into mobile applications for real-time support to
farmers. This research underscores the potential of machine learning in advancing sustain-
able agriculture and highlights future opportunities to integrate these models with drone
technology, Internet of Things (IoT)-based irrigation, and disease management systems.
Expanding datasets and exploring alternative models could enhance this technology’s
efficacy and adaptability to diverse agricultural contexts.

Keywords: object detection; computer vision; YOLO; YOLOv8; EfficientDet; Faster R-CNN;
CNN; agriculture; diseases

1. Introduction
Tomatoes are among the most widely grown and economically significant crops world-

wide, and ensuring their health is crucial for optimal crop yields and high-quality produce.
Tomatoes are one of the foremost cultivated crops globally, with far-reaching economic
significance and indispensable contributions to global food security. The cultivation of
tomatoes spans diverse agro-climatic zones, reflecting their adaptability and popularity
among growers and consumers. However, this widespread cultivation has challenges, and
maintaining tomato plant health is critical to ensure optimal yields and the production of
high-quality fruits [1].

Disease detection and management have emerged as paramount considerations in
safeguarding the health and productivity of tomato plants. The early detection of potential
health issues represents a cornerstone in effectively managing diseases as it allows for
timely intervention strategies to mitigate their impact. Often, the earliest manifestations
of distress become apparent on the leaves, where subtle discolorations, spotting, or other
anomalies serve as harbingers of impending disease spread throughout the plant.
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Although environmental stressors such as fluctuating soil moisture, prolonged periods
of rainfall, or heavy dews can induce abnormalities in tomato fruits (examples of tomato
fruit abnormalities are presented in Figure 1), it is primarily on the foliage that the initial
signs of disease manifest. Therefore, focusing on the early detection of symptoms on leaves
is key to effective disease management [2].
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In this context, understanding the intricate interplay between environmental factors,
plant physiology, and disease dynamics has assumed paramount importance. By unravel-
ing the mechanisms underlying disease development and propagation in tomato plants,
we can devise targeted approaches to bolster plant resilience, minimize disease incidence,
and ultimately enhance agricultural sustainability and food security. This paper delves into
the nuances of disease detection and management in tomatoes, elucidating key principles
and strategies to empower growers to combat plant diseases and optimize crop yields.

Sunscald occurs when plants lose foliage due to disease or insect feeding. Blossom
end rot is caused by calcium deficiency due to inconsistent watering, drought, or excessive
nitrogen fertilizers. Cracks form from excess moisture, high temperatures, and are caused
by heavy rains after a long dry period with high humidity [3]. Machine learning and
artificial intelligence advancements have paved the way for efficient and precise methods
of detecting tomato plant diseases. These technologies are especially useful in creating fast
and accurate models suitable for use in the field. In particular, mobile applications and
embedded devices provide real-time monitoring and intervention opportunities, aiding
farmers in addressing issues promptly and maintaining crop health.

Early and efficient disease detection in tomato plants cannot be overstated, as it directly
influences crop health, productivity, and economic viability. To address this imperative, our
study undertook a comprehensive evaluation of several advanced and established models
for disease detection. Among the advanced models scrutinized were YOLOv8’s [4,5] minor
and nano variants, renowned for its speed and accuracy in object detection tasks, and
Roboflow 3.0 object detection (Fast), a cutting-edge solution tailored for real-time applica-
tions. Additionally, we investigated established models such as EfficientDetV2 [6] with an
EfficientNetB0 [7] backbone and Faster R-CNN with a ResNet50 backbone, renowned for
their robust performance in computer vision tasks.

In the context of this study, we developed a mobile-based system on Ionic Angular
and TypeScript, using models in the ONNX format for offline inference. This system allows
farmers to detect diseases in tomato plants in real-time, even in areas with limited or no
Internet connectivity. This practical approach enables on-field applications to benefit from
disease monitoring.

