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Abstract

The field of Industry 4.0 has seen a significant increase in demand for efficient and
effective methods of data-driven analysis, particularly in the domain of condition
monitoring for machinery. This thesis explores the use of deep learning techniques
to address the challenges faced in this field, focusing on the development of energy-
efficient and generalised approaches for Induction Motor fault detection and classi-
fication.

The first part of the thesis introduces the Multi-Channel LSTM-Capsule Autoen-
coder, a novel Neural Network (NN) architecture designed to tackle issues such as
generalisation ability, the need for large volumes of labelled data, and understanding
spatial context in multivariate time series data from a single data source. Exper-
imental results demonstrate the architecture’s resilience to overfitting, improved
training efficiency, and state-of-the-art performance in outlier detection.

Building upon the LSTM-Capsule Autoencoder, the second part presents the
Dataset Fusion algorithm, a novel dataset composition method for fusing periodic
signals from multiple homogeneous datasets into a single dataset while retaining
unique features. The proposed approach, tested on a case study of 3-phase current
data from Induction Motor fault datasets, significantly outperforms conventional
training approaches and effectively generalises across all datasets. The algorithm’s
effectiveness under non-ideal conditions and its computational efficiency, in line with
the principles of Green AI, highlight its potential for practical use in real-world
applications.

The final part introduces the Order Domain Transformer (ODT), a pre-processing
algorithm designed to standardise and align the frequency components of signals
from different motors, enabling the fusion of multiple heterogeneous datasets in
the frequency domain. Experimental results indicate that using ODT maintains
performance on data from the same motors but results in a substantial improve-
ment in cross-motor generalisation and model performance. The ODT approach
demonstrates the potential to train a single model for multiple motors, optimising
the utilisation of available labelled data and reducing the computational resources
required for training.

The proposed methods in this thesis progressively address the challenges of work-
ing with single data sources, multiple homogeneous data sources, and multiple het-
erogeneous datasets, providing a comprehensive framework for data-driven fault
detection and classification in industrial settings.
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Chapter 1

Introduction

The transition towards Industry 4.0 has exposed a critical gap in current approaches
to Induction Motor (IM) fault detection. Although numerous methods have been
proposed for anomaly detection and fault classification in IMs, these techniques often
fail to generalise across different motors and operating conditions. This limitation
severely hinders their real-world applicability, as industrial environments typically
feature a wide variety of motor types and configurations.

Deploying fault detection systems at scale requires flexible, adaptable solutions
that can be easily transferred to new motors without extensive retraining or re-
calibration. However, existing research has largely overlooked this crucial challenge,
focusing instead on optimising performance for specific, narrow datasets.

This ties directly into the concept of Green AI, which was first formalised by
Schwartz et al. [6], who advocated for AI research that values computational effi-
ciency alongside accuracy and performance metrics. Although the original definition
primarily focused on reducing the carbon footprint associated with training large
neural networks, this thesis proposes a broader interpretation that encompasses not
only computational efficiency but also data efficiency.

In industrial contexts such as IM condition monitoring, data collection itself
carries significant costs: motors must be operated for extended periods to capture
degradation signals, and additional instrumentation increases both financial and en-
ergy expenditures. Furthermore, training inflexible fault detection systems that need
to be adjusted for each data source will invariably result in increased computational
power requirements when deployed at scale in industry.

This thesis aims to bridge this gap by proposing novel Machine Learning (ML) ar-
chitectures and signal processing techniques specifically designed to enable robust,
generalisable, and green IM fault detection that can effectively adapt to diverse
motor types and operating conditions, thus reducing computational power require-
ments, increasing energy efficiency, and enabling efficient use of data.

This work represents a significant step towards truly scalable, industry-ready
fault detection systems. The techniques presented in this thesis have the potential
to greatly streamline the deployment and maintenance of condition monitoring so-
lutions, thus accelerating the adoption of predictive maintenance strategies across
various sectors. Ultimately, this research contributes to the broader goal of improv-
ing the efficiency, reliability, and sustainability of industrial processes in the era of
Industry 4.0.
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1.1 Background

The ongoing transition from Industry 3.0 to Industry 4.0 has catalysed a profound
shift in the way industrial data is collected and used [7]. As companies seek to op-
timise their processes and enhance decision-making capabilities, technologies such
as Digital Twin have emerged as powerful tools for modeling and analysing ma-
chine performance [8]. One of the most promising applications of this data-driven
approach is in the development of smart condition monitoring systems.

By enabling early fault detection and predictive maintenance, these systems offer
a range of benefits, from extending equipment lifespan to reducing the frequency and
cost of repairs [9][10]. However, realising these advantages hinges on the ability to
effectively monitor the health of industrial machinery, particularly IMs.

IMs, especially three-phase squirrel cage variants, are the workhorses of modern
industry [11], accounting for over 80% of all motors used in industrial applications
[12]. Their ubiquity, coupled with the growing demand for condition monitoring
solutions, has fueled a surge of research into various fault detection methods. Tradi-
tional approaches, such as vibration and acoustic analysis, have been widely studied
but suffer from significant drawbacks. These techniques are often invasive, difficult
to install, and limited in their ability to detect electrical faults in the early stages
[13] [14].

Motor Current Signature Analysis (MCSA) has emerged as a promising alterna-
tive to traditional vibration analysis. MCSA is a non-invasive technique that can de-
tect both electrical and mechanical faults due to their effect on the Electromagnetic
field (EMF) between the rotor and stator [13]. This technique has been successfully
applied to detect specific types of faults, such as broken rotor bars [15], and has
shown potential for multi-fault detection and application-specific scenarios such as
wind turbines [16]. The non-invasive nature of MCSA and its ability to detect a
wide range of faults make it a promising tool for industrial condition monitoring.

Traditionally, statistical modeling and manual analysis were used to perform
fault detection in IMs. For example, time-domain and frequency-domain analysis of
vibration signals were commonly employed to identify fault signatures [17]. However,
these approaches often require extensive domain expertise and human involvement,
which hinders their effectiveness in real-world industrial environments, where large
quantities of motors may operate under varying loads and speeds.

To address these shortcomings, ML based techniques have been increasingly
proposed in literature. ML enables more powerful non-linear modeling and can adapt
to environment-specific conditions and data distributions [18]. However, despite the
potential of ML-based fault detection techniques, several limitations hinder their
real-world application. The cold start problem, where a dataset must be collected to
train a model, poses a significant challenge in industrial settings where labeled fault
data may be scarce. Although this problem is rarely addressed in literature, it is a
crucial consideration for the successful deployment of these techniques in real-world
applications. Additionally, the large data requirements from each source due to the
inability to adapt to environmental context and data heterogeneity can be a barrier
to deployment in diverse industrial environments. The computational power needed
to train new models for each source also raises concerns about the environmental
impact of these techniques [19]. Furthermore, the lack of adaptability to new fault
types limits the reliability and practical applicability of fault classification models
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in real-world scenarios, where unexpected faults may occur.
Addressing these limitations is crucial for enabling the real-world application of

the techniques proposed in the literature. Given the critical role of IMs in industrial
processes, developing robust, adaptive, and scalable fault detection techniques is
essential for realising the full potential of Industry 4.0 and ensuring the reliability
and efficiency of industrial systems. This thesis aims to tackle these challenges by
proposing novel ML architectures and signal processing techniques that enable the
generalisation of IM fault detection models across different motors and operating
conditions.

