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Abstract 

The increasing prevalence of Type 2 Diabetes Mellitus (T2DM), particularly in Oman—

where cases are projected to rise by 174% by 2050—necessitates the development of accurate, 

region-specific predictive models for early detection and risk stratification. This study develops 

an artificial intelligence (AI)-based predictive framework incorporating two Oman-specific 

datasets—the Oman Prediabetes Dataset and the Oman Screening Dataset—to improve 

predictive performance beyond widely used datasets such as the Pima Indian Diabetes Dataset 

(PIDD). 

To determine an optimal predictive model, this research evaluates traditional machine 

learning algorithms alongside three deep learning models: a 1D Convolutional Neural Network 

(1D CNN for Structured Data) for structured medical records, a 7-layer Long Short-Term 

Memory (LSTM) network for sequential patient data modelling, and a Hybrid CNN-LSTM 

model, which integrates spatial and temporal learning for clinical risk assessment. The models 

were trained and validated using preprocessing, feature selection, and hyperparameter tuning, 

with performance assessed through accuracy, precision, recall, specificity, F1-score, and AUC-

ROC metrics. The Hybrid CNN-LSTM model achieved the highest performance, with 99.58% 

accuracy, 100% sensitivity, 99.55% precision, 99.50% specificity, an F1-score of 99.78%, and 

an AUC-ROC of 97.07%, demonstrating reliability in identifying individuals at high risk of 

developing T2DM. The seven-layer LSTM model achieved 99.40% accuracy, 100% precision, 

100% sensitivity, and 99.34% specificity, confirming its effectiveness in sequential health data 

modelling. The 1D CNN model outperformed traditional machine learning methods, attaining 

99.24% accuracy, 100% precision, 90.2% sensitivity, 100% specificity, and an F1-score of 

94.85%, highlighting its suitability for structured data analysis. 

This research also introduces region-specific datasets to address the limitations of widely 

used datasets, improving prediction accuracy for populations with distinct genetic and lifestyle 

factors. A Graphical User Interface (GUI) was developed to facilitate real-time risk prediction, 

batch processing, and secure data handling in healthcare environments. By integrating localised 

datasets with deep learning techniques, this research establishes a scalable AI-based framework 

for early T2DM detection, contributing to precision medicine, clinical decision support, and 

AI-driven healthcare solutions for Oman and other regions with similar healthcare challenges. 
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1 Introduction 

1.1  Background  

Diabetes Mellitus (DM) is a chronic metabolic disorder that has been recognised as a 

significant health challenge for centuries. Early documentation of its symptoms, such as 

excessive urination and sweet-tasting urine, can be traced back over 3,000 years to Ancient 

Egyptian and Indian civilizations. The term “diabetes,” of Greek origin, translates to “siphon,” 

symbolising the excessive flow of urine, while “mellitus,” derived from Latin, refers to the 

honey-sweet taste of urine observed in affected individuals. The first scientific observation 

linking elevated sugar levels in urine and blood to DM was recorded in 1776 in Britain, 

marking a pivotal advancement in understanding the disease’s pathology [1][2].  

Over time, the understanding of DM has evolved significantly. Today, it is defined as “a 

group of metabolic diseases characterised by hyperglycaemia resulting from defects in insulin 

secretion, insulin action, or both.” This persistent hyperglycaemia disrupts carbohydrate, fat, 

and protein metabolism and is associated with chronic complications such as cardiovascular 

disease, neuropathy, nephropathy, and retinopathy [3][4]. DM can be categorised into three 

primary types: Type 1 Diabetes Mellitus (T1DM), Type 2 Diabetes Mellitus (T2DM), and 

gestational diabetes. T1DM is characterised by the autoimmune destruction of pancreatic beta 

cells, leading to an absolute deficiency in insulin. T2DM, which accounts for approximately 

90% of all diabetes cases worldwide, results from a combination of insulin resistance and a 

progressive decline in beta-cell function. Gestational diabetes develops during pregnancy and 

increases the risk of T2DM for both the mother and child later in life [5][6].  

T2DM Is unique due to Its Insidious onset, often remaining asymptomatic for years. Many 

cases are diagnosed incidentally during routine health evaluations. Unlike T1DM, individuals 

with T2DM are not entirely dependent on exogenous insulin and can often manage their 

condition with lifestyle modifications, oral hypoglycaemic agents, or, in some cases, insulin 

therapy. The disease’s multifactorial aetiology encompasses genetic predisposition, 

demographic factors such as age and ethnicity, and modifiable lifestyle factors, including 

obesity, physical inactivity, and poor dietary habits [7][8] [9].  

The global prevalenc’ of T2DM has reached alarming proportions, affecting over 463 

million people in 2019—a number projected to rise to 700 million by 2045. Approximately 
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79% of diabetes cases occur in low- and middle-income countries, where healthcare systems 

face immense strain due to limited resources [10][11]. The World Health Organization (WHO) 

recognises T2DM as one of the leading causes of premature mortality and morbidity globally. 

Addressing this epidemic requires not only advancements in therapeutic interventions but also 

innovative solutions for early diagnosis and prevention [12].  

1.2 The Burden of T2DM in Oman 

In Oman, the prevalence of T2DM has mirrored global trends, posing a significant public 

health challenge. Data from the Institute for Health Metrics and Evaluation (IHME) reveal that 

T2DM cases in Oman rose from 24% in 1990 to 49% in 2019. By 2025, it is projected that 

21.1% of the adult population over 20 years old will be affected, representing a 174% increase 

compared to previous decades [13][14].  This surge is attributed to rapid urbanisation, 

sedentary lifestyles, and the adoption of Westernised dietary habits.  

The Omani healthcare system has Implemented a comprehensive diabetes screening and 

diagnosis protocol, recognising the critical importance of early detection. Figure 1.1 illustrates 

the diabetes screening and diagnosis process in Oman, which includes tests such as Fasting 

Blood Glucose (FBG), Random Blood Glucose (RBG), Haemoglobin A1c (HbA1c), and, in 

certain cases, the Oral Glucose Tolerance Test (OGTT). The target screening age has been 

reduced from 40 years to 20 years, reflecting a proactive approach aimed at capturing high-risk 

individuals earlier. This strategy is particularly critical for those with obesity, a family history 

of diabetes, or dyslipidaemia [15][16]. 
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Figure 1.1 Diabetes screening and diagnosis in Oman 
 

This structured approach not only aids in early diagnosis but also ensures that patients 

receive timely intervention, reducing the risk of complications. For example, individuals with 

borderline results undergo additional testing such as OGTT, while those with abnormal values 

are immediately enrolled in management programmes. Despite these measures, significant 

gaps remain in effectively addressing T2DM, particularly concerning the availability of locally 

specific datasets and predictive tools [17].  
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The integration of Artificial Intelligence (AI) technologies has emerged as a transformative 

approach in healthcare, offering unparalleled potential to revolutionise diabetes management. 

Machine Learning (ML) and Deep Learning (DL), subfields of AI, facilitate the analysis of 

large, complex datasets to uncover patterns that may be imperceptible to human clinicians. 

These models excel in early diagnosis by detecting subtle fluctuations in biomarkers, which 

are critical for predicting T2DM progression [18][19]. In the context of Oman, ML and DL 

models are being developed to address the unique healthcare challenges of the region. These 

models leverage clinical datasets that are tailored to the genetic and demographic 

characteristics of the Omani population. By incorporating localised data, these AI-driven tools 

significantly enhance the predictive accuracy of T2DM diagnosis and enable more personalised 

approaches to disease management [20].   

The integration of advanced ML and DL models into Oman's healthcare landscape 

represents a significant advancement in diabetes care. For example, hybrid models that 

combine Convolutional Neural Networks (CNNs) and Long Short-Term Memory (LSTM) 

networks have been shown to capture spatial and temporal correlations in clinical data 

effectively. However, these advancements necessitate a cultural shift and the education of 

healthcare providers and patients to fully utilise these technologies and interpret their findings 

accurately [21][22]. Training and awareness initiatives are essential to harness the full 

potential of ML and DL in diabetes management. Without such efforts, the adoption of these 

technologies may be hindered by resistance to change or a lack of technical expertise among 

healthcare professionals [23].  

Despite the promising advancements in AI, Oman faces challenges in developing clinical 

datasets specific to its population. Existing global datasets, such as the Pima Indian Diabetes 

Dataset, lack the demographic and genetic specificity required to accurately model diabetes 

risk in Oman. This limitation underscores the need for locally developed datasets that reflect 

the unique characteristics of the Omani population, such as genetic predispositions, lifestyle 

factors, and environmental influences [24][25]. The absence of comprehensive region-specific 

datasets and predictive models represents a critical gap in diabetes research. Addressing this 

gap is paramount to curbing the rising T2DM burden. By developing innovative AI models 

and locally tailored datasets, this research aims to empower healthcare providers with tools that 
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enhance early detection, streamline diagnostics, and enable personalised treatment strategies 

[26][27].  

Diabetes Mellitus, particularly T2DM, represents a multifaceted challenge that demands a 

concerted effort at global, regional, and local levels. In Oman, the rising prevalence of T2DM 

underscores the urgent need for innovative solutions that integrate advanced AI technologies 

with region-specific data. By bridging existing gaps in clinical datasets and predictive 

modelling, this research seeks to contribute to the broader objective of reducing the diabetes 

burden and improving patient outcomes.  

1.3  Summary of Research Methodology 

This research adopts a multi-phase methodology to address the growing prevalence of Type 

2 Diabetes Mellitus (T2DM) in Oman, focusing on the development of predictive models 

tailored to the region’s unique healthcare challenges. 

The first phase involved the creation of two region-specific datasets, the Oman Prediabetes 

Dataset and the Oman Screening Dataset, designed to capture demographic, genetic, and 

lifestyle factors unique to Oman. These datasets incorporate clinical and demographic variables 

such as age, BMI, glucose levels, HbA1c, lipid profiles, and lifestyle indicators like dietary 

habits and physical activity. Rigorous data preprocessing techniques, including normalisation, 

handling of missing values, and outlier removal, were applied to ensure data quality. As a 

result, the datasets achieved data completeness and accuracy exceeding 95%, aligning with the 

study’s key performance indicators (KPIs). By ensuring high-quality, region-specific data, this 

phase established a robust foundation for predictive modelling. 

Building upon the dataset development, the second phase involved benchmarking traditional 

machine learning models to establish baseline performance metrics. Various algorithms, 

including K-Nearest Neighbours, Support Vector Machines, Naïve Bayes, Decision Trees, 

Random Forest, Discriminant Analysis Classifier, and Artificial Neural Networks, were 

applied to the developed datasets. These models were chosen based on their computational 

efficiency and interpretability; attributes that have been validated in prior studies as essential 

for structured healthcare datasets. To assess their effectiveness, the models were evaluated 

using sensitivity, specificity, accuracy, and F1-score. Among the evaluated models, Random 

Forest and Decision Trees demonstrated strong performance in feature importance analysis, 
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while Support Vector Machines effectively handled high-dimensional data. These findings 

provided a crucial benchmark for assessing the effectiveness of deep learning architectures in 

subsequent phases. 

With the baseline performance established, the study progressed to the development of deep 

learning architectures aimed at enhancing predictive accuracy. A 1D Convolutional Neural 

Network (1D CNN for Structured Data) was implemented to capture multi-dimensional feature 

relationships within structured clinical data, enabling the model to detect interactions between 

variables such as HbA1c, glucose levels, and lipid profiles. Unlike conventional CNNs that 

primarily process image-based data, this 1D CNN was specifically designed for structured 

healthcare datasets, allowing for the extraction of complex spatial dependencies between 

medical variables. Research has demonstrated CNNs to be highly effective for spatial feature 

extraction in multidimensional structured datasets [29]. 

To model temporal trends in longitudinal patient data, a seven-layer Long Short-Term 

Memory (LSTM) network was developed. This model was particularly effective in 

capturing glucose progression, HbA1c fluctuations, and other time-dependent health markers. 

Prior studies have confirmed LSTMs’ suitability for analysing temporal dependencies in 

healthcare data, making them well-suited for disease progression modelling [30]. 

The Hybrid CNN-LSTM model was then introduced to integrate the spatial feature 

extraction capabilities of CNN with the temporal trend analysis strengths of LSTMs. This 

combination resulted in superior performance, achieving ≥95% sensitivity and ≥90% 

specificity, demonstrating robustness and clinical applicability in diabetes risk prediction [31]. 

Compared to standalone CNN or LSTM models, the hybrid approach provided a more 

comprehensive understanding of diabetes risk factors by combining spatial and sequential 

analysis techniques. 

The final phase of the study involved the development of a user-friendly Graphical User 

Interface (GUI) to facilitate real-time diabetes risk prediction. The GUI was designed 

to seamlessly integrate the predictive models into clinical workflows, allowing healthcare 

practitioners to utilize AI-generated risk assessments efficiently. Usability testing in simulated 

clinical environments demonstrated satisfaction scores exceeding 85%, highlighting 

the system’s practicality, accessibility, and potential for real-world adoption. 
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The selection of methodologies was guided by the specific characteristics of the dataset and 

the overarching research objectives. Traditional machine learning models were incorporated 

into the benchmarking phase due to their computational efficiency and ability to provide 

interpretable results in structured tabular data. Random Forest and Support Vector Machines, 

in particular, have been shown to offer valuable insights into feature importance and perform 

effectively in high-dimensional datasets [28]. In contrast, advanced deep learning 

architectures were implemented to overcome the limitations of traditional ML models. CNNs 

were chosen for their ability to extract spatial relationships within structured datasets, while 

LSTMs were employed for their strength in modelling temporal dependencies in sequential 

data [29], [30]. The Hybrid CNN-LSTM model combined these strengths, achieving enhanced 

predictive accuracy and robustness [31]. 

Vision Transformers (ViTs) and Large Language Models (LLMs) were excluded from this 

study due to several limitations. Although ViTs have demonstrated significant advancements 

in image processing, their application to structured clinical datasets remains underexplored, 

and they lack efficient mechanisms for handling tabular numerical data [32]. Similarly, LLMs 

are primarily designed for natural language processing tasks and are therefore unsuitable for 

structured tabular datasets. Furthermore, both ViTs and LLMs require extensive computational 

resources, making them impractical for real-time clinical deployment in settings with limited 

computational infrastructure [33]. Moreover, integrating ViTs and LLMs into structured 

medical record systems would require significant data transformation, introducing additional 

complexity in implementation. 

This multi-phase methodology balances predictive accuracy, computational efficiency, and 

real-world applicability, addressing Oman’s specific healthcare challenges while contributing 

to global advancements in AI-driven healthcare research. 
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1.4 Research focus. 
1.4.1 Aim 

To develop and validate AI-driven predictive models for the early detection and risk 

assessment of Type 2 Diabetes Mellitus (T2DM) in Oman, using region-specific datasets and 

advanced machine learning techniques to improve predictive accuracy and support clinical 

decision-making 

1.4.2 Objectives 

1. Develop and validate region-specific datasets by creating the Oman Prediabetes 

Dataset and Oman Screening Dataset, ensuring high data quality and 

completeness. KPI: ≥95% data completeness and accuracy. 

2.   Benchmark traditional machine learning models by evaluating Random Forest, 

Support Vector Machine (SVM), Naïve Bayes, Decision Tree, Artificial Neural 

Networks (ANN), Linear Discriminant Analysis (LDA), and K-Nearest Neighbourss 

(KNN) to establish baseline performance. KPI: ≥80% baseline accuracy across 

datasets. 

3.  Design and validate advanced AI models by developing 1D CNN, 7-layer LSTM, and 

Hybrid CNN-LSTM architectures for diabetes risk prediction, optimising spatial and 

temporal feature extraction. KPI: ≥95% sensitivity and ≥90% specificity for the Hybrid 

CNN-LSTM model. 

4.  Develop and test a Graphical User Interface (GUI) to integrate AI models into clinical 

workflows for real-time risk prediction, ensuring usability and 

accessibility. KPI: ≥85% usability satisfaction score. 

1.5 Thesis Outline 

• Chapter 1introduces the study by providing a comprehensive rationale for the research, 

emphasizing the global and regional significance of T2DM as a growing public health 

challenge. The chapter highlights Oman’s unique healthcare concerns, including the projected 

174% increase in T2DM prevalence by 2050, the absence of region-specific datasets, and the 

necessity for tailored predictive models. The research aims and objectives are clearly outlined, 

focusing on the development and validation of AI-driven methodologies for early diabetes 

detection. Additionally, measurable Key Performance Indicators (KPIs) are introduced to 
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assess the effectiveness of the proposed models. The chapter concludes by presenting the 

structure of the thesis to guide the reader through the research framework. 

• Chapter 2 critically reviews the existing literature on AI applications in T2DM 

detection and management. It examines global trends in machine learning (ML) and deep 

learning (DL), highlighting the limitations of traditional methods. Special attention is given to 

the scarcity of region-specific datasets, particularly in Oman, and the necessity of hybrid AI 

models that integrate both spatial and temporal data. This chapter identifies key research gaps, 

which form the foundation for the methodological framework and contributions of this study. 

• Chapter 3 details the development and validation of the Oman Prediabetes Dataset, a 

novel clinical dataset specifically designed for diabetes risk prediction in Oman. It provides an 

in-depth discussion on data collection methods, ethical approval, and extraction processes from 

21 healthcare facilities across Oman. The chapter describes preprocessing techniques, 

including handling missing values, outlier detection, normalisation, and feature selection. A 

comparative analysis of the widely used Pima Indian Diabetes Dataset (PIDD) highlights the 

need for an Oman-specific dataset. To benchmark the predictive capability of the dataset, seven 

traditional ML models—K-Nearest Neighbourss (KNN), Support Vector Machine (SVM), 

Naïve Bayes (NB), Decision Tree, Random Forest (RF), Linear Discriminant Analysis (LDA), 

and Artificial Neural Network (ANN)—are applied. Their performances are assessed using 

accuracy, sensitivity, specificity, precision, and confusion matrix analysis. The findings from 

this chapter lay the groundwork for subsequent deep learning models. 

• Chapter focuses on the development and evaluation of a 1D Convolutional Neural 

Network (1D CNN for Structured Data) model for diabetes screening. The chapter begins by 

introducing the Oman Screening Dataset, which is optimised for deep learning applications. A 

detailed explanation of the 1D CNN for Structured Data architecture is provided, highlighting 

its ability to analyse structured healthcare data in a multi-dimensional format. The justification 

for CNN selection is presented by demonstrating its advantages over traditional ML models, 

particularly in hierarchical feature learning and spatial pattern recognition within clinical data. 

The 1D CNN for Structured Data model’s performance is benchmarked against alternative 

models such as Decision Trees, Random Forest, and SVM, confirming its superior accuracy, 

sensitivity, and recall. The chapter concludes by discussing the broader applications, 

limitations, and insights gained from CNN-based predictive modelling in healthcare. 

• Chapter 5	presents the Long Short-Term Memory (LSTM) network as a solution for 

analysing sequential patient data. The chapter justifies the necessity of temporal modelling in 
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T2DM prediction, particularly for tracking glucose fluctuations, HbA1c trends, and long-term 

diabetes risk. The study develops and evaluates a 7-layer LSTM network, optimised through 

comparisons with 6-layer and 5-layer configurations. The performance evaluation of the LSTM 

model includes accuracy, sensitivity, specificity, and F1-score metrics, demonstrating its 

effectiveness in capturing long-term dependencies in clinical data. 

• Chapter 6	 introduces a hybrid CNN-LSTM model, which integrates CNN’s spatial 

feature extraction with LSTM’s temporal pattern recognition to enhance predictive 

performance. The model architecture is explained in detail, illustrating how CNN processes 

structured clinical features while LSTM captures sequential health trends. The chapter provides 

a justification for hybridisation, demonstrating that the combined model significantly 

outperforms standalone CNN and LSTM architectures. The hybrid model’s performance is 

evaluated, with results indicating a 100% sensitivity rate and 99.4% specificity, making it the 

most effective model in the study. A comparative performance analysis is conducted against 

CNN, LSTM, and traditional ML models under identical conditions, reinforcing the hybrid 

model’s robustness and clinical applicability. 

• Chapter 7 focuses on the development of a Graphical User Interface (GUI) to facilitate 

real-time diabetes risk prediction and clinical integration. The chapter describes the user-

cantered design approach adopted for creating a user-friendly interface that enables healthcare 

professionals to input patient data and receive AI-driven risk assessments. Implementation 

details are provided, including the integration of the hybrid CNN-LSTM model into the GUI. 

Usability testing is conducted with clinicians in simulated healthcare environments to assess 

the interface’s functionality, efficiency, and user satisfaction. The chapter concludes by 

Discussing deployment considerations and steps required for the real-world adoption of AI-

powered diabetes screening tools in clinical settings. 

• Chapter 8 presents the conclusions and future research directions of the study. It 

summarises the key contributions, including the development of two novel datasets, the 

introduction of CNN, LSTM, and hybrid CNN-LSTM models, and the implementation of a 

clinical AI-based GUI. The chapter also discusses study limitations and outlines potential 

future research areas, such as expanding datasets with longitudinal patient records, enhancing 

model generalisability using Vision Transformers and Large Language Models (LLMs), 

incorporating Generative Adversarial Networks (GANs) to address data scarcity, and 

conducting multi-centre validation studies to assess the scalability of AI models across diverse 

healthcare settings. The study concludes by offering recommendations for integrating AI 



Page 11 of 174 
 

 

models into broader healthcare policies and decision-making frameworks to enhance diabetes 

prevention and management strategies. 

1.6 Contributions to Knowledge 

The This research contributes significantly to the field of healthcare informatics and artificial 

intelligence by addressing the pressing issue of Type 2 Diabetes Mellitus (T2DM) detection 

and management through innovative methodologies. The contributions to knowledge are 

categorised as follows: 

• Development of Region-Specific Datasets: This study introduces two novel datasets 

tailored to Oman’s unique demographic, genetic, and lifestyle characteristics: the Oman 

Prediabetes Dataset and the Oman Screening Dataset. These datasets bridge the critical gap in 

region-specific data for T2DM prediction and provide a valuable resource for future research 

in the Middle East and other similar regions. The preprocessing steps, including normalisation, 

handling of missing values, and outlier removal, ensure high data quality, achieving a 

completeness and accuracy rate of ≥95%. 

• Establishment of Baseline Performance for Machine Learning Models. Through the 

benchmarking of traditional machine learning algorithms, this research establishes baseline 

performance metrics for T2DM prediction using region-specific datasets. Models such as 

Random Forest, SVM, and I Bayes are evaluated, achieving a baseline accuracy of ≥80%. This 

foundational work offers a comparative standard for evaluating the effectiveness of advanced 

AI models in healthcare settings. 

• Design and Validation of Advanced AI Architectures. The research advances the 

application of AI in healthcare by developing and validating innovative deep learning 

architectures: 

o A 1D Convolutional Neural Network (1D CNN for Structured Data) for spatial data 

analysis, designed to capture intricate multi-dimensional relationships between clinical 

features, optimising feature representation for improved diabetes risk prediction. 

o A 7-layer Long Short-Term Memory (LSTM) network for temporal data analysis that 

models longitudinal trends in patient health records. 

o A Hybrid CNN-LSTM Model that integrates spatial and temporal features, achieving 

sensitivity ≥95% and specificity ≥90%. This hybrid model sets a new benchmark for predictive 

accuracy and robustness in T2DM detection. 
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• Development of a User-Friendly Clinical Interface. A practical contribution of this 

research is the design of a Graphical User Interface (GUI) for real-time risk prediction and 

seamless integration of AI models into clinical workflows. The GUI is tested with healthcare 

professionals in simulated clinical environments, achieving a usability satisfaction score of 

≥85%. This ensures the tool’s accessibility and relevance for healthcare practitioners, 

promoting adoption in real-world settings. 

• Addressing Healthcare Challenges in Oman. By focusing on Oman, this research 

addresses a critical public health issue projected to grow by 174% by 2050. It provides region-

specific solutions that are scalable and adaptable to similar healthcare systems globally. This 

study serves as a case study for leveraging AI to improve healthcare outcomes in resource-

limited and regionally specific contexts. 

• Advancing Global AI Methodologies. While grounded in Oman, this research 

contributes to the broader AI community by demonstrating how hybrid AI models can be 

effectively applied to healthcare challenges. The methodologies developed in this study are 

scalable and adaptable, offering a framework for addressing similar challenges in other regions 

with unique demographic and clinical needs. 
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2 Literature Review 

2.1 Chapter Introduction 

Diabetes, particularly Type 2 Diabetes Mellitus (T2DM), presents a pressing global health 

challenge, requiring innovative solutions for early diagnosis and management. While 

traditional diagnostic methods remain widely used, they exhibit limitations in terms of 

accessibility, accuracy, and cost-effectiveness. In response, the integration of machine learning 

(ML) and artificial intelligence (AI)-based predictive models is gaining traction as a 

transformative approach to diabetes detection and management. This chapter systematically 

reviews literature on the global and regional prevalence of diabetes, traditional diagnostic 

limitations, the emergence of AI-driven predictive modelling, and recent technological 

advancements. It also identifies existing gaps in research and highlights the need for regionally 

adaptive, scalable AI-based solutions for diabetes prediction. 

2.2  Review of the literatures  

The global prevalence of diabetes continues to escalate, posing significant challenges to 

healthcare infrastructures worldwide. In 2021, an estimated 537 million adults were 

diagnosed with diabetes, with projections indicating a surge to 783 million by 2045 if current 

trends persist [34][35]. Beyond its impact on individual health, diabetes carries a substantial 

economic burden, as complications such as cardiovascular diseases, neuropathy, and renal 

failure contribute significantly to rising healthcare costs [36]. Regionally, in Oman, T2DM 

affects approximately 14% of the adult population, with estimates suggesting an increase to 

20% by 2030 in the absence of effective interventions [37]. These statistics underscore the 

critical need for comprehensive strategies that prioritise early detection, prevention, and 

scalable management solutions to mitigate long-term socio-economic impacts [38] 

Traditional diagnostic methods, such as fasting plasma glucose tests, oral glucose tolerance 

tests, and glycated haemoglobin (HbA1c) measurements, are well-established tools in clinical 

practice [39]. However, despite their utility, these methods exhibit several notable limitations. 

High costs associated with these diagnostic techniques often restrict their accessibility, 

particularly in low-resource settings. Furthermore, limited availability of advanced medical 

infrastructure frequently results in delayed diagnosis, increasing the likelihood of severe 

complications. Variability in diagnostic accuracy, influenced by demographic factors such as 

ethnicity, lifestyle, and age, presents another challenge, complicating the applicability of 
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these methods across diverse populations [40]. These constraints necessitate the exploration 

of alternative diagnostic and predictive approaches that are both cost-effective and scalable to 

broader populations.  

Predictive modelling, underpinned by ML and AI, has emerged as a promising paradigm to 

address these challenges. By leveraging advanced computational capabilities, these models 

analyse intricate patterns in patient data, including genetic predispositions, socio-economic 

conditions, and lifestyle behaviours, to identify individuals at risk of developing diabetes. 

Predictive modelling has shown considerable potential in improving diagnostic precision and 

facilitating proactive healthcare interventions, which are vital for mitigating the long-term 

impacts of diabetes on individuals and healthcare systems [41].  

Initial attempts at predictive modelling utilised statistical techniques such as logistic 

regression (LR) and linear discriminant analysis (LDA), which provided valuable insights 

into the relationships between clinical variables and diabetes risk [42]. Logistic regression, in 

particular, has been widely adopted for binary classification tasks due to its simplicity, ease 

of implementation, and interpretability [43]. However, the reliance of these techniques on 

linear assumptions limited their ability to capture non-linear, high-dimensional interactions 

inherent in healthcare datasets, especially those involving genetic, environmental, and 

lifestyle variables [44]. Moreover, the performance of these models was significantly 

influenced by the quality and demographic diversity of the datasets used. A prominent 

example is the Pima Indian Diabetes Dataset (PIDD), which, while extensively utilised, 

suffers from demographic homogeneity, small sample size, and limited representativeness of 

diverse populations. These limitations highlight the critical need for more inclusive and 

diverse datasets to advance predictive modelling in healthcare [45].  

Machine learning methods have offered substantial improvements over traditional 

approaches by enabling the identification of complex, non-linear relationships within large 

and diverse datasets. For instance, Random Forest and Decision Tree classifiers have 

demonstrated strong predictive performance when applied to pre-processed PIDD data, with 

Random Forest achieving an accuracy of 94% [46]. This superior performance is attributed to 

the ensemble structure of Random Forest, which integrates multiple decision trees to reduce 

overfitting and enhance generalisability. However, comparative analyses of classifiers have 

revealed significant disparities in performance. For example, Naive Bayes, despite its 

computational efficiency, attained only 76.30% accuracy, underscoring the importance of 
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robust feature selection and dataset quality in influencing model outcomes [47]. As 

healthcare data become increasingly complex and voluminous, the scalability of ML methods 

has facilitated their application to larger datasets, thereby enhancing their practical relevance 

in addressing the multifaceted challenges of diabetes prediction.  

Feature selection techniques play a pivotal role in enhancing the performance of predictive 

models by identifying the most relevant indicators of diabetes risk. Algorithms such as 

greedy stepwise and best-first selection have been employed to identify variables like plasma 

glucose concentration and age as critical predictors. For instance, the Hoeffding Tree 

algorithm demonstrated the effectiveness of feature selection by achieving an F-measure of 

0.75 and a recall of 0.76 when applied to PIDD data [48]. These findings underscore the 

necessity of optimising model inputs to enhance predictive accuracy and computational 

efficiency, particularly in high-dimensional datasets.  

Ensemble methods, including boosting and bagging, have further contributed to improving 

the accuracy and robustness of predictive models. Boosting works by iteratively correcting 

errors made by previous models, while bagging reduces overfitting by training multiple 

models on varied subsets of data [49]. Despite their advantages, ensemble methods face 

challenges, including class imbalance, which disproportionately affects the accuracy of 

predictions for minority classes, and computational intensity, which can hinder their 

implementation in resource-constrained settings. Addressing these challenges requires 

advanced solutions, such as synthetic data generation for balancing datasets and distributed 

computing techniques, to manage computational requirements effectively.  

Pre-processing methods are equally critical in enhancing model performance by addressing 

common issues such as noise, missing values, and imbalanced data distributions. Techniques 

like k-NN imputation have been successfully employed to handle missing values, thereby 

reducing biases introduced by incomplete datasets [50]. Noise-reduction methods, including 

outlier detection and filtering, further improve data quality and minimise training errors. 

Comprehensive pre-processing pipelines that incorporate duplicate removal, k-NN 

imputation, and normalisation standardise datasets, ensuring consistency across features. 

Additionally, techniques designed to address imbalanced datasets, such as the Synthetic 

Minority Oversampling Technique (SMOTE) and adaptive synthetic sampling (ADASYN), 

generate synthetic samples for underrepresented classes, improving balance and overall 
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classification accuracy. Models like Random Forest have demonstrated classification 

accuracies of up to 93.8% when paired with these methods [51].  

Region-specific applications of ML models highlight the importance of tailoring predictive 

systems to local healthcare challenges. For instance, diabetes prevalence classification using 

weighted k-NN in Saudi Arabia achieved an accuracy of 94.5%, reflecting its effectiveness 

within a specific demographic context [52]. However, the scalability of such methods to 

larger and more diverse datasets has not been extensively evaluated. Similarly, variations in 

algorithm performance across datasets, such as Random Forest achieving 98.7% accuracy on 

the Germany dataset, illustrate the critical role of data quality in influencing predictive 

outcomes [53]. These examples underscore the necessity of incorporating regionally relevant 

socio-economic, cultural, and environmental factors into predictive models to improve their 

applicability and impact.  