Through rigorous performance evaluation encompassing metrics of speed and accu-
racy, we endeavored to identify the optimal solutions for integration into our mobile-based
system. By elucidating the strengths and limitations of each model, we aim to equip farmers
and agricultural stakeholders with actionable insights to enhance disease monitoring and
management practices. Ultimately, our endeavor seeks to empower farmers with techno-
logical tools that facilitate proactive disease intervention, fostering sustainable agricultural
practices and ensuring food security in a rapidly evolving world.
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2. Materials and Methods
Over the years, researchers have explored various techniques to tackle the challenge of

tomato disease identification. Most efforts have centered around image classification and
object detection methods. Image classification relies on analyzing a single leaf per image
for accurate diagnosis, but this becomes problematic when multiple leaves are in the frame,
each potentially carrying different diseases. On the other hand, object detection provides a
more versatile solution, allowing the model to pinpoint and identify diseased areas within
an image regardless of the number of leaves present. In this paper, we approached tomato
disease identification as an object detection problem because this method aligns better with
the task’s inherent complexity, allowing us to accurately assess plant health by detecting
multiple diseases within a single image.

Building on this approach, the MobileNetV2-YOLOv3 model, coupled with the GIoU
loss function, was proposed to detect gray leaf mold disease in tomatoes. While this
technique demonstrated strong performance in detecting a specific disease, its focus on a
single type of disease must fully address our broader challenge: simultaneously identifying
multiple diseases in tomato leaves.

In line with advancements in object detection, the Mobile Ghost with Attention YOLO
network (MGA-YOLO) based on YOLOv5 was constructed [8] for the recognition of apple
leaf diseases using a custom dataset, the Apple Leaf Disease Object Detection dataset
(ALDOD), which combines data from the Plant Pathology 2021-FGVC8 [9] and Plant
Pathology 2020-FGVC7 [10] datasets from Kaggle. This dataset encompasses four classes:
healthy, rust, scab, and black rot. Although this research presented an innovative approach
using a newer modification of the YOLO architecture, its focus on apple leaf diseases
deviated from the scope of our work, which aims to detect diseases in tomato leaves.
Despite the emphasis on apple leaf diseases, this approach and model could be adapted for
detecting diseases in tomato leaves and disease identification in other crops.

Another study utilized a modified YOLOv5 architecture to detect plant diseases [11],
particularly rubber tree diseases collected from a rubber plantation in Shengli State Farm,
Maoming City, China. This model introduced the InvolutionBottleneck in place of the
Bottleneck module within the C3 module and added an SE module to the last layer of the
Backbone, which allowed for a weighted merging of image features of powdery mildew
and anthracnose, thereby enhancing the network’s performance with minimal additional
cost. Moreover, the authors altered the loss function from generalized intersection over
union (GIoU) to efficient intersection over union (EIoU).

The researchers compared their modified YOLOv5 architecture with the original
YOLOv5 network and the YOLOX_nano model. Their results demonstrated a mean average
precision (MAP) increase of 5.4% compared to the original YOLOv5, indicating a significant
improvement in performance on the test results. While this research focused on a different
crop and set of diseases, it offers valuable insights into potential improvements for plant
disease detection through innovative YOLOv5 modifications. Nonetheless, the study
utilized older versions of YOLO, which may not perform as well as newer architecture
iterations. Therefore, there is room for improvement by leveraging these newer versions,
which tend to outperform older versions.

A recent study [12] on tea leaf disease detection and identification examined the
YOLOv7 (YOLO-T) architecture, which was evaluated against the YOLOv5 model. Al-
though this research achieved improved performance, it required more time for training
compared to YOLOv5. Despite leveraging a newer version of YOLO, the study’s focus
on tea leaves presents a different challenge from tomato leaf disease detection. Still, like
previous research, this study addressed a different problem than ours, reflecting the diverse
applications of advanced object detection techniques across plant species and diseases.
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YOLOv8 small was used for a similar task involving the prediction of ripe, unripe, and
diseased tomato fruits [13]. The approach incorporated depthwise separable convolutions
(DSConv), an integrated dual-path gated (DPAG) attention module, and a feature enhance-
ment module (FEM), with the authors evaluating the performance of each change both
individually and collectively. The study highlighted notable differences in performance
across different YOLO models including Faster R-CNN (80.8%), SSD (76.7%), YOLOv4
(88.4%), YOLOv5 (91.2%), YOLOv7 (91.6%), and the standard YOLOv8 (91.9%).