1.2 Justification

Building upon the challenges and limitations outlined in the background, this thesis
systematically addresses the key obstacles hindering the real-world application of
fault detection and classification techniques for IMs. The presented work proposes
novel approaches that not only overcome these limitations but also advance the
state-of-the-art in IM condition monitoring.

The research begins with the introduction of a novel architecture for the detection
of anomalies in multivariate data, combining the complementary strengths of capsule
networks [20] and LSTM [1]. This Capsule LSTM hybrid model effectively captures
complex temporal dependencies and spatial relationships, enabling more accurate
anomaly detection compared to existing methods.

Next, the Capsule LSTM architecture is applied to tackle the challenge of mul-
tiple homogeneous motor data sources. A novel Dataset Fusion signal processing
technique is proposed, which intelligently combines data from various sources to
build a generalised training dataset. This approach significantly reduces the re-
liance on large volumes of data from individual sources, highlighting the importance
of data variety over sheer volume, and ultimately resulting in higher energy efficiency
through reduced computational power requirements.

Finally, the issue of heterogeneous data sources in fault classification is addressed
by introducing an order domain transformer. Inspired by traditional order tracking
techniques [21], the proposed method normalises IM signals with different sampling
and operating frequencies into a common order domain. This enables the training of
fault classification models that can achieve state-of-the-art accuracy on completely
unseen IMs, a key step towards truly generalisable condition monitoring solutions.

Throughout this thesis, the proposed techniques are rigorously evaluated using
extensive empirical studies, demonstrating their superior performance compared to
existing state-of-the-art methods. The results of these studies validate the effective-
ness of the presented approaches in addressing the critical limitations of current fault
detection and classification techniques, paving the way for more robust, adaptable
and industry-ready IM condition monitoring solutions that are also energy efficient.

Throughout this thesis, the term ”features” when discussing input data refers
specifically to individual sensor channels or inputs in a dataset. For example, in the
context of motor current data, a ”feature” might represent one of the three-phase
current signals measured from the motor. This definition helps distinguish between
input features (sensor channels) and the derived features that might be extracted
through signal processing or neural network operations.
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The research presented in this thesis was motivated by practical challenges en-
countered during an industrial collaboration with Voltvision, a power network anal-
ysis start-up. Although extensive testing was conducted on real-world data from
Voltvision’s industrial clients, these datasets cannot be published because of confi-
dentiality agreements. This industrial background ensured that the methodologies
developed were designed with real-world deployment considerations at the forefront.
To rigorously validate the approaches while respecting confidentiality constraints,
carefully selected open-source datasets that closely resemble the characteristics of
the industrial problems addressed were used for the experiments presented in this
thesis, which allowed for transparent scientific validation while maintaining the prac-
tical relevance of the solutions to industrial applications. These datasets will be
introduced later in this chapter.

1.3 Thesis Contributions

The contributions to science presented in this thesis, which are visualised in Figure
1.1, can be summarised as follows:

1. A novel Multi-Channel LSTM-Capsule Autoencoder Network for
Anomaly Detection on Multivariate Data: This contribution introduces
a novel NN architecture which utilises a Long-Short-Term-Memory (LSTM)
encoder and Capsule decoder in a multi-channel input Autoencoder architec-
ture for use on multivariate TS data. Experimental results show that using
Capsule decoders increases the resilience of the model to overfitting and im-
proves training efficiency. Additionally, results also show that the proposed
model can learn multivariate data more consistently, and was not affected by
outliers in the training data. The proposed architecture was also tested on
an open-source benchmark, where it achieved state-of-the-art performance in
outlier detection, and performs best overall over the metrics tested. This con-
tribution has the potential to enhance anomaly detection in various industrial
applications, leading to more accurate and reliable fault detection systems.
This work is covered in Chapter 3, the contents of which has been published
in MDPI Applied Sciences journal, number 22: 11393 [2].

2. A Dataset Fusion Algorithm for Generalised Anomaly Detection
in Homogeneous Periodic Time Series Datasets: This contribution in-
troduces “Dataset Fusion,” a novel dataset composition algorithm for fusing
periodic signals from multiple homogeneous datasets whilst retaining unique
patterns for generalised anomaly detection. The proposed approach, which
was tested on a case study of three-phase current data from two different ho-
mogeneous IM fault datasets on anomaly detection, outperforms conventional
training approaches and effectively generalises across all datasets. Further-
more, when tested with varying percentages of the training data, results show
that using only a small proportion of the training data, translating to a signif-
icant reduction in computational power, results in only a marginal decrease in
performance, demonstrating the advantages of the proposed approach in terms
of both performance and computational efficiency, and aligning with Green AI
principles. This contribution has the potential to significantly reduce the com-
putational resources required for training anomaly detection models, making

16 Chapter 1 Ayman Elhalwagy



Green AI for Industry 4.0: Energy-Efficient Generalised Deep Learning
Approaches to Induction Motor Condition Monitoring

them more environmentally friendly and suitable for real-world deployment.
This work is presented in Chapter 4, the contents of which has been published
in IEEE Access, pages 121212-121230 [22].

3. Heterogeneous Induction Motor Current Dataset Fusion for Efficient
Generalised MCSA-Based Fault Classification: This contribution intro-
duces the ODT, a pre-processing algorithm designed to standardise and align
the frequency components of signals from different motors, thereby enhancing
the learning capability of Neural Networks. The study explores the compu-
tational efficiency of the algorithm, highlighting its suitability for real-time
applications. Experimental results indicate that using ODT maintains perfor-
mance on data from the same motors trained on but results in a substantial
improvement in cross-motor generalisation and model performance. This in-
dicates a future potential to train a single model for multiple motors, thereby
optimising the utilisation of available labelled data, and reinforcing the princi-
ples of Green AI by significantly reducing the computational resources required
for training. This work is presented in Chapter 5, the contents of which is pub-
lished in the conference publication IEEE Intl Conf on Dependable, Autonomic
and Secure Computing, pages 576-581 [23].

Figure 1.1: Thesis structure
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1.4 Datasets Overview

To ensure a rigorous validation of the methodologies proposed in this thesis, sev-
eral datasets were carefully selected. Each dataset was chosen to represent specific
aspects of industrial motor condition monitoring problems, providing suitable test
beds for the different techniques developed. This section provides an overview of
these datasets, their characteristics, and their relevance to each chapter’s contribu-
tions.

1.4.1 Summary of Datasets

Table 1.1 provides a comprehensive summary of all datasets used throughout this
thesis, including their sources, key characteristics, and the chapters in which they
are used.