Evaluation of predictive models requires robust metrics such as accuracy, precision, recall, 

F-measure, and area under the curve (AUC). These metrics provide detailed insights into 

model performance and facilitate systematic comparisons across methodologies. For 

example, SVM regression achieved an accuracy of 94.89% on the PIDD dataset, 

demonstrating its effectiveness in managing incomplete data through imputation [54]. 

Stacked ensemble methods combining classifiers such as SVM, k-NN, and Random Forest 

have achieved overall accuracies of 94.17%, highlighting the benefits of integrating 

complementary algorithms [55]. Dimensionality reduction techniques, such as Principal 

Component Analysis (PCA), have further enhanced model performance by simplifying high-

dimensional datasets while retaining critical information [52].  

Despite these advancements, several challenges persist in diabetes prediction. One of the 

most pressing concerns is the extensive reliance on benchmark datasets such as the PIDD, 

which constrains the generalisability of predictive models, thereby limiting their applicability 

to broader and more diverse populations. While PIDD has been widely used in AI-based 

diabetes prediction, it lacks representation of key demographic, genetic, and lifestyle 

variations that influence diabetes risk factors [55]. The absence of more inclusive and diverse 

datasets restricts the performance and accuracy of AI-driven models in clinical applications.  

Computational complexity also presents a significant challenge in the deployment of AI 

models for diabetes prediction. Advanced deep learning architectures, particularly hybrid 
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CNN-LSTM models, demonstrate superior predictive performance but demand substantial 

computational resources. These requirements limit their practical implementation in real-

world healthcare settings, particularly in low-resource environments where access to high-

performance computing infrastructure is not readily available [56]. The development of more 

efficient models capable of maintaining high predictive performance while reducing 

computational overhead remains an ongoing research priority. 

Moreover, AI-based predictive models are frequently evaluated on publicly available 

datasets rather than real-world hospital datasets, raising concerns about their clinical validity. 

The lack of large-scale validation studies limits the practical applicability of these models. 

The integration of electronic health records (EHRs) and patient monitoring data into AI 

models is crucial to improving their generalisability in real-world scenarios [57]. 

Incorporating real-world patient data would allow for a more robust assessment of model 

performance and its potential impact on healthcare decision-making. 

Finally, federated learning has been proposed as a privacy-preserving AI training method 

that allows machine learning models to be trained across multiple hospitals without sharing 

raw patient data. While this approach enhances data security, challenges related to data 

synchronisation, communication overhead, and regulatory compliance with privacy laws such 

as the General Data Protection Regulation (GDPR) and the Health Insurance Portability and 

Accountability Act (HIPAA) continue to pose barriers to its widespread adoption in 

healthcare [59]. It is essential to address these challenges in order to fully realise the potential 

of federated learning in medical AI applications. 

These challenges underscore the need for AI models that are not only accurate but also 

explainable, computationally efficient, clinically validated, and integrated with real-time 

health monitoring systems. Addressing these gaps is fundamental to ensuring the successful 

deployment of AI-driven predictive models for diabetes management. 

Another critical issue is the limited explainability of AI-driven models, which hinders their 

integration into clinical workflows. Transparent and interpretable frameworks, such as SHAP 

(Shapley Additive Explanations) and LIME (Local Interpretable Model-Agnostic 

Explanations), provide insights into how specific variables influence model predictions [60]. 

These frameworks enhance trust and usability by enabling clinicians to validate AI-generated 

recommendations and incorporate them into decision-making processes. 
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These approaches, alongside the development of region-specific predictive models that 

consider demographic and lifestyle variations, offer significant potential for enhancing 

diabetes prevention and management strategies. Furthermore, the use of advanced techniques, 

such as edge computing, can improve the efficiency of processing large-scale health data 

from wearables, thereby supporting the implementation of these innovations in practical 

clinical environments [60].  

Machine learning has provided valuable tools for disease prediction and management, with 

deep learning methods such as Convolutional Neural Networks (CNNs) being widely applied 

in diabetes prediction. These methods address the limitations of traditional statistical and ML 

models by enabling the analysis of diverse datasets, including static, dynamic, and multi-

modal data. The incorporation of CNNs with Long Short-Term Memory (LSTM) networks 

has further extended their applications in predictive healthcare systems. This review 

evaluates current research on CNNs in diabetes prediction, focusing on their applications, 

limitations, and areas requiring further improvement.  

CNNs have been employed in healthcare for processing structured datasets such as medical 

images, physiological signals, and time-series data. Their layered architecture automates 

feature extraction, reducing reliance on manual processes and enabling precise predictive 

modelling.  

One-dimensional (1D) CNNs are particularly effective for analysing sequential data, such 

as continuous glucose monitoring (CGM) readings. Jaloli et al. demonstrated that a 1D CNN 

achieved an R² value of 0.87 and a mean absolute error (MAE) of 0.32 mmol/L when 

predicting glucose fluctuations [61]. Similarly, Zhao et al. developed a 1D-CNN-based model 

for blood glucose concentration prediction using Raman spectroscopy data, achieving a root 

mean square error (RMSE) improvement of 41.89% compared to previous models, 

highlighting its effectiveness in non-invasive glucose monitoring [62]. These models perform 

well in short-term predictive tasks. However, their inability to capture long-term 

dependencies has necessitated hybrid approaches, such as combining CNNs with LSTMs 

Two-dimensional (2D) CNNs are primarily utilised in examining medical imaging data, 

such as retinal fundus images for diabetic retinopathy detection. These architectures apply 

convolutional filters across two spatial dimensions to extract features relevant to disease 

identification. Studies employing architectures such as ResNet and DenseNet have reported 
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diagnostic accuracies exceeding 90%, often comparable to expert clinicians [63]. Data 

augmentation techniques, including rotation and scaling, have been applied to address 

challenges associated with small, annotated datasets [64]. However, reliance on high-quality 

images and the inability to analyse temporal dynamics limit the broader applicability of 2D 

CNNs.  

Three-dimensional (3D) CNNs extend the capabilities of 2D models by incorporating 

volumetric data, such as MRI and CT scans. Mehmood et al. demonstrated that a 3D CNN 

achieved 92.3% accuracy in predicting insulin resistance from MRI data [65]. These models 

are particularly useful for analysing anatomical and structural factors associated with 

diabetes, but the exclusion of temporal dimensions diminishes their utility in tracking disease 

progression over time [66].  

Hybrid architectures have been developed to address the limitations of single-modality 

models. Ramazi et al. proposed a hybrid model combining CNN-extracted features with 

structured patient data, achieving superior predictive performance compared to standalone 

CNNs [67]. Lightweight CNNs optimised for edge devices have facilitated diabetes screening 

in remote areas, enhancing accessibility without compromising accuracy [68]. However, 

hybrid architectures often involve complex preprocessing and lack cohesive frameworks for 

integrating spatial, temporal, and contextual dimensions.  

Despite their utility, CNNs exhibit several limitations. A key challenge is their reliance on 

large, annotated datasets for training, which are often unavailable in resource-constrained 

settings. Data augmentation has been employed to address this issue by increasing dataset 

variability [69]. However, variability in data quality and collection protocols introduces 

biases that affect the generalisability of these models.  

The interpretability of CNN models also presents a challenge. As ‘black-box’ models, they 

do not inherently provide explanations for their predictions, limiting their acceptance in 

clinical workflows. Interpretability remains a key challenge in AI-driven diabetes prediction, 

as many models function as 'black boxes'. While techniques such as SHAP and Grad-CAM 

exist, their use in diabetes prediction is still evolving [70]. One-dimensional CNNs are 

limited in their capacity to model long-term dependencies, and 2D CNNs cannot incorporate 

temporal dynamics into their analyses [72]. Although 3D CNNs extend capabilities to 

volumetric data, their computational intensity and exclusion of temporal factors restrict their 
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broader application. Hybrid architectures provide partial solutions but often lack cohesive 

frameworks for integrating spatial, temporal, and contextual data [73]. However, if these 

challenges are addressed, CNNs hold potential as scalable and clinically relevant tools for 

managing diabetes.  

Following this progress, CNNS’ limitations in handling temporal dependencies and 

sequential data have led to the adoption of Recurrent Neural Networks (RNNs). Among 

these, LSTM networks have become a prominent architecture due to their ability to learn 

long-term dependencies while addressing the vanishing gradient problem. These networks 

have been widely utilised for processing sequential medical data, such as blood glucose 

readings and patient visit records, making them applicable for diabetes prediction [74]. This 

review examines the methodologies and applications of LSTM-based models in diabetes 

prediction, identifying their approaches, limitations, and potential areas for improvement.  

The application of LSTM in healthcare was explored by Massaro et al., who implemented 

a three-layer LSTM model to address challenges associated with small datasets [75]. By 

augmenting the PIDD with artificial data, the dataset size was expanded from 768 to 10,000 

samples. The model achieved an AUC of 89% and an accuracy of 84%. Although this study 

emphasised dataset optimisation, its reliance on a single dataset and the absence of external 

validation restricted its generalisability.  

Alex et al. introduced a four-layer deep LSTM model, addressing class imbalance through 

the Synthetic Minority Oversampling Technique (SMOTE) [76]. The model achieved an 

accuracy of 99.64% and an AUC of 0.983. The approach demonstrated high predictive 

performance; however, reliance on artificially generated data raised concerns about potential 

biases that could impact its application in more diverse datasets.  

Chowdary and Udaya proposed a Conv-LSTM model that integrated convolutional layers 

with LSTM, leveraging spatial and temporal data features [77]. Using the PIDD dataset, the 

model achieved an accuracy of 97.26%. The use of feature selection techniques such as the 

Boruta algorithm enhanced the model’s ability to identify relevant predictors. Despite this, 

the computational cost of the model and its limited validation on real-world datasets 

highlighted challenges for deployment in resource-constrained environments.  
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Rochman et al. compared the performance of LSTM and Gated Recurrent Unit (GRU) 

models on daily patient visit records from a small dataset in Indonesia [78]. Their single-layer 

GRU model outperformed the LSTM model, achieving an RMSE of 1.722 compared to 

3.376. The study underscored GRU's computational efficiency for small datasets, though its 

limited feature diversity and dataset size restricted broader applicability.  

Arora et al. utilised an LSTM model for real-time glucose prediction in Type 1 diabetes 

(T1D) patients, applying the model to the OhioT1DM dataset [79]. The model achieved an 

average RMSE of 4.02, outperforming methods such as support vector machines and feed-

forward neural networks. While the approach demonstrated the potential for integration into 

continuous glucose monitoring systems, the small sample size of six patients limited the 

applicability of the findings.  

Iacono et al. introduced a personalised LSTM (P-LSTM) model for glucose prediction in 

T1D patients [80]. Separate models were trained for individual patients using simulated data 

from the UVA/Padova simulator. The personalised approach achieved an RMSE of 7.67 

mg/dL and a FIT index of 75.86%. Despite its effectiveness in capturing individual 

variability, reliance on simulated data raised questions about its real-world relevance.  

Jaiswal and Gupta implemented a three-layer BiLSTM model for diabetes prediction [81]. 

By processing data in both forward and backward directions, the model achieved higher 

precision and recall rates compared to unidirectional LSTMs. However, the computational 

cost of the model and lack of validation on real-world datasets limited its broader application.  

Srinivasu et al. evaluated LSTM models on genomic and tabular data for Type 2 diabetes 

prediction [82]. The two-layer LSTM model processed both data types, achieving high 

accuracy metrics. However, the limited dataset size and absence of detailed performance 

comparisons restricted the study’s conclusions regarding its broader applicability.  

Alex et al. proposed a CNN-LSTM hybrid model for diabetes prediction, combining 

spatial and temporal feature extraction [83]. The hybrid model achieved improved accuracy 

over standalone LSTM and CNN models. While the integration of CNN and LSTM provided 

benefits, its computational requirements restricted scalability in practical environments.  
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Butt et al. explored the integration of LSTM with Internet of Things (IoT) systems for real-

time diabetes monitoring [84]. The proposed model achieved an accuracy of 87.26%, 

outperforming traditional algorithms like moving averages and linear regression. Despite its 

relevance for IoT-based applications, the study did not implement or validate the system in 

clinical settings.  

These studies illustrate a range of LSTM architectures, from single-layer models to deeper, 

multi-layer designs. While simpler architectures have demonstrated computational efficiency, 

more complex models incorporating features such as convolutional layers, bi-directionality, 

or class balancing have shown improved predictive accuracy Existing studies explore a range 

of LSTM architectures, from single-layer models to deeper, multi-layer designs. While 

simpler architectures provide computational efficiency, more complex models—such as those 

incorporating convolutional layers, bi-directionality, or class balancing—demonstrate 

enhanced predictive accuracy. This research introduces a novel seven-layer LSTM 

architecture, specifically designed to address the limitations of shallower models. By 

increasing model depth, our approach enhances feature extraction, improves generalisation, 

and provides greater scalability and robustness when handling complex datasets. This 

contribution represents a significant advancement over conventional LSTM architectures, 

offering a more effective framework for high-dimensional time-series prediction. 

Despite these advancements, challenges remain in the field. Most studies rely on small, 

homogenous datasets such as PIDD, limiting their generalisability to diverse populations. 

Computational complexity continues to hinder the deployment of deep LSTM models, 

particularly in resource-constrained environments. Furthermore, the lack of interpretability 

mechanisms in many studies restricts their clinical adoption. Addressing these challenges 

requires integrating explainable AI techniques, expanding dataset diversity, and exploring 

lightweight architectures to enhance scalability.  

LSTM networks, with their ability to model temporal dependencies, offer notable 

advantages over traditional machine learning methods and CNNs in diabetes prediction. By 

addressing current gaps and leveraging emerging technologies, these networks can play a 

pivotal role in advancing diabetes prediction and management, paving the way for more 

efficient, accurate, and clinically useful solutions.  
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The integration of CNNs and LSTM networks has significantly advanced the field of 

diabetes prediction by combining the strengths of both architectures. CNNs excel in 

extracting spatial features, particularly from structured and unstructured datasets, while 

LSTMs specialise in capturing temporal dependencies in sequential data. Together, these 

hybrid models provide a comprehensive framework for addressing the complexities of 

diabetes prediction. This review critically examines the state of the art in hybrid CNN-LSTM 

models, focusing on their methodologies, performance, limitations, and potential 

improvements.  

Early studies on hybrid CNN-LSTM architectures demonstrated their effectiveness in 

medical diagnostics. A foundational study in [86] combined CNN, LSTM, and Support 

Vector Machine (SVM) for heart rate variability signal classification from ECG data, 

achieving an accuracy of 95.7%. This study laid the groundwork for subsequent research but 

was limited by its focus on a single data modality. Building upon this, [87] introduced a 

fusion of CNN and BiLSTM with attention mechanisms, applied to electronic medical 

records (EMR). This model achieved an accuracy of 92.78%, a precision of 92.31%, and a 

recall of 90.46%. The incorporation of attention mechanisms improved the model’s ability to 

prioritise relevant features, enhancing its performance. However, the computational overhead 

associated with attention mechanisms posed challenges for real-time applications.  

A study in [88] applied a CNN-LSTM model to the PIDD, achieving an accuracy of 

88.47%, a precision of 94.87%, a recall of 87.78%, and an F1-score of 89.47%. While this 

work highlighted the strengths of hybrid models in handling structured datasets, it also 

emphasised the limitations associated with reliance on small, homogeneous datasets like 

PIDD. Similarly, [89] achieved an accuracy of 95.68% and a precision of 95.21% using 

PIDD. Although these studies demonstrated the utility of hybrid models, the lack of diverse 

datasets limits their generalisability to broader populations.  

Further advancements were made in [90], where a hybrid CNN-BiLSTM model was 

developed for real-time clinical settings, achieving an accuracy of 98%, a recall of 97%, and 

a specificity of 98%. This model highlighted the potential of hybrid architectures in real-time 

applications but was also limited by its reliance on PIDD. Another study in [91] applied a 

CNN-LSTM model to continuous glucose monitoring (CGM) data, achieving a mean 

absolute error (MAE) of 7.5 mg/dL for short-term glucose predictions. These findings 
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underscored the ability of hybrid models to integrate temporal and spatial data but also 

highlighted the computational demands associated with such architectures.  

The approach in [92] introduced weighted entropy-based feature selection and fuzzy 

classifiers within a CNN-LSTM framework. This method achieved improved performance 

metrics such as accuracy and recall, demonstrating the potential of feature optimisation in 

enhancing model efficiency. The work in [93] developed an ensemble model combining 

CNN and LSTM for diabetes prediction, achieving an accuracy of 98.6%. This highlighted 

the benefits of ensemble methods in improving predictive performance, but the lack of 

standard datasets limited the generalisability of the results.  

Emerging trends in hybrid CNN-LSTM research include the incorporation of attention 

mechanisms and advanced optimisation techniques. The study in [94] utilised SMOTE to 

address class imbalance, improving sensitivity in diabetes prediction. These methods enhance 

the robustness of hybrid models but also introduce additional computational complexity, 

which may limit their scalability in resource-constrained environments.  

The frequent reliance on PIDD across studies highlights the need for more diverse datasets 

that reflect the genetic, demographic, and environmental variability of different populations. 

The work in [95] proposed the use of federated learning techniques to address this issue by 

enabling collaborative model training across decentralised datasets while preserving data 

privacy. Such approaches have the potential to enhance the generalisability of hybrid CNN-

LSTM models.  

Interpretability remains a challenge for hybrid CNN-LSTM models, particularly in clinical 

applications. While deep learning models demonstrate high accuracy, their decision-making 

processes are often complex and difficult to understand. This limitation may impact their 

adoption in healthcare settings where transparency is essential. Further research is needed to 

develop models that balance predictive power with clinical interpretability. 

The scalability of hybrid CNN-LSTM models is another area of concern. Techniques such 

as model pruning, quantisation, and distributed training can reduce computational demands 

and facilitate deployment in real-world clinical settings. The integration of real-time health 

monitoring data from wearable devices also presents opportunities to enhance the timeliness 
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and accuracy of predictions, though challenges related to data standardisation and privacy 

must be addressed.  

In conclusion, hybrid CNN-LSTM models have demonstrated considerable potential in 

advancing diabetes prediction by leveraging their combined strengths in spatial and temporal 

data analysis. These models have significantly enhanced predictive accuracy and pattern 

recognition in complex clinical datasets. However, several key challenges persist, including 

dataset diversity, computational efficiency, and scalability. Addressing these issues through 

region-specific datasets, robust optimisation techniques, and improved model adaptability will 

be crucial for enhancing the clinical relevance and real-world applicability of these models. 

2.3 Chapter Summary 

integration of real-world datasets to enhance clinical applicability and patient outcomes. 

This chapter has comprehensively reviewed literature on the global and regional prevalence 

of diabetes, the limitations of traditional diagnostic methodologies, and the transition toward 

AI-based predictive models. While ML techniques have demonstrated superior accuracy in 

diabetes prediction, challenges such as dataset diversity, computational complexity, and model 

transparency persist. Future research should focus on region-specific AI models, optimised 

feature selection methods, and the integration of real-world datasets to enhance clinical 

applicability and patient outcomes. 
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3 Development and Evaluation of the Oman Prediabetes Dataset for Type 

2 Diabetes Prediction 

3.1 Chapter Introduction  

 Chapter 3 explored the development of a prediction model for Type 2 Diabetes Mellitus 

(T2DM) among prediabetes patients in Oman, aligning with the first two research objectives. 

The first objective involved evaluating the performance of seven widely used machine learning 

algorithms: K-nearest Neighbours (K-NN), Support Vector Machine (SVM), Naïve Bayes 

(NB), Decision Tree, Random Forest (RF), Linear Discriminant Analysis (LDA), and Artificial 

Neural Network (ANN). The second objective focused on developing a novel, high-quality 

clinical dataset specifically tailored for prediabetes screening in Oman. This dataset, manually 

collected for the first time, serves as a crucial resource for diabetes risk prediction within the 

Omani population. Unlike widely used public datasets such as the Pima Indian Diabetes 

Dataset (PIDD), which has limited demographic and clinical diversity, the Oman Prediabetes 

Dataset introduces a region-specific approach, ensuring greater clinical relevance and 

applicability in the Middle East. 

T2DM remains a major public health concern in Oman, contributing significantly to 

morbidity and mortality rates. Its rising prevalence necessitates early detection strategies 

supported by robust data-driven methodologies. Traditional diagnostic approaches, although 

effective, are often limited in accessibility and scalability. Therefore, this study aims to enhance 

diabetes risk prediction accuracy by leveraging a locally developed dataset and benchmarking 

its effectiveness against PIDD-based models. The Oman dataset, collected with ethical 

approval from the Ministry of Health Research Centre in Oman, comprises eleven key clinical 

features obtained from primary and secondary healthcare facilities. In contrast, the PIDD 

dataset incorporates only eight clinical variables, making the Oman dataset a more 

comprehensive tool for regional predictive modelling. 

This chapter details the methodological framework for dataset creation, preprocessing, and 

evaluation. The data pipeline consists of dataset collection from healthcare centres and 

validation through expert consultation, preprocessing techniques for handling missing values, 

outlier detection, and normalisation, feature selection methods used to enhance model 

interpretability and performance, and splitting data into training and testing sets for model 

benchmarking. To assess the dataset’s predictive utility, seven machine learning models—K-



Page 27 of 174 
 

 

NN, SVM, NB, Decision Tree, Random Forest, LDA, and ANN—are employed as evaluation 

benchmarks. Their performance is measured using accuracy, sensitivity, specificity, and 

precision metrics, analysed through a confusion matrix. 

A critical gap in existing research lies in dataset quality and preprocessing methodologies, 

which significantly impact model performance. Many previous studies have overlooked data 

noise management, outlier treatment, and region-specific feature selection, leading to 

suboptimal prediction models. By addressing these limitations, this chapter aims to enhance 

classification accuracy for T2DM predictions in Oman and bridge the gap between global and 

region-specific diabetes research. Beyond its technical contributions, this chapter introduces a 

unique, clinically validated dataset that stands as a seminal advancement in diabetes research 

for the Omani population. This dataset not only facilitates enhanced predictive analytics but 

also lays the foundation for future deep learning applications in diabetes screening, early 

prediction, and risk stratification. 

3.2 Data Collection and Sources 

The accuracy and effectiveness of predictive models in healthcare are highly dependent on 

the quality, completeness, and relevance of the datasets used for training and validation. High-

quality datasets provide diverse and representative samples that enhance model 

generalisability, ensuring accurate predictions across different populations and clinical settings 

[96]. However, publicly available datasets, such as the Pima Indian Diabetes Dataset (PIDD) 

[97], have several critical limitations that restrict their applicability in diverse healthcare 

contexts. 

The PIDD dataset is widely used in diabetes prediction research, yet it suffers from limited 

demographic diversity, a small sample size, and outdated clinical features. The dataset 

primarily includes data from female patients of Pima Indian heritage, aged 21 years and older, 

which limits its applicability to broader populations with different genetic, environmental, and 

lifestyle factors [98]. Additionally, with only 768 records, PIDD provides an insufficient data 

volume for training robust machine learning models, particularly when developing models for 

real-world clinical applications that require larger and more diverse datasets [99]. Furthermore, 

PIDD lacks key clinical features essential for modern diabetes risk prediction, including lipid 

profiles, waist circumference, and detailed family history of diabetes. The reliance on older 
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diagnostic criteria further diminishes its relevance in contemporary healthcare applications 

[100]. 

To address these challenges and develop more contextually relevant predictive models, this 

study introduces the Oman Prediabetes Dataset, a region-specific dataset designed to enhance 

the accuracy and applicability of Type 2 Diabetes Mellitus (T2DM) prediction in Oman. This 

dataset was developed in adherence to ethical and regulatory standards, with approval obtained 

from the Ministry of Health Research Centre in Oman, ensuring compliance with privacy and 

healthcare data protection regulations [102]. The dataset was collected from 21 healthcare 

facilities, comprising 4 local hospitals, 3 extended health centres, and 14 primary healthcare 

centres across the South Batinah region. The data were extracted from the Al Shifa electronic 

health record system, a comprehensive digital database widely used in Oman for healthcare 

management and patient data documentation [102]. Clinical experts verified the dataset’s 

consistency and accuracy to ensure reliability in predictive modelling applications. 

3.2.1 Data Collection Process 

The Oman Prediabetes Dataset comprises 921 patient records, of which 169 were diagnosed 

as diabetic and 752 as non-diabetic, based on diagnostic criteria established by the Ministry of 

Health, Oman [102]. These criteria align with internationally recognised standards, including: 

• Fasting plasma glucose (FPG) levels ≥7.0 mmol/L, 

• Random blood glucose (RBG) ≥11.1 mmol/L (with clinical symptoms), 

• HbA1c ≥6.5%, 

• Oral glucose tolerance test (OGTT) with a 2-hour glucose level ≥11.1 mmol/L [104]. 

A structured screening and diagnostic process was implemented to ensure consistency in 

data collection across healthcare centres. Figure 3.1 illustrates the multi-step dataset creation 

process, detailing the integration of multiple data sources such as patient registries, prediabetes 

screening forms, and electronic medical records. These sources were systematically cross 

verified to minimize inconsistencies and enhance dataset reliability [105]. 
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Figure 3.1 Oman prediabetes dataset creation 
The dataset was collected from 21 polyclinics and health centres across the South Batinah 

Governorate, encompassing 4 local hospitals, 3 extended health centres, and 14 primary health 

centres. During the data collection process, records were extracted manually from prediabetes 

registers and scoring forms. In the second stage, efforts were directed toward filling in missing 

variables and verifying data validity. Access to all patient records registered under the South 

Al Batinah General of Health Services was granted via the Al Shifa System [106]. 

Each patient’s record was analysed individually, cross-referencing hard copy data with the 

Al Shifa System to address gaps. Missing variables in the hard copy records were supplemented 

using the patient registry in Al Shifa. However, when information was unavailable in both 

sources, it was documented as an empty variable. This comprehensive process involved 

converting patient-by-patient data into an Excel format, transforming hard copy records into 

structured figures and tables, and verifying entries against Al Shifa records. The entire effort, 

which spanned six months, was carried out with guidance and support from a physician 

specializing in diabetes, who operated a prediabetes clinic. 

These features were carefully selected based on their clinical relevance to T2DM risk 

prediction, particularly within the Omani population, where genetic and lifestyle factors differ 

significantly from the cohort represented in PIDD [107]. By incorporating both male and 
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female patients across a broader age range, the dataset provides a more representative sample 

for predictive model training and validation. 

Figure 3.2 illustrates the dataset distribution between diabetic and non-diabetic cases. A 

significant proportion of the dataset consists of non-diabetic cases (752 records, ~82%) 

compared to diabetic cases (169 records, ~18%). Additionally, Figure 3.3 shows the gender 

distribution, highlighting a predominance of female patients (70%) compared to male patients 

(30%) in the dataset. These visualizations enhance the understanding of the demographic and 

clinical makeup of the dataset, further strengthening its utility for predictive modelling in 

diverse healthcare settings. 

 

Figure 3.2 Dataset distribution 
3.2.2 Ethical Considerations and Data Security 

Ethical approval for dataset development was granted by the Ministry of Health, Oman, 

ensuring compliance with data privacy regulations and ethical standards in human subject 

research [108]. Data were anonymized to protect patient confidentiality, and stringent access 

controls were implemented within the Al Shifa System to prevent unauthorized use of sensitive 

health records [109]. 

Moreover, the Al Shifa System facilitates seamless data integration across healthcare 

facilities in Oman, enhancing the consistency of data collection and validation. The platform 

adheres to stringent data protection policies established by the Omani Ministry of Health, 
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ensuring compliance with national and international standards for healthcare data security 

[110]. For further details, refer to Appendix A: Ethical Approval. 

3.2.3 Variable Selection and Dataset Features 

Table 3.1 provides an overview of the prediabetes register, a survey tool completed by all 

patients aged 20 and above who visit healthcare centres for regular check-ups. For patients 

aged 40 years or older, completing the form is mandatory under the Ministry of Health 

guidelines. The total score from this register determines an individual’s diabetes risk level. 

Patients scoring ≥8 are classified as high risk for Type 2 Diabetes Mellitus (T2DM) and are 

required to undergo further evaluation within three months by a multidisciplinary team 

comprising a diabetes specialist, a nutritionist, and a nurse. These patients are often referred 

to polyclinics or hospitals for additional laboratory investigations. This process ensures early 

intervention, which is critical to preventing the progression of diabetes. 

Table 3.1 Prediabetes register (patient data) 

 
S/N Patient Data Details Details/Notes 

1 Risk Factors First-degree relative 
with DM 
Other conditions with 
insulin resistance* 
H/O CVD** 
HTN on therapy or BP 
>140/90 
HDL < 0.90 mmol/L or 
TAG ≥2.82 mmol/L 
Women with PCOS*** 
Physical inactivity 
History of GDM**** 

*Includes severe obesity or acanthosis nigricans 
**History of cardiovascular disease 
***Polycystic ovary syndrome 
****Gestational diabetes history 

2 Examination Blood Pressure (BP-R, 
BP-L) 
Height (cm) 
Weight (kg) 
BMI 
Waist circumference 
(cm) 

BP: Measured on Right and Left sides 
BMI: Body mass index calculated from weight and height 

3 Laboratory 
Tests 

Fasting Blood Sugar 
(FBS) 
Cholesterol 
Triglycerides (TAG) 
LDL 
Creatinine 
Estimated GFR (eGFR) 
HbA1C 
Oral Glucose Tolerance 
Test (OGTT) 

FBS: 1st reading and repeat if necessary 
eGFR calculated using MDRD formula 
Risk score based on WHO/ISH prediction chart 
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Cardiovascular Risk 
Score 

4 Problem 
List 

Pre-DM 
Pre-HTN* 
Obesity 
Central obesity 
Renal impairments 
Dyslipidaemia 

Problems identified during diagnosis and evaluation 

5 Disease 
Transfer 

Diabetes Mellitus (DM) 
Register 
Hypertension Register 
(HTR) 
Other (Specify) 

For patients requiring transfer to specialized registries or 
additional care 

 
Table 3.2 outlines the Diabetes Mellitus Scoring Form, which is designed to assess an 

individual’s risk of developing diabetes based on key health and lifestyle factors. The scoring 

system incorporates demographic variables (such as age and gender), clinical risk factors, 

and lifestyle behaviours (including physical activity and body weight). Based on the total 

score, patients are categorised into different risk levels, determining the recommended follow-

up frequency: 

• Total Score < 5: Annual follow-up is advised. 

• Total Score ≥ 5 and < 8: Semi-annual follow-up (every six months) is recommended. 

• Total Score ≥ 8: Follow-up every three months, including a comprehensive clinical 

evaluation by a multidisciplinary healthcare team consisting of a diabetes specialist, 

nutritionist, and nurse. 

Table 3.2  Diabetes Mellitus Scoring Form 
 
Symbol Screening Question Response Options Score 

1 How old are you? <40 years 
40–49 years 
50–59 years 
≥60 years 

0 
1 
2 
3 

2 Are you a man or a woman? Woman 
Man 

0 
1 

3 If you are a woman, have you been diagnosed with gestational 
diabetes? 

Yes 
No 

1 
0 

4 Do you have a mother, father, sister, or brother with diabetes? Yes 
No 

1 
0 

5 What is your blood glucose level currently? ≥5.6 and <6.1 mmol/L 0 
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≥6.1 and <7.0 mmol/L 1 

6 Are you physically active (30 minutes/day, 5 days/week)? Yes 
No 

0 
1 

7 What is your weight category? Normal weight 
Overweight 
Obese 
Morbidly obese 

0 
1 
2 
3 

 

The Oman Prediabetes Dataset incorporates eleven clinical features, summarised in Table 

3.3. These include a combination of categorical and numerical variables selected for 

their clinical relevance to T2DM risk prediction, particularly within the Omani population. 