Despite the advancements demonstrated by the YOLOv8 model in this study, the
research focused on identifying disease presence in tomatoes rather than tomato leaves. This
focus on fruits rather than leaves makes the model well-suited for aiding tomato gathering.
However, it also limits the model’s applicability to detect diseases at earlier stages, which
presents a different challenge from our task of identifying diseases in tomato leaves.

Advancements in machine learning and artificial intelligence have paved the way
for efficient and precise methods of detecting tomato plant diseases. These technologies
are especially useful in creating fast and accurate models suitable for use in the field. In
particular, mobile applications and embedded devices provide opportunities for real-time
monitoring and intervention, aiding farmers in addressing issues promptly and maintaining
crop health [14].

The importance of early and efficient disease detection in tomato plants cannot be
overstated, as it directly influences the crop health, productivity, and economic viability.
To address this imperative, our study undertook a comprehensive evaluation of several
advanced and established models for disease detection [15]. Among the advanced models
scrutinized were YOLOv8 in its small and nano variants, renowned for speed and accuracy
in object detection tasks, and Roboflow 3.0 object detection (Fast), a cutting-edge solution
tailored for real-time applications. Additionally, we investigated established models such
as EfficientDetV2 with an EfficientNetB0 backbone and Faster R-CNN with a ResNet50
backbone, renowned for their robust performance in computer vision tasks [16].

In the context of this study, we developed a mobile-based system on Ionic Angular
and TypeScript, using models in the ONNX [17] format for offline inference. This system
allows farmers to detect diseases in tomato plants in real-time, even in areas with limited
or no Internet connectivity. This practical approach enables on-field applications to benefit
from disease monitoring.

To identify optimal solutions for early and efficient disease detection in tomato plants,
this paper compared several advanced models including YOLOv8 in its small and nano
variants and Roboflow 3.0 object detection (Fast) [18]. We also examined established
models such as EfficientDetV2 with an EfficientNetB0 backbone and Faster R-CNN with
a ResNet50 backbone. By evaluating these models’ performance in terms of speed and
accuracy, our aim was to determine which was the most suitable for implementation in our
mobile-based system.

In summary, the literature review illustrates diverse strategies for plant disease de-
tection. Previous studies have relied on older models like YOLO, but recent research
indicates that more recent iterations of YOLO consistently achieve superior performance.
In tomato disease detection using leaf images, existing research has focused on a limited
number of disease classes. Similar trends can be observed in studies examining diseases in
other plants.

This work focused heavily on YOLO, with our primary model being YOLOv8. This
choice was driven by YOLO, a one-stage model that generally offers faster performance
than two-stage models like Faster R-CNN [19].

Another factor to consider was the use of datasets like PlantVillage, which were
collected in controlled laboratory settings with simplistic backgrounds in some studies.
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This could result in suboptimal performance [20,21] in real-world scenarios, where models
must contend with diverse and complex environments found in the field.

Overall, while there have been meaningful advances in the field, there is room for
improvement by leveraging the latest versions of object detection models and using more
diverse and representative datasets to enhance the detection and classification of multiple
diseases in tomato leaves.

This study leveraged YOLOv8 due to its one-stage architecture, which combines
high accuracy with faster inference times, outperforming older versions and two-stage
models like Faster R-CNN. YOLOv8’s versatility, combined with robust training on diverse
datasets, allows for the improved detection of multiple diseases in tomato leaves under
real-world conditions. By adopting this state-of-the-art model, the research aimed to
address gaps in the field, providing a scalable, efficient, and accurate solution for tomato
disease identification.

3. Results
This section describes the dataset selection process, data preprocessing, and the train-

ing methods used for our models. We compare the performance of the YOLOv8 nano and
minor variants and present the results achieved with these models.

3.1. Dataset

The choice of dataset is one of the most critical choices when training any machine
learning model. As mentioned in previous sections, using data that does not accurately
represent real-world scenarios can lead to unexpected outcomes. After reviewing the
available datasets, we found several options including classification datasets such as
PlantVillage and Tomato Disease Multiple Sources and object detection datasets such as the
Tomato-Village dataset. Both types could have been better for our specific task.