Table 1.1: Summary of datasets used throughout this thesis

Dataset Name Source Data Type Features Sampling Rate Size Used in
Drone Control Dataset Sternharz et al. [24] Control signals 3 (pitch, roll, throttle) 150 Hz 90,000 samples (training) Chapter 3

4,500 samples (validation)
4,500 samples (testing)

SKAB Benchmark Katser and Kozitsin [25] Water circulation system 8 (various sensors) Varies 35 subsets Chapter 3
Inter-turn Short Circuit Cunha et al. [26] Three-phase motor 3 (current phases) 10,000 Hz 353 healthy files Chapter 4
Dataset current signals 2,264 fault files
Broken Rotor Bar Maciejewski et al. [27] Three-phase motor 3 (current phases) 55,611 Hz 80 healthy files Chapter 4
Dataset current signals 320 fault files
Low-Frequency Broken Luong [28] Three-phase motor 3 (current phases) 1,000 Hz 134 normal samples Chapter 5
Rotor Bar Dataset current signals 221 fault samples
Bearing Fault Jung et al. [29] Motor vibration and Multiple 26,500 Hz 3 normal samples Chapter 5
Dataset current signals 33 fault samples
High-Frequency Broken Treml et al. [30] Three-phase motor 3 (current phases) 55,611 Hz 80 normal samples Chapter 5
Rotor Bar Dataset current signals 320 fault samples

1.4.2 Dataset Characteristics and Relevance

Each dataset was selected to address specific research questions related to the overall
goal of developing energy-efficient and generalisable approaches to IM condition
monitoring. This section discusses the characteristics of each dataset and explains
its relevance to the corresponding chapter’s research focus.

Drone Control Dataset (Chapter 3)

The drone control dataset [24] consists of control signals (pitch, roll, and throt-
tle) from both healthy and faulty drone operations. While not directly related
to IMs, this dataset was strategically chosen to validate the fundamental capabili-
ties of the Multi-Channel LSTM-Capsule Autoencoder for multivariate time series
anomaly detection. The dataset’s multivariate structure, with three control chan-
nels representing interconnected signals with complex spatial relationships, mirrors
the three-phase currents in motor monitoring systems. Furthermore, the dataset
contains well-defined anomalies that allow for unambiguous evaluation of detection
performance. With 90,000 training samples, the dataset is substantial enough to
train neural networks effectively while remaining computationally tractable, aligning
with Green AI principles. The drone dataset serves as an excellent initial validation
platform because it presents a clean test case for anomaly detection in multivari-
ate time series data before proceeding to the more complex domain of motor fault
detection.
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SKAB Benchmark (Chapter 3)

The Skoltech Anomaly Benchmark (SKAB) [25] is a public benchmark specifically
designed for evaluating anomaly detection algorithms. It consists of 35 data subsets
from a water circulation system, with each subset containing measurements from
8 different sensors. This benchmark was selected because it enables standardised
evaluation, allowing for direct comparison with state-of-the-art anomaly detection
methods. The water circulation system exhibits complex behaviors and interde-
pendencies among sensors, providing a challenging test for the proposed algorithm.
Additionally, SKAB includes both outlier anomalies and changepoint anomalies,
enabling comprehensive evaluation of the detection capabilities. Testing on SKAB
helps establish the broader applicability of the proposed LSTM-Capsule architec-
ture beyond specific industrial domains, demonstrating its effectiveness on standard
anomaly detection tasks.

Motor Current Datasets (Chapter 4)

Chapter 4 focuses on the Dataset Fusion algorithm for homogeneous time series
data. Two complementary motor current datasets were selected for this purpose.
The Inter-turn Short Circuit Dataset [26] provides three-phase current data from a
motor with inter-turn short circuit faults of varying severity, operating at 60Hz with
4 poles, 1HP mechanical power, 220V supply, and 3A rated current. The Broken
Rotor Bar Dataset [27] contains three-phase current data from a squirrel cage AC
motor with broken rotor bar faults of different severity levels, also operating at 60Hz
with specifications similar to the first dataset.

These datasets were specifically chosen to test the Dataset Fusion algorithm
because they are homogeneous in structure while representing different fault types,
thereby creating an ideal testing scenario. The different sampling rates (10,000 Hz
for the Inter-turn Short Circuit Dataset and 55,611 Hz for the Broken Rotor Bar
Dataset) test the resampling capabilities of the fusion algorithm. Furthermore, the
complementary nature of the fault information—one focusing on stator faults and
the other on rotor faults—allows a combined model to potentially detect a wider
range of fault conditions. Together, these datasets provide an ideal test case for
evaluating whether the Dataset Fusion algorithm can effectively combine information
from multiple homogeneous sources while preserving distinctive fault signatures from
each source.

Multiple Motor Current Datasets (Chapter 5)

Chapter 5 addresses the challenge of generalising across heterogeneous motor datasets
using the Order Domain Transformer (ODT). Three different motor current datasets
were selected for this purpose. The Low-Frequency Broken Rotor Bar Dataset [28]
provides data at relatively low sampling rates (1,000 Hz) with motors operating
at both 50 Hz and 60 Hz. The Bearing Fault Dataset [29] contains data on vari-
ous fault types including bearing faults, unbalance, and misalignment, sampled at
a much higher rate (26,500 Hz). The High-Frequency Broken Rotor Bar Dataset
[30] focuses on broken rotor bar faults with a high sampling rate (55,611 Hz) and
different motor specifications.

This combination of datasets creates a challenging test environment for the ODT
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approach due to their heterogeneity. The datasets represent different motors with
varying specifications, sampling rates, and operating frequencies, creating a demand-
ing scenario for cross-motor generalisation. Together, they cover multiple fault types,
enabling comprehensive testing of the ODT’s ability to standardise fault signatures
across different motors. The High-Frequency Broken Rotor Bar Dataset serves as
an entirely unseen dataset for evaluating generalisation to new motors, which is a
critical capability for practical industrial applications.

1.4.3 Dataset Size and Data Efficiency Considerations

A notable characteristic of the datasets employed in this thesis is their relatively
modest size compared to typical deep learning applications. This characteristic
aligns with the Green AI principles that emphasise data efficiency alongside compu-
tational efficiency. In real industrial settings, collecting large volumes of labeled fault
data is often prohibitively expensive or impractical, as it may require deliberately
damaging expensive equipment or waiting for rare fault occurrences. The datasets
used in this research, while limited in size, contain high-quality, domain-specific in-
formation that is more valuable than larger volumes of less relevant data. This focus
on quality over quantity is particularly important for specialised applications like
motor fault detection.

The modest size of these datasets actually strengthens the evaluation of the
thesis contributions, as it allows direct assessment of how the proposed methods
perform under data-constrained conditions typical of real industrial environments.
Working with these focused datasets enables more rapid experimentation cycles
and reduces the environmental impact of the research, in accordance with Green AI
principles. Chapter 4 specifically investigates how the Dataset Fusion algorithm per-
forms with varying amounts of training data, demonstrating that good performance
can be maintained even with significantly reduced data volumes. This finding has
important implications for industrial applications, where minimising data collection
requirements can lead to substantial cost savings.

The relatively small datasets used in this thesis thus serve not as a limitation
but as an authentic representation of industrial conditions and an opportunity to
demonstrate the data efficiency of the proposed approaches. This practical focus is
essential for developing methods that can be readily deployed in real-world industrial
settings.