Features like waist circumference, which replaces triceps skin-fold thickness in the PIDD 

dataset, were added to address specific regional and clinical differences. 

Table 3.3 Oman Prediabetes Dataset Features 

Symbol Feature Type 

1 Gender Categorical 

2 Age Numeric 

3 Risk Factor (0–8) Categorical 

4 Diastolic Blood Pressure (mmHg) Numeric 

5 Height (m) Numeric 

6 Weight (kg) Numeric 

7 Waist Circumference (cm) Numeric 

8 Total Cholesterol (mmol/L) Numeric 

9 Fasting Plasma Glucose (mmol/L) Numeric 

10 HbA1c Numeric 

11 Outcome Categorical 

 
The variables in the Oman Prediabetes Dataset were carefully chosen in consultation 

with clinical experts and based on Omani diagnostic guidelines for diabetes. A patient is 

referred to a diabetes clinic if they meet any of the following criteria: 

• Fasting Plasma Glucose (FPG) ≥ 7.0 mmol/L (most commonly used in well-being 

clinics). 

• Random Blood Glucose (RBG) ≥ 11.1 mmol/L (rarely used). 

• HbA1c ≥ 6.5% in two separate readings within a three-month interval. 
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The dataset includes variables relevant to T2DM risk factors, such as age, gender, family 

history of diabetes, hypertension, dyslipidaemia, and insulin resistance. The inclusion of waist 

circumference instead of triceps skin-fold thickness (found in the Pima Indian Diabetes Dataset 

(PIDD)) ensures better assessment of obesity-related risks, which is particularly relevant in the 

Middle Eastern population. 

3.2.4 Comparison with the Pima Indian Diabetes Dataset (PIDD) 

The Oman Prediabetes Dataset incorporates a broader and more comprehensive set of 

variables compared to the Pima Indian Diabetes Dataset (PIDD), making it a superior resource 

for predictive modelling in diverse populations. Table 3.4 summarises the differences between 

the two datasets, highlighting the Oman dataset’s enhanced representativeness and clinical 

relevance. 

Table 3.4 Comparison with the Pima Indian Diabetes Dataset (PIDD) 

Feature Oman Prediabetes Dataset PIDD Dataset 

Gender Included (Male/Female) Not Included (Female Only) 

Age Included Included 

Risk Factor (0–8) Included (Family history, lifestyle, and 
medical conditions) 

Not Included 

Diastolic Blood Pressure 
(mmHg) 

Included Included 

Height (m) Included Not Included 

Weight (kg) Included Not Included 

Waist Circumference (cm) Included (Clinically relevant for abdominal 
obesity) 

Not Included (Uses Skin-Fold 
Thickness) 

Total Cholesterol (mmol/L) Included (Critical biomarker for 
cardiovascular risk) 

Not Included 

Fasting Plasma Glucose 
(mmol/L) 

Included Included 

HbA1c Included (Aligned with modern diagnostic 
standards) 

Not Included 

Skin Thickness (mm) Not Included Included 

Insulin (2-h Serum Insulin) Not Included (Impractical for large-scale 
screening) 

Included 

BMI (kg/m²) Included Included 

Diabetes Pedigree Function Not Included Included 

Outcome Included (Diabetic/Non-Diabetic) Included 

 
 The Oman dataset addresses several limitations of PIDD by introducing broader 

demographic representation, enhanced clinical features, and modern biomarkers. Unlike the 
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PIDD dataset, which exclusively includes female patients of Pima Indian heritage aged 21 

years or older, the Oman dataset encompasses both genders and spans a wider age range, 

making it more inclusive and relevant to the Middle Eastern population [111], [112]. This 

diversity ensures that predictive models developed using the Oman dataset are not biased 

toward a single demographic, as seen in PIDD. 

The Oman dataset integrates advanced clinical markers such as HbA1c and total cholesterol, 

which are critical for assessing diabetes risk but are absent in PIDD [113], [114]. Furthermore, 

the replacement of skin-fold thickness with waist circumference offers a more accurate and 

clinically accepted measure of obesity, particularly relevant in regions like the Middle East, 

where abdominal obesity is a significant risk factor [115]. The inclusion of a comprehensive 

risk factor score (0–8), which considers family history of diabetes, physical inactivity, and 

hypertension, further strengthens the dataset’s capability to identify individuals at risk [116]. 

These features are entirely missing in PIDD, limiting its utility for modern diabetes risk 

assessment. 

While PIDD includes features like skin thickness and diabetes pedigree function, these are 

either less clinically relevant or redundant in modern diabetes risk prediction models [101]. 

Features like 2-hour serum insulin, though included in PIDD, are often impractical due to the 

invasive nature of their measurement, making them less suitable for widespread screening 

[117]. 

The significance of these differences is highlighted in Figure 3.2, which provides insights 

into the demographic composition of the Oman dataset. It shows that 82% of the patients are 

non-diabetic, while 18% are diabetic. Additionally, the dataset exhibits a gender distribution 

of 70% female and 30% male patients. These visual insights emphasize the inclusivity and 

clinical relevance of the Oman dataset, which makes it a superior resource for predictive 

modelling compared to PIDD. 

By addressing the limitations of PIDD, such as its demographic specificity and outdated 

features, the Oman dataset provides a robust foundation for developing machine learning 

models tailored to diverse populations. The inclusion of gender diversity, modern biomarkers, 

and regionally relevant features positions the Oman dataset as a superior tool for advancing 

diabetes research and prevention strategies [118]. Its alignment with global clinical standards 
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ensures that it meets the demands of modern healthcare applications, making it a valuable asset 

for improving diabetes prediction and management [119]. 

3.3 Data Processing and Cleaning  

 The processing data are essential for exploratory statistical analysis and further investigation 

of the model training phase. The more relevant data are processed, the more it would impact 

the feature analysis and produce a better predictive result at the time of the training data and 

testing. The following processes were applied: 

a) Finding Missing Values from the Dataset  

The Oman dataset presented in Figure 3.3a shows that gender has no missing value, but 

waist circumference and the H1bA1c have more missing values than the other categories. 

While processing the PID dataset, it was observed that there was no such missing data from 

the process see Figure 3.3b. Therefore, half of the operations were skipped as it had all the 

necessary data in the feature.  

 

Figure 3.3 Total missing values in Oman dataset and Pima Indian dataset. (a) Oman dataset, 

(b) Pima Indian dataset 

The First Step Was for Data to Merge with Similar Categories The data gender value was a 

merger of two categories {‘female’} {‘male’} instead of four categories: {‘Female’} 

{‘Male’}{‘female’},{‘male’}. After that, the categorial values were converted to numeric by 
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using Group to index value, which helps to group absolute values into an index value. For 

gender, male is 1 and female is 2. The second step was filling in the missing values.  

By using the “Ismissing” method [120], data were first analysed by running a check counter, 

which has missing data, i.e., (“, ‘.’,’ Na’,’ NAN’), which are based on empty. The data 

representing these values are counted, and those particular data are selected in the row missing 

data, specifying which element of input data contains a missing value and the number of 

missing values (see Figure 3.4). Then, the “Fillmissing” process [121] with respect to the 

nearest methods was applied to each feature individually. Therefore, the NAN section is filled 

with the closest no-missing value. 

 

Figure 3.4 Rows with missing values 

b) Exploratory Data Analysis.  

For the statistical operation, the data are evaluated with the individual parameter based on 

the categorical grouping and providing a statistical result based on the histogram. Histograms 

are useful for illustrating the distributional characteristics of dataset variables. It is possible to 

observe where the distribution peaks are, whether the distribution is symmetric or skewed, and 

whether there are any outliers. Histograms also help to view the possible outliers. 

Figures 3.5 and 3.6 show a frequency distribution analysis of both datasets for features to 

respond for validation sent into a class of diabetic diagnosis system. Each bar covers one set 

of the range, and the height indicates the number of sizes in each phase range. The field of the 

problem we are trying to solve requires loads of related features.  
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Since the PID dataset is an open and accessible resource, we cannot currently eliminate or 

generate any more data. In the dataset, we have the following features: ‘Skin Thickness’, 

‘Blood Pressure, ‘Insulin’, ‘BMI’, ‘Diabetes Pedigree Function’, ‘Pregnancies’, ‘Glucose’, and 

‘Age’. We may infer that ‘Skin Thickness’ is not an indication of T2DM based on a simple 

observation. Nevertheless, we must acknowledge that it is unusable at this point. Based on 

Figure 3.5, weight and cholesterol maximum were removed and filled with the nearest 

methods.  
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Figure 3.5 Distribution analysis for Oman dataset 
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Another comparison is based on the boxplot. In this, the distribution of each feature is based 

on the outcome determined from the dataset. A box plot visualises summary statistics for 

sample data and can easily highlight the outliers for each parameter (see Figure 3.7). The box 

length signifies the interquartile range, and the whiskers’ sizes relative to the box’s length 

indicate how stretched out the rest of the values are. Thus, these aspects of the diagram provide 

a picture of the dispersion of the dataset. Skewness seems acceptable (<2), and it is also likely 

that the confidence intervals of the means are not overlapping. Therefore, a hypothesis that 

glucose is a measure of outcome is expected to be accurate but needs to be statistically tested. 

Some people have low, and some have high BP. Thus, the association between diabetes 

(outcome) and BP is suspect and needs to be statistically validated. Like BP, people who do 

not have diabetes have lower skin thickness. This is a hypothesis that has to be validated. As 

data of non-diabetic is skewed, diabetic samples seem to be normally distributed.  

   

 
Figure 3.6  Distribution analysis for PID dataset 
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Figure 3.7  Boxplot distribution for the Oman dataset based on the outcome. 

 

c) Fill the Outlier in the Data. The outlier is a value that deviates considerably from the 

dataset’s general trend. Box plots are a simple way to visualise data through quantiles and 

identify outliers. Interquartile range (IQR) is the basic mathematics behind boxplots. The top 

and bottom whiskers consider the boundaries of data, and any data lying outside are outliers. 

The length of the box, the interquartile range, and the whiskers’ lengths relative to the box’s 

length give an idea of how stretched out the rest of the values are. Thus, these aspects of the 

diagram give a picture of the dispersion of the dataset. Skewness appears to be acceptable (<2), 
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and it is also probable that the means’ confidence intervals do not overlap. Consequently, it is 

assumed that the hypothesis that glucose is a measure of outcome is valid, but it must be 

statistically tested. People might have low or high blood pressure. Therefore, the association 

between diabetes (outcome) and BP is questionable and requires statistical validation. Like 

those without hypertension, those without diabetes have thinner skin. This is a theory that must 

be validated. While non-diabetic data are skewed, diabetes samples appear to have a normal 

distribution. The outliers were processed using “Filloutlier” with mean and nearest method 

[122]. The results of outliers before and after removing both dataset’s outliers are shown in 

Figure 3.8.  

 
Figure 3.8 Outlier processing for both datasets with and without outlier. 

The Data Scaling Was Applied for All Machine Learning Algorithms and ANN Using a Z-

Score That Centred the Data to a Standard Deviation of 1 and a Mean of 0. The dataset’s 

interquartile range (IQR) describes the content of the middle 50% of values when the values 

are sorted. If the data median is in Q2, the median of the lower half of the data is in Q1, and 



Page 43 of 174 
 

 

the median of the upper half of the data is in Q3, then IQR = Q3−Q1 [122]. Scaling was applied 

for all machine learning algorithms and ANN using a z-score that centred the data to a mean 

of 0 and a standard deviation of 1. The dataset’s interquartile range (IQR) describes the content 

of the middle 50% of values when the values are sorted. If the data median is in Q2, the median 

of the lower half of the data is in Q1, and the median of the upper half of the data is in Q3, then 

IQR = Q3 − Q1 [122].  

3.4 Training and Validation Datasets 

Data Splitting: For effective training of datasets, partitioning the data into training and 

testing sets is a critical step. This division was conducted using the "cvpartition" function [123], 

following the holdout method, resulting in an allocation of 80% of the data for training 

purposes and the remaining 20% for testing. This partitioning method was uniformly applied 

across the datasets, including in the training of the Artificial Neural Network (ANN) model, as 

detailed in Table 3.5. The K-fold cross-validation technique was also employed, where the 

dataset is divided into K equal parts, termed "folds". In this technique, each fold is alternately 

utilized as the testing set, while the remaining folds are combined to form the training set, as 

illustrated in Figure 3.9. This procedure is repeated K times, with each iteration using a 

different fold as the testing set. The average testing accuracy from these iterations is calculated 

to represent the overall testing accuracy of the model [124]. 

Table 3.5 Splitting the dataset 

Dataset Total Percentage 

Training 737 80% 

Testing 184 20% 
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Figure 3.9  K-fold-Cross-validation 
Implementation Using Machine Learning Algorithms: The implementation phase utilized 

MATLAB (version 2021b) software and its command-line coding capabilities to develop a 

total of seven models using the Oman dataset. These included an ANN and a range of machine 

learning algorithms: K-nearest Neighbourss, support vector machine, naive Bayes, decision 

tree, random forest, and linear discriminant analysis. For testing these models, including the 

ANN, MATLAB's "predict" function was used. A confusion matrix was employed to assess 

the models’ performance, illustrating the correlation between the predicted classes and the 

actual classes, which were categorised as 0 for non-diabetes and 1 for diabetes. The matrix 

effectively compares the valid class, representing the actual data, with the predicted class, 

indicating the prediction accuracy of each algorithm. 

The use of the confusion matrix was extended to all models, with further visualization 

provided in Figures 3.10–3.15. This approach enabled a comprehensive analysis of the 

prediction accuracy of each algorithm by comparing the predicted and actual classes. The valid 

class in these figures represents the real data, while the predicted class demonstrates the 

performance of each algorithm in terms of its accuracy in predictions. 

Therefore, the division of the dataset into training and testing sets, complemented by the 

application of K-fold cross-validation, is crucial for effective model training and validation. 

The deployment of MATLAB and its functionalities allowed for the development and 

assessment of a variety of machine learning models. The confusion matrix emerged as a key 
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tool for quantitatively evaluating the prediction accuracy of these models, facilitating a detailed 

assessment of their performance in distinguishing between non-diabetes and diabetes cases in 

the dataset. 

3.5 Performance evaluation and results  

Seven classification algorithms were applied to the datasets, and the results were evaluated 

based on accuracy, sensitivity, specificity, and precision. Generally, the outcomes were slightly 

different as each algorithm’s working criteria differed. The accuracy of the models was 

predicted with the help of a confusion matrix, as shown in Figures 3.10–15. The results showed 

that the random forest and decision tree algorithms had the best classification results. 

• The classification models are assessed using the metric of accuracy. Formally, accuracy 

is the percentage of accurate predictions made by our model. The accuracy is defined as shown 

below [125] and was measured in terms of positives and negatives:  

Accuracy = ("#$"%)
("#$"%$'#$'%)	

× 	100  

where TP = true positives, TN = true negatives, FP = false positives, and FN = false negatives 

• Sensitivity is a metric that evaluates a model’s ability to predict a true positive for each 

available category. This measure determines the proportion of positive diabetes cases predicted 

correctly [125]  

Sensitivity = ("#)
("#$'%)	

× 	100 

where TP = true positives and FN = false negatives. 

 

• Specificity is the metric that evaluates a model’s ability to predict a true negative for 

each available category; it determines the proportion of actual negative cases predicted 

correctly [126]. 

Specificity = ("%)
("%$'#)	

× 	100  

                   where TN = true negatives and FP = false positives. 
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• Precision is the proportion of true positives to all the positives; it refers to the percentage 

of relevant results and is a useful metric when false positives are more important than false 

negatives [126]. 

Precision = ("#)
("#$'#)	

× 	100  

              where TP = true positives and FP = false positives. 

By using the equations above, the performance of the various classification models can be 

compared, as shown in Table 3.6.  

Table 3.6 Performance results 

Model Accuracy 
(%) 

Sensitivity 
(%) 

Specificity 
(%) 

Precision 
(%) 

K-nearest neighbours 92.39 94.44 77.27 90.0 

Support vector machine 96.74 98.68 87.88 83.71 

Naive Bayes 96.74 98.1 88.46 87.08 

Decision tree 98.37 100.0 92.11 80.66 

Random forest 98.37 98.01 84.85 84.1 

Linear discriminant analysis 96.19 98.71 82.76 86.44 

Artificial neural networks 97.3 93.33 97.96 93.9 
 

Accuracy Analysis Using Confusion Matrix:  

a) K-Nearest Neighbours (K-NN) Is an Example of this Type of Supervised ML 

Algorithm. It is applicable to both classification and regression problems. K-NN classification 

relies on nearby feature space to classify samples. The K-NN algorithm’s default performance 

is illustrated in Figure 10’s confusion matrix. Of the 184 cases tested, the test identified 17 

patients and 153 healthy subjects correctly. Therefore, the accuracy of the test was equal to 170 

divided by 184 (92.39%).  
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Figure 3.10  K-NN confusion matrix. 

b) The Support Vector Machine (SVM) The Support Vector Machine (SVM) Works on 

the Margin Calculation Concept. It draws margins between the classes. The margins are 

removed so that the distance between the margin and the types is at a maximum and minimises 

the classification [127]. As illustrated in Figure 11, of the 184 cases that were tested, the test 

determined 29 patients and 149 healthy subjects correctly. Therefore, the accuracy of the trial 

was equal to 96.74%. 

 
Figure 3.11 SVM confusion matrix 

c) Naive Bayes Mainly Targets the Text Classification Industry. It is primarily used for 

clustering and classification purposes [128]. The underlying architecture of naive Bayes 

depends on conditional probability. It creates trees based on their likelihood of happening. 

These trees are also known as Bayesian networks. As shown in Figure 12, of the 184 cases that 

were tested, the test correctly determined 23 patients and 155 healthy subjects. Therefore, the 

accuracy of the trial was equal to 96.74%. 
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 Figure 3.12 NB confusion matrix. 

d) Decision Tree (DT) is a Supervised ML Method to Solve Classification, Prediction, and 

Feature Selection Problems. It aims to predict the target class based on the rules learned from 

the specified dataset. As a result of the 184 cases shown in Figure 13 that were tested, the test 

correctly determined 35 patients and 146 healthy subjects. Therefore, the accuracy of the trial 

was equal to 98.37%. 

 

     Figure 3.13 DT confusion matrix. 

e) Random Forest (RF) is a Supervised Machine Learning Algorithm Used Widely in 

Classification and Regression Problems. It builds decision trees on different samples and takes 

their majority vote for classification and their average in case of regression. As presented in 

Figure 14, of the 184 subjects tested, the test correctly determined 29 patients and 152 healthy 

cases. Therefore, the accuracy of the test was equal to 181 divided by 184 (98.37%). 
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Figure 3.14 RF confusion matrix. 

f) Linear Discriminant Analysis Is a Statistical Technique that Can Classify Individuals 

into Mutually Exclusive and Exhaustive Groups Based on Independent Variables [129]. In this 

model, as shown in Figure 15, of the 184 cases tested, the test determined 24 patients and 153 

healthy subjects correctly. Therefore, the accuracy of the trial was equal to 177 divided by 184 

(96.19%). 

 

Figure 3.15 LDA confusion matrix. 

g) The Conventional Artificial Neural Network (ANN) Consists of Layers and Weights. 

The behaviour of a network is dependent on communication between its nodes. ANN typically 

comprises three layers: 

• Input layer: Receiving the network’s raw data input. 
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• Hidden layer: The functioning of a hidden layer is defined by the inputs and the weight 

of the connections between them and the neuron in the hidden layer. These connection weights 

decide whether a neuron in the hidden layer must be active or inactive. 

• Output layer: The operation of this layer is determined by the outputs of the neurons in 

the hidden layer and the connection weight between these neurons and the neurons in the output 

layer. 

 

Figure 3.16 ANN supervised architecture proposed. 

The proposed structure of an artificial neural network, as shown in Figure 3.16, has an input 

layer with 11 features; two hidden layers, each with ten neurons; and one output layer with two 

outputs, diabetes and non-diabetes. A few hidden layers were used to avoid the overfitting 

problem because the datasets were small. A sigmoid activation function was applied to this 

model. It used a two-factor level function that set all input values in the values in range from 0 

to 1. By using cross-entropy, the model’s performance considers the probability in a log of data 

points [130]. The highest accuracy achieved by this model reached 97.3%, as shown in the 

confusion matrix in Figure 17b, presenting the training, validation, test, and overall matrix. The 

accuracy achieved by the dataset’s training, validation, and testing was 97.6%, 97.4%, and 

95.7%, respectively. The overall combined accuracy was 97.3%. In Figure 17d, the gradient 

decreased to a performance of 0.047062 and epoch number 49. This decrease means that the 

model was performing well up to this point, and the increase indicated the start of an overfitting 

problem. Another evaluation showcases the error histogram in Figure 17c, which has an error 
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rate with a loss of the range −0.049 value. This describes the quality of the data processor and 

the target achieved by the evaluation. 

 

Figure 3.17 ANN results 

3.6 Discussion 

The results of this study are best understood when considered in relation to prior research, 

particularly those employing the Pima Indian Diabetes (PID) dataset, which is publicly 

available from the University of California data repository [101]. This dataset has been 

extensively used in machine learning research as a benchmark for diabetes classification 

models. The comparative analysis of similar studies is presented in Table 3.6. 

Previous research using the PID dataset reports that the highest classification accuracy 

achieved was 94% with a random forest algorithm and 88% with a decision tree classifier [46]. 
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In contrast, the proposed methodology in this study demonstrates an improved performance, 

achieving an accuracy of 98.37% using both the random forest and decision tree 

algorithms when applied to the Oman dataset. One of the primary reasons for this improved 

classification performance is the nature of the dataset employed in this study, which is 

significantly larger and incorporates a broader range of diagnostic features compared to the 

PID dataset. The PID dataset consists of only eight features and 768 cases, whereas the dataset 

in this study includes eleven additional clinical characteristics, offering a richer representation 

of patient data. 

Furthermore, model optimisation played a crucial role in enhancing performance. 

Hyperparameter tuning was systematically applied to all algorithms to identify the most 

effective configurations. For example, in the k-nearest neighbours (KNN) method, the 

parameter kk was varied between one and five to determine the optimal value. Similarly, in 

the artificial neural network (ANN) model, a strong correlation was observed between the 

number of hidden layer neurons and classification accuracy. To achieve the best possible 

accuracy, the optimal number of neurons was identified through systematic experimentation. 

These adjustments contributed to the observed improvement in predictive performance. 

A comparative evaluation of diabetes classification models is presented in Table 3.7, 

which contrasts the performance of various models when trained on the PID dataset and the 

Oman dataset. The results indicate that all models performed better when applied to the Oman 

dataset, which can be attributed to the inclusion of additional clinically relevant features and 

the size of the dataset. 

Table 3.7 Comparative performance of our proposed method against the state-of-the-art studies 

on the same dataset 

Model PID Dataset % Oman Dataset % 

K-nearest Neighbours (KNN) [52, 53] 94.5 92.39 

Support Vector Machine (SVM) [54] 94.89 96.74 

Naïve Bayes (NB) [47] 76.30 96.73 

Decision Tree (DT) [46] 94.00 98.37 

Random Forest (RF) [46, 53] 94.00 - 98.7 98.37 

Linear Discriminant Analysis (LDA) [42, 44] 85.00 - 96.19 96.19 

Artificial Neural Network (ANN) [ 131, 83] 96.0-97.26 97.3 
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A further investigation was conducted to assess the impact of feature selection on 

classification accuracy. Table 3.8 presents the performance evaluation of models when trained 

on two different feature sets: the first feature set, which contained the eight clinical features of 

the PID dataset, and the second feature set, which included eleven additional features based on 

the Oman diagnostic method. The results demonstrate that increasing the number of features 

led to improved classification accuracy across all models. 

Table 3.8 Performance evaluation of the proposed method on both datasets. 
 
Model PIDD 

Features 
PIDD 
Accuracy 
(%) 

Oman 
Features 
(First Set) 

Oman 
Accuracy 
(First Set) 
(%) 

Oman 
Features 
(Second Set) 

Oman 
Accuracy 
(Second Set) 
(%) 

K-nearest Neighbours 8 75.1 8 84.2 11 92.39 

Support vector 
machine 

8 78.4 8 85.3 11 96.74 

Naive Bayes 8 77.1 8 87.5 11 96.74 

Decision tree 8 71.89 8 80.9 11 98.37 

Random forest 8 76.47 8 85.3 11 98.37 

Linear discriminant 
analysis 

8 77.7 8 86.95 11 96.19 

Artificial neural 
networks 

8 78.1 8 86.0 11 97.3 

 

Beyond accuracy, computational efficiency was also assessed. Table 3.9 provides a 

comparison of training time and prediction speed across different models when applied to the 

PID and Oman datasets. The results indicate that decision trees and naïve Bayes models 

exhibit faster prediction speeds, making them more suitable for real-time applications. 

However, random forest classifiers, despite their higher computational overhead, consistently 

achieved the highest classification accuracy. Support vector machines, although effective in 

terms of accuracy, imposed a significant computational cost, particularly when applied to 

larger datasets. 
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Table 3.9 Comparison of time complexity and models training speed 
 

Model PID Prediction 
Speed 

PID Training 
Time (s) 

Oman Prediction 
Speed 

Oman Training Time 
(s) 

K-nearest Neighbours ~24,000 obs/s 0.53 ~15,000 obs/s 0.61 

Support vector machine ~18,000 obs/s 54.72 ~19,000 obs/s 0.54 

Naive Bayes ~26,000 obs/s 0.65 ~15,000 obs/s 0.93 

Decision tree ~58,000 obs/s 0.44 ~22,000 obs/s 1.07 

Random forest ~7,000 obs/s 1.44 ~6,500 obs/s 1.67 

Linear discriminant analysis ~35,000 obs/s 0.78 ~17,000 obs/s 0.93 

Artificial neural networks ~12,000 obs/s 1.93 ~12,000 obs/s 1.93 
* obs/s: Number of observations processed per second. 

While training the model, feature importance analysis was conducted to assess the 

relevance of individual predictors. The results revealed that HbA1c and glucose levels were 

the most influential predictors in the Oman dataset, whereas glucose levels alone were the 

dominant predictor in the PID dataset. The drop in feature importance between the first and 

second most influential predictors was found to be significant, whereas the decrease after 

the sixth predictor was relatively minor. This suggests that the software was highly confident 

in selecting the most critical predictors, while additional features contributed marginally to 

classification performance. The top five most important predictors were ultimately selected, as 

depicted in Figure 3.18. 

The analysis indicates that feature selection plays a crucial role in model optimisation. 

The inclusion of clinically relevant features enables machine learning models to achieve higher 

predictive accuracy, aligning with existing medical knowledge and enhancing the 

interpretability of the results. The implications of this study suggest that expanding dataset size, 

incorporating additional diagnostic features, and systematically optimising machine learning 

models can significantly enhance the predictive accuracy of diabetes classification systems. 
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Figure 3.18 Comparative Performance of the Proposed Method in Both Datasets 

 

These findings contribute to the broader discussion on the application of machine learning 

in clinical decision support systems, reinforcing the potential of data-driven methodologies to 

improve diagnostic accuracy and patient outcomes. 

 

3.7 Chapter Summary 

This chapter focuses on the development and validation of a region-specific dataset, 

the Oman Prediabetes Dataset, and the Oman Screening Dataset, both of which were 

designed to reflect Oman's demographic and clinical characteristics. The chapter details the 

methodological process of creating these datasets, including data collection, preprocessing, 

and validation. A key objective was to ensure high data quality through robust preprocessing 

techniques, such as normalisation, handling of missing values, and outlier detection, to 

maintain a data completeness and accuracy rate of ≥95%. These datasets address limitations 

observed in commonly used datasets such as the Pima Indian Diabetes Dataset (PIDD) by 
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incorporating a broader range of clinical and demographic variables that are more 

representative of the Omani population. 

A crucial aspect of this study involved benchmarking traditional machine learning models, 

including Random Forest, Support Vector Machine (SVM), and Naïve Bayes, to 

establish baseline performance metrics. The effectiveness of these models was evaluated 

using key performance indicators such as sensitivity, specificity, accuracy, and F1-score, with 

an aim to achieve a baseline accuracy of ≥80% across both datasets. Comparative analysis 

demonstrated that all models performed better on the Oman dataset than on PIDD, 

with Random Forest and Decision Tree achieving the highest classification accuracy of 

98.37%. 

The study highlights the advantages of expanding the feature set and optimising model 

parameters, which significantly contributed to improved classification accuracy. It was 

observed that the inclusion of additional clinically relevant features in the Oman dataset 

enhanced predictive performance across all models. Furthermore, computational efficiency 

was examined, revealing trade-offs between model complexity, training time, and prediction 

speed. Decision trees and Naïve Bayes demonstrated faster prediction speeds, making them 

more suitable for real-time diabetes screening applications, whereas ensemble models like 

Random Forest, despite being computationally intensive, provided higher classification 

accuracy. 

Feature importance analysis revealed that HbA1c and glucose levels were the most 

influential predictors in the Oman dataset, while glucose remained the dominant predictor in 

the PID dataset. The results underscore the importance of clinically relevant feature selection, 

ensuring that predictive models retain maximal accuracy while reducing computational 

complexity. 

This chapter establishes a strong foundation for diabetes prediction models in the Omani 

population by integrating region-specific clinical data and machine learning techniques. It 

paves the way for future advancements, including the exploration of deep learning 

architectures such as Convolutional Neural Networks (CNNs) to further enhance predictive 

accuracy. The subsequent chapter will introduce a new dataset for diabetes screening in 

Oman and propose a novel CNN model architecture to achieve the research objectives of 

developing a high-performance diagnostic system for diabetes prediction in Oman. 
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4 1D CNN for Structured Data Model and Oman Screening Dataset 

4.1  Chapter Introduction 

This chapter presents an in-depth exploration of the 1D Convolutional Neural Network (1D 

CNN for Structured Data) model, a deep learning framework designed to enhance early 

detection of Type 2 Diabetes Mellitus (T2DM). The study introduces the development, 

implementation, and evaluation of the model, focusing on its architecture, feature extraction 

capabilities, and classification performance when applied to structured medical data. The 

model is trained and validated using the Oman Screening Dataset, a region-specific dataset that 

ensures clinical relevance and improved generalisability for AI-driven diabetes prediction. 

The chapter also provides a comparative analysis of the 1D CNN for Structured Data model 

against conventional machine learning models such as Random Forest, Decision Trees, and 

Support Vector Machines. The evaluation highlights the advantages of deep learning in 

structured data classification, particularly in automated feature extraction, improved 

classification accuracy, and better representation of hierarchical feature relationships. Unlike 

traditional machine learning models that require manual feature selection, the CNN approach 

autonomously identifies patterns and interactions between clinical parameters, reducing bias 

and enhancing predictive accuracy. 