Classification datasets like PlantVillage and Tomato Disease Multiple Sources typically
contain one leaf per image. They require extensive relabeling to be re-purposed for object
detection, making them less suitable for our task.

Regarding the object detection datasets, many of them needed more images or classes
required for our task. However, during our evaluation, two datasets stood out. One was
the Tomato-Village dataset, which provides separate annotations for classification and
object detection tasks. However, this dataset presented particular challenges despite its
potential, as depicted in Figure 2. The object detection labels often featured tiny bounding
boxes, capturing images of leaves that a human observer would typically not consider nec-
essary enough to label. Given a leaf positioned centrally and closer to the photographer’s
viewpoint, a human would naturally prioritize labeling it over leaves on the left or right.
This discrepancy may have arisen due to the dataset’s primary emphasis on classification,
potentially leading to the automated generation of object detection labels.

Therefore, we decided to explore another option that better suited our needs. We ulti-
mately chose to use a dataset from Roboflow, which presented a comprehensive collection
of 4132 photographs depicting tomato leaves afflicted with eight distinct diseases: early
blight, late blight, leaf miner, leaf mold, mosaic virus, septoria, spider mites, yellow leaf
curl virus, alongside a class representing healthy plants. The authors collected the images,
each with dimensions of 512 by 512 pixels, across both controlled laboratory settings and
natural environments. Figure 3 illustrates the visual representations.

Considering this distribution, we decided to train the model using the available data,
assuming that such a distribution may provide sufficient information for practical model
training.
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3.2. Algorithms

Before initiating model training, it is essential to assess the class distribution imbalance
as it can significantly impact the training dynamics and outcome accuracy. Within our
dataset, most classes demonstrated a relatively balanced distribution, as seen in Figure 4,
hovering around 1500 instances each. However, there were notable exceptions: yellow leaf
curl virus exhibited the highest frequency with 2131 occurrences, while spider mites was
slightly underrepresented with 1232 instances.
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Considering this distribution, we decided to train the model using the available
data, assuming that such a distribution may provide sufficient information for practical
model training.

In previous sections, we explained why it was essential to consider this problem as
an object detection problem. Now that we have chosen the dataset, we may review the
number of objects in each image in our data in Figure 5.
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More than half of the images contained multiple objects, but it is important to note that
our dataset included images from laboratory environments that typically contain a single
leaf per image. These laboratory images are often combined into sets of four within the
dataset, as illustrated in the first image in Figure 3, producing composite images containing
four objects. Therefore, the actual number of images with multiple objects may be lower
than that suggested by the histogram. Additionally, the annotation heatmap showed a
higher concentration of images from laboratory settings than field settings. This highlights
a potential need for a more balanced representation of field images, though this research
does not address this aspect and leaves it for future work.

To further prove our point, we meticulously sifted through the dataset and discovered
that the quantity of images captured in the fields ranged between 1300 and 1500. Notably,
a small portion of these images had been deliberately placed against the background in one
color (see Figure 6).
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A notable aspect of this dataset pertains to the origins of specific images, with a
portion sourced from literary materials such as books and potential websites (see Figure 7
for visual examples).
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3.3. YOLOv8

In this section, we delve into YOLOv8 [17], the primary model of focus in this research.
YOLOv8 represents a significant advancement in object detection technology, enhancing
detection accuracy and efficiency compared to its predecessors. One notable enhancement
is the incorporation of a novel neural network architecture that leverages both the feature
pyramid network (FPN) [18] and the path aggregation network (PAN) [19]. This architecture
enables effective feature capture across various scales and resolutions, which is crucial for
detecting objects of diverse sizes and shapes.