1.5 Statistical Methodology for Experimental Eval-

uation

All experiments conducted in this thesis were initially analysed using statistical
methods to determine the significance of the results. This is crucial for substantiat-
ing conclusions from the experimental data presented in this work.

1.5.1 Statistical Tests for Group Comparisons

When comparing performance metrics across multiple model variants, it is essential
to determine whether observed differences are statistically significant or merely due
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to random variation. Two primary statistical approaches were considered for this
analysis:

One-way Analysis of Variance (ANOVA)

ANOVA is a parametric statistical test commonly used to determine whether the
means of three or more independent groups are significantly different [5]. The test
evaluates the null hypothesis that all population means are equal against the alter-
native hypothesis that at least one mean is different. The ANOVA test is based on
several key assumptions:

• The data follow a normal distribution within each group

• The groups have approximately equal variances (homoscedasticity)

• The observations are independent

The test calculates an F-statistic, which is the ratio of between-group variance
to within-group variance. If this ratio is sufficiently large, the null hypothesis is
rejected. The ANOVA source table, shown in Table 1.2, provides a structured
way to present the degrees of freedom, sum of squares, mean squares, F-ratio, and
associated p-value.

Table 1.2: One-way ANOVA source table, courtesy of [5], where: X = individual
observation, X̄j = sample mean of jth group, X̄ = overall sample mean, k = number
of groups, N = number of observations per group.

Source Degrees of Freedom (DF) Sum of Squares (SS) Mean Square (MS) F-Ratio p-Value

Between Groups DFb = k − 1 SSB =
∑

nj(X̄j − X̄)2 MSB = SSB
DFb

F = MSB
MSE

Right tail F (DFb, DFe)

Error DFe = N − k SSE =
∑∑

(X − X̄j)
2 MSE = SSE

DFe

Total DFt = N − 1 SST =
∑∑

(X − X̄)2

Kruskal-Wallis H Test

Upon examination of the experimental data through boxplots, it became evident
that the performance metrics did not consistently follow normal distributions when
performing repetitions, which violates a key assumption of ANOVA. Therefore, the
KW H test [31] was adopted as a more appropriate statistical method for analysis.

The KW H test is a non-parametric alternative to one-way ANOVA that does
not assume normality in the data distributions. Instead, it compares the medians
of multiple independent groups by first converting all values to ranks before anal-
ysis, making it robust against violations of normality and particularly suitable for
analysing machine learning model performance metrics. These often exhibit non-
normal distributions and heteroscedasticity due to the stochastic nature of model
training and convergence characteristics.

The test evaluates whether samples originate from the same distribution (null
hypothesis) or from different distributions (alternative hypothesis). The test statistic
H approximates a chi-square distribution with k-1 degrees of freedom (where k is
the number of groups).

As with ANOVA, the p-value of the scores is evaluated based on a 95% con-
fidence interval, which is the conventionally accepted value in scientific research.
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Therefore, if the p-value of an experiment is calculated to be <0.05, the null hy-
pothesis is rejected, and it can be concluded that statistically significant differences
exist between at least two groups.

The formulation and interpretation of the KW H test are summarised in Table
1.3.

Table 1.3: KW H test summary, where: Ri = sum of ranks in group i, ni = sample
size of group i, N = total number of observations, k = number of groups.

Test Statistic Degrees of Freedom Distribution Significant if

H = 12
N(N+1)

∑k
i=1

R2
i

ni
− 3(N + 1) df = k − 1 Chi-square distribution p-value < α (typically 0.05)

1.5.2 Post-hoc Analysis

For experiments where the KW test indicates significant differences, post-hoc Mann-
Whitney U tests with Bonferroni correction were performed to identify specific
between-group differences. The Mann-Whitney U test (also known as the Wilcoxon
rank-sum test) [32] compares the rank distributions of two independent samples
without requiring parametric assumptions.

The Bonferroni correction adjusts the significance threshold (α/m, where m is
the number of comparisons) to control the family-wise error rate during multiple
comparisons, thereby mitigating Type I error inflation. This approach ensures that
when multiple pairwise comparisons are made, the overall probability of incorrectly
rejecting the null hypothesis remains at the desired level.

1.5.3 Presentation of Results

Throughout this thesis, the KW test results are presented in tables showing descrip-
tive statistics for each group (sample size, mean, standard deviation, and median),
along with the chi-square statistic (H) and its associated p-value, as shown in the
example format in Table 1.4.

Table 1.4: Example format for KW test results.

Model n Mean SD Median Chi-square p-Value

Model A 5 0.XX 0.XX 0.XX
Model B 5 0.XX 0.XX 0.XX X.XX 0.0XX*
Model C 5 0.XX 0.XX 0.XX
Model D 5 0.XX 0.XX 0.XX

Note: * indicates significant difference (p ¡ 0.05). Post-hoc analysis reveals significant differences between [specific pairs].
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Chapter 2

Literature Review

2.1 Fault Detection

This section investigates the development of fault detection techniques, from tradi-
tional signal processing and statistical analysis methods to more advanced machine
learning-based approaches, particularly focusing on NN and their variants.

2.1.1 Traditional Fault Detection Methods

Fault detection systems have been researched and improved extensively over the
last two decades due to the intense demand to automate industrial processes for
Industry 4.0 [7]. There have been numerous approaches that aim to be effective
in detecting different types of faults in different systems, due to the nature of the
usage of the system or other reasons relating to the susceptibility of the system to
certain faults. Some approaches for fault detection have involved using methods
and techniques such as redundancy for sensors, sometimes paired with analytical
redundancy methods [33] [34].

The common issue with these proposed solutions is that they involve the instal-
lation and maintenance of physical hardware to monitor the sensors or the system,
which naturally means that they may require redundancy in more sensitive use
cases: for example, that require the monitoring of life-threatening substances with
very sensitive sensors. Furthermore, this guarantees an increase in the operating
costs of these solutions due to increased energy usage and maintenance costs and
provides another barrier to the goal of achieving automation. This has encouraged
the development of soft sensing systems, which use the existing sensors in a system to
infer further information regarding the system. This approach provides an econom-
ical and cost-effective alternative to physical systems by not needing to implement
any additional physical hardware that could be expensive to buy or maintain whilst
achieving robust fault detection scores that are comparable to and even better than
physical systems.

Statistical analysis and signal processing are frequently used soft-sensing meth-
ods in fault detection [35][36][37][38], since they are able to overcome the drawbacks
of physical hardware monitoring and provide a robust method of data inference.
For instance, in [39] a dynamic model is proposed that is able to utilise the existing
Supervisory Control And Data Acquisition (SCADA) system in wind turbines to
dynamically model the relationship between the sensor readings by a parameter es-
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timation process for the purpose of fault detection. A frequency domain analysis is
used to determine damage sensitive indices, which are then compared to the model
sensor. The technique is tested on a 5-year wind turbine dataset where the system
was able to detect faults as well as perform fault prognosis. Whilst the method is
clearly effective in the specified use case, the flexibility of the method for other use
cases comes into question as in-depth knowledge about the system and the rela-
tionships between the variables being analysed was utilised to be able to create the
initial model. This issue is also mentioned in [40], where the authors concluded from
their survey of outlier detection techniques that model-driven methods are heavily
dependent on the understanding of the data being analysed. The lack of flexibil-
ity of such techniques is also mentioned, due to the heavy tailoring that must be
made to the models for each dataset. This is a trend across many signal processing
techniques, including for motor condition monitoring, where Gangsar [41] noted, in
their review of state-of-the art outlier detection techniques, the lack of flexibility of
data analysis techniques such as acoustic analysis and MCSA in detecting a wide
range of faults that could occur within the system.