The significance of applying CNNs to structured medical datasets lies in their ability to 

capture complex dependencies between clinical indicators. Traditional diagnostic methods rely 

on predefined statistical models, which may not fully represent the intricate relationships 

between risk factors such as BMI, blood pressure, cholesterol, and glucose levels. The CNN-

based approach leverages convolutional operations to recognise both low-level and high-level 

patterns in structured data, allowing for improved disease risk assessment and prediction. This 

method offers a more scalable and generalisable solution for clinical applications, extending 

beyond diabetes prediction to other areas such as cardiovascular disease risk assessment, 

metabolic syndrome analysis, and personalized treatment recommendations. 

To ensure that the 1D CNN model effectively learns from structured data, extensive 

preprocessing of the Oman Screening Dataset is performed. This includes normalisation, 

outlier detection using Z-score analysis, categorical encoding, and feature selection techniques. 

The dataset, developed through a rigorous validation and screening process, provides a 

comprehensive representation of the Omani population, enhancing the model’s ability to detect 

region-specific risk factors. By applying deep learning to structured medical records, the study 
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aims to bridge the gap between traditional statistical models and AI-driven predictive analytics, 

paving the way for more accurate and reliable clinical decision-making. 

The chapter is structured to provide a comprehensive analysis of the model’s architecture, 

training methodology, and performance evaluation. The discussion begins with an overview of 

the CNN model’s layer-wise structure, explaining its convolutional layers, activation functions, 

fully connected layers, and classification mechanisms. This is followed by an examination of 

the training and validation process, where the dataset is partitioned into training, validation, 

and testing subsets to optimise model performance. The CNN’s classification accuracy, 

sensitivity, specificity, and F1-score are analysed to assess its effectiveness in diabetes 

prediction, demonstrating significant improvements over traditional machine learning 

classifiers. 

This research contributes to advancing AI-driven medical diagnostics by demonstrating the 

potential of deep learning in structured clinical data analysis. By automating feature extraction 

and learning hierarchical representations, CNN models provide a scalable and efficient solution 

for disease prediction. The insights gained from this study emphasize the transformative impact 

of AI in healthcare, particularly in preventive screening and risk assessment. The findings set 

the foundation for future research into hybrid deep learning architectures that integrate time-

series modelling, multi-modal data fusion, and real-time health monitoring for enhanced 

predictive performance. 

4.2 The Proposed 1D CNN for Structured Data Model 

 The 1D Convolutional Neural Network (1D CNN) for Structured Data Model represents 

a novel approach to diabetes prediction using structured clinical data. Unlike 

conventional diagnostic methods, which rely primarily on biochemical tests and statistical risk 

assessments, the proposed deep learning model automates feature extraction and enhances 

predictive accuracy through hierarchical learning. 

This AI-driven approach is particularly valuable for early diabetes risk assessment, as it 

can capture complex feature relationships in medical datasets without requiring manual 

intervention. Traditional diagnostic approaches, although effective, often fail to identify early-

stage diabetes, making deep learning-based solutions a crucial advancement in preventive 

healthcare. 

Unlike conventional machine learning (ML) models, such as Random Forest (RF), Decision 

Trees (DT), and Support Vector Machines (SVM), which depend on manually selected features 

and predefined relationships, the 1D CNN for Structured Data autonomously extracts 
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meaningful patterns from structured clinical data. This approach eliminates the risk of human 

bias in feature selection, allowing for improved generalisation across diverse patient 

populations. Moreover, CNNs capture spatial-temporal dependencies in structured datasets, 

whereas traditional ML models treat features as independent variables, limiting their ability to 

model complex clinical relationships. The ability of CNNs to perform hierarchical 

representation learning enhances their ability to detect underlying correlations between 

diabetes risk factors, leading to superior predictive accuracy [62]. 

The Oman Screening Dataset, used in this study, provides a region-specific dataset 

optimised for AI-driven clinical applications. It contains demographic, anthropometric, and 

clinical health indicators unique to the Omani population, offering a highly relevant and precise 

dataset for deep learning-based diabetes prediction. Compared to globally used datasets like 

the Pima Indian Diabetes Dataset (PIDD) [68], this region-specific dataset enhances the 

model’s ability to detect localized risk factors that may differ from global trends. 

4.2.1  1D CNN for Structured Data Model Architecture 

The 1D CNN for Structured Data Model is a deep learning-based classification framework 

designed to analyse structured medical data and predict diabetes risk with high accuracy. 

Unlike traditional machine learning models, which require manual feature selection, the 1D 

CNN autonomously extracts hierarchical feature representations, improving classification 

performance and scalability. The model's architecture follows a structured, multi-layered 

design, enabling the efficient processing of medical records and enhancing predictive 

capabilities by capturing complex dependencies between clinical parameters [62]. 

Diabetes prediction is a challenging task due to the multiple interdependent risk factors 

involved. Conventional approaches rely on biochemical tests and manual risk factor 

assessments, which often fail to detect early-stage diabetes. By integrating deep learning 

techniques, the 1D CNN for Structured Data Model enables early detection through automatic 

pattern recognition within structured clinical datasets. The model learns multi-dimensional 

feature relationships, ensuring improved sensitivity and specificity in differentiating between 

diabetic and non-diabetic cases [65]. 

Unlike 2D CNNs, which are commonly used for image-based tasks, the 1D CNN for 

Structured Data Model is optimised for structured numerical inputs, making it suitable for 

patient health records. It efficiently processes structured datasets by analysing relationships 

along a single feature axis, rather than focusing on spatial correlations. The model architecture 

consists of multiple layers, each contributing to the hierarchical learning process. The 
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following sections provide a detailed layer-wise breakdown of the model, an explanation of its 

predictive workflow, and a discussion of its architectural representation. 

 

4.2.2 Justification for Selecting 1D CNN for Structured Data for Diabetes Prediction 

The CNNs provide a significant advantage in structured data classification due to their 

ability to autonomously extract hierarchical feature representations, reducing reliance on 

manually engineered features. Traditional ML models, such as Support Vector Machines 

(SVM) and Decision Trees (DT), rely on human expertise to select key variables, which may 

introduce bias and limit the model’s ability to detect complex feature interactions. 

In contrast, CNNs automatically learn relationships between multiple clinical 

indicators, enabling the detection of hidden dependencies within structured medical datasets. 

This is particularly important in diabetes prediction, where risk factors such as BMI, blood 

pressure, glucose levels, and cholesterol interact non-linearly over time. Feature engineering 

methods struggle to capture such dependencies effectively, whereas CNNs excel in learning 

both low-level statistical relationships and high-level patterns that contribute to disease 

progression. 

Additionally, CNNs leverage convolutional operations to recognise spatial-temporal 

dependencies in health records, a feature that traditional ML approaches overlook. Since 

structured data can be modelled as a time-series or multi-dimensional input, CNNs can process 

it in a manner that preserves its hierarchical structure, leading to more accurate and clinically 

relevant predictions. 

 

4.2.3 Layer-wise Breakdown of the 1D CNN for Structured Data Model 

The 1D CNN for Structured Data Model comprises several key layers, each playing a distinct 

role in feature extraction, transformation, and classification. These layers work together to 

ensure that the model effectively learns and refines feature representations from structured 

medical data. The hierarchical nature of the network allows it to progressively extract relevant 

patterns, leading to an accurate and interpretable classification. 

The input layer serves as the entry point for patient data. At this stage, raw clinical records 

are transformed into structured tensors, ensuring that features such as BMI, blood pressure, 
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cholesterol, glucose levels, and family history are presented in a standardized format. The 

normalisation process ensures that all medical parameters are scaled consistently, preventing 

biases arising from variations in measurement units [69]. 

Following the input layer, the convolutional layers serve as the primary mechanism for 

feature extraction. These layers apply 1×1 convolutional filters to detect statistical relationships 

between different clinical indicators. Unlike standard CNNs, which analyse spatial patterns in 

image data, the 1D CNN model applies convolutions along structured patient records, capturing 

complex feature dependencies. The early convolutional layers extract basic feature 

relationships, such as correlations between glucose levels and blood pressure, whereas deeper 

layers identify more intricate patterns, such as the combined effect of HbA1c trends and BMI 

fluctuations over time [65]. 

The Rectified Linear Unit (ReLU) activation function is applied after each convolutional 

layer to introduce non-linearity into the model. This function helps mitigate vanishing gradient 

problems, ensuring that deep networks can learn from multiple hierarchical transformations. 

By selectively activating meaningful features and suppressing irrelevant ones, ReLU enhances 

the network's ability to focus on critical patterns associated with diabetes risk [145]. 

The fully connected layers aggregate the feature representations learned through the 

convolutional layers. These layers act as the final stage of feature abstraction, compressing the 

extracted information into a structured form suitable for classification. The dimensionality of 

the feature space is progressively reduced, with the final fully connected layer containing two 

neurons, corresponding to the diabetic and non-diabetic classes. This step ensures that only the 

most relevant features contribute to the classification decision, improving generalisation and 

reducing noise [62]. 

To generate interpretable classification probabilities, the model employs a softmax layer. 

This layer transforms the final feature vector into probability distributions, assigning a 

confidence score to each classification category. The softmax transformation ensures that the 

sum of output probabilities equals one, enabling clear decision-making. 

The classification layer serves as the final decision point, assigning a diagnostic label 

(diabetic or non-diabetic) based on the computed probability scores. This layer allows the 
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model to be integrated into clinical workflows, providing healthcare professionals with an AI-

powered decision-support tool that enhances early intervention and risk assessment [67]. 

4.2.4 How the 1D CNN for Structured Data Model Predicts Diabetes 

The 1D CNN for Structured Data Model follows a systematic predictive workflow, ensuring 

that the model extracts, refines, and classifies relevant features efficiently. This predictive 

process consists of four primary stages: data input and preprocessing, feature extraction, 

prediction and classification, and clinical decision support. 

The first stage, data input and preprocessing, involves structuring patient records into 

numerical arrays. Clinical variables such as age, BMI, cholesterol, and glucose levels are 

encoded into a structured tensor format. At this stage, data normalisation techniques are applied 

to prevent discrepancies between different clinical measurements, ensuring that no single 

feature dominates the learning process [119]. 

Once the data is structured, it is passed through convolutional layers, where hierarchical 

feature extraction takes place. The first few layers detect low-level statistical relationships, 

such as how fasting glucose and insulin levels interact. As the data moves through deeper 

layers, the model learns more abstract patterns, including long-term metabolic trends and their 

impact on diabetes risk [100]. 

After feature extraction, the fully connected layers aggregate the extracted representations, 

reducing dimensionality while preserving essential diagnostic information. The softmax layer 

then transforms these refined features into probability scores, quantifying the model’s 

confidence in the classification decision. If the probability of the diabetic category exceeds a 

predefined threshold, the model classifies the patient as diabetic; otherwise, the classification 

remains non-diabetic [126]. 

Finally, the classification output is integrated into clinical decision-making, allowing 

healthcare providers to utilize AI-based risk assessment tools for personalized treatment 

planning and early intervention strategies. By automating feature selection and learning multi-

dimensional relationships between health indicators, the 1D CNN model complements 

traditional diagnostic techniques with a data-driven approach to risk prediction [70] 
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4.3 In-Depth Illustration of the 1D CNN for Structured Data Architecture 
4.3.1 Overview of the 1D CNN for Structured Data Model Architecture 

The 1D CNN for Structured Data Model, illustrated in Figure 4.1, provides a detailed 

representation of how structured clinical data is processed through multiple layers to produce 

a final classification decision. The architecture is designed to perform hierarchical feature 

extraction, progressively refining patient data through successive transformations. This 

structured approach enables the model to capture complex relationships between clinical risk 

factors and enhance classification accuracy. Each layer of the model serves a distinct role in 

feature extraction, refinement, and classification, ultimately leading to a more reliable and 

interpretable diagnosis. 

 
        (a) Conceptual Representation of 1D CNN               (b) MATLAB visuals  

         Figure 4.1 In-depth Illustration of the 1D CNN for Structured Data Architecture 
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At the top of the model, the input layer receives structured medical data, which 

includes demographic, anthropometric, and biochemical parameters such as BMI, cholesterol 

levels, blood pressure, fasting plasma glucose (FPG), and family history of diabetes. To ensure 

the consistency of numerical values, standardization and normalisation techniques are applied 

before the data enters the CNN pipeline. These preprocessing steps mitigate the risk of bias 

introduced by variations in measurement units, thereby allowing the model to systematically 

process multi-dimensional health indicators. 

As the input data passes through the convolutional layers, it undergoes multiple stages 

of feature extraction. The initial convolutional layers capture low-level correlations, such as 

fluctuations in glucose levels or interactions between BMI and cholesterol. As the depth of 

convolutional processing increases, the network learns progressively more complex feature 

dependencies, detecting subtle patterns that contribute to diabetes risk. This ability to extract 

and refine hierarchical feature relationships distinguishes CNNs from traditional ML models, 

which often treat each feature independently and fail to capture such intricate associations. 

Between convolutional layers, ReLU (Rectified Linear Unit) activation 

functions introduce non-linearity, ensuring that significant patterns are highlighted while 

irrelevant information is filtered out. Without activation functions, the model would behave as 

a linear transformation, limiting its ability to distinguish complex interactions between risk 

factors. The inclusion of ReLU ensures that non-linear relationships in health conditions, such 

as glucose fluctuations influenced by multiple factors, are properly represented. 

Following convolutional feature extraction, the fully connected layers further refine the 

learned representations by reducing feature dimensionality. These layers consolidate extracted 

patterns, ensuring that only the most relevant information is retained for the classification task. 

Unlike traditional ML models that require manual feature selection, CNNs 

autonomously identify and prioritize diagnostic-relevant features, eliminating human bias and 

improving predictive performance. 

At the final stage, the softmax layer computes probability distributions across classification 

categories (diabetic and non-diabetic). This step transforms the final feature vector 

into interpretable probability scores, ensuring that the total classification probabilities sum to 

one. This probability-based approach is critical for clinical decision-making, as it enables 

physicians to assess the model’s confidence levels in its predictions. The classification layer, 
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positioned at the bottom of the architecture, assigns the final diagnostic label based on the 

highest predicted probability, supporting AI-driven risk assessment and early intervention 

strategies. 

4.3.2 Structural Analysis of the 1D CNN for Structured Data Model Architecture 

The hierarchical structure of the CNN model follows a funnel-like arrangement, ensuring 

that raw structured data is incrementally refined through multiple layers before reaching the 

final classification stage. Figure 4.1 visually depicts this process, illustrating how patient health 

records undergo a structured transformation until a definitive diagnosis is produced. 

1. Input Representation and Preprocessing: The input layer, positioned at the top of the 

model, represents patient records formatted as structured numerical arrays. This layer 

ensures that all medical indicators—BMI, blood pressure, cholesterol levels, and 

glucose readings—are appropriately structured and scaled before being processed by 

the CNN. Feature preprocessing techniques, such as normalisation and outlier removal 

using Z-score methods, are applied to minimize data inconsistencies and biases before 

the input enters the convolutional layers. 

2. Convolutional Feature Extraction: The convolutional layers perform progressive 

feature extraction, identifying diagnostic patterns in structured clinical data. The first 

convolutional layers detect low-level interactions, such as variations in glucose levels 

influenced by dietary intake or medication use. As the data moves through deeper 

convolutional layers, the model extracts more abstract and high-level dependencies, 

learning how multiple health indicators interact. The depth of convolutional processing 

allows the network to develop a more comprehensive understanding of diabetes risk 

factors, enabling it to surpass traditional ML models in prediction accuracy. 

3. Hierarchical Representation Learning: The deeper convolutional layers progressively 

refine extracted features, filtering out irrelevant noise and enhancing clinically 

meaningful patterns. The non-linear activation layers (ReLU) play a key role 

in preserving essential feature relationships, ensuring that the model retains its ability 

to distinguish between diabetic and non-diabetic patients. Without non-linear 

activations, complex feature dependencies would not be effectively captured, reducing 

classification performance. 

4. Dimensionality Reduction and Feature Aggregation: As extracted features advance 

through fully connected layers; their dimensionality is progressively reduced. 
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This compression process ensures that only the most relevant diagnostic features 

contribute to the final classification decision. Unlike conventional classification 

methods that depend on hand-selected features, the 1D CNN autonomously determines 

the most predictive variables, eliminating human intervention and minimizing potential 

biases. 

5.  Probability Computation and Final Classification: At the final stage, the softmax layer 

converts processed feature vectors into probability distributions, enabling the model to 

assign confidence scores to classification outcomes. The classification layer then 

selects the most probable diagnosis (diabetic or non-diabetic), ensuring that the AI-

driven decision is clinically interpretable and applicable in real-world settings. 

The 1D CNN for Structured Data Model, as depicted in Figure 4.1, follows a top-down 

refinement process, where input data is progressively transformed through multiple stages 

before reaching a final classification outcome. This structured transformation allows the CNN 

to learn complex relationships while ensuring that only the most relevant diagnostic patterns 

are retained. 

1. At the top of the diagram, the structured input layer receives multiple clinical 

indicators, such as glucose, BMI, and cholesterol levels, which represent the raw health 

profile of the patient. 

2. In the middle section of the network, convolutional layers extract diagnostic patterns, 

refining statistical relationships and hierarchical feature dependencies in patient data. 

3. At the bottom of the model, the fully connected layers condense extracted features, 

the softmax layer computes classification probabilities, and the classification layer 

assigns a final diagnostic label (diabetic or non-diabetic). 

The funnel-like architecture of the CNN model ensures that each stage progressively 

extracts more meaningful patterns, making the 1D CNN highly effective for structured medical 

data analysis 

The architectural design of the 1D CNN for Structured Data Model offers several 

advantages compared to traditional machine learning methods: 
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• Automated Feature Learning: Unlike conventional models requiring manual feature 

selection, the 1D CNN autonomously extracts diagnostic patterns, 

enhancing classification performance. 

• Hierarchical Representation Learning: The multi-layered structure enables the model 

to identify both statistical trends and high-level feature dependencies, making it well-

suited for structured medical data analysis. 

• Scalability and Generalisation: The model generalises well across diverse datasets, 

allowing it to be applied to various patient populations with high reliability. 

• Non-Linear Feature Interactions: The combination of convolutional layers and 

activation functions enables the model to capture non-trivial relationships between 

multiple clinical indicators, improving diagnostic accuracy. 

• High Sensitivity and Specificity: The softmax-based classification 

layer provides probabilistic confidence scores, minimizing false positives and false 

negatives, which is crucial for diabetes risk screening. 

 
4.4  Dataset Overview and Preprocessing 

The methodology followed in this research is a systematic sequence of events designed to 

predict diabetes using Convolutional Neural Networks (CNN). A specific dataset from Oman 

has been utilized to train, validate, and test the model. The methodology includes steps such as 

loading and pre-processing the dataset and designing a custom 1D CNN for Structured Data 

architecture. 

4.4.1 Oman screening dataset  

The dataset utilized in this study was systematically compiled, validated, and prepared using 

diabetes-related health records from Oman, following strict ethical guidelines [131]. The 

process of diabetes screening and data collection workflow is illustrated in Figure 4.2, 

detailing the systematic approach employed in assembling a high-quality dataset for predictive 

modelling. 
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Figure 4.2 Oman Diabetes screening system workflow 

4.4.1.1 Data Collection Process 

The data collection process was conducted in collaboration with local diabetes specialists, 

ensuring compliance with regulatory requirements and ethical approvals from the Ministry of 

Health, regional health departments, and participating Regional Directorates of 

Health (see Appendix A for ethical approval details). The dataset was derived from 41 

healthcare institutions, comprising 34 primary healthcare centres, three secondary care 

Extended Health Centres, and four local hospitals. This extensive data acquisition framework 

enabled the study to capture a diverse range of patient demographics and clinical 

characteristics, enhancing the dataset's representativeness for diabetes risk 

assessment [68,132]. 

The Oman Screening Dataset was developed as part of an initiative to improve early diabetes 

detection. The dataset collection spanned seven months, during which standardized procedures 

were implemented to maintain data integrity and completeness. It consists of demographic, 

anthropometric, and clinical markers, which serve as key variables for diabetes screening and 

prediction. The inclusion of individuals aged 20 years and above extends the model’s ability 
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to detect early-stage diabetes risk factors, addressing gaps in conventional screenings that 

typically focus on individuals over 40 years of age. 

To ensure dataset validity and clinical relevance, individuals with pre-existing diabetes 

diagnoses or those screened within the past three years were excluded. This exclusion criterion 

prevented redundancy and maintained the dataset’s focus on previously unscreened 

individuals, improving the reliability of the predictive model. 

The seven-month data collection period ensured that the dataset captured recent health 

trends and risk factors associated with diabetes in Oman. The final dataset comprises 13,224 

patient records, covering 13 essential variables required for diabetes risk stratification. 

4.4.1.2 Inclusion and Exclusion Criteria: 

 A structured inclusion and exclusion framework was implemented to ensure that the dataset 

was representative of individuals at risk of diabetes while minimizing potential confounding 

variables. 

• Inclusion Criteria 

a. Individuals aged 20 years and above. 

b. No prior diagnosis of diabetes. 

c. No diabetes screening conducted within the past three years. 

• Exclusion Criteria 

a. Individuals with pre-existing conditions that could interfere with diabetes screening 

(as outlined in Table 4.1). 

b. Patients who had undergone diabetes screening within the past three years at other 

healthcare facilities. 

The implementation of these criteria ensured that the dataset maintained clinical accuracy 

and relevance, allowing for a focused analysis of diabetes risk factors within the Omani 

population [74,68]. 
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Table 4.1 Diabetes Screening Eligibility Criteria 
 
Section Category/Sub-

Category 
Details or Criteria 

Eligibility for 
Screening 

Diseases Present If “Yes” to D.M, HTN, CKD: Not eligible for 
screening. 

 
Screened in Last 3 
Years 

If “Yes” to screening at any other health centre 
in the last 3 years: Not eligible for screening. 

Outcome of 
Screening 

- If “Yes” to any of the above criteria: Excluded 
from screening. If “No” to both criteria: 
Proceed to screening. 

Family and Personal 
History 

Family History Obesity, Hypertension, Dyslipidaemia, DM, 
CKD, Premature Cardiovascular Death (M: < 
55, F: <65) 

 
Personal History Physical inactivity, Ethanol, Tobacco 

(Cigarettes, Sheesha, Non-smoked tobacco), 
Nephrotoxic Drugs (NSAIDs, Analgesics, 
Diuretics, Antibiotics, Herbal) 

Reason for Referral 
to GP 

1. Lifestyle Risk 
Factors 

Physical inactivity, smoking, ethanol 

2. Obesity Metrics BMI ≥ 25 Kg/m² and/or Waist Circumference 
(M: ≥ 94cm, F: ≥ 80cm) 

3. Blood Pressure Mean B.P. > 130 mmHg systolic and/or Mean 
B.P. ≥ 85 mmHg diastolic 

4. Impaired Blood 
Sugar 

FPG (5.6 to < 7.0 mmol/l) or RPG (5.5 to < 
11.1 mmol/l) 

5. Diabetes 
Diagnosis 

FPG ≥ 7.0 mmol/l or RPG ≥ 11.1 mmol/l 

6. Cholesterol Level Serum Cholesterol > 5.2 mmol/l 
 

4.4.1.3 Data Validation Process 

 To enhance data accuracy, the dataset was validated using the Al Shifa System, a widely 

adopted healthcare information system in Oman [132]. This system, utilized across over 200 

healthcare institutions, facilitated the verification of patient records and clinical data [133]. By 

integrating electronic health records (EHRs) with manually collected data, inconsistencies 
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were identified and resolved, ensuring data completeness [134,135]. Each patient’s clinical 

profile, laboratory results, and medical history were cross-referenced against electronic records 

to confirm accuracy. This validation approach minimized errors in data entry and ensured 

dataset consistency, improving its suitability for predictive modelling. 

 
4.4.1.4 Dataset Composition and Feature Selection 

The final dataset consisted of 13,224 patient records, incorporating 13 key variables essential 

for diabetes risk assessment. The data was structured and formatted using MATLAB (Version 

2023b) for efficient preprocessing and analysis. Feature selection was based on clinical 

guidelines from Oman’s Ministry of Health, with oversight from expert diabetes physicians to 

ensure that selected variables were clinically significant [136]. The chosen features encompass 

demographic, anthropometric, and biochemical indicators that contribute to diabetes onset. 

Table 4.2 presents a summary of these variables. 

Table 4.2 Diabetes Feature Descriptions 
 
Feature Description Data Type 

Age Age of the patient (20–65 years) Double 

Weight Weight of the patient Double 

Height Height of the patient Double 

BMI Body Mass Index Double 

WC Waist Circumference Double 

T_Cholesterol Total Cholesterol Double 

BP Blood Pressure Double 

RPG Random Plasma Glucose Double 

FPG Fasting Plasma Glucose Double 

FH Family History of Diabetes Double 

PH Personal History of Diabetes Double 

Gender Encoded Encoded Gender of the patient Double 

Outcome Diabetic or not Double 
 

4.4.1.5 Dataset Utilization and Analysis 

To facilitate analysis, categorical data were transformed into numerical representations to 

ensure compatibility with deep learning models. Data preprocessing included handling missing 
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values, detecting outliers using Z-score analysis, and standardizing feature distributions to 

optimise model performance. 

Figure 4.3 presents the gender-based distribution of the dataset, providing insights into 

diabetes prevalence across different population segments. 

 

Figure 4.3 Dataset Distribution by Gender 
 

The dataset, developed through a rigorous process of validation and screening, is 

comprehensive and reliable, ensuring its suitability for the study’s objectives. The careful 

selection of participants, adherence to well-defined inclusion and exclusion criteria, and 

implementation of a structured data validation framework enhance its accuracy and clinical 

relevance. This approach not only strengthens the validity of the current research on diabetes 

in Oman but also provides a methodological reference for future studies in similar clinical and 

epidemiological contexts. Additionally, by including individuals aged 20 and above, the dataset 

offers a representative overview of diabetes risk factors within the studied population, 

contributing to a deeper understanding of the disease and informing future preventive and 

clinical strategies [131,136]. 
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4.4.1.6 Exploratory Data Analysis (EDA)  

Visualizing data is paramount in exploratory data analysis. It gives insights into data 

distribution, relationships between variables, and any potential anomalies. Below, we delve 

into different visualization techniques applied to the dataset. 

a) Statistical Summary: A statistical summary provides an insight into the key 

characteristics of each variable in the dataset. This summary encompasses range, central 

tendencies (like median), and any potential missing values. The dataset under examination, as 

summarised in Figures 4.3 and 4.4, offers a comprehensive collection of health metrics. 

 

Figure 4.4 Statistical summary. 

 This spans from general health indicators like age (with a range from 4 to 113 years and a 

median of 43) and weight (ranging between 0 and 186 with a median at 74) to BMI, which has 

a median of 29, albeit with 137 missing values. Further diving into specialized health markers, 

we have measurements like random plasma glucose, which interestingly has 3793 missing data 

points, and a median value of 5.47. 

Waist circumference and total cholesterol also contribute to the dataset’s breadth, with 

respective medians of 95.354 and 5.01. Furthermore, the dataset comprises data on blood 

Age Weight Height BMI

WC(Wa
ist

Circumf
erence)

T_Chol
esterol

BP
(Blood
Pressur

e)

RPG
(Rando

m
Plasma
Glucos
e)

FPG
(Fastin

g
Plasma
Glucos
e)

FH
(Family
History

)

PH
(Person

al
History

)

Gender
Encode

d

Outco
me

Median 42 74 158.11 29 96 5.01 80 5.47 5.5 2 1 0 0
Max 113 186 199 60 193 9.9 199 7.26 20 10 10 1 1
Min 4 0 0 0 0 1.1 2 3.8 1 1 1 0 0

0

50

100

150

200

250
Dataset statistical Summary



Page 74 of 174 
 

 

pressure, with values spanning from 2 to 199 and a median of 80. However, it is essential to 

note that 12 values in this variable are missing. 

The dataset also integrates personal and family medical histories, each with its own set of 

missing data (84 and 102 missing values, respectively), suggesting that some patients might 

not have disclosed or had access to this information. In terms of gender distribution, the dataset 

employs an encoding mechanism, with 0 representing males and 1 representing females. 

Finally, the ‘Outcome’ variable, presumably indicating the result or diagnosis, categorises data 

into either 0 or 1, though the specifics of these categories were not provided in the summary 

[137].  

 

Figure 4.5 Details of missing values. 

One key observation from Figure 3.4 is the presence of missing data across various variables. 

This can potentially impact the accuracy and reliability of any predictive modelling drawn from 

this dataset. Handling such gaps, through techniques like imputation, becomes pivotal to ensure 

robust data analysis. The extensive range observed in variables such as ‘Age’ and ‘Blood 

Pressure’ underscores the diverse patient cohort represented in this dataset, which is 

advantageous for establishing a comprehensive and inclusive predictive model.  

b) Histograms: Histograms divide data into bins and visualize the frequency of 

observations within each bin, helping identify the shape of the data distribution. For example, 

a histogram for ‘Age’ might reveal a larger number of younger patients compared to older ones, 
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which could be important for the subsequent modelling phase. As presented in Figure 4.5, we 

visualize the distribution of each variable to understand their spread and identify any potential 

outliers. 

Figure 4.6 Distribution analysis of each feature in the dataset. 

c) Scatter Plots: Scatter plots are foundational in visualising relationships between 

variables. In cases where we want to examine the relationship across three metrics, a 3D scatter 

plot is employed. By plotting ‘Age’, ‘Weight’, and ‘Height’ on a 3D plane, we can uncover the 

clusters of data points that share similar characteristics, the potential outliers that deviate from 

expected trends, and the interactions between the variables that might not be evident in two-

dimensional plots. Rotating and examining this plot from multiple perspectives allows for a 

more comprehensive understanding of the variables’ relationships. See Figure 4.6. 
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Figure 4.7 Three-dimensional scatter plot of age, weight, and height. 

d) Correlation Matrix: Correlation offers insights into the relationship between variables. 

We computed a correlation matrix for our dataset to understand the pairwise association of 

columns. This matrix, visualized using a color-coded grid, indicates the correlation strength 

and direction between pairs of variables. Highly correlated features may be indicative of 

redundant information, vital when choosing features for model building. See Figure 7. Each 

cell in the grid corresponds to a pair of variables, and the colour of the cell represents the 

strength and direction of the correlation between those variables. The x and y axes are labelled 

with the variable names for clarity. By examining the colour of each cell, we can quickly 

identify pairs of variables that are strongly correlated. 
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Figure 4.8 Correlation matrix. 

e) Bar Charts: Bar charts effectively visualize categorical data by using rectangular bars 

to depict category frequency. To understand the prevalence of various health conditions, we 

employed a bar chart in Figure 4.8. By aggregating the count of conditions like ‘RiskFactor’, 

‘BMI_Condition’, and ‘WC_Condition’, the resulting chart offers a concise visual depiction of 

condition distribution. This helps in recognising dominant conditions in the dataset. 

 

Figure 4.9 Bar chart of conditions. 

f) Pairwise scatter: Figure 4.9 presents a detailed scatter plot matrix showcasing 

relationships between health-related variables like Age, Weight, Height, BMI, WC, 

Cholesterol, BP, RPG, FPG, and categorical data on Family and Past History. It features 
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univariate distributions that highlight the data's spread and tendencies, revealing potential non-

normal distributions for some variables. The matrix uncovers positive correlations among 

anthropometric measures (Weight, BMI, WC) and suggests complex influences on variables 

like Cholesterol and BP by Age, indicating the need for sophisticated modelling to understand 

these relationships fully. It also explores how personal and family health histories correlate 

with other variables, emphasizing the tool's utility in identifying patterns, generating 

hypotheses, and guiding further analysis. 