The feature pyramid network (see Figure 8 for visual examples) component in YOLOv8
gradually reduces the spatial resolution of the input image while simultaneously increas-
ing the number of feature channels. This process produces feature maps well-suited for
detecting objects at various scales and resolutions [20]. In addition, the path aggrega-
tion network (PAN) architecture complements this by aggregating features from multiple
network levels by using skip connections, which enhances the model’s ability to capture
fine-grained details.
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Compared to the previous model, YOLOv5, which has three output heads, YOLOv8
employs an anchor-free detection mechanism that directly predicts the center of an object
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instead of the offset from a known anchor box, reducing the number of box predictions
and expediting the post-processing process. However, it is worth noting that YOLOv8 is
slightly slower than YOLOv5 in object detection speed [21].

YOLOv8 encompasses a range of models tailored to diverse computational resources
and deployment scenarios including nano, minor, medium, large, and extra-large variants.
In this study, we emphasized deploying YOLOv8 on mobile devices, primarily focusing
on achieving real-time performance (see Figure 9 for visual examples) for applications
requiring swift object detection [22]. To align with our objectives, we exclusively employed
the nano and miniature versions of the YOLOv8 model, as these versions are meticulously
crafted to address the computational constraints inherent in mobile devices while ensuring
optimal performance in object detection tasks.

Sustainability 2025, 17, x FOR PEER REVIEW 13 of 29 
 

 

 

Figure 9. Illustration of the framework. (a) FPN backbone, (b) bottom-up path augmentation, (c) 
adaptive feature pooling, (d) box branch, and (e) fully-connected fusion. 

Incorporating YOLOv8 into a mobile application involves key considerations such as 
image preprocessing, model format compatibility, and post-processing steps like non-
maximum suppression (NMS). Image preprocessing can be managed using custom im-
plementations of various operations or OpenCV.js [23]. We preferred OpenCV.js due to 
its efficiency and extensive capabilities. 

TensorFlow.js [24] and ONNX [25] were considered for the model format, but we 
chose ONNX for its lightweight nature. Although TensorFlow.js offers a broad range of 
operations and would eliminate the need to choose between custom implementations and 
OpenCV.js, its use in a mobile application could have been more optimal. Since NMS is 
not included in either model format, we implemented it ourselves to handle the post-pro-
cessing tasks. 

The lightweightness of ONNX implies that the machine learning model training 
should be carried out using Python and its frameworks. The trained model is then saved 
in a format supported by the chosen framework and converted to the onyx format. After 
this, the steps recommended by the documentation should be followed. We describe this 
flow visually in Figure 9. 

The general flow of detecting diseases by photo (see Figure 10) begins with the user 
uploading a picture from the gallery or capturing one using the camera. Subsequently, a 
loader is displayed while the image undergoes preprocessing in the background to match 
the format expected by YOLOv8. Following this, an inference is conducted, generating 
multiple detection boxes. A confidence threshold filters these boxes, and non-maximum 
suppression (NMS) is applied to retain only the relevant ones. 

  

Figure 9. Illustration of the framework. (a) FPN backbone, (b) bottom-up path augmentation, (c) adaptive
feature pooling, (d) box branch, and (e) fully-connected fusion.

Incorporating YOLOv8 into a mobile application involves key considerations such
as image preprocessing, model format compatibility, and post-processing steps like non-
maximum suppression (NMS). Image preprocessing can be managed using custom imple-
mentations of various operations or OpenCV.js [23]. We preferred OpenCV.js due to its
efficiency and extensive capabilities.

TensorFlow.js [24] and ONNX [25] were considered for the model format, but we chose
ONNX for its lightweight nature. Although TensorFlow.js offers a broad range of operations
and would eliminate the need to choose between custom implementations and OpenCV.js,
its use in a mobile application could have been more optimal. Since NMS is not included in
either model format, we implemented it ourselves to handle the post-processing tasks.

The lightweightness of ONNX implies that the machine learning model training
should be carried out using Python and its frameworks. The trained model is then saved in
a format supported by the chosen framework and converted to the onyx format. After this,
the steps recommended by the documentation should be followed. We describe this flow
visually in Figure 9.

The general flow of detecting diseases by photo (see Figure 10) begins with the user
uploading a picture from the gallery or capturing one using the camera. Subsequently, a
loader is displayed while the image undergoes preprocessing in the background to match
the format expected by YOLOv8. Following this, an inference is conducted, generating
multiple detection boxes. A confidence threshold filters these boxes, and non-maximum
suppression (NMS) is applied to retain only the relevant ones.