2.1.2 Machine Learning for Fault Detection

More recently, ML has been heavily utilised in literature for the modelling of such
systems. As well as being a soft sensing technique, ML is able to provide a higher
degree of flexibility in terms of application as well as being generally easier to im-
plement than the aforementioned techniques. Specifically, NNs have been identified
as an effective tool in data analysis and fault detection due to their unique ability to
be trained to identify numerical relationships in different forms of data [42]. They
provide an advantage over traditional signal processing and statistical techniques
because of the level of complexity with which they can model the data, as well as
being generalisable to similar types of data.

ML techniques are being applied to a wide range of fault detection tasks across
different domains. In the context of IMs, Shubita et al. [43] proposed a fault diag-
nosis system based on acoustic emission using ML techniques. The authors aimed
to achieve stable accuracy and real-time performance with a simple model for edge
ML by using a minimal amount of data and extracting relevant features from the
raw data. However, they noted that before feature extraction at the preprocessing
stage, many new methods can enhance useful data embedded in the noise signal to
improve the model’s overall accuracy. Benninger et al. [44] developed a fault de-
tection method for industrial applications that requires little prior knowledge of the
motor and low measurement effort. Their approach combines analytical modeling
using a multiple coupled circuit model and a feed forward NN, with parameter iden-
tification based on easily obtained data. While the method can effectively represent
the behavior of the monitored motor, it has limitations such as the use of synthetic
data, which may not accurately represent the dymanics of real-world data, and the
inability to detect bearing faults.

In the domain of photovoltaic systems, Voutsinas et al. [45] employed logistic
regression enhanced with Cross-Validation for fault detection. Their approach offers
low computational cost, but the authors grouped unknown faults into a separate
category, limiting the specificity of the method. Sahoo et al. [46] proposed an Online
DNN algorithm to detect, classify, and predict both symmetrical and unsymmetrical
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faults occurring on transmission lines using the RMS values of voltages and currents
during fault. Their approach utilises raw TS data, which is advantageous for fault
detection as it requires significantly less domain expertise to leverage.

As shown, several studies in the literature use NN models for fault detection
across various use cases and datasets [47] [48]. However, generalisation remains a
challenge for NNs. The main issue found in literature with NNs is the importance
of data volume and representation in being able to train NNs effectively. Most
NN architectures such as the Convolutional Neural Network (CNN) and the LSTM
require large quantities of data to effectively learn the shape and features of the data,
and some methods even require the labelling of the data before training, known as
supervised learning [49], which is very time-consuming and costly as this is usually
a manual process. Furthermore, with some types of data it is very difficult to
distinguish faults and anomalies in raw sequential format. The challenges associated
with data volume, representation, and the difficulty in distinguishing faults and
anomalies in raw sequential data highlight the need for advanced techniques that
can effectively learn from limited data and capture complex relationships.

2.1.3 Combining Signal Processing and Machine Learning

To address the challenges associated with NNs, researchers have explored the combi-
nation of signal processing techniques with NNs to leverage the advantages of both
approaches. Signal processing techniques can enhance data representation, while
NNs provide flexibility and ease of use. This hybrid approach has demonstrated
significant success in various fault detection tasks, particularly in the domain of IM
fault detection [50][51]. In these cases, frequency domain transforms were employed
to improve the representation of data for use with LSTM networks.

Several recent studies have investigated the integration of signal processing tech-
niques with machine learning for fault detection across different domains. Cano et
al. [52] proposed combining the Discrete Wavelet Transform (DWT) with radial
basis function neural networks (RBFNN) for fault detection in microgrids. The au-
thors found that this integration enhances accuracy in fault detection, especially in
scenarios involving nonlinear elements such as photovoltaic, hydrokinetic, and vari-
able electric load systems. However, their approach does not address high-impedance
faults. Luo et al. [53] introduced a transformer framework based on the Fast Fourier
Transform (FFT), called FFT-Trans, for mechanical fault diagnosis. The proposed
framework uses a learnable filter in the form of CNN layers and excels in high noise
conditions, but it focuses on a single dataset and the mechanical fault category.

In the context of IMs, Das et al. [54] proposed a custom CNN for stator winding
interturn fault severity classification under variable load conditions. The authors
use Park’s vector modulus representation for the 3-phase current data. While their
approach achieved promising results, the computational cost during the training
phase is slightly higher compared to existing approaches. Fu et al. [55] developed
a bearing fault diagnosis method based on wavelet denoising and machine learning,
testing both unsupervised and supervised learning methods. They found that deci-
sion trees performed best among supervised methods, while K-means clustering was
the best unsupervised approach. However, their study focused on specific types of
bearing faults, limiting the generalisation ability of the model.

In addition to combining signal processing with ML, researchers have also ex-
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plored the hybridisation of different NN architectures to capitalise on their strengths
for various data types. The use of Capsule Network (CapsNet) has been found to
improve training and classification performance on smaller datasets [56] [57]. Fur-
thermore, the hybridisation of Recurrent Neural Network (RNN)s and CNNs has
gained popularity for TS data analysis [49].

The combination of signal processing techniques with machine learning, as well
as the hybridisation of different NN architectures, has shown promising results in
addressing the limitations of traditional approaches and improving fault detection
performance. These hybrid methods have the potential to enhance data representa-
tion, capture complex temporal dependencies, and achieve better generalisation on
smaller datasets. The following sections will further explore specific NN architec-
tures and their applications in fault detection.

2.1.4 Recurrent Neural Networks for Time Series Analysis

Recurrent Neural Networks (RNNs) have emerged as a popular choice for TS analysis
due to their ability to identify dependencies in sequential data using their internal
memory [58, 47]. Among RNN variants, the LSTM network [1] has gained significant
attention for its ability to overcome the vanishing gradient problem [59] encountered
by traditional RNN architectures. This capability allows LSTMs to learn long-term
dependencies in TS data more effectively, making them particularly suitable for
various applications in commercial and industrial environments.

Recent research has explored the application of LSTM networks in diverse fault
detection scenarios. Lee et al. [60] focused on gearbox fault detection in plastic
extruder machines, where traditional vibration measurements can be hindered by
excessive noise from defective gearboxes. They proposed an AE-LSTM outlier fault
detection technique using vibration and thermal data, employing Fast Independent
Component Analysis (FastICA) to blend selected features into a single-dimensional
representation. While their approach showed promise, it was limited to clear and
obvious faults and relied on invasive measurement techniques. For petroleum pro-
duction forecasting, Kumar et al. [61] demonstrated the advantages of combining
attention mechanisms with LSTM networks. Their A-LSTM network showed im-
proved accuracy and flexibility in handling data with or without noise. However,
the study was limited to univariate time-series forecasting, which is a simpler task
compared to multivariate analysis. Wen et al. [62] also explored the combination
of LSTM with attention mechanisms, using two LSTM models as encoder and de-
coder with an attention mechanism between them. This approach demonstrated
advantages in predicting TS with larger time steps.