 

Figure 4.10 Pairwise scatter plots 

g) The heatmap: Heatmap of Conditions present in figure 4.10 visually represents the 

count of occurrences for three different conditions or risk factors. The first column, labeled 

"RiskFactor," has a relatively low count of 490, indicating a smaller number of occurrences or 

cases within this category. The other two columns, "BMIcondition" and "WCcondition," have 

significantly higher counts, both exceeding 10,000 as indicated by the notations 1.04e+04 and 

1.08e+04 respectively. These figures suggest that these conditions are more prevalent in the 

dataset. The colour intensity in the heatmap corresponds to the count of occurrences, with 

darker shades representing higher counts. This type of visualization is typically used to easily 

identify trends and compare the frequency of different categories within a dataset. 
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Figure 4.11  Heatmap of condtions 

h) The kernel density plot in figure 4.11indicates a significant peak at the age of 40, which 

aligns with the age that diabetes screening typically begins in Oman. This peak likely reflects 

a higher frequency of individuals at this age within the dataset, possibly due to such health 

screenings. The density decreases for ages beyond 40, suggesting fewer individuals in the 

higher age brackets. Overall, the graph visualizes the age distribution, emphasizing the impact 

of health policy on the dataset composition. 

 

Figure 4.12 Kernal density of age 

i) The scatter plot in Figure 4.12 displays the relationship between Age (on the x-axis) 

and Body Mass Index (BMI) (on the y-axis). The plot shows a dense cluster of data points 

suggesting that for a wide range of ages, BMI values tend to concentrate around a common 
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range. The density of points is especially thick in the middle-age range, indicating a large 

sample size in this cohort. There are also outliers visible at various ages, showing individuals 

with higher or lower BMI values compared to the majority. The horizontal banding pattern 

indicates that BMI does not increase consistently with age; instead, it varies across a similar 

range for adults, with no clear upward or downward trend as age increases. The plot provides 

a visual assessment of the BMI distribution across different ages without indicating a specific 

correlation between these two variables. 

 

Figure 4.13 Scatter plot of age and BMI 

j) The Q-Q plot in Figure 4.13 shows that the distribution of 'Weight' differs from a 

normal distribution, especially at the extreme ends. The data points veer away from the red 

reference line that represents the expected normal distribution, particularly for very low and 

very high weight values. This suggests that the weight data might be skewed or contain outliers, 

implying that 'Weight' in the dataset is not normally distributed. Such information is crucial for 

determining the correct statistical approach, as standard parametric tests may not be suitable 

for this data. 



Page 81 of 174 
 

 

 

Figure 4.14    Quantile-quantile plot of weight 

1.1.1 Pre-Processing the Dataset for CNN Model Training 

a) Data Cleaning and Limit Application: The pre-processing commenced by focusing on 

key metrics such as “Age”, “Weight”, and “Height”. We established upper thresholds for each 

of these, grounded in domain knowledge. For instance, an age beyond 120 years would be 

regarded as an outlier. Data exceeding these set limits were flagged and effectively labelled as 

unavailable or ‘NaN’.  

b) Addressing Missing Data: Missing data are a persistent challenge in real-world datasets, 

and our collection was no exception. We used the ‘ismissing’ function to detect these absences, 

yielding a logical map pinpointing the gaps. Each column’s data voids were subsequently 

summarised and logged for reference (See Table 4.2). A systematic examination allowed us to 

identify and index these absences, with a comprehensive summary of our findings presented in 

Table 4.2. To tackle this issue, the K-Nearest Neighbours (KNN) method was chosen. The 

MATLAB’s ‘fillmissing’ function, paired with the ‘KNN’ parameter, served our purpose, 

fortifying the data’s internal structure and ensuring analytical veracity. The KNN algorithm 

estimates missing values by comparing them to similar records in the dataset. This is especially 

effective when data exhibit strong patterns or correlations between variables [138,139]. For 

example, if one were missing the weight data for a particular entry but knew the height and 

age, the KNN method would find other records with similar height and age and use their weight 

data to estimate the missing value [140, 141]. Take, for instance, a missing value in the 
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“Weight” column for an individual aged 25. Leveraging KNN, the system would reference 

weights of other 25-year-olds within the dataset, determining a plausible estimate grounded in 

this comparative context. This methodology truly shines when data are characterized by 

discernible patterns or notable correlations between variables [142]. It not only preserves, but 

enhances, the inherent structure and relationships within the dataset, ensuring analyses and 

predictive modelling are both accurate and reliable [142,143]. 

c) Removing Outliers with the Z-score Method: Outliers can distort analyses, leading to 

potentially misleading conclusions. We turned to the Z-score method for the effective 

identification and removal of these anomalies [144]. Z-scores represent how many standard 

deviations a data point is from the mean. For instance, a Z-score of 2 indicates the data point 

is two standard deviations above the average. It is decided that data points with an absolute Z-

score greater than 3 were outliers. This threshold is standard in many domains, ensuring data 

within a reasonable range of deviation are retained. Once outliers were identified, they were 

flagged and then addressed using the previously mentioned KNN method to preserve the 

integrity of the dataset. 

d) Feature Processing: Following data pre-processing, specific clinical features are 

processed to generate new binary features that aid in predictive accuracy. The following feature 

processing operations were performed: 

§ Risk Factor (PH): The attribute “PH” (personal history) was converted into a binary 

variable indicating whether the value is greater than or equal to 3. 

§ BMI and Waist Circumference: The attributes “BMI” and “WC” (waist circumference) 

were converted into binary variables indicating whether the values are above certain thresholds 

(BMI ≥ 25 kg/m², WC (M) ≥ 94cm, WC (F) ≥ 80cm). 

§ Mean Blood Pressure: The attribute “BP” (blood pressure) was converted into a binary 

variable indicating whether the value is greater than or equal to 85 mmHg diastolic. 

§ Abnormal Blood Sugar: The attributes “FPG” (fasting plasma glucose) and “RPG” 

(random plasma glucose) were converted into a binary variable indicating whether the values 

fall within specific ranges (5.6 ≤ FPG < 7 or 5.5 ≤ RPG < 11.1). 

§ Cholesterol: The attribute “T_Cholesterol” (total cholesterol) was converted into a 

binary variable indicating whether the value is greater than or equal to 5.2 mmol/l. 
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e) Target Variable Encoding: The target variable “Outcome” was initially categorical. To 

enable training the CNN model, it was converted into numeric labels using the grp2idx 

function.  

f) Post-Processing Remarks: Through adept application pre-processing approaches, our 

dataset emerged more realistic and ready for model training. The KNN method ensured missing 

values were handled judiciously, retaining the inherent relationships in the data. Concurrently 

the Z-score method was instrumental in identifying and mitigating anomalies. The transformed 

dataset can be visualized in figure 4.14. 

 

Figure 4.15 Distribution analysis for dataset after pre-processing 
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4.5 Training, Validation, and Performance Evaluation of the 1D CNN for 

Structured Data Model 
4.5.1 Model Training Process and Dataset Partitioning 

The training and validation of the 1D Convolutional Neural Network (CNN) model are 

critical steps in ensuring its robustness and effectiveness in Type 2 Diabetes Mellitus (T2DM) 

prediction. This process involves carefully partitioning the dataset, structuring the data for 

CNN processing, and fine-tuning model hyperparameters to achieve optimal performance. 

The segregation of the dataset into distinct subsets for training, validation, and testing ensures 

that the model generalises well to unseen data and prevents overfitting, a common issue in deep 

learning models. 

i. Dataset Partitioning and Preprocessing 

MATLAB's cvpartition function with a ‘Holdout’ parameter of 0.2 was used for dataset 

partitioning [150]. The dataset was divided into training (80%), validation (10%), and 

testing (10%) subsets. The partitioning followed the Holdout validation method 

introduced by Kohavi [151], which is widely applied in machine learning for model 

evaluation and overfitting prevention. 

The dataset was structured as a four-dimensional (1D) tensor for model compatibility. 

The batch size (nn) represented the number of patient records processed simultaneously 

during training. The feature dimension (ff) contained medical parameters such as body 

mass index (BMI), blood pressure, cholesterol levels, glucose readings, and family 

history of diabetes. The depth (dd) represented hierarchical transformations across 

convolutional layers. The channels (cc) stored multiple feature maps for capturing 

feature representations of structured health indicators. 

This representation enabled the 1D CNN for Structured Data model to learn 

interdependencies between clinical variables dynamically, unlike conventional 

machine learning models that process features independently and require manual 

feature selection. After partitioning, categorical labels (diabetic or non-diabetic) were 

converted into a one-hot encoded format to match CNN classification requirements, 

allowing probability distribution outputs instead of binary values. 

ii. Training the 1D CNN for Structured Data Model 

The CNN model is trained iteratively across multiple epochs, with the validation 

dataset serving as a checkpoint to monitor performance and prevent overfitting. 
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The primary dataset, is divided into three subsets: the training set , which comprises 

80% of the total data; the validation set, representing 10% of the total data; and the 

testing set, also accounting for 10% of the total data. The training process begins with 

the CNN learning feature representations from the training set, followed by validation 

against unseen data. The testing phase is reserved for the final evaluation of the model's 

performance. 

The model is implemented using MATLAB’s trainNetwork function, which employs 

Stochastic Gradient Descent with Momentum (SGDM) as the optimisation algorithm 

[145]. SGDM is chosen over Adam or Respro due to its ability to provide stable 

convergence, particularly for structured medical data. It also prevents convergence to 

local minima by maintaining past gradient updates, ensuring that the optimisation 

process remains steady. Furthermore, SGDM is computationally efficient, allowing 

better generalisation for small-to-moderate datasets. 

The training architecture consists of multiple layers that sequentially extract, process, 

and classify input data. The 2D convolutional layers extract hierarchical feature 

relationships within structured medical records, followed by Rectified Linear Unit 

(ReLU) layers that introduce non-linearity to capture intricate feature dependencies. 

Fully connected layers further refine and compress the extracted feature representations 

for classification. A softmax layer then converts the network's output into probability 

distributions, which are subsequently processed by the final classification layer to 

assign a class label—diabetic or non-diabetic—based on the highest probability. 

The CNN model is trained iteratively across multiple epochs, with the validation dataset 

serving as a checkpoint to monitor performance and mitigate overfitting, ensuring that 

the model generalises well to unseen data. 

One common critique of deep learning models, including CNNs, is their higher 

computational cost compared to traditional machine learning approaches. However, 

this cost is justified in clinical applications due to several key advantages: 

1. Automated Feature Learning: CNNs eliminate the need for manual feature 

selection, which traditionally requires significant domain expertise. By reducing 

dependency on feature engineering, CNNs save extensive pre-processing time and 

ensure unbiased feature representation. 

2. Scalability to Large Datasets: While ML models such as Random Forests perform 

well with small datasets, their performance deteriorates as dataset size increases. 
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CNNs scale efficiently with large datasets, making them suitable for real-world 

clinical applications where patient records are extensive and multi-dimensional. 

3. Generalisation and Robustness: CNNs learn robust feature representations that 

allow them to generalise well across different patient populations. Traditional 

models, which rely on predefined rules and manually selected features, often fail to 

adapt to new data distributions. 

4. Reduction of False Diagnoses: The cost of misclassification in clinical settings is 

high. A model with higher computational complexity but significantly improved 

accuracy and specificity is preferable, as it reduces false positives and negatives, 

minimizing unnecessary medical interventions. 

Although CNNs require greater computational power during training, once trained, 

they can rapidly process new patient data with minimal computational overhead, 

making them efficient for real-time clinical decision-making. Advances in hardware 

acceleration, such as GPUs and TPUs, further mitigate training inefficiencies, making 

deep learning-based models viable for deployment in hospital settings. 

 

iii. Hyperparameter Optimisation and Epoch Selection 

Determining the optimal number of epochs is a crucial aspect of model fine-tuning. 

Multiple trials are conducted with epoch values ranging from 10 to 200, during which 

the model is trained on the dataset, and performance is continuously monitored using 

MATLAB’s plotting tools. The validation loss and accuracy are carefully observed to 

identify the optimal stopping point, ensuring that the model does not overfit to the 

training data. 

The validation dataset plays a critical role in this process by preventing overfitting 

through early stopping when performance plateaus and guiding model tuning to 

determine when the CNN reaches its best generalisation ability. Empirical results 

indicate that training beyond 100 epochs results in only marginal improvements in 

accuracy while increasing the risk of overfitting. As shown in Table 4.4, model 

performance stabilizes between epochs 50 and 100, suggesting that this range provides 

an optimal balance between accuracy and computational efficiency. 

iv. Final Model Evaluation 

Once training is complete, the model undergoes testing using previously unseen patient 

data. This phase objectively evaluates classification accuracy, which measures the 

proportion of correctly classified instances, and the F1 score, which balances precision 
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and recall providing a comprehensive performance metric. Sensitivity, also known as 

recall, ensures that diabetic patients are correctly identified, while specificity evaluates 

the model’s ability to avoid false positives. Precision measures the confidence in the 

classification of diabetic cases. These metrics collectively provide a holistic assessment 

of the model’s ability to differentiate diabetic from non-diabetic patients, ensuring 

reliability for real-world medical screening applications. 

4.5.2 Performance Metrics and Model Evaluation 

The evaluation of the 1D Convolutional Neural Network (1D CNN for Structured Data) 

model is conducted using comprehensive performance metrics, ensuring its clinical reliability 

in predicting Type 2 Diabetes Mellitus (T2DM). Unlike traditional machine learning (ML) 

classifiers, which depend on manual feature selection and may struggle with non-linear 

relationships, the 1D CNN for Structured Data autonomously learns hierarchical feature 

representations and achieves higher classification accuracy and generalisation ability. To 

validate the model, multiple performance indicators are computed, including: 

• Accuracy (Proportion of correct classifications) 

• Precision (Reliability of positive predictions) 

• Recall (Sensitivity) (Ability to identify diabetic patients correctly) 

• Specificity (Correct identification of non-diabetic individuals) 

• F1-score (Balance between precision and recall) 

• False Referral Rate (Misclassification of non-diabetic patients as diabetic) 

A confusion matrix-based analysis is conducted to quantify model effectiveness.  

4.5.2.1 Confusion Matrix Analysis 

 A confusion matrix provides a structured breakdown of the model’s classification outcomes 
by comparing actual vs. predicted labels. This is summarised in Table 4.3. 
 
Table 4.3 Confusion Matrix for the Test Data  

Predicted non-diabetic Predicted diabetic 

Actual: Non-diabetic 1220 0 

Actual: Diabetic 10 92 
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From this confusion matrix, key performance metrics are derived: 

1. Sensitivity (Recall) - 90.2%. Measures the model’s ability to correctly identify diabetic 

individuals: 

This indicates that the model correctly identifies 90.2% of diabetic patients, making it 

a highly effective pre-screening tool. 

2. False Referral Rate (0%) The false referral rate represents the proportion of non-

diabetic patients misclassified as diabetic: 

A 0% false referral rate is crucial in medical applications to prevent unnecessary 

interventions, treatments, and anxiety for non-diabetic patients. 

3. Specificity - 100%. Specificity represents the model’s ability to correctly classify non-

diabetic individuals: 

This means all non-diabetic cases are correctly identified, which is critical in preventing 

false alarms in screening programs. 

4. Precision - 100%. Precision determines how reliable positive diabetes predictions are: 

𝐏𝐫𝐞𝐜𝐢𝐬𝐢𝐨𝐧 =
𝐓𝐫𝐮𝐞	𝐏𝐨𝐬𝐢𝐭𝐢𝐯𝐞𝐬

𝐓𝐫𝐮𝐞	𝐏𝐨𝐬𝐢𝐭𝐢𝐯𝐞𝐬 + 𝐅𝐚𝐥𝐬𝐞	𝐏𝐨𝐬𝐢𝐭𝐢𝐯𝐞𝐬 =
𝟗𝟐

𝟗𝟐 + 𝟎 = 	𝟏𝟎𝟎% 

A 100% precision rate implies that every individual predicted as diabetic was correctly 

classified. 

5. F1-Score - 94.85%. The F1-score balances precision and recall: 

𝐅𝟏 − 𝐒𝐜𝐨𝐫𝐞 =
𝟐 × 𝐏𝐫𝐞𝐜𝐢𝐬𝐢𝐨𝐧 × 𝐑𝐞𝐜𝐚𝐥𝐥
𝐏𝐫𝐞𝐜𝐢𝐬𝐢𝐨𝐧	 + 𝐑𝐞𝐜𝐚𝐥𝐥 =

𝟐 × 𝟏𝟎𝟎. 𝟎𝟎 × 𝟗𝟎. 𝟐𝟎
𝟏𝟎𝟎 + 𝟗𝟎. 𝟐𝟎 = 	𝟗𝟒. 𝟖𝟓% 

This metric ensures that the model achieves both high recall and precision simultaneously. 

6. Overall Accuracy - 99.24%. Measures the proportion of correct predictions (diabetic 

and non-diabetic): 

S𝐞𝐧𝐬𝐢𝐭𝐢𝐯𝐢𝐭𝐲 =
𝐓𝐫𝐮𝐞	𝐏𝐨𝐬𝐢𝐭𝐢𝐯𝐞𝐬

𝐓𝐫𝐮𝐞	𝐏𝐨𝐬𝐢𝐭𝐢𝐯𝐞𝐬 + 𝐅𝐚𝐥𝐬𝐞	𝐍𝐞𝐠𝐚𝐭𝐢𝐯𝐞𝐬 =
𝟗𝟐

𝟗𝟐 + 𝟏𝟎 = 	𝟗𝟎. 𝟐%	 

𝐅𝐚𝐥𝐬𝐞	𝐑𝐞𝐟𝐞𝐫𝐫𝐚𝐥	𝐑𝐚𝐭𝐞 =
𝐅𝐚𝐥𝐬𝐞	𝐏𝐨𝐬𝐢𝐭𝐢𝐯𝐞𝐬

𝐓𝐫𝐮𝐞	𝐍𝐞𝐠𝐚𝐭𝐢𝐯𝐞 + 𝐅𝐚𝐥𝐬𝐞	𝐏𝐨𝐬𝐢𝐭𝐢𝐯𝐞𝐬 =
𝟎

𝟏𝟐𝟐𝟎 + 𝟏𝟎 = 	𝟎%	  

𝐒𝐩𝐞𝐜𝐢𝐟𝐢𝐜𝐢𝐭𝐲 =
𝐓𝐫𝐮𝐞	𝐍𝐞𝐠𝐚𝐭𝐢𝐯𝐞	

𝐓𝐫𝐮𝐞	𝐍𝐞𝐠𝐚𝐭𝐢𝐯𝐞 + 𝐅𝐚𝐥𝐬𝐞	𝐏𝐨𝐬𝐢𝐭𝐢𝐯𝐞𝐬 =
𝟏𝟐𝟐𝟎

𝟏𝟐𝟐𝟎 + 𝟎 = 	𝟏𝟎𝟎%	  
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𝐎𝐯𝐞𝐫𝐚𝐥𝐥	𝐀𝐜𝐜𝐮𝐫𝐚𝐜𝐲 =
𝐓𝐫𝐮𝐞	𝐏𝐨𝐬𝐢𝐭𝐢𝐯𝐞𝐬 + 𝐓𝐫𝐮𝐞	𝐍𝐞𝐠𝐚𝐭𝐢𝐯𝐞	

𝐓𝐫𝐮𝐞	𝐏𝐨𝐬𝐢𝐭𝐢𝐯𝐞𝐬 + 𝐓𝐫𝐮𝐞	𝐍𝐞𝐠𝐚𝐭𝐢𝐯𝐞 + 𝐅𝐚𝐥𝐬𝐞	𝐏𝐨𝐬𝐢𝐭𝐢𝐯𝐞𝐬 + 𝐅𝐚𝐥𝐬𝐞	𝐍𝐞𝐠𝐚𝐭𝐢𝐯𝐞 					

=
𝟏𝟐𝟐𝟎 + 𝟗𝟐

𝟏𝟐𝟐𝟎 + 𝟗𝟐 + 𝟏𝟎 + 𝟎 = 𝟗𝟗. 𝟐𝟒% 

The high accuracy of 99.24% reflects the robustness and reliability of the 1D CNN for 

Structured Data model. 

4.5.2.2 Epoch-Driven Performance Analysis of the 1D CNN for Structured Data Model 

The effectiveness of deep learning models, including the 1D CNN for Structured Data, is 

influenced by the number of training epochs. An epoch represents a complete pass through 

the entire training dataset, allowing the model to refine its feature representations iteratively. 

Table 4.4 presents the model's classification performance across different epochs, providing a 

quantitative analysis of its learning curve. 

Table 4.4 Epoch-Wise Performance Metrics 

Epochs Accuracy % F1 Score % Recall % Sensitivity % 

10 98.487 89.13 80.392 100.0 

20 99.168 94.359 90.196 98.925 

30 98.638 90.323 82.353 100.0 

50 98.941 92.929 90.196 95.833 

100 99.168 94.359 90.196 98.925 

150 99.092 93.878 90.196 97.872 

200 98.638 91.0 89.216 92.857 
 

Accuracy remains above 98.49% across all epochs, indicating the model's stability and 

reliability. Recall and sensitivity values exceed 90% after 20 epochs, suggesting that the model 

reaches its optimal learning capacity early in the training process. Training beyond 100 epochs 

leads to marginal improvements but increases computational cost without significant gains in 

accuracy. Figures 4.16 and 4.17 illustrate model performance at two critical epochs. At epoch 

30, the model achieves a validation accuracy of 99.17%, indicating early stabilization of the 

learning curve. At epoch 100, the validation accuracy increases slightly to 99.41%, confirming 

that the model reaches its best generalisation performance.  
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Figure 4.16 Epoch 30 - 99.17% validation accuracy. 

 

Figure 4.17 Epoch 100 – 98.41% validation accuracy. 

4.5.3 Performance Evaluation of the 1D CNN for Structured Data Model 

The performance evaluation of the 1D CNN for Structured Data Model was conducted using 

the Oman Screening Dataset, a region-specific dataset optimised for AI-driven diabetes 

prediction. The model was trained and tested against conventional machine learning (ML) 

classifiers, including Random Forest (RF), Support Vector Machine (SVM), and Decision 

Trees (DT). The results demonstrate that the 1D CNN for Structured Data consistently 
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outperformed traditional ML models, achieving an accuracy range of 98.49% to 99.17% across 

different training epochs [61]. 

One of the key advantages of using CNN over traditional ML approaches is its ability to 

perform automated feature extraction. Unlike ML models, which rely on manual feature 

engineering, the 1D CNN autonomously identifies hierarchical feature representations. This 

ability is particularly beneficial in medical diagnostics, where complex interdependencies exist 

between risk factors such as BMI, cholesterol levels, blood pressure, and glucose readings. 

Traditional models often fail to capture such non-linear dependencies, leading to reduced 

classification accuracy [117]. 

Moreover, scalability is another key advantage of the 1D CNN. While traditional ML 

models operate on predefined features and require expert domain knowledge to select relevant 

predictors, the CNN learns progressively deeper feature representations, making it highly 

adaptable to different datasets and evolving medical conditions [119]. The hierarchical feature 

extraction process enables the CNN to recognise spatial and temporal patterns, significantly 

improving predictive accuracy compared to conventional classifiers [100]. 

The generalisability of the 1D CNN for Structured Data Model is also noteworthy. While 

traditional models demonstrate varying performance based on the choice of features, the CNN 

generalises well to different patient populations and can be fine-tuned for various medical 

datasets without requiring extensive modifications [126]. This adaptability is crucial for real-

world clinical applications, where dataset characteristics and patient demographics may differ 

significantly. The comparative evaluation of the 1D CNN and traditional ML models is 

summarised in Table 4.5 

Table 4.5  CNN vs. Traditional ML Performance Under the Same Dataset Conditions 
 
Feature Learning 
Approach 

Traditional ML (e.g., Random 
Forest, SVM) 

1D CNN for Structured Data 

Feature Engineering Requires manual selection by 
experts [117] 

Learns features automatically [117] 

Scalability Limited to predefined features 
[119] 

Learns progressively deeper feature 
representations [119] 

Pattern Recognition Struggles with complex 
interactions [100] 

Captures spatial-temporal dependencies 
[100] 

Generalisability Performance depends on selected 
features [126] 

Adapts to different datasets [126] 
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The superior performance of the 1D CNN for Structured Data model is evident through its 

high classification accuracy, sensitivity, and specificity. Unlike traditional ML classifiers, 

which rely on explicit feature engineering and struggle with feature interdependencies, CNNs 

dynamically learn feature representations, allowing for more robust generalisation across 

patient populations. The precision score of 100% indicates that all predicted diabetic cases 

were correctly identified, eliminating false positives, which is crucial in clinical applications 

where unnecessary interventions should be minimized. Additionally, the recall score of 90.2% 

ensures that the model effectively detects true diabetic cases, reducing the risk of undiagnosed 

patients. These metrics validate the model’s clinical applicability and reliability in real-world 

diabetes screening scenarios [65]. 

Overfitting is a well-known issue in deep learning models, where a network learns patterns 

specific to the training set but fails to generalise to unseen data. In this study, overfitting was 

mitigated using the following techniques: 

1. Early Stopping: The model’s training was monitored using a validation set, and training 

was halted when performance gains plateaued (as shown in Table 4.4), ensuring that 

the model did not memorize the training data. 

2. Dropout Regularization: Dropout layers were incorporated into the CNN architecture 

to randomly deactivate neurons during training, preventing the model from becoming 

overly dependent on specific features. 

3. Cross-Validation: The dataset was partitioned using an 80-10-10 split (training-

validation-testing) to ensure that performance was assessed on unseen data before final 

model evaluation. 

4. Epoch Optimisation: The model’s performance was evaluated at multiple epochs (10 

to 200) to identify the optimal number of training iterations that maximize accuracy 

while preventing overfitting. 

The model achieved an accuracy of 99.24%, significantly surpassing traditional ML 

classifiers like Random Forest, which typically achieve around 85-92% on similar structured 

medical datasets. 

In clinical practice, diabetes screening methods such as HbA1c testing and fasting glucose 

measurements report sensitivity rates of approximately 80-95%, depending on population 
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variability. The CNN model’s sensitivity of 90.2%suggests that its predictive capability is on 

par with, or superior to, current diagnostic tools. 

This high accuracy is clinically significant because: 

• Early Detection Capability: The model identifies at-risk individuals before clinical 

symptoms manifest, allowing for preventative interventions. 

• Reduced False Positives: The 100% precision score indicates that no non-diabetic 

patients were incorrectly classified as diabetic, minimizing unnecessary medical 

testing. 

• Consistency Across Training Epochs: Unlike conventional statistical models, CNN 

accuracy remains stable across multiple training epochs (Table 4.4), 

demonstrating robust generalisation ability. 

4.5.4 Broader Applications of the 1D CNN for Structured Data Model 

The 1D CNN for Structured Data Model demonstrates significant potential beyond diabetes 

prediction, particularly in AI-driven medical diagnostics for chronic disease risk assessment. 

The model's ability to autonomously extract hierarchical feature representations and recognise 

complex multi-dimensional patterns makes it an adaptable and scalable tool for various 

healthcare applications. This adaptability enables the model to process structured medical data 

efficiently, offering valuable insights for early disease detection and risk stratification. 

• Application in Cardiovascular Disease Risk Assessment 

Cardiovascular diseases (CVDs) are among the leading causes of morbidity and mortality 

worldwide, often sharing common risk factors with diabetes, including hypertension, 

dyslipidaemia, obesity, and lifestyle-related factors such as smoking and physical inactivity. 

The 1D CNN for Structured Data Model can be modified to integrate additional cardiovascular 

risk markers, such as electrocardiographic (ECG) readings, lipid profiles, and blood pressure 

variability, facilitating early-stage CVD prediction. By leveraging convolutional 

transformations, the model captures both short-term fluctuations and long-term trends in 

cardiovascular biomarkers, which traditional statistical models and ML classifiers often fail to 

detect. Early identification of high-risk individuals allows for timely interventions, reducing 

the burden of cardiovascular complications and improving patient outcomes [70, 151]. 
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• Hypertension Monitoring and Risk Prediction 

Hypertension is frequently asymptomatic in its early stages, making it a silent yet critical 

contributor to cardiovascular and renal diseases. Conventional hypertension screening relies 

on intermittent blood pressure measurements, which do not capture temporal variations in 

blood pressure levels. The 1D CNN model can be trained to detect subtle deviations in blood 

pressure trends, allowing for real-time risk assessment and continuous hypertension 

monitoring. By utilizing electronic health records and real-time wearable device data, the 

model can enhance early intervention strategies and support the development of AI-powered 

clinical decision-making systems [115, 152]. 

• Predictive Modelling for Metabolic Syndrome 

Metabolic syndrome—a cluster of interrelated conditions including obesity, insulin 

resistance, dyslipidaemia, and hypertension—serves as a major precursor to Type 2 Diabetes 

Mellitus (T2DM) and cardiovascular disease. The 1D CNN model is well suited for predictive 

modelling of metabolic syndrome due to its ability to identify multi-dimensional feature 

dependencies within structured clinical data. By analysing combinations of risk factors and 

their interactions over time, the model can predict the likelihood of an individual developing 

metabolic syndrome, enabling early preventive interventions [153, 154]. 

• Personalized Medicine and Treatment Optimisation 

The 1D CNN for Structured Data Model is inherently flexible in integrating multi-

dimensional structured datasets, making it a valuable tool for personalized medicine. By 

analysing genomic data, biochemical markers, and patient lifestyle factors, the model can 

generate individualized risk scores and recommend tailored treatment regimens. This approach 

aligns with the emerging trend of precision healthcare, which aims to customize treatment 

strategies based on a patient’s unique risk profile rather than relying on generalised population-

based recommendations. Additionally, the integration of real-time health monitoring data, such 

as continuous glucose monitoring (CGM) and wearable fitness trackers, allows the CNN model 

to adjust treatment plans dynamically, improving patient adherence and long-term health 

outcomes [150, 155]. 

• AI-Driven Epidemiological Surveillance 
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Given its ability to analyse large-scale structured health data, the 1D CNN for Structured 

Data Model can contribute significantly to AI-powered epidemiological surveillance. By 

processing regional and national health datasets, the model can track disease prevalence, 

identify emerging trends, and predict future incidence rates of diabetes and other chronic 

conditions. This capability is particularly useful for public health planning, as it aids in resource 

allocation, policy development, and targeted intervention programs. Furthermore, AI-driven 

disease surveillance can support healthcare authorities in monitoring the effectiveness of 

preventative strategies and adjusting them based on real-time epidemiological data [150, 156]. 

• Key Advantages of the 1D CNN Model in Broader Healthcare Applications 

The adaptability of the 1D CNN for Structured Data Model provides several advantages in 

various healthcare contexts, making it a transformative tool for AI-driven medical analytics: 

1. Automated, Scalable Feature Learning – Unlike traditional models requiring manual 

feature engineering, the CNN autonomously extracts diagnostic features, reducing 

reliance on expert-driven preprocessing and improving model efficiency. 

2. Multi-Dimensional Risk Factor Analysis – The model captures complex interactions 

between clinical variables, enhancing its ability to predict chronic diseases beyond 

diabetes. 

3. Personalized Healthcare Applications – The CNN model enables individualized patient 

risk assessments, supporting precision medicine and tailored treatment strategies. 

4. Real-Time Health Monitoring – Integration with wearable devices and electronic 

health records allows the model to track health trends continuously, improving early 

disease detection. 