The uploaded image undergoes resizing using linear interpolation, followed by nor-
malization and conversion of each channel to a format compatible with YOLOv8. The
processed image is then transformed into a tensor and fed into the model, utilizing weights
loaded from a file with the onyx extension. In our application setup, we used Web Assembly
as the execution provider and loaded the YOLO model from the previously saved model in
ONNX format with opset18.
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Figure 10. The general flow of predicting tomato diseases is shown in the photo on the mobile.

The output of YOLO is transformed into an array of boxes, where each box comprises
coordinates, a label, and a probability. Subsequently, the array is sorted based on proba-
bilities and filtered by a confidence score threshold. Intersection over union (IoU) is then
applied to select only the relevant boxes. The detailed flow after an image is uploaded can
be seen in Figure 11.
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3.4. Image Preprocessing and Model Training

During the transfer of the dataset chosen in the previous section to our project on
Roboflow, inadvertent removal of some images occurred, resulting in the final dataset
size remaining at 4129 images. Following data acquisition, the dataset was partitioned
into three subsets for subsequent model training: a training set comprising 3096 images
(75%), a validation set consisting of 633 pictures (15%), and a test set comprising 400 images
(10%). No preprocessing or data augmentation techniques were applied during the dataset
transfer process.

As for our baseline model, we opted for Roboflow’s pre-trained object detection
model [26], explicitly leveraging Roboflow 3.0 Object Detection (Fast) with initial weights
sourced from the COCO dataset.

Figures 12 and 13 showcase the learning curves for these YOLOv8 models. We em-
ployed COCO-pre-trained nano and small models, training them on images resized to
640 × 640 over 80 epochs. Notably, during training, we incorporated mosaic augmenta-
tion, wherein multiple images are merged into a single mosaic image to enhance model
robustness and generalization.

Mosaic was not the only augmentation we applied, as we used Ultralitics CLI, which
by default applies some other transformations under the hood. To break down the aug-
mentation pipeline, we created a simplified diagram illustrating the flow of augmentation
steps including those that may not be utilized by default (as depicted in Figure 14).
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Figure 14. Detailed application process flow.

The second transformation applied by default is translation, followed by scaling with
default parameters of 0.1 and 0.5, respectively. Translation introduces shifts in images,
horizontally and vertically, by up to 10% of their width and height, thereby diversifying
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their spatial characteristics. Similarly, scaling enables random size alterations within a
range of ±50% of the original dimensions, fostering variability in image sizes and contents.
The next steps include applying MixUp and Albumentations followed by hue, saturation,
and brightness (value) adjustments, and flipping the images horizontally with a probability
of 50%. Visual representation of the augmentation steps applied during our training is
depicted in Figure 15.
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Figure 15. Detailed application pipeline.

Augmentation is a part of the training pipeline and is performed during the data
loader creation step, which involves data retrieval and augmentation. A simplified training
pipeline is depicted in Figure 16; however, it should be noted that our diagram does not
cover all aspects of the pipeline, such as repeating all augmentation steps except mosaic
augmentation on the last ten epochs, performed to ensure model stability.
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We trained an EfficientDet model with an EfficientNetB0 backbone, utilizing a slightly
modified version of the Roboflow training notebook.

Before training and evaluation, we slightly modified the source code we downloaded
during the initial execution of the original notebook. Our training configuration consisted
of 20 epochs, with a batch size of 16 and an image size of 512 pixels. The learning rate
was set to 0.0001, and validation was performed every epoch. During training, no early
stopping was triggered due to a patience value of 0 and a minimum delta of 0.

During our research, we also trained another model: Faster R-CNN, which employs
the ResNet50 backbone and was implemented using the detection framework. We modified
the provided notebook to tailor the training process to our dataset and specific hyperpa-
rameters. We utilized the CO-CO-Detection/faster_rcnn_R_50_C4_1x.yaml model weights
and set the batch size to 16 images per batch. The base learning rate was fixed at 0.001,
and we integrated a warm-up strategy spanning 500 iterations. Training extended over
15 epochs, equivalent to approximately 2902 iterations. Additionally, we introduced a
learning rate schedule, adjusting the learning rate at specific intervals: 1550, 1800, 2200,
and 2600 iterations. This involved reducing the learning rate by a factor (Gamma solver) of
0.5 at each designated iteration.