Alikhani et al. [63] proposed a long short-term memory regulated deep residual
network for data-driven fault diagnosis in electric machines. While their approach
showed promising results, it did not account for real-world data dynamics such as
noise, which could limit its practical applicability. An interesting application of
LSTM networks in anomaly detection was explored by Provotar et al. [64], who
utilised LSTM layers in an Autoencoder architecture. The authors recognised the
limitations of many current machine learning methods that require labeled data,
which is often impractical for large volumes of TS data. They also highlighted the
shortcomings of classical anomaly detection methods like Support Vector Machines
and Isolation Forests in accounting for the temporal aspects of TS data. While their

26 Chapter 2 Ayman Elhalwagy



Green AI for Industry 4.0: Energy-Efficient Generalised Deep Learning
Approaches to Induction Motor Condition Monitoring

approach showed promise in terms of detection accuracy and wide applicability, it
had some limitations. The authors selectively used data that was easily detectable
by the autoencoder and did not explore the sensitivity of detection in depth. Addi-
tionally, they assumed that the training data was free of anomalies, which may not
hold true in real-life scenarios.

Despite the advantages of LSTM networks, they face challenges such as overfit-
ting when used with gradient descent learning optimisation algorithms. Address-
ing this issue often requires careful hyperparameter tuning, which can be time-
consuming and inefficient, especially for complex datasets.

2.1.5 Convolutional Neural Networks and Capsule Networks

CNNs have demonstrated significant success in image classification tasks [65, 66],
and recent studies have extended their application to TS forecasting and outlier
detection [67, 68]. The hybridisation of CNN and LSTM layers has shown empirical
evidence of improving outlier detection performance [69, 49]. Several recent works
have explored this hybrid approach in various contexts.

Borre et al. [70] proposed a hybrid CNN-LSTM attention model using quantile
regression for fault detection. Their approach used vibration sensor data measured
in three axes (axial, radial, and radial X). However, the study was limited to a single
modality of data, and the use of vibration sensors can be invasive and challenging
to implement at scale. Zhang et al. [71] developed a vibration data anomaly de-
tection method based on combined CNN and LSTM, incorporating multi-feature
extraction techniques such as residual analysis and power spectral density. While
their approach showed promise, it was also limited to vibration data. Kim et al. [72]
introduced an unsupervised prediction-based time-series anomaly detection method,
using a prediction model consisting of an encoder with multiple Transformer encoder
layers and a decoder including a 1D convolution layer. However, their study was
limited to univariate data.

Despite the success of CNNs, they have a well-documented fundamental flaw in
understanding spatial context in data and suffer from information loss due to the
pooling layer, which is particularly evident in image classification tasks. To address
these limitations, Sabour et al. [20] proposed the Capsule Network (CapsNet). Cap-
sNets ”encapsulate” the entity being described in a vector format, where the vector
length represents the probability of existence, and its orientation describes the en-
tity’s characteristics, such as spatial context. CapsNets have shown state-of-the-art
performance in various image classification tasks, including brain tumor classifica-
tion using MRI images [73] and hyperspectral image classification [74]. Variants
of CapsNets have been developed to use gradient descent instead of the dynamic
routing algorithm [57], further improving their performance and efficiency.

The combination of CapsNet models with LSTM models has also shown effec-
tiveness in applications such as transportation network forecasting [75]. However,
the application of CapsNets to TS data, particularly in its raw format, remains
limited [76]. Most approaches using CapsNets for TS data convert the data into
an image representation, as CapsNets have demonstrated improved performance in
this context. For instance, Fahim et al. [77] proposed an approach using capsule
networks to detect short circuit faults in power network transmission lines, using a
Gramian Angular Field (GAF) representation [78].
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The limitations of CNNs and the promising results of CapsNets in various do-
mains highlight the potential for developing novel architectures that can effectively
capture spatial and temporal relationships in multivariate TS data.

2.1.6 Autoencoder-based Anomaly Detection

The field of anomaly detection has witnessed a growing trend towards the use of
Autoencoders [3], which offer the flexibility of NNs while maintaining simplicity of
application and reducing the need for large volumes of labeled data. This shift
has led to several innovative approaches that address various challenges in anomaly
detection across different domains.

Shen et al. [79] proposed a recurrent autoencoder with multi-resolution ensemble
decoding to overcome overfitting and capture patterns at different resolutions. While
their model outperformed competing approaches on diverse datasets, including EEG,
power consumption, and website traffic data, it showed room for improvement in
certain scenarios, particularly in terms of model sensitivity and performance metrics.

Kieu et al. [80] introduced a variational quasi-recurrent autoencoder and its
bi-directional variant, aiming to enhance computational efficiency and generalisa-
tion ability through improved latent space learning. Their bi-directional model
demonstrated superior performance across five different domains, although it did
not address the detection of non-statistically separate anomalies.

In the industrial context, Radaideh et al. [81] developed a hybrid LSTM and
Convolutional Autoencoder for anomaly detection in high voltage converter modu-
lators, achieving high precision and recall scores. However, the known limitations of
Convolutional Neural Networks suggest that incorporating Capsule Networks could
potentially enhance these results further.

Recent works have explored autoencoder-based approaches in various applica-
tions. Torabi et al. [82] investigated anomaly detection in cloud network data,
introducing a novel method for calculating residual error and determining threshold
values. While promising in experimental settings, this approach still faces challenges
in practical applications. Yan et al. [83] proposed an autoencoder for unsupervised
anomaly detection in machine tools under noisy conditions, validating their approach
with real CNC machine tool data. However, the generalisability of this method re-
mains to be proven across different types of machinery and operating conditions.

For video surveillance, Mishra et al. [84] developed an unsupervised mechanism
for anomaly detection using a novel combined regularity score-based thresholding
mechanism. Their use of convolutional networks for video processing suggests po-
tential for improvement through the incorporation of Capsule Networks, albeit with
potential trade-offs in real-time performance.

Khalid et al. [85] addressed the challenge of detecting subtle anomalies in tur-
bine shaft behavior of power plants using deep LSTM autoencoders. Their work
highlights the importance of handling anomalies that fall outside the input space of
the training data, a common challenge in real-world applications.

Xie et al. [86] proposed a hybrid model combining convolutional autoencoders,
convolutional LSTM, and variational autoencoders for anomaly detection in mul-
tivariate sensor data. While showing strong performance, this approach requires
further validation on real-world datasets to establish its practical efficacy.

Wei et al. [87] developed an LSTM-AE-based hybrid deep-learning technique for
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detecting contextual anomalies in indoor air quality datasets, applying their model to
real-world CO2 time-series data. However, their focus on univariate data limits the
applicability to more complex, multivariate scenarios common in industrial settings.

Chen et al. [88] introduced an LSTM-based semi-supervised variational au-
toencoder for anomaly detection in cloud environments, highlighting the need for
auto-calculating thresholds based on data trends to enhance adaptability.