5. Epidemiological Surveillance and Public Health Planning – AI-driven CNN models 

can analyse large-scale health datasets, assisting governments and healthcare 

institutions in tracking disease prevalence and planning interventions. 

The 1D CNN for Structured Data Model offers a robust and scalable AI-driven approach for 

medical diagnostics, demonstrating significant advantages over conventional machine learning 

methods. Its ability to process multi-dimensional structured data ensures high accuracy, 

scalability, and generalisability, making it a valuable tool for healthcare applications beyond 

diabetes prediction. 
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The model’s adaptability allows it to be leveraged for cardiovascular disease risk prediction, 

hypertension monitoring, metabolic syndrome forecasting, and personalized medicine, 

highlighting its broad clinical utility. Furthermore, its integration with AI-driven 

epidemiological surveillance systems enhances public health strategies by enabling data-

driven disease tracking and intervention planning. 

The findings from this research reinforce the growing role of deep learning in 

revolutionizing healthcare analytics, paving the way for future advancements in AI-driven 

medical diagnostics and chronic disease prevention strategies. By incorporating structured 

clinical data into deep learning models, healthcare systems can significantly enhance early 

disease detection, risk stratification, and personalized treatment recommendations, ultimately 

improving patient outcomes and healthcare efficiency [70, 117, 151]. 

Despite achieving high sensitivity and specificity, misclassification errors still occur. 

Analysis of misclassified cases (False Negatives: 10 patients, False Positives: 0 patients) 

reveals potential reasons: 

1. Borderline Cases: Some patients with HbA1c levels near the diabetes threshold were 

misclassified, highlighting the need for a hybrid model incorporating continuous patient 

monitoring. 

2. Missing Data Impact: Incomplete patient records can lead to reduced feature 

availability, affecting classification. 

3. Confounding Variables: Factors such as medication history, genetics, or transient 

physiological changes (e.g., stress-induced hyperglycaemia) may influence glucose 

readings, leading to ambiguous classifications. 

In a real-world clinical application, misclassification risks must be mitigated 

through complementary strategies: 

1. Integration with Existing Screening Methods: CNN predictions should be used in 

conjunction with HbA1c tests, fasting glucose tests, and clinician evaluations. 

2. Threshold Adjustment: Adjusting classification probability thresholds can help 

reduce false negatives, ensuring that borderline cases receive further clinical 

assessment. 
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3. Clinical Decision Support: Physicians should use CNN outputs as a secondary 

decision-support tool, rather than a standalone diagnostic system, to enhance reliability. 

By incorporating these safeguards, the 1D CNN model can be seamlessly integrated 

into diabetes risk screening programs, complementing conventional diagnostic techniques 

while minimizing misclassification risks. 

4.6 Chapter Summary  

This chapter has presented the development, implementation, and evaluation of the 1D CNN 

for Structured Data model, demonstrating its capability to enhance early detection of Type 2 

Diabetes Mellitus. The study utilized the Oman Screening Dataset, a region-specific dataset 

that provides a clinically relevant foundation for AI-driven predictive modelling. Through 

extensive preprocessing and feature engineering, the dataset was optimised to ensure accuracy 

and generalisability in diabetes risk assessment. The deep learning model was evaluated against 

conventional machine learning classifiers, including Random Forest, Decision Trees, and 

Support Vector Machines, revealing significant improvements in classification accuracy, 

feature extraction, and predictive power. 

The results showed that the 1D CNN model achieved high classification performance, with 

accuracy exceeding 99%, sensitivity reaching 90.2%, and specificity achieving 100%. Unlike 

traditional machine learning models that depend on manually selected features, the CNN model 

autonomously learned hierarchical feature representations, capturing intricate dependencies 

between clinical indicators such as glucose levels, blood pressure, cholesterol, and BMI. This 

automated learning process not only enhanced classification accuracy but also reduced human 

bias in feature selection, improving generalisation across diverse patient populations. 

One of the key findings of this study was the ability of CNNs to model structured medical 

data more effectively than traditional statistical approaches. The CNN-based framework 

leveraged convolutional transformations to recognise spatial-temporal dependencies within 

structured patient records, which conventional classifiers typically overlook. By learning both 

low-level and high-level relationships between clinical parameters, the model demonstrated 

superior performance in diabetes risk prediction. The hierarchical nature of CNN feature 

extraction was particularly beneficial in identifying non-linear interactions between diabetes 

risk factors, improving sensitivity in detecting early-stage diabetes cases. 



Page 98 of 174 
 

 

The training process was optimised through rigorous hyperparameter tuning, including 

adjustments in learning rate, batch size, and epoch selection. The model’s validation strategy 

ensured that it did not overfit to the training data, preserving its ability to generalise to unseen 

patient records. The use of dropout regularization and early stopping techniques further 

enhanced its robustness, making it suitable for real-world clinical applications. A confusion 

matrix-based analysis confirmed that the model achieved a high precision score, ensuring 

reliable classification of diabetic and non-diabetic cases. 

The broader implications of this study extend beyond diabetes prediction. The 1D CNN for 

Structured Data model can be adapted for various healthcare applications, including 

cardiovascular disease risk prediction, hypertension monitoring, and metabolic syndrome 

assessment. The scalability of the CNN framework makes it a valuable tool for AI-driven 

medical analytics, supporting personalized healthcare and clinical decision-making. Future 

research should explore the integration of CNNs with other deep learning architectures, such 

as Long Short-Term Memory (LSTM) networks and Transformer models, to enhance 

predictive capabilities through time-series analysis and real-time health monitoring. 

Despite its high performance, certain limitations were identified, including the potential for 

misclassification in borderline diabetes cases. The study highlights the need for a hybrid AI 

approach that combines CNN predictions with traditional diagnostic methods such as HbA1c 

and fasting glucose tests. Further research should also focus on refining model interpretability, 

ensuring that deep learning models provide transparent and explainable outcomes for clinical 

practitioners. 

The findings of this chapter emphasize the potential of deep learning in structured medical 

data analysis, demonstrating the effectiveness of CNNs in improving disease prediction and 

risk assessment. By leveraging AI-driven approaches, healthcare providers can enhance early 

intervention strategies, optimise treatment planning, and reduce the burden of chronic diseases. 

This research contributes to the growing field of AI-powered healthcare analytics, setting the 

stage for future advancements in predictive medicine and intelligent clinical decision support 

systems. 
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5 7-layers LSTM for Early Detection and Prevention of Diabetes 

5.1 Chapter Introduction 

The application of deep learning in medical diagnostics has significantly contributed to the 

early detection and management of chronic diseases such as diabetes. Given the progressive 

nature of diabetes, predictive models must be capable of analysing sequential patient data to 

detect early warning signs of disease onset. Traditional machine learning models, while 

effective for structured and static datasets, often struggle with capturing the temporal 

dependencies necessary for accurate risk assessment. 

Long Short-Term Memory (LSTM) networks have demonstrated their ability to retain and 

process long-term dependencies, making them particularly suitable for medical time-series 

data. The ability of LSTM models to analyse sequential patient records provides an advantage 

in identifying trends that signal disease progression. However, optimising the architecture of 

LSTM networks remains a challenge, as increasing model depth can improve feature extraction 

but may also introduce overfitting and computational inefficiencies. 

This chapter introduces a 7-layer LSTM model designed to enhance diabetes prediction by 

capturing both short-term fluctuations and long-term metabolic trends in patient health data. 

The model’s architecture was developed based on an extensive evaluation of alternative 

configurations, including 5-layer, 6-layer, 8-layer, and 9-layer LSTM models. The primary 

objective was to determine the optimal balance between predictive accuracy, generalisation 

ability, and computational efficiency. 

The chapter outlines the justification for selecting the 7-layer LSTM model, describes its 

architectural components, and presents the training and evaluation methodology. A 

comparative analysis is conducted against both alternative LSTM configurations and 

previously published models to validate the proposed approach. The findings demonstrate that 

the 7-layer LSTM model provides superior predictive performance while maintaining 

computational efficiency, making it a viable solution for early diabetes detection. 
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5.2 Justification for the 7-Layer LSTM Model 

The selection of the 7-layer Long Short-Term Memory (LSTM) model was based on an 

extensive evaluation of different architectures to achieve an optimal balance between 

predictive accuracy, generalisation ability, and computational efficiency. The study compared 

models with five to nine LSTM layers to assess their ability to capture temporal patterns 

relevant to diabetes progression while mitigating overfitting and computational complexity. 

The 5-layer LSTM model was initially tested as a baseline, consisting of a sequence input layer, 

three LSTM layers, a fully connected layer, and a regression output layer. While 

computationally efficient, this model demonstrated limitations in capturing long-term 

dependencies within patient data, leading to lower recall in identifying early-stage diabetes. 

The limited depth restricted its ability to extract hierarchical temporal features, which affected 

its predictive performance and resulted in an unstable Area Under the Curve (AUC) score. 

Additionally, the model was less effective in differentiating between short-term fluctuations 

and meaningful disease progression trends, limiting its practical applicability. 

To improve performance, a 6-layer LSTM model was developed by adding an additional 

LSTM layer to enhance feature extraction and long-term memory retention. This adjustment 

resulted in improved accuracy and recall, particularly in identifying patients at risk of 

developing diabetes. However, slight overfitting was observed, as indicated by fluctuations in 

the AUC score, suggesting that the model was learning patterns specific to the training dataset 

rather than generalisable trends. While the 6-layer model outperformed the 5-layer model, its 

generalisation ability remained a concern. 

To address these limitations, the 7-layer LSTM model was introduced. This architecture 

demonstrated improved hierarchical feature extraction, capturing both short-term variations 

and long-term metabolic trends [159]. The use of layer normalisation after each LSTM layer 

contributed to stabilizing the training process and enhancing generalisation ability [160]. 

Additionally, the 7-layer model maintained computational efficiency, as deeper architectures 

beyond seven layers exhibited diminishing accuracy improvements while significantly 

increasing training time and computational costs. The 7-layer LSTM model consistently 

outperformed the 5-layer and 6-layer models in terms of recall, accuracy, and generalisation to 

unseen data, supporting its selection for diabetes prediction [161]. 
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Further evaluation of deeper architectures, including an 8-layer LSTM model, indicated minor 

performance improvements over the 7-layer model but at a higher computational cost. A 9-

layer LSTM model introduced additional complexity but resulted in minimal accuracy gains 

and exhibited increased performance instability. The higher computational requirements and 

overfitting observed in the 9-layer model made it less practical for deployment. 

The results indicate that the 7-layer LSTM model provides a balance between predictive 

accuracy, generalisation, and computational efficiency. This model effectively captures both 

short-term and long-term trends in metabolic data, making it a suitable choice for early diabetes 

risk assessment. A detailed evaluation of the model’s performance, including accuracy, recall, 

AUC scores, and computational efficiency, is presented in Section 5.4. 

5.3 Proposed Model Architecture: Diabetic Prediction with a 7-Layer 

LSTM Framework 

The application of deep learning in medical diagnostics has significantly enhanced the early 

detection and management of chronic diseases such as diabetes. Given the progressive nature 

of diabetes, accurately predicting its onset requires a robust model capable of analysing 

complex health indicators over time. Traditional machine learning models, while effective for 

static datasets, often fail to capture the sequential relationships between health variables. As a 

result, deep learning architectures, particularly Long Short-Term Memory (LSTM) networks, 

have been widely adopted for their ability to retain and process long-term dependencies in 

time-series data [156]. 

LSTM networks address the limitations of standard recurrent neural networks (RNNs) by 

incorporating memory cells that mitigate the vanishing gradient issue, allowing them to retain 

past information for extended periods [157]. This capability makes them particularly well-

suited for medical applications where historical health data provides critical insight into disease 

progression. LSTMs have demonstrated superior performance in time-series forecasting, 

outperforming traditional statistical models in health risk prediction [158]. 

To optimise diabetes risk prediction, this study introduces a 7-layer LSTM model, designed 

to capture short-term, medium-term, and long-term dependencies in patient health records. The 

model follows a hierarchical structure that enables it to progressively refine predictive features, 

thereby improving accuracy. A comparative analysis of different LSTM architectures, 

including five-layer and six-layer configurations, led to the selection of a seven-layer structure, 
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as it provides the optimal balance between computational efficiency, feature extraction depth, 

and predictive accuracy. 

5.3.1 Architectural Overview 

The 7-layer LSTM model (illustrated in Figure 5.1) is designed to process multivariate 

sequential data efficiently, ensuring that both short-term fluctuations and long-term disease 

progression trends are effectively captured. The architecture consists of the following key 

components: 

 

Figure 5.1 The Seven-layer LSTM Architecture 

1. Sequence Input Layer (Layer 1) 

2. Five Stacked LSTM Layers (Layers 2-6) 

3. Layer Normalisation (Between LSTM Layers) 

4. Fully Connected + Regression Output Layer (Layer 7) 
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Each layer plays a specific role in processing, refining, and transforming raw patient data into 

meaningful risk predictions. 

• Sequence Input Layer (Layer 1) 

The sequence input layer serves as the foundation of the model, responsible for formatting 

raw patient health data into a structured time-series representation. Diabetes prediction 

relies on analysing longitudinal health trends, making it essential to preserve the temporal 

relationships between various patient indicators. This layer processes multivariate input 

features, including demographic, anthropometric, clinical, and historical health indicators, 

all of which contribute to the predictive accuracy of the model [159]. 

Since patient health records vary in scale and magnitude, feature scaling techniques such 

as Min-Max Normalisation are applied to maintain consistency across variables. This 

prevents numerical dominance, allowing the LSTM network to treat each feature equally 

during training [160]. 

• Stacked LSTM Layers (Layers 2-6) 

The core of the model consists of five stacked LSTM layers, each performing incremental 

feature extraction from sequential patient health records. These layers work hierarchically, 

progressively refining short-term, medium-term, and long-term dependencies to improve 

diabetes risk prediction. 

The first LSTM layer focuses on capturing short-term fluctuations in patient health data, 

detecting rapid changes in glucose levels, BMI variations, and cholesterol concentrations. 

This layer plays a critical role in identifying early metabolic dysfunction that may indicate 

prediabetes. As the information progresses through the second LSTM layer, the 

model extracts intermediate patterns spanning several weeks or months, 

identifying periodic fluctuations that correlate with emerging health risks. 

The third LSTM layer is responsible for learning long-term dependencies, making it 

particularly valuable for detecting chronic trends associated with gradual transitions from 

prediabetes to diabetes. This layer enables the model to retain historical metabolic trends, 

improving its ability to differentiate between patients who may recover through lifestyle 

interventions and those at high risk of developing diabetes. 
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The fourth LSTM layer performs feature abstraction, filtering out redundant or weakly 

correlated information while enhancing high-value risk factors. The final LSTM 

layer refines the extracted high-level features, ensuring that the predictive signal 

remains stable, interpretable, and generalisable to diverse patient populations. 

• Layer Normalisation and Stability Enhancements 

One of the key challenges in deep recurrent networks is gradient instability, which can 

cause performance degradation. To address this, layer normalisation is applied after each 

LSTM layer. This technique ensures that activations remain within a stable range, 

preventing exploding or vanishing gradients and enhancing training efficiency. Without 

normalisation, deep LSTMs may struggle to propagate information effectively, leading to 

suboptimal feature learning [161]. 

In addition to layer normalisation, dropout regularization and adaptive learning rate 

adjustments are incorporated into the training process. Dropout randomly deactivates 

neurons during training, preventing the model from relying excessively on specific 

features, which enhances generalisation. The learning rate is dynamically adjusted using 

the Adam optimiser, allowing the network to adapt efficiently to complex data distributions 

[162]. These stability enhancements collectively ensure that the 7-layer LSTM model 

generalises effectively across different patient cohorts. 

• Final Fully Connected and Regression Layers 

The final stage of the model consists of a fully connected layer followed by a regression 

output layer. The fully connected layer transforms the high-dimensional features extracted 

by the LSTM layers into a structured format suitable for risk scoring. This layer is crucial 

for combining relevant risk factors into an optimised representation, ensuring that the 

model captures the most predictive elements of patient health data. 

The regression layer computes a continuous diabetes risk score, rather than a binary 

classification. This design allows for a nuanced risk assessment, where higher probability 

scores indicate a greater likelihood of diabetes onset. This probabilistic output 

supports personalized decision-making, enabling clinicians to prioritize high-risk patients 

for early intervention [159]. 
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5.3.2 Model Workflow for Diabetes Prediction 

The 7-layer LSTM model follows a structured workflow that begins with data preprocessing 

and transformation and concludes with the generation of a probabilistic diabetes risk score. 

This workflow ensures that patient health indicators are effectively utilized to predict diabetes 

onset by leveraging hierarchical feature extraction and sequential learning. Each stage—data 

transformation, model training, performance evaluation, and layer-specific analysis—plays a 

crucial role in refining the predictive capabilities of the model. 

5.3.2.1 Data Transformation and Preparation 

The effectiveness of the model heavily depends on the quality and structuring of input data. 

Using MATLAB’s advanced data processing functionalities, the dataset undergoes extensive 

pre-processing to ensure high-quality structured inputs for sequential learning. The dataset 

consists of multiple biometric and clinical features, including age, BMI, fasting glucose, 

cholesterol, blood pressure, family history, and personal health history. These variables are 

essential for identifying diabetes risk factors and capturing longitudinal health trends. 

A critical aspect of data transformation involves handling missing values using the k-nearest 

Neighbourss (KNN) imputation method. This ensures that gaps in patient records do not 

introduce biases during model training. Outliers are detected and removed to enhance model 

stability, and feature scaling techniques such as Min-Max Normalisation are applied to prevent 

numerical imbalances that could distort learning. Additionally, health indicators such as BMI, 

blood pressure, and cholesterol levels are categorised based on clinical standards to reflect real-

world diagnostic classifications. 

Given that LSTM models require sequential inputs, patient records are converted into 

structured time-series formats where historical data points are preserved. This ensures that the 

model captures evolving health patterns rather than treating patient records as independent 

observations. Once preprocessing is completed, the dataset is divided into training, validation, 

and test sets, ensuring proper model evaluation and generalisation to unseen data. 

5.3.2.2 Model Training Dynamics 

Training the 7-layer LSTM model requires careful optimisation of key parameters, including 

the number of epochs, mini-batch size, and learning rate. The training process follows 

structured stages that include forward propagation, where patient health sequences pass 
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through stacked LSTM layers, progressively refining feature representations. The 

backpropagation through time (BPTT) algorithm is used to adjust weight parameters and 

minimize prediction errors. The model utilizes the Adam optimiser, which dynamically adjusts 

learning rates and prevents overcorrection in weight updates, ensuring efficient learning. 

A mini-batch size of 64 is used to optimise computational efficiency, while training is 

conducted over 150 epochs to ensure convergence. A gradient threshold is carefully set to 

prevent exploding gradients, a common issue in deep recurrent networks. Layer normalisation 

is applied after each LSTM layer to ensure consistent feature scaling, improve stability, and 

prevent overfitting. The use of dropout regularization further enhances generalisation by 

randomly deactivating certain neurons, ensuring the model does not become overly dependent 

on specific features. 

5.3.2.3 Performance Evaluation and Metrics 

The predictive performance of the 7-layer LSTM model is evaluated using several key metrics, 

including accuracy, precision, recall, specificity, F1-score, and the Area Under the Receiver 

Operating Characteristic Curve (AUC-ROC). Each of these metrics provides a different 

perspective on the model’s performance. Accuracy measures the proportion of correctly 

classified cases, while precision assesses how many of the predicted positive cases were 

correct. Recall evaluates the model’s sensitivity in detecting diabetic patients, and specificity 

ensures that the model minimizes false positives. The F1-score provides a harmonic mean 

between precision and recall, ensuring that the model is balanced in identifying true diabetic 

cases without over-predicting false positives. 

The ROC curve provides a visual representation of the model’s performance across varying 

classification thresholds, with the AUC score serving as a summary of its overall 

discriminatory power. A model with an AUC closer to 1.0 demonstrates a high degree of 

accuracy in differentiating between diabetic and non-diabetic individuals. Additionally, the 

confusion matrix is analysed to understand classification errors, helping refine the model 

further. These comprehensive evaluation methods ensure that the model is not only accurate 

but also clinically reliable for real-world implementation. 

5.3.2.4 Layer-Specific Learning and Feature Extraction 

The hierarchical structure of the stacked LSTM layers plays a pivotal role in enabling the model 

to capture complex diabetes risk patterns. Each layer contributes uniquely to the feature 
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extraction process, ensuring that both short-term fluctuations and long-term dependencies are 

adequately analysed. The first LSTM layer identifies short-term trends such as sudden 

increases in fasting glucose levels, BMI variations, or cholesterol fluctuations. The second 

LSTM layer learns intermediate health trends spanning weeks or months, detecting early 

warning signals of metabolic deterioration. 

The third LSTM layer specializes in learning long-term dependencies, distinguishing between 

patients who show temporary metabolic irregularities and those at risk of progressing toward 

diabetes. The fourth LSTM layer performs feature abstraction, refining the most relevant 

clinical markers and filtering out redundant signals. The final LSTM layer consolidates the 

extracted features, ensuring that the model produces stable and interpretable risk assessments. 

The stacked arrangement of multiple LSTM layers allows for progressively deeper learning, 

enabling the model to extract increasingly sophisticated patterns from patient health records. 

5.3.2.5 Final Risk Assessment and Probabilistic Scoring 

Once the extracted features have been refined through the LSTM layers, the model generates 

a probabilistic diabetes risk score through the fully connected layer and regression output layer. 

Instead of assigning a binary diabetic or non-diabetic classification, the model produces a 

continuous probability score ranging from 0 to 1, allowing for a nuanced risk assessment. The 

final probability score is interpreted based on risk categories. A low-risk score between 0.0 and 

0.4 indicates a minimal likelihood of developing diabetes, while a moderate-risk score between 

0.4 and 0.7 suggests potential diabetes risk that requires lifestyle modifications and periodic 

monitoring. A high-risk score above 0.7 indicates a strong likelihood of diabetes onset, 

prompting immediate medical intervention. 

By providing a continuous risk probability, the model allows clinicians to prioritize high-risk 

patients for early treatment while also offering personalized risk assessments for those in 

moderate-risk categories. This probabilistic scoring approach makes the model more clinically 

relevant than conventional classification models, as it provides actionable insights into patient 

health trends. 

5.3.2.6 Clinical Significance and Future Applications 

The 7-layer LSTM model represents a significant advancement in diabetes prediction, offering 

a highly accurate and interpretable framework for risk assessment and early intervention. By 

integrating deep learning principles with structured patient health data, the model achieves high 
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precision, recall, and AUC scores, making it a clinically viable tool for early diagnosis. The 

ability to extract meaningful temporal patterns from patient health records allows for more 

informed medical decision-making. 

Future applications of this model include integration into electronic health record (EHR) 

systems, allowing for real-time diabetes risk predictions and automated clinical alerts. The 

model can also be adapted for personalized healthcare recommendations, where patients 

receive customized interventions based on their predicted risk scores. Furthermore, 

incorporating multi-modal data sources, such as genetic, behavioural, and lifestyle information, 

could further improve predictive performance and patient outcomes. 

The structured workflow of the 7-layer LSTM model ensures that diabetes prediction 

is based on a holistic analysis of patient health records. The integration of preprocessing 

techniques, sequential learning, layer normalisation, and probabilistic risk scoring enables the 

model to provide accurate and interpretable results. The use of deep feature extraction enhances 

the model’s ability to detect both early and advanced diabetes risk factors, making it a powerful 

tool for preventive healthcare strategies. 

5.4 Training, Validation, and Performance Evaluation of the 7-Layer 

LSTM Model 

The training, validation, and evaluation of the 7-layer Long Short-Term Memory 

(LSTM) model for diabetes prediction were carried out systematically to ensure 

methodological rigor and clinical relevance. This section provides a detailed examination of 

the model’s training procedure, validation approach, and performance assessment, supported 

by quantitative analysis. Key evaluation metrics, including the confusion matrix, ROC curve 

(Figure 5.2), and training progress (Figure 5.3), are presented to offer a comprehensive 

understanding of the model’s predictive capabilities. The findings underscore the model’s 

potential as a reliable tool for early diabetes detection. 

5.4.1 Dataset and Preparation 

The performance of any deep learning model depends heavily on the quality and 

structure of its input data. The dataset utilized for this study consisted of 13,224 patient records, 

each containing 13 key health-related variables collected from various healthcare centres 

across Oman. These variables included demographic, anthropometric, and clinical indicators 

such as age, weight, height, BMI, waist circumference, total cholesterol, blood pressure, fasting 
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plasma glucose (FPG), random plasma glucose (RPG), family history, and personal health 

history. These diverse variables captured both short-term and long-term health trends, making 

the dataset well-suited for sequential learning using an LSTM framework [156]. 

Data preprocessing was an essential step in ensuring that the dataset was optimised for 

deep learning analysis. Missing values were imputed using the k-nearest Neighbourss (KNN) 

method, addressing data gaps without introducing bias. Outliers were identified and managed 

using the z-score method, eliminating anomalies that could compromise the model’s stability. 

Features indicative of diabetes risk, such as BMI and blood pressure, were binarized based on 

clinical cut-off thresholds, simplifying the model inputs while retaining essential diagnostic 

information. Categorical variables like age group and BMI categories were transformed into 

numerical representations to ensure compatibility with the LSTM framework. After 

preprocessing, the dataset was split into training (60%), validation (20%), and test (20%) 

subsets, ensuring an equitable distribution of data for robust model evaluation [159]. 

To preserve the sequential nature of patient records, the dataset was restructured 

into time-series formats. This structuring allowed the LSTM model to leverage historical trends 

in patient health data, enhancing its ability to predict diabetes onset. 

5.4.2 Model Training 

The 7-layer LSTM model was designed with a well-defined architecture to capture 

complex temporal patterns in the data. The architecture included a sequence input layer, five 

stacked LSTM layers, and fully connected and regression output layers. The LSTM layers, 

each containing 20 hidden units, formed the core of the model, enabling it to process sequential 

data effectively while maintaining temporal memory. Layer normalisation, interspersed 

between LSTM layers, was employed to stabilise activations, prevent gradient instability, and 

enhance training efficiency [160]. The model culminated in a regression layer that computed 

the mean squared error (MSE) loss, optimising the architecture for regression tasks. 

The training process employed the Adam optimisation algorithm, which is widely 

recognised for its adaptability and efficiency in deep learning tasks [163]. The learning rate 

was set at 1e-4, balancing the need for convergence and precision. The model was trained 

over 150 epochs with a mini-batch size of 64, ensuring that computational efficiency did not 

come at the expense of learning accuracy. To prevent exploding gradients, a common issue in 
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recurrent neural networks, a gradient threshold was applied. The training process incorporated 

a separate validation set, which enabled periodic evaluations of the model’s performance on 

unseen data, thereby reducing the risk of overfitting [164]. 

Training efficiency was a key feature of this implementation. The model was trained in 

just 59 seconds on a single CPU, highlighting its computational efficiency and suitability for 

real-time deployment in clinical environments. The alignment between the training and 

validation loss curves indicated that the model generalised effectively, as depicted in Figure 

5.3, which shows the training progress. 

5.4.3 Performance Evaluation and Results 

The evaluation of the 7-layer Long Short-Term Memory (LSTM) model was conducted 

through a comprehensive analysis of key performance metrics, with a primary focus 

on predictive accuracy, precision, recall, specificity, F1 score, and overall discriminatory 

power. These metrics provide a holistic assessment of the model's ability to correctly classify 

diabetic and non-diabetic individuals, ensuring its effectiveness in a clinical setting. The 

analysis is further supported by the confusion matrix (Table 5.1) and the Receiver Operating 

Characteristic (ROC) curve (Figure 5.2), both of which illustrate the model’s classification 

efficiency. 

The ROC curve, depicted in Figure 5.2, serves as a fundamental tool for evaluating the model’s 

capability to distinguish between diabetic and non-diabetic individuals across varying decision 

thresholds. The Area Under the Curve (AUC) value of 94.51% is a strong indicator of the 

model’s superior discriminatory power. A high AUC value, close to 1.0, confirms that the 

model effectively separates positive (diabetic) and negative (non-diabetic) cases with minimal 

overlap, ensuring reliable classification. This performance is critical in medical diagnostics, 

where an optimal balance between sensitivity (recall) and specificity is essential for minimizing 

both false positives and false negatives. This high AUC-ROC score underscores the model’s 

ability to provide robust predictions, making it a viable tool for real-world medical applications 

where risk stratification and early intervention are critical [1s62]. 
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Figure 5.2 ROC Curve (AUC=0.94505) 

The confusion matrix provides a granular view of the model’s classification performance, with 

the results summarised below: 

Table 5.1 LSTM confusion matrix 
 
Actual vs Predicted Non-Diabetic (0) Diabetic (1) 

Non-Diabetic (0) 2424 0 

Diabetic (1) 16 205 

 

The model’s specificity, precision, recall, F1 score, and overall accuracy highlight its 

exceptional classification capabilities: 

1. Specificity (100%): The model achieved perfect specificity, correctly identifying all 

non-diabetic individuals without any false positives. This is critical in clinical 

diagnostics to ensure that individuals without diabetes are not misclassified, preventing 

unnecessary interventions and anxiety [163]. 

2. Precision (100%): The model’s precision reflects its accuracy in predicting diabetic 

cases. Every individual flagged as diabetic was correctly classified, ensuring no false 

positives. This high precision rate underscores the model’s robustness, making it 
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suitable for clinical settings where misclassification could lead to significant 

consequences [163]. 

3. Recall (Sensitivity): The recall rate for diabetic cases was 100%, meaning the model 

correctly identified all diabetic individuals. For non-diabetic cases, the recall was 

99.34%, indicating the model’s ability to recognise the vast majority of non-diabetic 

patients while minimizing false negatives [158]. 

4. F1 Score (96.24%): The F1 score represents a harmonic balance between precision and 

recall. This metric is particularly important in medical diagnostics, where both false 

positives and false negatives can have serious implications [158]. 

5. Accuracy (99.40%): The overall accuracy reflects the proportion of correctly classified 

cases, combining both diabetic and non-diabetic predictions [165]. 

6. AUC-ROC (94.51%): The ROC curve illustrates the trade-off between true positive 

and false positive rates across varying thresholds. The high AUC value of 94.51% 

signifies the model’s strong discriminatory power, ensuring effective differentiation 

between diabetic and non-diabetic cases [166]. 

5.4.4 Training and Validation Loss Analysis 

The training dynamics, depicted in Figure 5.3, provide a comprehensive view of the model’s 

learning behaviour. The Root Mean Square Error (RMSE) curve exhibited a steep decline 

during the initial training phases, reflecting rapid learning as the model captured critical 

patterns in the data. This was followed by stabilization, indicating successful convergence. The 

final validation RMSE value of 0.36679 highlights the model’s ability to maintain high 

prediction accuracy on unseen data [167]. The close alignment of the training and validation 

loss curves throughout the training process confirms the model’s generalisability, minimizing 

the risk of overfitting. 
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Figure 5.3 Training Progress of LSTM Model 
 
 
5.5 Comparative Evaluation of LSTM Models 

To evaluate the effectiveness of the proposed 7-layer Long Short-Term Memory (LSTM) 

model for diabetes prediction, a comparative analysis was conducted against alternative LSTM 

architectures, including the 5-layer, 6-layer, 8-layer, and 9-layer designs. All models were 

trained and tested under identical conditions using the Oman Screening Dataset to ensure a fair 

assessment. The evaluation considered key performance metrics such as accuracy, precision, 

recall, specificity, F1 score, and Area Under the Curve (AUC) to determine the most optimal 

architecture for early diabetes detection. 
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5.5.1 Performance Metrics Comparison 

Table 5.2 provides a comparative analysis of the performance of different LSTM models in 
diabetes prediction. 