Next, this was converted into an array of boxes containing coordinates, a label, and
a probability. Subsequently, the array was sorted based on probabilities and filtered by a
confidence score threshold. Intersection over union (IoU) was then applied to select only
the relevant boxes. The detailed flow after an image is uploaded can be seen in Figure 11.

3.5. Results

In this section, we review the evaluation results of the trained models and the inference
time of different models.

We evaluated each model on the test set, analyzing metrics such as the mean average
precision (MAP) across a range of intersection over union (IOU) thresholds from 50 to
95 and at an IOU threshold of 50. Additionally, we independently assessed the average
precision for each class.
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Given the importance of inference speed for our specific task, we used the YOLOv8
nano version. Its mean average precision (MAP) slightly differs from the miniature version
while offering superior model size and inference time, as demonstrated in Figure 17.
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Figure 17. Model performance regarding MAP50 and inference time on the Tesla T4 GPU.

Another key evaluation metric is confusion matrices, which help identify model
weaknesses and potential areas for improvement. We calculated confusion matrices across
different data splits for training, testing (see Figure 18), and validation (see Figure 19).
We include the validation matrix here because the class distribution was more balanced
in this set compared to the test set, where the healthy and spider mites classes were
underrepresented.

The models were trained using Google Colaboratory using GPUs and a Tesla T4 video
card (see configuration in Table 1).

Table 1. Training and inference hardware specification.

# Unit Specification

1 RAM 12.67 GB

2 Processor Intel Xeon(R) CPU @ 2.20GHz

3 Processor count 2

4 Graphic card model Nvidia Tesla T4

5 Graphic card memory 15 GB

Model training can be carried out without or with the initial weights [27]. In our case,
we always used model weights on the COCO dataset as the initial model weights, as this
approach should reduce the number of iterations required to train the model.

The results of these evaluations are presented in Table 2 including information about
each model’s number of parameters (specified in millions) and model size (specified in
megabytes).

YOLOv8 training was performed using the Ultralitics CLI tool [28], while EfficientDet
with the EfficientNetB0 backbone was trained using a slightly modified version of the
notebook file provided by Roboflow [29]. Before training, the source code of the file
and repository was modified to calculate additional metrics and use a custom (created)
dataset. Regarding Faster R-CNN with the ResNet50 backbone, this was trained using the
Detectron2 framework, based on the Roboflow notebook [30].

In this section, we examine the results of the trained models and the inference time
of the different models. We evaluated each model on the test set, analyzing metrics such
as MAP at different object-over-object intersection (IOU) thresholds from 50 to 95 as well
as at an IOU threshold of 50. Additionally, we estimated the average accuracy for each
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class independently. The results of these evaluations are presented in Table 2, which also
contains information about the number of parameters of each model (in millions) and the
size of the model (in megabytes).
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model on the train dataset; (b) YOLOv8 nano model on the test dataset.
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Figure 19. Confusion matrices were calculated for the YOLOv8 nano model on the validation dataset.

It should be noted that this study did not examine these aspects in more depth and
leaves them for future research and further elaboration.

YOLOv8 small demonstrated the highest accuracy but had slower prediction times,
making it less suitable for mobile applications. YOLOv8 nano, with an accuracy only
slightly lower (1% in MAP50:95 and 0.4% in MAP50), was chosen for the mobile applica-
tion due to its efficiency and reduced parameter count. It only occasionally misclassified
healthy and diseased leaves as background, which is less critical than disease misclassifica-
tion, and prompts users to upload additional images if necessary. Faster R-CNN ranked
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third in accuracy but exhibited significantly lower speed and accuracy compared to the
YOLOv8 models.

Possible future improvements could include enriching the dataset by adding more
field images and creating a more balanced dataset. Another option could be to include
another feature detection dataset, such as Tomato-Village, or to improve the dataset used
in this study by taking into account any class imbalance that may arise during the merging
step (see Figures 20–22). Another area for potential improvement is to investigate different
models and their possible improvements as well as experiment with different augmentation
configurations.