The diverse applications and approaches in autoencoder-based anomaly detection
underscore both the potential and the challenges in this field. While these methods
have shown promise in various domains, they often face limitations in terms of
generalisability, handling multivariate data, and adapting to real-world conditions.

2.2 Generalisation techniques

This section investigates the current literature on different methods of addressing
NN generalisation performance, as well as recent works using multiple datasets in
different domains and tasks.

2.2.1 NN-based generalisation techniques

NN based generalisation techniques are methods designed to improve a model’s
ability to perform well on unseen data, beyond the specific examples it was trained
on. These techniques primarily focus on modifying the network architecture, train-
ing process, or loss function to enhance the model’s capacity to learn generalisable
features and relationships. The following sections outline some existing strategies
proposed in literature that have empirically proven to be effective in tackling the
generalisation problem.

Dropout

Dropout [89] is a regularisation technique that can be used to prevent the neural
network from overfitting on the training data. This is done by ignoring several
randomly selected neurons, with the number of neurons dropped dependent on the
“dropout rate” parameter, so they do not affect the output of the neural network
on the forward pass. The idea behind dropout is to effectively train many subnets
in a given network so that the network acts as a sum of many smaller networks that
can learn the representation of the data without the presence of the dropped-out
neurons. This was found to improve the generalisation performance of the network
by reducing data overfitting.

Pruning

Pruning is a process whereby a NN selectively removes trainable parameters based
on an established criterion with the aim of maintaining the performance of the NN
[90]. There are two main categories of pruning: Structured and Unstructured prun-
ing. Unstructured pruning directly removes trainable parameters from the network,
such as connections to neurons (weights). Structured pruning involves removing
entire structures from the network such as neurons and filters. Structured pruning
allows for a faster computational time in relation to unstructured pruning, as most
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frameworks existing for ML do not allow for the acceleration of sparse matrix calcu-
lations, therefore the NN will be able to reduce the number of calculations for the
former but not the latter.

Various criterion has been established in literature for the pruning of NNs. One
primitive but popular method is known as the weight magnitude criterion. The
criterion dictates that the weights of the smallest magnitude are removed. The idea
behind this is to remove all the weights that contribute the least to the function as
they are less likely to impact the final prediction.

The most established framework for pruning is known as the train, prune and
fine-tune method [90]. As the name suggests, the model is first trained, then it-
eratively pruned and fine-tuned based on the weight magnitude criterion. More
recently however, an increasing number of works [91] [92] [93] have evolved this
framework with novel methodology that has allowed for further reduction of NN
parameters and hence more efficient training and computation whilst maintaining
similar performance.

L1 and L2 regularisation

L1 and L2 regularisation are widely used techniques to improve the generalisation
performance of neural networks. These methods add a penalty term to the loss
function, discouraging the model from relying too heavily on any individual features
or weights. Drucker and Le Cun introduced the concept of double backpropaga-
tion, which involves adding a term to the objective function that penalises large
derivatives of the output with respect to the input. This approach was shown to
improve generalisation performance by making the network less sensitive to small
perturbations in the input [94].

L1 regularisation, also known as Lasso regularisation, adds the absolute value
of the weights to the loss function. L2 regularisation, or Ridge regularisation, adds
the squared magnitude of the weights. The choice between L1 and L2 can have
significant implications for model behavior and performance.

Ng demonstrated that L1 regularisation can be particularly effective for feature
selection. His work showed that when using L1 regularisation, the sample complex-
ity grows only logarithmically with the number of irrelevant features. This makes L1
regularisation especially useful in high-dimensional spaces with many irrelevant fea-
tures [95]. In contrast, L2 regularisation tends to spread out the weight values more
evenly and is less likely to result in sparse models. It’s often the default choice for
many applications due to its ability to prevent any single feature from dominating
the model’s decisions.

Ensemble Networks

Ensemble networks represent a powerful approach to improving the generalisation
ability of neural networks. This technique, which involves combining the predictions
of multiple classifiers into a single, unified classifier [96], typically demonstrates
superior performance compared to any of its individual constituent models.

The enhanced generalisation capability of ensemble networks stems from several
key factors. Primarily, ensembles reduce variance in output through averaging,
which relates to the bias-variance tradeoff that will be explored in more depth in the
subsequent section. Furthermore, ensemble methods contribute to error reduction

30 Chapter 2 Ayman Elhalwagy



Green AI for Industry 4.0: Energy-Efficient Generalised Deep Learning
Approaches to Induction Motor Condition Monitoring

and increased robustness. The diversity in models and their training processes often
leads to convergence at different local minima, thereby capturing various aspects
of the data distribution. This diversity helps to mitigate overfitting by individual
models, as their potential biases tend to average out across the ensemble [97].

Several types of ensemble methods have been proposed and widely adopted in
literature. One such method is bagging, or Bootstrap Aggregating, introduced by
Breiman [98]. Bagging techniques combine multiple models trained on different
subsets of a given dataset, helping to reduce variance and overfitting by aggregating
predictions from models trained on various data samples.

Another prominent ensemble method is boosting, proposed by Freund and Schapire
[99]. This approach involves training models sequentially, with each iteration focus-
ing on improving the model based on the errors made in its previous form. Boosting
algorithms are particularly effective at reducing bias and can create strong predictors
from relatively weak learners.

Building upon the concept of boosting, Chen and Guestrin developed XGBoost
[100], a modern and highly efficient implementation of gradient boosting. XGBoost
has gained significant popularity in machine learning competitions and practical ap-
plications, renowned for its computational efficiency and achieving state-of-the-art
performance on a wide range of tasks [101][102][103]. However, dataset noise signif-
icantly impacts XGBoost’s performance, as well as boosting algorithms in general.

2.2.2 Data-based generalisation techniques

Data-based generalisation techniques are largely overlooked in deep learning in com-
parison to NN-based techniques. This is because the NN structure and learning
optimisation algorithms are usually the reason for such weak performance, so im-
provements can largely be made by improving and optimising how the NN learns as
opposed to what the NN is learning. However, it is still important to consider the
training data as it can be a bottleneck for learning ability if not composed in the
correct manner [104].

An important aspect to consider is the difference in the data distribution between
the data used to train the NN and the data that the NN will eventually be applied to.
Often the data picked for training is not fully representative of the true distribution
of the dataset, which creates a bottleneck to generalisation as the NN is not prepared
for the distribution found in the overall population since it has been tuned to the
distribution of the training sample. Shuffling the data before taking the training
sample often helps with this to increase the likelihood of the sample representing
the true distribution. Furthermore, shuffling during training also helps the NN
weights to escape local minima and converge towards the global minimum of the
function. Many works in deep learning falsely assume that the data distribution
is static, which is largely incorrect as in practice data distributions are generally
dynamic and tend to shift away from the test data distribution with real-world
data; this phenomenon is known as distribution shift. This shift has been detected
and quantified in recent works [105] [106], and accounted for with online adaptation
to the shift [107], which allows the NN weights to adjust themselves to account for
this distribution shift.