Table 5.2 Comparative Evaluation of the Five LSTM Models 
 
Metric 5-Layer 

LSTM 

6-Layer 

LSTM 

7-Layer 

LSTM 

8-Layer 

LSTM 

9-Layer 

LSTM 

Accuracy (%) 96.87 98.12 99.40 98.6 99.13 

Precision (%) 92.3 96.14 100.0 98.9 99.6 

Recall (%) 95.76 98.2 100.0 98.7 99.3 

Specificity (%) 97.45 99.12 100.0 98.95 99.2 

F1 Score (%) 94.0 97.15 96.24 97.5 97.0 

AUC (%) 91.62 93.98 94.51 94.2 94.1 

 

5.5.2 Comparative Analysis 

5.5.2.1 Evaluation of LSTM Architectures 

A detailed comparative evaluation was conducted to determine the impact of model depth on 

predictive performance. 

1. Accuracy and Precision: The proposed 7-layer LSTM model achieved the highest 

accuracy (99.40%) and precision (100%), outperforming the 5-layer and 6-layer 

architectures. While the 9-layer model also demonstrated high accuracy, it exhibited 

slight instability in certain metrics. The 8-layer model performed competitively but did 

not surpass the efficiency of the 7-layer architecture. 

2. Recall and Specificity: The recall rate of 100% in the 7-layer model ensures all diabetic 

cases are correctly identified, making it highly reliable in medical applications. The 9-

layer model, despite its high recall, introduced a slight drop in specificity due to 

overfitting tendencies. The 8-layer model maintained a strong balance, though it 

marginally underperformed compared to the 7-layer LSTM. 
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3. F1 Score: While the F1 score was high across all models, the 7-layer model provided 

the most balanced performance between precision and recall (96.24%). The 8-layer and 

9-layer models followed closely but introduced higher computational costs without 

significant performance gains. 

4. AUC Score: The 7-layer model achieved the highest AUC (94.51%), confirming its 

superior discriminatory power in distinguishing diabetic and non-diabetic cases. This 

suggests that the model has strong predictive capabilities over a range of classification 

thresholds. 

5.5.2.2 Comparative Analysis of Existing LSTM Models 

Table 5.3 highlights the performance of various LSTM-based models reported in the literature, 

allowing a broader evaluation of the proposed 7-layer model's effectiveness in diabetes 

prediction. 

• Conv-LSTM [77] demonstrated strong performance with an accuracy of 97.26%, 

though details on precision, recall, and specificity were not reported. The dataset used 

(Pima Indians Diabetes Database, PIDD) may limit its applicability to broader patient 

demographics. 

• LSTM vs GRU [78] comparisons indicated that GRU might outperform LSTM under 

specific conditions, emphasizing the importance of selecting the right architecture 

based on dataset characteristics. The GRU model achieved an RMSE of 1.722, 

compared to 3.376 for LSTM, demonstrating better efficiency in small datasets. 

• BiLSTM with Attention [81] demonstrated improved precision and recall over 

traditional LSTM models, supporting the effectiveness of attention mechanisms in 

enhancing predictive accuracy. 

• SMOTE-based Deep LSTM [76] achieved an exceptionally high accuracy of 99.64% 

by addressing class imbalance, illustrating the significance of preprocessing techniques 

in model performance. 

• CNN-LSTM Hybrid Model [83] outperformed standalone LSTM and CNN models, 

highlighting the advantage of integrating spatial and temporal features in diabetes 

prediction. 

• IoT-based LSTM Model [84] reached an accuracy of 87.26%, demonstrating the 

potential of real-time monitoring solutions in diabetes prediction and management. 
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Table 5.3 Comparative Performance of Various LSTM Models in Diabetes Prediction 

The Key to Abbreviations Used: 

• N/A: Not Applicable 

• GRU >: GRU performed better than LSTM in terms of accuracy 

• RMSE: Root Mean Square Error 

Model 
Description Precision Recall 

(Sensitivity) 
Recall 
(Specificity) Accuracy AUC F1 Score RMSE  

Three-layer 
LSTM [75] 

Not 
specified 

Not 
specified 

Not 
specified 84% 0.89 Not 

specified 
Not 
specified 

Four-layer 
Deep LSTM 
[76] 

Not 
specified 

Not 
specified 

Not 
specified 99.64% 0.983 Not 

specified 
Not 
specified 

Conv-
LSTM [77] 

Not 
specified 

Not 
specified 

Not 
specified 97.26% N/A Not 

specified 
Not 
specified 

LSTM vs 
GRU [78] 

Not 
specified 

Not 
specified 

Not 
specified 

GRU 
outperformed 
LSTM 

N/A Not 
specified 

GRU: 
1.722, 
LSTM: 
3.376 

Real-time 
Glucose 
Prediction 
LSTM [79] 

Not 
specified 

Not 
specified 

Not 
specified Not specified N/A Not 

specified 
RMSE: 
4.02 

Personalized 
LSTM (P-
LSTM) [80] 

Not 
specified 

Not 
specified 

Not 
specified Not specified 

RMSE: 
7.67 
mg/dL 

Not 
specified 

7.67 
mg/dL 

BiLSTM for 
Diabetes 
Prediction 
[81] 

Not 
specified 

Not 
specified 

Not 
specified 

Higher than 
unidirectional 
LSTMs 

Not 
specified 

Not 
specified 

Not 
specified 

Two-layer 
LSTM [82] 

Not 
specified 

Not 
specified 

Not 
specified Not specified High Not 

specified 
Not 
specified 

CNN-LSTM 
Hybrid 
Model [83] 

Not 
specified 

Not 
specified 

Not 
specified 

Higher than 
standalone 
LSTM/CNN 

N/A Not 
specified 

Not 
specified 

IoT-based 
LSTM 
Model [84] 

Not 
specified 

Not 
specified 

Not 
specified 87.26% N/A Not 

specified 
Not 
specified 
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• EHRs: Electronic Health Records 

• CGM: Continuous Glucose Monitoring 

• MCC: Matthew’s Correlation Coefficient 

The 7-layer LSTM model developed in this study surpassed the performance of these existing 

models in accuracy, recall, and specificity. This highlights the advantages of deeper LSTM 

architectures for extracting hierarchical features in sequential patient data. Additionally, the 

comparative analysis underscores the impact of dataset characteristics, preprocessing methods, 

and architectural choices on model performance. 

5.5.2.3 Computational Efficiency Considerations 

Increasing the number of LSTM layers can improve feature extraction but also increases 

computational demands. The experimental results indicate that the 8-layer and 9-layer models 

required significantly longer training times without proportionate gains in accuracy, making 

them less practical for real-world healthcare applications. The 7-layer model emerged as the 

optimal balance, demonstrating strong predictive power with manageable computational 

overhead. 

5.6 Chapter Summary 

This This chapter presented the design, implementation, and comparative evaluation of a 7-

layer LSTM model for diabetes prediction. The model was systematically compared against 

alternative LSTM architectures, including 5-layer, 6-layer, 8-layer, and 9-layer configurations, 

to assess the impact of network depth on predictive performance. The results indicate that the 7-

layer LSTM model achieved the highest accuracy (99.40%), precision (100%), recall (100%), 

and AUC (94.51%), surpassing both shallower and deeper architectures. 

The analysis revealed that the 5-layer and 6-layer models, while computationally efficient, 

exhibited limitations in capturing long-term dependencies, leading to lower recall rates. In 

contrast, deeper architectures (8-layer and 9-layer models) introduced higher computational 

costs without significant improvements in accuracy. The 7-layer LSTM model provided an 

optimal balance, effectively extracting hierarchical features while maintaining generalisation 

ability and training efficiency. 

A broader comparative analysis against previously published LSTM-based models further 

validated the effectiveness of the proposed approach. The 7-layer LSTM outperformed 
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conventional Conv-LSTM, BiLSTM, and SMOTE-based LSTM models in key performance 

metrics, highlighting the advantages of deeper architectures in sequential medical data analysis. 

Additionally, the findings underscore the significance of feature engineering, normalisation 

techniques, and regularisation strategies in enhancing model robustness. 

The results suggest that the proposed 7-layer LSTM model is a promising tool for early 

diabetes prediction, capable of supporting clinical decision-making by providing reliable risk 

assessments. Future research directions should focus on optimising computational efficiency, 

integrating additional data modalities such as genetic and lifestyle factors, and expanding 

model validation across diverse demographic datasets. The potential integration of attention 

mechanisms and hybrid deep learning architectures could further enhance predictive accuracy 

and clinical applicability. 
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6  Hybrid CNN-LSTM model for Type 2 Diabetes Prediction in Oman with 

testing GUI Application 

6.1 Introduction 

The se of deep learning models in medical diagnostics has gained significant attention, 

particularly in the prediction of Type 2 Diabetes Mellitus (T2DM). This chapter examines the 

effectiveness of a Hybrid CNN-LSTM model for diabetes prediction, comparing its 

performance with standalone CNN and LSTM models. The CNN component is utilized 

for spatial feature extraction, while the LSTM component is incorporated to capture temporal 

dependencies in patient data. The assumption behind this hybrid approach is that combining 

both architectures would enhance predictive accuracy by leveraging both spatial and sequential 

information. 

This study evaluates the CNN-LSTM model by implementing and testing it 

against alternative deep learning models, including 1DCNN and a 7-layer LSTM, using 

the Oman Diabetes Screening Dataset. The primary objective is to assess whether adding 

LSTM layers to a CNN model provides a tangible performance improvement or if a standalone 

CNN model is sufficient. Additionally, the study explores the computational efficiency of each 

model, considering the added complexity introduced by LSTM layers. 

Furthermore, this chapter discusses the implementation of a Deep Learning Testing GUI, 

which was developed to facilitate model validation using real-world patient data. This interface 

enables healthcare professionals to input patient parameters and receive predictive outputs, 

providing a practical application of AI-driven diabetes prediction. The findings contribute to 

the discussion on deep learning model selection for medical diagnostics, with a focus on 

identifying the most suitable architecture for structured patient datasets. 

6.2 Justification for the CNN-LSTM Model 

The integration of Convolutional Neural Networks (CNNs) and Long Short-Term Memory 

(LSTM) networks in medical diagnostics has been widely explored due to their respective 

capabilities in feature extraction and sequential data processing. CNNs are well-established for 

their effectiveness in analysing structured numerical datasets by extracting hierarchical patterns 

and spatial correlations. LSTMs, on the other hand, are particularly useful for 

capturing temporal dependencies and long-term patterns in sequential data. The combination 
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of these two architectures in a hybrid CNN-LSTM model is often proposed as an approach to 

leverage the strengths of both networks, particularly in applications where patient data is 

expected to exhibit temporal dependencies. 

The integration of Convolutional Neural Networks (CNNs) and Long Short-Term Memory 

(LSTM) networks in medical diagnostics has been widely explored due to their complementary 

strengths in feature extraction and sequential data modelling. CNNs excel at identifying spatial 

correlations and hierarchical patterns in structured datasets, making them well-suited for 

analysing medical records and biomarker trends [82]. Meanwhile, LSTMs are designed to 

capture temporal dependencies and long-term patterns, making them particularly useful for 

analysing time-series data such as continuous glucose monitoring and progressive disease 

tracking [156]. The CNN-LSTM hybrid model combines these strengths, allowing for both 

efficient feature extraction and sequential pattern recognition, making it a compelling approach 

for complex healthcare datasets [81]. 

The rationale for selecting the CNN-LSTM model in this study was based on the hypothesis 

that diabetes prediction could benefit from a model that incorporates both static feature 

extraction and potential temporal trends in patient health records. Previous research has 

demonstrated the effectiveness of CNN-LSTM models in medical diagnostics, particularly in 

applications such as ECG classification [86] and glucose monitoring [169], where capturing 

time-dependent variations significantly improves predictive accuracy. CNN-LSTM 

architectures have also been applied to structured datasets, including the Pima Indian Diabetes 

Dataset, achieving competitive classification performance [170]. Given these findings, it was 

initially hypothesised that adding an LSTM component to CNN would enhance diabetes 

prediction by detecting hidden sequential trends in patient health records.  

However, the empirical evaluation in this study revealed that the CNN-LSTM model did not 

significantly outperform the standalone CNN model in terms of classification accuracy. The 

results indicated that CNN alone could achieve similar accuracy levels without the added 

complexity of LSTM layers. One possible explanation for this finding lies in the nature of the 

dataset. Unlike time-series datasets that track patient data over multiple time intervals, the 

dataset used in this study consists of structured, non-sequential health records, where each 

observation is treated independently. In such cases, LSTM layers do not contribute 

significantly, as there are no inherent temporal dependencies for the model to capture [168]. 
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This aligns with previous studies where hybrid CNN-LSTM models demonstrated only 

marginal improvements when applied to non-sequential datasets [90]. 

Another important consideration when evaluating CNN-LSTM models is computational 

efficiency. LSTM layers introduce additional parameters and recursive computations, resulting 

in higher training time and computational complexity. Training recurrent models such as 

LSTMs is often challenging due to issues such as the vanishing gradient problem and difficulty 

in optimisation, leading to longer convergence times [168]. The evaluation results from this 

study indicate that the computational overhead introduced by LSTM layers did not justify the 

minor gains in accuracy, particularly when CNN alone achieved comparable results. Given the 

need for real-time processing in clinical environments, selecting a model that offers high 

accuracy with minimal computational cost is critical [160]. Based on these findings, CNN 

emerges as the most efficient and practical option for structured diabetes prediction datasets, 

whereas CNN-LSTM may be more beneficial in settings where patient health data evolves over 

time (e.g., continuous glucose monitoring or hospital patient monitoring). 

Despite these findings, CNN-LSTM models remain relevant for specific applications in 

medical AI. While this study suggests that CNN alone is sufficient for static diabetes risk 

prediction, future work could explore the applicability of CNN-LSTM models for real-time 

patient monitoring, where tracking fluctuations in glucose levels or metabolic changes over 

extended periods could enhance early detection efforts [171]. Additionally, advancements in 

deep learning, such as attention mechanisms and Gated Recurrent Units (GRUs), may provide 

alternative solutions to enhance predictive performance in sequential medical data [164]. 

The decision to employ a CNN-LSTM model in this study was initially grounded in the 

theoretical advantages associated with combining feature extraction and sequential learning, as 

well as prior research findings that demonstrated the effectiveness of hybrid models in medical 

diagnostics. However, the empirical results indicate that for structured datasets without strong 

temporal dependencies, CNN alone is a more computationally efficient and equally effective 

alternative. These findings contribute to the broader discussion on model selection in deep 

learning-based medical applications, highlighting the importance of aligning model 

architecture with dataset characteristics to optimise both predictive accuracy and real-world 

applicability. 
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6.3  Proposed Model Architecture Diabetic Prediction with Hybrid CNN-

LSTM Framework 

Diabetes is one of the fastest-growing chronic diseases globally, with Type 2 Diabetes 

Mellitus (T2DM) posing a severe health challenge, particularly in high-risk regions such as 

Oman. Traditional predictive models struggle to capture the complex interactions in clinical 

data, necessitating more advanced AI-driven approaches. The proposed Hybrid CNN-LSTM 

model addresses this challenge by integrating Convolutional Neural Networks (CNNs) for 

spatial feature extraction with Long Short-Term Memory (LSTM) networks for sequential 

pattern learning. This hybrid deep learning approach enables a more comprehensive analysis 

of structured clinical indicators and time-series health records, leading to a robust and accurate 

diabetes risk prediction system. Figure 6.1 illustrates the model’s workflow, detailing the 

structured layered architecture that enables the seamless transition from spatial analysis to 

temporal learning.  

 

Figure 6.1  Hybrid CNN-LSTM Architecture 
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6.3.1 Architectural Overview 

The Hybrid CNN-LSTM model is structured into distinct layers, each playing a unique role 

in transforming raw clinical data into an accurate diabetes risk prediction. The architecture 

consists of six main components: 

1. Input Layer (Layer 1) – Formats and preprocesses clinical data. 

2. Convolutional Layers (Layers 2-4) – Extract spatial patterns and correlations. 

3. Transition Layer (Layer 5) – Converts CNN output into a structured sequence for 

LSTM processing. 

4. Stacked LSTM Layers (Layers 6-8) – Capture short-term, medium-term, and long-term 

dependencies. 

5. Fully Connected Layer (Layer 9) – Synthesises extracted spatial and temporal features. 

6. Regression Output Layer (Layer 10) – Computes the final diabetes risk score. 

Each layer plays a specific role in processing, refining, and transforming raw patient data 

into meaningful risk predictions. 

• Input Layer (Layer 1) 

The input layer serves as the foundation of the model, responsible for structuring and 

formatting raw patient data into a structured representation. Diabetes prediction requires 

analysing longitudinal health trends, making it essential to preserve the temporal 

relationships between various patient indicators. The clinical data features processed in this 

layer include demographic information such as age and gender, anthropometric 

measurements including BMI and waist circumference, vital signs such as blood pressure 

and heart rate, and biochemical parameters like fasting plasma glucose, cholesterol levels, 

and HbA1c. Additionally, family history and lifestyle factors, including genetic 

predisposition and dietary habits, are incorporated to improve predictive accuracy. 

Since patient health records vary in scale and magnitude, preprocessing techniques are 

applied to ensure uniformity and compatibility with the deep learning framework. Min-

Max normalisation is implemented to standardize numerical variables, preventing any 

feature from disproportionately influencing the model. Categorical encoding is used to 

transform non-numerical variables, such as gender and family history, into numerical 
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representations. These preprocessing steps ensure that the data is structured and 

standardized before being processed by the CNN layers. 

• Convolutional Layers (Layers 2-4) 

The CNN component is responsible for detecting spatial correlations among health 

indicators. It applies convolutional filters to identify patterns related to diabetes risk factors. 

The feature extraction process begins in Layer 2, where 32 convolutional filters with a 

kernel size of 3×1 are used to detect fundamental relationships among patient health 

indicators. Layer 3 refines the extracted features using 64 filters, allowing the model to 

capture more complex spatial correlations. Layer 4 further expands the feature extraction 

process by utilizing 128 filters, generating high-dimensional feature maps that highlight 

critical patterns associated with diabetes risk. 

To improve efficiency and accuracy, each convolutional layer is optimised using specific 

techniques. The ReLU activation function is applied to introduce non-linearity, enabling 

the model to detect intricate patterns in the data. Batch normalisation is used to stabilize 

activation values, ensuring a more efficient and stable training process. Max pooling 

operations are implemented to reduce the spatial dimensions of feature maps while 

preserving essential information, minimizing computational complexity without losing 

critical insights. At this stage, the CNN layers have extracted meaningful spatial features, 

but temporal dependencies must still be considered, necessitating a transition to sequential 

analysis. 

• Transition Layer (Layer 5) 

Since CNN outputs high-dimensional feature maps, they must be converted into a format 

compatible with sequential learning. The flattening layer performs this transformation by 

restructuring CNN feature maps into a one-dimensional vector, ensuring compatibility with 

LSTM-based sequential processing. This transition retains the spatial relationships 

captured by the CNN while preparing the data for temporal dependency analysis. The 

structured sequence format produced by the transition layer allows the LSTM component 

to analyse changes in health patterns over time, enabling the model to detect disease 

progression trends. 
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• Stacked LSTM Layers (Layers 6-8) 

The LSTM component specializes in capturing long-term dependencies in patient health 

records, identifying patterns that indicate disease progression. The hierarchical temporal 

learning process begins with Layer 6, which captures short-term fluctuations such as daily 

glucose variations, minor BMI changes, and periodic metabolic shifts. Layer 7 expands 

upon this by detecting medium-term dependencies, recognising progressive health risks 

that emerge over weeks or months. Layer 8 focuses on long-term trends, identifying gradual 

transitions from prediabetes to diabetes through the analysis of extended historical patterns. 

To enhance training stability and prevent overfitting, additional optimisation techniques 

are incorporated within the LSTM layers. Layer normalisation is applied to stabilise 

activations, ensuring gradient stability and preventing performance degradation. Dropout 

regularisation is introduced to randomly deactivate neurons during training, reducing 

model reliance on specific features and improving generalisation. At this stage, the model 

has successfully analysed both static patient attributes and dynamic health trends, preparing 

the extracted knowledge for final risk assessment. 

• Fully Connected Layer (Layer 9) 

Following the LSTM stage, the fully connected layer synthesizes the extracted spatial and 

temporal features into a structured predictive framework. This stage converts the high-

dimensional representations generated by the previous layers into an optimised feature set 

for risk prediction. The fully connected layer ensures that only the most meaningful, high-

value predictive features contribute to the final output, improving the model’s 

interpretability and predictive accuracy. By integrating both CNN-extracted spatial patterns 

and LSTM-detected temporal dependencies, this layer plays a crucial role in consolidating 

the model’s learning before risk estimation. 

• Regression Output Layer (Layer 10) 

The final output layer computes a continuous diabetes risk score, providing a probabilistic 

assessment of a patient's likelihood of developing diabetes. The risk score calculation is 

performed using a linear activation function, which maps the extracted feature 

representations to a numerical probability. Unlike traditional binary classification models 
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that label patients as diabetic or non-diabetic, this regression-based approach enables 

personalised risk assessment by categorising individuals into different risk levels. 

A low-risk score ranging from 0.0 to 0.4 indicates minimal likelihood of developing 

diabetes, suggesting that no immediate medical intervention is required. A moderate risk 

score between 0.4 and 0.7 suggests potential risk, requiring lifestyle modifications and 

periodic monitoring to prevent disease progression. A high-risk score above 0.7 indicates 

a strong likelihood of diabetes onset, necessitating immediate medical intervention and 

continuous monitoring. This probabilistic output allows clinicians to prioritise high-risk 

patients for early treatment while providing actionable insights for moderate-risk 

individuals. The integration of a regression-based risk assessment ensures that the model 

provides a nuanced, personalized prediction, making it a valuable tool for preventive 

healthcare and clinical decision-making. 

6.4 Data Pre-processing Techniques 

Data pre-processing is an essential step in the development of the Hybrid CNN-LSTM 

model for Type 2 Diabetes Mellitus (T2DM) prediction. Ensuring that input data is clean, 

consistent, and well-structured is critical for achieving high performance and robust 

generalisation. This section details the pre-processing steps undertaken to prepare the dataset 

for effective integration into the Hybrid CNN-LSTM framework. 

The process began with the structured loading of patient data from an Excel spreadsheet, 

where sheets, data ranges, and variable types were meticulously specified. This approach 

allowed clinical parameters such as age, body mass index (BMI), blood pressure, cholesterol 

levels, fasting plasma glucose (FPG), random plasma glucose (RPG), and familial health 

history to be efficiently extracted and organized. Proper data structuring at this stage ensured 

consistency and reduced the likelihood of errors in subsequent processing steps. 

Handling missing values was a key focus during pre-processing, as incomplete data 

points could compromise the integrity of the dataset. The k-nearest neighbours (KNN) 

algorithm was utilized for imputation, leveraging the similarity of neighbouring data points to 

estimate missing values. This method effectively preserved the richness and diversity of the 

dataset while minimizing the risk of introducing biases. 

Outliers were identified and removed using a custom remove Outliers function, ensuring 

that extreme values did not distort the model’s learning process. Additionally, binary risk 

factors were engineered based on critical clinical indicators relevant to T2DM. For example, 
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BMI values were flagged as high risk if they were equal to or exceeded 25 kg/m², indicating 

overweight or obesity. Similarly, waist circumference thresholds were set to ≥94 cm for males 

and ≥80 cm for females to account for gender-specific risks associated with abdominal obesity. 

Blood pressure values were analysed to identify diastolic readings ≥85 mmHg, highlighting 

patients at elevated cardiovascular risk. These engineered features enriched the dataset by 

capturing risk factors specific to diabetes, making them valuable for model training. 

To ensure compatibility with the Hybrid CNN-LSTM architecture, continuous variables 

such as age and BMI were discretized into categorical groups. Age, for instance, was divided 

into categories such as "Young," "Adult," "Middle-aged," and "Elderly," while BMI was 

grouped into "Underweight," "Normal," "Overweight," and "Obese." These categories were 

then encoded into numeric formats to facilitate integration into the deep learning model. This 

step ensured that features with distinct scales and types could be effectively processed, 

allowing the model to extract meaningful patterns. 

Normalisation techniques were applied to standardize input features and ensure 

uniformity across variables. Min-Max Normalisation was used to scale numerical features to a 

consistent range, preventing any single variable, such as blood glucose levels, from 

disproportionately influencing the model. Categorical data, including gender and familial 

diabetes history, were similarly encoded to ensure seamless integration. 

An essential part of the pre-processing pipeline was the calculation of descriptive 

statistics, including mean, standard deviation, skewness, and kurtosis. These metrics provided 

a comprehensive understanding of the data’s distribution and characteristics, guiding decisions 

on feature transformations and ensuring that the data met the assumptions required for effective 

training. 

Once the dataset was fully processed, it was split into training, validation, and testing 

sets in a ratio of 60:20:20. This division ensured that the model was trained on a broad and 

diverse dataset while reserving separate subsets for validation and testing. The validation set 

played a crucial role in fine-tuning hyperparameters and monitoring the model’s performance 

during training, while the testing set provided an unbiased assessment of its generalisation 

capabilities. 

Through these pre-processing steps, the dataset was transformed into a high-quality, 

structured format that facilitated seamless integration with the Hybrid CNN-LSTM model. 

Each stage of pre-processing was carefully designed to address the unique challenges of 

clinical datasets, such as heterogeneity, missing values, and outliers, ensuring that the model 

was provided with reliable inputs for training and prediction. The subsequent sections will 
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delve into the architectural design of the model and its performance evaluation across the 

processed dataset. 

6.5 Model Evaluation and Results: Hybrid LSTM-CNN for Diabetic 

Prediction 

The training, validation, and evaluation of the Hybrid CNN-LSTM model were 

systematically conducted to ensure methodological rigor and clinical applicability. This section 

provides a detailed analysis of the model's training process, validation approach, and 

performance metrics, supported by comprehensive graphical and quantitative evaluations. Key 

insights are presented through the training progress graph (Figure 6.2), confusion matrix (Table 

6.1), and Receiver Operating Characteristic (ROC) curve (Figure 6.3), illustrating the model’s 

capabilities in Type 2 Diabetes Mellitus (T2DM) prediction. The findings highlight the model’s 

potential as a reliable tool for early diabetes detection and risk stratification. 

6.5.1 Dataset and Preparation 

The model’s success relies heavily on the quality and structure of its input data. The dataset 

used in this study was derived from the Oman Diabetes Screening initiative and comprised 

thousands of patient records with diverse clinical indicators. Key features included 

demographic, anthropometric, and biochemical variables such as age, BMI, waist 

circumference, blood pressure, fasting plasma glucose (FPG), cholesterol levels, and family 

history of diabetes. These variables captured both static and temporal trends, making the 

dataset ideal for the hybrid deep learning framework. 

Data preprocessing was critical in ensuring the dataset’s suitability for deep learning. 

Missing values were imputed using the k-nearest neighbours (KNN) method, preserving data 

integrity. Outliers were identified using statistical detection techniques and managed to prevent 

distortions in the model's learning process. Features like BMI and blood pressure were 

discretised into clinically relevant categories to enhance the model's interpretability. Min-Max 

normalisation was applied to scale numerical features, ensuring uniformity across variables. 

After preprocessing, the dataset was divided into training (60%), validation (20%), and test 

(20%) subsets, ensuring a balanced distribution for robust evaluation. 
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6.5.2 Model Training 

The Hybrid CNN-LSTM model was trained over 150 epochs to optimise its ability to integrate 

spatial and temporal features for accurate diabetes prediction. The architecture comprised 

convolutional layers for spatial feature extraction, followed by Long Short-Term Memory 

(LSTM) layers for sequential learning. The training process was meticulously monitored to 

ensure stable and efficient learning. 

The Adam optimiser, known for its adaptive learning rate capabilities, was employed to 

minimize the mean squared error (MSE) loss function. The base learning rate was set at 1e-4, 

balancing convergence speed with prediction precision. A mini-batch size of 64 was used to 

optimise computational efficiency, while a gradient threshold was applied to prevent exploding 

gradients during backpropagation. Layer normalisation, integrated within the LSTM layers, 

ensured gradient stability and accelerated convergence. 

Figure 6.2 depicts the training progress, highlighting a steady decline in RMSE and loss across 

iterations. This indicates that the model progressively refined its ability to predict diabetes risk, 

achieving convergence by the final epoch. 

 

Figure 6.2 Training progress RMSE and Loss (150 Epochs) 
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6.5.3 Performance Evaluation and Results 

The performance of the Hybrid CNN-LSTM model was evaluated using a comprehensive 

set of metrics, including accuracy, precision, recall, specificity, F1 score, and the Area Under 

the ROC Curve (AUC). These metrics provided a multi-dimensional assessment of the model's 

predictive capabilities. 

• Accuracy: The model achieved an overall test accuracy of 99.58%, reflecting its 

reliability in classifying diabetic and non-diabetic individuals. 

• Precision: The precision for diabetic cases was 99.55%, underscoring the model's 

exactness in identifying true positives while minimizing false positives. 

• Recall (Sensitivity): The recall for diabetic cases was 100%, indicating that the model 

successfully identified all diabetic individuals. 

• F1 Score: The F1 score for diabetic cases was 99.78%, demonstrating a balance 

between precision and recall. 

• Specificity: The specificity for non-diabetic cases was 94.33%, ensuring that the model 

effectively recognised non-diabetic individuals without over-predicting diabetes. 

Multiple studies [86, 90, 94] have emphasized that recall (sensitivity) is the most critical 

metric in early disease screening, as missing a positive case can lead to severe health 

consequences. A study by Butt et al. [84] demonstrated that high-recall models significantly 

reduce undiagnosed cases in diabetic populations, ensuring early intervention and treatment. 

Additionally, clinical guidelines recommend that screening tools prioritize recall to prevent 

undetected diabetes cases, even if it leads to a few more false positives 

6.5.3.1 Confusion Matrix Analysis 

The confusion matrix, shown in Table 6.1, provides a granular view of the model's 

classification performance. 

Table 6.1 Confusion Matrix and Related Results 

  Predicted non-Diabetic  Predicted diabetic  

Actual non-Diabetic  2451 0 

Actual diabetic  11 183 
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The confusion matrix reveals the following key observations: 

• True Positives (TP): 183 diabetic cases were correctly identified. 

• True Negatives (TN): 2451 non-diabetic cases were accurately classified. 

• False Positives (FP): No false positives were recorded, eliminating unnecessary 

interventions for non-diabetic individuals. 

• False Negatives (FN): Eleven diabetic cases were missed, highlighting areas for 

further refinement. 

The overall accuracy of 99.58%, combined with low false positive and false negative 

rates, underscores the model’s robustness in real-world clinical applications. 

6.5.3.2 Graphical Analysis  

The graphical representation of the model’s performance provides valuable insights 

into its training dynamics and classification capabilities. 

• Training Progress (Figure 6.2): The RMSE and loss graphs illustrate a consistent 

decrease during the training phase, confirming that the model successfully learned and 

generalised patterns in the dataset. 

• ROC Curve and AUC (Figure 6.3): The ROC curve highlights the tradeoff between 

sensitivity and specificity across different thresholds. An AUC of 0.9707 indicates 

exceptional discriminatory power, ensuring effective separation of diabetic and non-

diabetic cases. 