Table 2. Model comparison based on the test data evaluation including the expected input dimensions
for each trained model.

Model Params Dimensions MAP 50:95 MAP50 Model Size Model Size
(ONNX)

Roboflow 3.0 object detection(Fast) - 512 - 0.933 - -

Faster R-CNN (ResNet50 C4 x1) 33.8 640 0.84 0.965 252 -

EfficientDet
(EfficientNetB0) 4.14 512 0.76 0.915 16.2 -

YOLOv8 nano 3.01 640 0.95 0.986 5.97 11.68

YOLOv8 small 11.14 640 0.96 0.990 21.44 42.66

As a result, YOLOv8 nano often misclassifies healthy and diseased leaves as back-
ground, which is a problem that needs attention. However, from the perspective of our
task, this behavior is desirable compared to the misclassification of diseases, since the lack
of results will force users to download another image if they suspect a problem with a
particular plant.

In the case of false predictions, which occurred less frequently, it was found that they
mostly occurred on images from the field with uneven backgrounds, which emphasizes
the need to expand the dataset with more field images.
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Figure 21. Results of disease detection using the trained YOLOv8 nano model: (a) leaf photographs
in field conditions and (b) labeled image from the created dataset.
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4. Discussion
Our comparative analysis revealed notable variations in the performance of the ex-

amined models, particularly concerning accuracy and inference speed. YOLOv8 small
emerged as the top-performing model, exhibiting superior accuracy metrics compared
to other models evaluated in this study. Its robust performance underscores its efficacy
in accurately detecting diseases in tomato plants, making it a promising candidate for
integration into our mobile-based system. However, it is essential to note that YOLOv8
nano, despite ranking slightly lower in accuracy, offers distinct advantages regarding model
size and parameter count. This lightweight variant presents a compelling option for our
application, considering its efficient use of computational resources and suitability for
deployment in resource-constrained environments.
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In contrast, the EfficientDet and Faster R-CNN models demonstrated comparatively
lower accuracy and slower inference times relative to YOLOv8. Although Faster R-CNN
with a ResNet50 backbone exhibited promising accuracy results, its inference time and
model size may pose challenges for real-time deployment in mobile applications. Nonethe-
less, the potential for further enhancement by exploring alternative backbone architectures
warrants consideration in future investigations. These limitations emphasize the need for
the continued exploration of lightweight yet accurate architectures, particularly those that
balance performance and efficiency for real-time applications.

Several avenues for future research and improvement have emerged from our study
findings. Firstly, enriching the dataset by incorporating additional images from diverse
geographical regions and environmental conditions could enhance the robustness and
generalizability of the trained models. Furthermore, addressing class imbalances within
the dataset, such as integrating complementary object detection datasets like the Tomato
Leaf Disease Dataset, may yield more comprehensive and representative training data.

Additionally, exploring different model architectures and augmentation strategies
could further improve the accuracy and inference speed.

5. Conclusions
In conclusion, YOLOv8 small delivered top-tier results in terms of accuracy, while

YOLOv8 nano ranked second with a 1% difference in MAP50:95 and 0.4% in MAP50. Mean-
while, the nano version boasts nearly a four times smaller model size and parameter count
than the minor variant, making it a better fit for our application. Additionally, EfficientDet
and Faster R-CNN displayed lower accuracy and slower inference times than YOLOv8.
However, Faster R-CNN with a ResNet50 backbone reached a MAP50 of 96.5%, with the
potential for further improvement using different backbones. Nonetheless, its inference time
and model size may not be suitable for mobile applications. Future enhancements may enrich
the dataset by adding more images from the field and creating a more balanced dataset.
Another option could be incorporating a different object detection dataset, such as relabeling
Tomato-Village, either to use it independently or to enhance the dataset employed in this
research while managing any class imbalance that may emerge during the merge. Other
avenues for potential improvement are an investigation of various models and their possible
enhancements as well as experimenting with different augmentation configurations.
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