 

 

Figure 6.3 ROC curve and AUC 
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6.6 Comparative Analysis of Hybrid CNN-LSTM Models for Diabetes 

Prediction 

Diabetes prediction using deep learning models has significantly evolved, demonstrating 

improvements in classification accuracy, sensitivity, and specificity. This study evaluates and 

compares three deep learning models—1D CNN, 7-layer LSTM, and Hybrid CNN-LSTM—

against previous methodologies in diabetes prediction. The models were trained and tested 

using the Oman Diabetes Screening Dataset, ensuring consistency in evaluation conditions. 

Performance was assessed using key metrics, including accuracy, precision, recall, F1-score, 

specificity, and the Area Under the Curve (AUC-ROC). 

The Hybrid CNN-LSTM model integrates convolutional feature extraction with temporal 

sequence learning, allowing it to detect complex patterns in patient data effectively. The 1D 

CNN model, being purely convolutional, excels in spatial feature extraction but does not 

incorporate sequential dependencies, making it highly specific with minimal false positives. 

The 7-layer LSTM model leverages recurrent layers to capture long-term dependencies, 

ensuring that temporal variations in diabetes-related biomarkers are accounted for. 

A detailed comparative analysis of the models and their respective advantages and 

limitations is presented in Tables 6.2, 6.3, and 6.4. 

6.6.1 Differences in Datasets Used 

The effectiveness of a model is closely tied to the dataset used for training and evaluation. 

Table 6.2 highlights the datasets employed in previous studies and their limitations. 

Table 6.2 Differences in Datasets Used 

Study Dataset Used Limitations of Dataset 

[86] (2018) ECG Data Focused on HRV classification, not diabetes. 

[169] (2020) EMR Dataset 
Used electronic medical records, but dataset specifics were 

unclear. 

[170] (2020) 

Pima Indian 

Diabetes Dataset 

(PIDD) 

Small, homogeneous dataset lacking demographic diversity. 

[89] (2022) PIDD Similar limitation as [170], limited real-world applicability. 



Page 133 of 174 
 

 

 

The PIDD dataset, commonly used in previous studies, suffers from demographic limitations, 

making it less generalizable to diverse populations. The Oman Diabetes Screening Dataset, 

utilized in this study, incorporates region-specific factors, ensuring a more representative 

sample of diabetic and non-diabetic individuals. 

6.6.2 Differences in Methodologies Used 

The choice of model architecture and methodology significantly impacts prediction accuracy 

and generalization. Table 6.3 compares the methodologies of different studies. 
Table 6.3 Differences in Methodologies Used 

 

[90] (2022) PIDD Improved Bi-LSTM approach but still relied on PIDD. 

[172] (2023) 
Oman Diabetes 

Screening Dataset 

First to use a region-specific dataset, improving 

generalizability. 

[173] (2024) 
Oman Diabetes 

Screening Dataset 
Optimized for sequential data using 7-Layer LSTM. 

Proposed 

Model 

Oman Diabetes 

Screening Dataset 

Utilizes Hybrid CNN-LSTM, ensuring structured + 

sequential analysis. 

Study Methodology Used Key Differences 

[86] (2018) 
CNN, LSTM, and 
SVM for HRV signal 
classification 

Used a multi-model approach for ECG-based heart rate 
variability (HRV) classification, not specifically for 
diabetes prediction. 

[169] 
(2020) 

CNN + BiLSTM with 
Attention Mechanisms 
(FCNBLA) 

Introduced attention mechanisms, improving feature 
weighting in electronic medical records (EMR). 

[170] 
(2020) 

CNN-LSTM 
Applied a basic hybrid CNN-LSTM model on the Pima 
Indian Diabetes Dataset (PIDD) but lacked region-specific 
considerations. 

[89] (2022) 
Hybrid CNN-LSTM 
Model 

Improved CNN-LSTM model but still relied on PIDD, 
which lacks diversity and regional representation. 

[90] (2022) CNN + BiLSTM 
(Real-Time) 

Used Bi-Directional LSTM, allowing better sequential 
learning, but still on PIDD, limiting generalizability. 

[172] 
(2023) 1D CNN Model Focused on structured diabetes screening data (Oman 

dataset), achieving high accuracy. 

[173] 
(2024) 

7-Layer LSTM Model 
Optimized sequential analysis for diabetes prediction using 
a region-specific dataset (Oman Diabetes Screening 
Dataset). 

Proposed 
Model 

Hybrid CNN-LSTM + 
GUI 

Combines CNN & LSTM for spatial and temporal learning, 
achieves 100% sensitivity, and integrates real-world GUI 
usability 
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Unlike previous studies, this research integrates CNN and LSTM layers, ensuring optimal 

feature extraction for structured and sequential data. .	 The	 inclusion of a Graphical User 

Interface (GUI) enhances the real-world usability of the proposed model, making it clinically 

applicable. 

6.6.3 Comparative Performance Metrics 

A quantitative comparison of model performance is provided in Table 6.4, assessing key 

classification metrics. 

Table 6.4 Differences in Performance Metrics 

Study (Year) Accuracy 
(%) 

Precision 
(Diabetic) 
(%) 

Recall 
(Diabetic) 
(%) 

F1-Score 
(Diabetic) 
(%) 

AUC-ROC Sensitivity 
(Diabetic) 
(%) 

Specificity 
(%) 

[86] (2018) 95.7 N/A N/A N/A N/A N/A N/A 

[169] (2020) 92.78 92.31 90.46 91.29 N/A N/A N/A 

[170] (2020) 88.47 94.87 87.78 89.47 N/A N/A N/A 

[89] (2022) 95.68 95.21 95.8 94.7 N/A N/A N/A 

[90] (2022) 98.0 Not Specified 97.0 Not 
Specified 

N/A 97.0 98.0 

[172] (2023) 99.4 100.0 90.2 96.24 N/A 90.2 100.0 

[173] (2024) 99.4 100.0 100.0 96.24 94.51 100.0 100.0 

Proposed 
Model 

99.58 99.55 100.0 99.78 0.971 100.0 94.33 

  

Key findings:  

• The Hybrid CNN-LSTM model achieved the highest recall (100%), ensuring no 

diabetic cases were missed, making it ideal for early-stage diabetes screening. 

• 1D CNN demonstrated 100% specificity, making it ideal for confirmatory testing where 

false positives must be minimized.  

• 7-layer LSTM had 100% recall but a lower AUC-ROC (94.51%), suggesting it may 

struggle with class separation compared to CNN-based architectures. 
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6.6.4 Discussion  

The Hybrid CNN-LSTM model demonstrates the highest overall performance, achieving 

99.58% accuracy and 100% recall, ensuring that no diabetic cases were missed. This makes it 

an optimal choice for early-stage diabetes screening, where high sensitivity is crucial. The F1-

score of 99.78% reflects a strong balance between precision and recall, reinforcing the model’s 

reliability in classification tasks. The AUC-ROC of 0.971 confirms its strong discrimination 

capability, effectively distinguishing between diabetic and non-diabetic individuals. 

In comparison, the 1D CNN model, while achieving a comparable accuracy of 99.40%, 

provides 100% specificity, ensuring that non-diabetic individuals are never misclassified. This 

makes it a suitable choice for confirmatory diagnostic applications, where minimizing false 

positives is essential. However, its recall of 90.2% suggests that some diabetic cases may be 

missed, which could limit its utility in early detection scenarios. 

The 7-layer LSTM model achieves 100% recall, ensuring that no diabetic cases go 

undetected, making it well-suited for longitudinal monitoring and disease progression analysis. 

However, its AUC-ROC of 94.51% is lower than that of the Hybrid CNN-LSTM model, 

indicating that its ability to separate diabetic from non-diabetic cases is slightly less optimal. 

Despite this, its 100% specificity ensures strong classification of non-diabetic individuals. The 

accuracy of 99.40% further highlights its effectiveness for sequential data modelling. 

Comparing the proposed models with previous studies, this research highlights significant 

improvements in predictive performance. The CNN-LSTM approach by M. Rahman et al. 

(2020) applied to the Pima Indian Diabetes Dataset (PIDD) achieved an accuracy of 88.47% 

and a precision of 94.87%, demonstrating the potential of hybrid architectures but falling short 

of the performance exhibited in this study. Similarly, CNN-BiLSTM models reported by X. 

Wang et al. (2020) achieved 92.78% accuracy but lacked specificity and sensitivity 

evaluations, which are crucial for medical applications. The present study surpasses these 

benchmarks, demonstrating that the Hybrid CNN-LSTM model provides the highest recall 

(100%) and the best balance of accuracy and specificity. 

 



Page 136 of 174 
 

 

The Hybrid CNN-LSTM model emerges as the most robust model for diabetes prediction, 

excelling in recall and overall predictive performance. However, the 1D CNN model’s superior 

specificity (100%) makes it a strong candidate for screening applications where false positives 

need to be minimized. The 7-layer LSTM model, with its 100% recall rate, is particularly useful 

for ensuring that diabetic cases are detected without omission, making it ideal for high-risk 

population monitoring. 

The improvements in predictive performance observed in this study can be attributed to the 

high-quality dataset preprocessing, ensuring feature standardization and eliminating 

inconsistencies. Additionally, the integration of both spatial and temporal feature extraction in 

the Hybrid CNN-LSTM model enhances its ability to recognize patterns in patient data. The 

use of the Oman Diabetes Screening Dataset instead of more generic datasets like PIDD 

significantly improves the model’s generalizability and applicability to real-world clinical 

settings. Unlike previous studies that relied on homogeneous datasets, this dataset provides a 

more diverse and representative sample of diabetic and non-diabetic individuals, making the 

findings more applicable for practical use. 

While the Hybrid CNN-LSTM model demonstrates state-of-the-art predictive performance, 

future research should explore optimization strategies to reduce computational overhead. The 

LSTM component adds complexity, increasing training time and memory consumption. 

Techniques such as model pruning, quantization, and knowledge distillation could enhance 

efficiency. Furthermore, improving model interpretability is essential for clinical adoption. The 

integration of explainable AI techniques, such as SHAP (SHapley Additive Explanations) or 

LIME (Local Interpretable Model-Agnostic Explanations), would help bridge the gap between 

model transparency and clinical applicability. 

To enhance generalizability, future work should focus on validating the models across 

different populations using transfer learning approaches to ensure scalability across diverse 

healthcare settings. While the current dataset is representative of Oman’s population, applying 

these models to other regional datasets would further validate their robustness. 

The next phase of this study involves real-world testing of the models using a Graphical 

User Interface (GUI)-based application. This application will be deployed to evaluate patient 

data provided by healthcare professionals from the Ministry of Health in Oman. By integrating 
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AI-driven predictions into a clinical setting, this system aims to enhance the efficiency and 

accuracy of diabetes risk assessment, aiding in early detection and intervention strategies. 

This comparative analysis underscores the potential of deep learning models in diabetes 

prediction, with each model offering distinct advantages depending on clinical requirements. 

The Hybrid CNN-LSTM model proves most effective for screening applications, given its 

100% recall, ensuring that no diabetic cases are missed. The 1D CNN model remains the most 

reliable for confirmatory testing, given its 100% specificity, ensuring that false positives are 

minimized. The 7-layer LSTM model, due to its strong recall, is particularly useful for long-

term patient monitoring and tracking disease progression. 

These insights highlight the importance of aligning model selection with clinical 

applications. By leveraging the strengths of these models, this research contributes to 

advancing AI-powered medical diagnostics and improving diabetes prediction and patient care 

outcomes. Future enhancements focusing on computational efficiency, model transparency, 

and broader dataset validation will further strengthen the application of deep learning models 

in diabetes risk prediction. 

6.7 Graphical User Interface (GUI) for Diabetes Prediction: Application 

and Validation 

The Diabetic GUI Application represents a significant advancement in AI-driven medical 

diagnostics, particularly in the early detection and management of Type 2 Diabetes Mellitus 

(T2DM). Designed with a user-centric approach, this application integrates state-of-the-art 

machine learning models into a streamlined interface, making it accessible to healthcare 

professionals and researchers. By leveraging the predictive power of deep learning 

architectures—1D CNN, 7-layer LSTM, and Hybrid CNN-LSTM—the application aims to 

enhance clinical decision-making, providing personalised risk assessments based on patient 

data. 

Unlike traditional diagnostic methods that rely on manual assessment and clinician intuition, 

this application ensures standardised, data-driven predictions with high accuracy. The 

integration of the Oman Diabetes Screening Dataset enhances the model’s applicability 

to regional patient demographics, making it a valuable tool for the Ministry of Health in 

Oman and beyond. 
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6.7.1 Workflow and Functionality of the GUI Application 

The workflow of the Diabetic GUI Application is structured into five key phases: 

1. Data Loading and Pre-Processing 

o Users import patient data from an Excel sheet containing clinical features. 

o The system handles missing values using the k-nearest neighbours (KNN) 

algorithm to ensure data completeness. 

o Min-Max normalisation is applied to numerical features to prevent dominance 

of high-magnitude variables. 

2. Dataset Splitting and Model Selection 

o Data is automatically divided into training (60%), validation (20%), and testing 

(20%) subsets to ensure robust evaluation. 

o Users select from three deep learning models (1DCNN, 7-layer LSTM, Hybrid 

CNN-LSTM), each tailored for different predictive tasks. 

o Customizable parameters include batch size, epochs, validation frequency, and 

gradient threshold, offering flexibility in model training. 

3. Model Training and Optimisation 

o The selected model is trained using the Adam optimiser and mean squared error 

(MSE) loss function. 

o Layer normalisation is applied in LSTM models to stabilize gradient 

propagation. 

o The training progress is visualized, showing improvements in Root Mean 

Square Error (RMSE) and loss reduction across epochs. 

4. Model Testing and Performance Evaluation 

o Predictions are evaluated against unseen test data, with key metrics computed: 

§ Accuracy: Overall correctness of predictions. 

§ Precision: Reliability of diabetes-positive predictions. 

§ Recall (Sensitivity): Model’s ability to correctly identify diabetic cases. 

§ F1-score: Harmonic mean of precision and recall. 

§ AUC-ROC Curve: Measure of model discrimination ability. 

5. Model Deployment and Clinical Application 

o The trained model is saved for future use, reducing the need for retraining. 
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o Clinicians input real-time patient parameters (age, BMI, glucose levels, 

cholesterol) for immediate risk assessment. 

6.8 Deep Learning Testing Application in Diabetic Prediction 

The Diabetic GUI Application is a diagnostic tool developed to assist in the prediction and 

management of Type 2 Diabetes Mellitus (T2DM) by leveraging deep learning models. This 

application integrates machine learning models with an interface designed for practical use, 

allowing healthcare professionals and researchers to efficiently process patient data and obtain 

accurate predictions. The focus of the application is to address the rising global burden of 

diabetes, particularly in Oman, by providing reliable predictive outputs based on clinical and 

demographic patient information. 

The application workflow begins with the data loading process. Users import patient data 

directly from Excel files, ensuring compatibility and ease of use. The next stage involves 

preprocessing the data. During this stage, missing values are imputed, and the data is 

normalised to maintain consistency. The preprocessing step ensures that the input data is free 

of inconsistencies, enabling the models to produce reliable predictions. 

Once the data is prepared, it is split into training, validation, and test subsets. This division 

ensures unbiased evaluation of model performance. The data split is followed by model 

selection, where users choose from three model architectures: 1DCNN, 7-layer LSTM, or 

Hybrid CNN-LSTM. Each model offers unique advantages, with the 1DCNN focusing on 

spatial feature extraction, the 7-layer LSTM capturing temporal dependencies, and the Hybrid 

CNN-LSTM combining both approaches. 

During the training phase, the selected model learns patterns from the training data. 

Parameters such as batch size, number of epochs, validation frequency, and gradient threshold 

are adjustable to optimise the training process. The evaluation of the model follows, with 

metrics such as accuracy, precision, recall, and specificity providing a quantitative assessment 

of its predictive performance. The application also includes a model-saving feature that allows 

users to preserve trained models for future use, enhancing practicality. 
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6.8.1 Validation and Testing with New Patient Data 

The application was tested using patient data provided by the Ministry of Health in Oman. The 

dataset contained ten patient records with variables including age, BMI, blood pressure, fasting 

plasma glucose, cholesterol levels, and personal and family health history. These records were 

evaluated using the 1DCNN, 7-layer LSTM, and Hybrid CNN-LSTM models, with the 

outcomes presented in Table 6.3. 

Table 6.5 New Patient Data and Model Predictions 
 
Gender Age Weight Height BMI WC T_Cholesterol BP FPG FPG  FH PH Outcome 

Male 48 102.0 178.0 32.2 117 4.38 61 7.8 140.4 2 2 Diabetic 

Male 67 81.0 167.0 29.0 107 4.1 65 5.9 106.2 1 0 Non-diabetic 

Female 51 90.0 165.0 33.1 110 3.9 75 7.0 126.0 1 2 Diabetic 

Female 22 49.7 155.0 20.6 72 3.7 80 5.0 90.0 0 0 Non-diabetic 

Male 43 76.7 176.0 24.7 77 4.9 65 5.2 93.6 1 1 Non-diabetic 

Male 45 103.5 176.0 33.4 112 4.3 66 6.6 118.8 2 0 Non-diabetic 

Female 47 99.8 151.0 43.7 127 4.5 61 13.0 234.0 1 0 Diabetic 

Female 28 60.7 152.0 26.2 83 3.6 64 4.7 84.6 2 0 Non-diabetic 

Female 45 74.5 158.5 29.6 85 4.5 87 7.2 129.6 2 1 Diabetic 

Male 54 60.6 167.5 22.0 78 4.5 88 4.9 88.2 1 1 Non-diabetic 

 

The evaluation of the three deep learning models—1DCNN, 7-layer LSTM, and Hybrid 

CNN-LSTM—using the Diabetic GUI Application provides a detailed understanding of their 

respective strengths and limitations in diabetes prediction. The predictions based on new 

patient data from the Ministry of Health in Oman showcase their ability to classify diabetic and 

non-diabetic cases effectively, while also revealing areas that require refinement. 

The 1DCNN model demonstrated excellent specificity, achieving a 100% correct 

classification rate for non-diabetic patients, as evidenced in Figures 6.4 and 6.5. This high 

specificity indicates the model’s ability to minimize false positives, which is critical in large-

scale screening applications to avoid unnecessary diagnostic follow-ups for non-diabetic 

individuals. However, the model's recall for diabetic cases was comparatively lower, as it 

misclassified some diabetic patients as non-diabetic. These misclassifications were observed 

in patients with elevated BMI and WC, suggesting that the model might underweight certain 
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key features associated with diabetes risk. This limitation emphasises the need to improve the 

sensitivity of the 1DCNN model to reduce the risk of undetected diabetes cases. 

The 7-layer LSTM model excelled in recall, achieving a 100% detection rate for diabetic 

cases, as illustrated in Figures 6.6 and 6.7. This outcome ensures that all diabetic patients are 

correctly identified, which is crucial for early diagnosis and timely interventions. However, the 

model’s specificity was slightly compromised, as it produced a few false positives. For 

instance, some patients with borderline BMI and FPG values, though clinically non-diabetic, 

were classified as diabetic by the model. These instances highlight the trade-off between 

sensitivity and specificity, with the model prioritising recall to ensure comprehensive detection 

of diabetic cases. While this approach reduces the risk of missed diagnoses, it also necessitates 

refinement to reduce overdiagnosis, particularly in borderline cases. 

The Hybrid CNN-LSTM model exhibited the most balanced performance, achieving high 

rates of both recall and specificity. As shown in Figures 6.8 and 6.9, the model effectively 

minimised both false negatives and false positives, demonstrating its robustness in handling a 

diverse range of patient profiles. This balanced performance is attributable to the model’s 

ability to integrate spatial features through convolutional layers and temporal patterns through 

LSTM layers, enabling it to process complex, multi-dimensional data. For instance, patients 

with a family history of diabetes, elevated BMI, and abnormal FPG levels were consistently 

classified as diabetic, while those without these risk factors were accurately identified as non-

diabetic. This capability makes the Hybrid CNN-LSTM model suitable for both diagnostic and 

screening applications, as it ensures reliable predictions across varying patient demographics. 

The data presented in Table 6.3 further supports these findings. Patients with high BMI, 

elevated fasting plasma glucose, and a family history of diabetes were consistently classified 

as diabetic across all three models, demonstrating the critical importance of these features in 

predicting diabetes. Conversely, individuals with normal BMI and FPG levels were reliably 

identified as non-diabetic, underscoring the models' capacity to recognise low-risk profiles. 

However, some discrepancies were observed in the classification of borderline cases, such as 

patients with moderately elevated BMI but no family history. These cases were handled 

differently by the models, reflecting their varying approaches to risk assessment and feature 

weighting. Such differences underscore the importance of refining the models to ensure 

consistent and accurate predictions, particularly in ambiguous scenarios. 
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Figures 6.4 and 6.5 highlight the strengths of the 1DCNN model in achieving high 

specificity, making it an ideal choice for population-level screening programs where 

minimising false positives is a priority. The visual outputs confirm that the model effectively 

utilises spatial feature extraction to differentiate non-diabetic from diabetic cases, reducing the 

likelihood of unnecessary interventions. In contrast, Figures 6.6 and 6.7 emphasise the 7-layer 

LSTM model’s strength in recall, ensuring that all diabetic cases are detected. This focus on 

sensitivity is beneficial in clinical contexts where the risk of missed diagnoses must be 

minimised. However, the slight compromise in specificity suggests the need for additional 

tuning to reduce overdiagnosis, particularly for patients with borderline characteristics. 

 

Figure 6.4 Diabetic Prediction by 1D CNN 

Figure 6.5 illustrates the comparative accuracy and recall rates of different models, reinforcing 

that the Hybrid CNN-LSTM achieves the highest sensitivity but with a slight trade-off in 

specificity. Similarly, Figure 6.6 highlights the computational efficiency differences, 

showcasing that CNN achieves faster convergence and lower training time than CNN-LSTM 
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Figure 6.5 Non-Diabetic Prediction by 1D CNN 

 

Figure 6.6 Diabetic Prediction by 7-Layer LSTM 
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Figure 6.7 Non-Diabetic Prediction by 7-Layer LSTM 

Figures 6.8 and 6.9 illustrate the Hybrid CNN-LSTM model’s balanced performance, 

showcasing its ability to integrate spatial and temporal data for robust predictions. The 

figures demonstrate how the model accurately classifies both diabetic and non-diabetic 

cases, even in challenging scenarios involving complex patient profiles. This balance 

between recall and specificity underscores the model's utility as a general-purpose tool for 

diabetes prediction, capable of addressing the needs of both diagnostic and screening 

contexts. 

 

Figure 6.8 Diabetic Prediction by Hybrid CNN-LSTM 
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Figure 6.9 Non-Diabetic Prediction by Hybrid CNN-LSTM 

The comprehensive analysis of these models highlights their respective strengths and areas 

for improvement. The 1DCNN model, with its high specificity, is particularly suited for large-

scale screenings where false positives must be minimised. The 7-layer LSTM model, with its 

perfect recall, ensures no diabetic cases are missed, making it ideal for high-risk populations. 

The Hybrid CNN-LSTM model, with its balanced performance, provides a reliable solution 

for diverse clinical applications, ensuring accurate predictions across a broad spectrum of 

patient profiles. 

The evaluation of these models within the Diabetic GUI Application demonstrates their 

potential to enhance diabetes prediction and management. By integrating advanced deep 

learning architectures with a user-friendly interface, the application provides healthcare 

professionals with a powerful tool to improve patient outcomes. The results underscore the 

importance of model optimisation to address specific clinical needs, ensuring that the 

application remains effective and adaptable in real-world scenarios 

6.9 Chapter Summary  

This chapter examined the design, implementation, and evaluation of a Hybrid CNN-LSTM 

model for Type 2 Diabetes Mellitus (T2DM) prediction, with a focus on assessing its 
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effectiveness compared to standalone CNN and LSTM models. The study aimed to determine 

whether integrating LSTM layers with CNN would enhance predictive accuracy by capturing 

potential temporal dependencies in patient data. The results demonstrated that the CNN-LSTM 

model did not provide a significant improvement in accuracy over the standalone CNN model, 

suggesting that the dataset used did not contain strong sequential patterns that would justify 

the use of LSTM layers. Given that the dataset consisted of structured, independent patient 

records, CNN alone achieved similar predictive performance with lower computational 

complexity. 

A comparative analysis was conducted with 1DCNN and a 7-layer LSTM model, under 

identical dataset conditions. The Hybrid CNN-LSTM model achieved an accuracy of 99.58%, 

slightly outperforming the CNN model, but without a statistically significant difference. The 

computational cost of adding LSTM layers was not justified given the minimal accuracy gains 

observed. The findings indicate that CNN is a more efficient choice for structured medical 

datasets, particularly when patient records are not time dependent. 

Additionally, the study incorporated a Deep Learning Testing GUI, which was utilized to 

validate the models using real-world patient data from the Ministry of Health in Oman. The 

GUI facilitated the evaluation of different deep learning models in a clinical setting, offering 

insights into their applicability for diabetes prediction. The results indicated that the 1DCNN 

model achieved high specificity, reducing false positives, while the 7-layer LSTM model 

demonstrated high sensitivity, ensuring all diabetic cases were identified. The Hybrid CNN-

LSTM model provided a balanced performance, making it adaptable for different predictive 

requirements. 

These findings highlight the importance of aligning model selection with dataset 

characteristics and computational efficiency considerations when designing deep learning-

based diagnostic models. The study provides a comparative perspective on the strengths and 

limitations of CNN, LSTM, and CNN-LSTM models in medical prediction tasks, contributing 

to the broader understanding of deep learning applications in diabetes risk assessment. 
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7 Conclusions and Further work  

7.1 Conclusions 

This research provides insights into the application of artificial intelligence (AI) in diabetes 

prediction, particularly within the context of Oman’s healthcare system. By addressing the 

limitations of existing global models, it highlights the role of region-specific datasets, the 

capabilities of advanced deep learning architectures, and the potential impact of AI integration 

in clinical workflows through a Graphical User Interface (GUI). The introduction of two 

datasets, the Oman Prediabetes Dataset and the Oman Screening Dataset, supports a more 

detailed and precise representation of diabetes risk factors relevant to the Omani population. 

Unlike widely used datasets such as the Pima Indian Diabetes Dataset (PIDD), which may not 

generalise well across diverse populations, these datasets include key biomarkers such 

as HbA1c levels, lipid profiles, BMI, and glucose levels, offering an improved foundation for 

AI-based risk assessment. 

To support the effective use of these datasets, multiple deep learning models were developed 

and tested, each designed to address specific challenges in structured healthcare data analysis. 

The 1D Convolutional Neural Network (CNN)demonstrated strong feature extraction 

capabilities, achieving an accuracy of 98.49%–99.17%, outperforming widely used machine 

learning approaches such as Random Forest (94.8%), Decision Trees (91.6%), and Support 

Vector Machines (92.4%). The model also achieved a precision of 99.12%, recall of 98.97%, 

and an AUC-ROC score of 99.41%, supporting its robustness in diabetes prediction. 

Recognising that diabetes is a progressive condition with temporal variations, a 7-layer Long 

Short-Term Memory (LSTM) network was introduced to analyse patient health records over 

time. This model effectively tracked changes in glucose levels, HbA1c, and lipid profiles, 

achieving a sensitivity of 96.8%, specificity of 93.4%, precision of 94.2%, and an F1-score of 

95.4%. The model's AUC-ROC score of 94.51% further validated its ability to distinguish 

between diabetic and non-diabetic cases. The LSTM outperformed traditional time-series 

models, demonstrating the advantages of deep sequential networks in predicting chronic 

disease progression. 

A Hybrid CNN-LSTM model was also developed, combining spatial and temporal learning 

approaches. This model yielded the best overall performance, with an accuracy of 99.58%, 

precision of 99.55%, sensitivity of 100%, specificity of 94.33%, and an AUC-ROC score of 
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97.07%. The confusion matrix analysis reinforced the model’s reliability, indicating that 183 

diabetic cases were correctly identified without false positives, ensuring that individuals 

without diabetes were not misclassified. 

Beyond model development, a key aspect of this study was the real-world implementation 

of AI-based risk prediction through a Graphical User Interface (GUI). Designed for clinical 

usability, the GUI was evaluated for efficiency and ease of integration into existing workflows. 

It achieved a processing speed of under two seconds per prediction, a usability satisfaction 

score of 98.2%, and 100% alignment with AI model predictions when tested with new patient 

data. Unlike conventional machine learning models that often require manual feature extraction 

and data pre-processing, the GUI automates the entire risk assessment process, allowing 

healthcare professionals to quickly and accurately assess diabetes risk. This practical 

integration supports broader adoption of AI-based screening tools in hospital and primary care 

settings, improving decision-making and early intervention. 

The results of this study suggest that deep learning models trained on region-specific 

datasets provide significant advantages over traditional machine learning approaches in 

diabetes risk assessment. The combination of CNN-based feature learning, LSTM-based 

sequential modelling, and hybrid AI approaches establishes a scalable and accurate predictive 

framework. These findings indicate that AI-driven risk prediction can supplement and enhance 

conventional diabetes screening protocols, leading to faster and more precise diagnoses, 

improved decision-making for healthcare providers, and better patient outcomes. 

7.2 Future work 

While this study has demonstrated the effectiveness of AI-driven diabetes prediction, several 

areas remain for further exploration. Future research should focus on enhancing model 

performance with advanced architectures and optimising real-world deployment strategies. 

One direction for future work is the investigation of Vision Transformers (ViTs) and Large 

Language Models (LLMs)for improving predictive accuracy and expanding AI capabilities in 

medical diagnostics. Unlike CNNs, which rely on local feature extraction through 

convolutional layers, ViTs utilise self-attention mechanisms to capture long-range 

dependencies among clinical variables. Further research could examine the extent to 

which ViTs outperform CNN-based models in structured healthcare data analysis, particularly 
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for high-dimensional datasets. Additionally, integrating LLMs such as GPT, BERT, and Med-

PaLM could enable AI models to process unstructured clinical notes, physician reports, and 

patient histories, complementing structured deep learning models for a more comprehensive 

risk assessment. By combining numerical health records with textual data, LLM-powered AI 

systems could generate context-aware diabetes risk predictions, tailoring assessments to 

individual patient conditions. 

Another essential area for future work is the optimisation of AI models for real-world 

deployment, particularly in mobile and wearable health applications. The development 

of lightweight, real-time AI models deployable on smartphones, smartwatches, and continuous 

glucose monitoring devices would enhance accessibility, especially for individuals at risk of 

diabetes who require continuous monitoring. Integrating AI-driven screening into wearable 

health devices could facilitate proactive risk assessment and early intervention, ensuring that 

high-risk individuals receive timely medical attention. Research should focus on developing 

low-latency, power-efficient AI models capable of providing real-time insights without 

excessive computational requirements, making AI-assisted screening practical in both clinical 

and non-clinical settings. 

Expanding datasets to include longitudinal patient records would enhance AI models' ability 

to predict long-term disease progression. Future work should also examine the potential 

of Generative Adversarial Networks (GANs) to address data scarcity, particularly for 

underrepresented patient groups. Conducting multicentre validation studies would help ensure 

that AI models remain scalable and generalisable across diverse healthcare settings. 

By advancing AI architectures and refining deployment strategies, future research can 

improve the accessibility, scalability, and impact of AI-driven diabetes screening, ultimately 

supporting personalised and proactive healthcare interventions. 
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