Data with excessive noise can inhibit the NNs ability to learn the true input-
output function required by a specific application. Mathematically, this can be
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explained by the bias-variance decomposition [108], specifically the variance compo-
nent. The variance value refers to the change in prediction accuracy over different
subsets of the data. A high variance value indicates that the NN has learnt the
noise in the data, or in other words overfit on the training data. The most common
method of reducing the variance is increasing the volume of the training data, which
will naturally bring the distribution of the data closer to the required distribution
that represents the overall dataset as opposed to just the subset of training data. As
well as using real-world data, data augmentation has also proved to be an effective
method of increasing data volume using data that is already accessible [109] [110].
Another effective method that is commonly used is the denoising of data [111]. This
also contributes to the reduction of the variance: By removing the noise in the data,
the training data subset will be cleaner and will more accurately represent the true
distribution of the dataset. Whilst both methods are generally proven to work, there
are still major issues with both methods that are still being addressed in literature,
such as effectiveness in a real-world situation.

The financial and computational costs associated with increasing the volume
of training data are not just substantial but also rapidly increasing [112]. This
makes it increasingly difficult to train models without significant resources. Conse-
quently, only well-funded entities with considerable resources can achieve a perfor-
mance boost using this method, as their computational power and finances typically
surpass those of other research entities and companies. This disparity creates a bot-
tleneck for smaller entities, hindering their competitiveness in the field [113].

Denoising is still a very active field of research due to the many limitations of the
currently proposed techniques. Since it is very difficult to determine which aspects
of the data features are representative of the true distribution [111], it is very diffi-
cult to use denoising techniques such as filtering since features that are potentially
important to NNs could be filtered out, limiting the potential performance of the
NN. Furthermore, filtering techniques are largely contextual, so it is very difficult
to develop filtering methods that work across multiple contexts to the same level of
effectiveness.

Transfer learning [114] is also widely regarded in literature as a robust method of
improving performance by utilising data from a different set but in the same domain
as the target data. Whilst there have been many recent works regarding transfer
learning [115], there is a gap in research concerning dataset fusion methods, an
alternative to transfer learning that utilises multiple datasets in the same training
phase, as opposed to multiple training phases to train a model more robust to the
difference in data distributions between the training data and the data encountered
during operation. This will be further explored in the present work.

2.2.3 Multi-Dataset training

Recently, researchers have identified the potential benefits of training generalisable
NNs using multiple datasets to enhance performance and expand the capabilities
of the NN models. Many of these approaches primarily focus on image-based ap-
plications [116] [117]. For example, Yao et al. [118] introduced a novel framework
for cross-dataset training, leveraging pre-existing labels from multiple datasets to
create a single model capable of detecting the union of labelled features from all
contributing datasets. This approach aims to maximise the utility of available la-
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bels for distinct classes in each dataset, thereby circumventing the time-consuming
and resource-intensive process of labelling a single dataset with new classes that
are already present in another dataset. Empirical evidence provided by the au-
thors demonstrates the effectiveness of this approach when applied across multiple
datasets, achieving comparable performance levels without sacrificing accuracy. In
a related study, Zhou et al. [119] introduce a technique for training a unified ob-
ject detection model on several extensive datasets by using dataset-specific training
methods and losses, but maintaining a shared detection architecture with outputs
specific to each dataset. This approach circumvents the necessity for manual tax-
onomy alignment, as it automatically combines the outputs of different datasets
into a unified semantic taxonomy. The authors show that this multi-dataset detec-
tor achieves comparable performance to dataset-specific models in their respective
domains while effectively generalising to unseen datasets without the need for fine-
tuning. By utilising multiple training datasets, these approaches can lead to reduced
resource requirements in terms of training data and improved performance. How-
ever, it is worth noting that they do not specifically address the aspect of reducing
computational power during the training process.

2.2.4 Domain Adaptation

Domain adaptation techniques are designed to enable models to leverage common
features between different but related datasets, while also accommodating the unique
characteristics of each domain [120]. Techniques such as Domain-Adversarial Neural
Networks (DANN) [121] and Domain Adaptive Faster R-CNN [122] have shown suc-
cess in allowing models to generalise across domains with slight non-homogeneity.
These models identify both domain-specific and domain-invariant features, facilitat-
ing training on both source and target domains. Furthermore, they show consider-
able strength in dealing with the domain shift from source to target domains, which
is a common issue when integrating datasets from different contexts or applications.
However, while these techniques offer significant advancements in handling domain
shifts, they do not explicitly address the distribution characteristics of the initial
source domain, an aspect which the present study aims to explore and address using
the proposed method.

2.3 Cross-Domain Fault Diagnosis

The field of motor fault diagnosis has witnessed significant advancements with the
development of various computational techniques, from traditional signal processing
to modern machine learning algorithms. This section explores the most recent and
relevant methods and dissects the limitations which Chapter 5 aims to address.

2.3.1 Order Tracking for Fault Diagnosis

Order Tracking (OT) techniques have long been employed in rotating machine fault
diagnosis to analyse signals in relation to the rotating speed of the machine. OT
is defined as a signal processing technique that transforms a signal from the time
domain to the angular, or order, domain. It uses resampling to match the response
to the angular position of the rotating component.
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Traditional OT methods often relied on tachometers for accurate speed measure-
ments. Cheng et al. [123] proposed an approach targeting the modulation feature
of gear fault vibration signals in run-ups and run-downs. They combined OT with
Local Mean Decomposition (LMD), a self-adaptive time-frequency analysis method.
LMD overcomes issues found with conventional demodulation approaches such as
Hilbert transform, which struggle with multi-component AM-FM signals and suffer
from window effects. The authors demonstrated that their approach could identify
gear status - with or without fault - accurately and effectively.

Li et al. [124] presented a method for fault diagnosis of rolling bearings based
on computed order tracking, empirical mode decomposition (EMD), and Teager
Kaiser energy operator. Using computed order-tracking, they transformed non-
stationary vibration signals during run-up of bearing faults from the time domain
into stationary signals in the angle domain. The EMD method allowed them to
decompose the resampled vibration signals into intrinsic modes, providing a better
understanding of the fault information contained in the vibration signal.

Recent advancements have explored tacholess methods and complex signal trans-
formations to adapt to varying operational conditions and fault types. Lu et al. [21]
provide an extensive review of tacholess speed estimation methods for OT. The
authors categorise these methods based on the signal source for speed estimation:
vibration or sound signals, electrical motor current signals, and video signals. While
these tacholess OT methods offer flexibility in fault diagnosis without a tachometer,
they often rely on complex signal processing techniques.

Sapena-Bano et al. [125] introduced a novel approach that transforms complex 3-
D spectrograms into simplified x-y graphs for fault diagnosis in IMs. They extended
the harmonic OT approach to non-stationary conditions, providing unique fault
patterns that are easy to identify. Akar [126] presented a new method for detecting
static eccentricity faults in inverter-driven IMs using Angular Domain OT (AD-OT).
The method proves to be efficient for varying operating conditions and offers the
advantage of leveraging existing sensors in inverter systems. However, this work
focuses solely on static eccentricity faults and does not address the generalisability
across multiple motor types or varying speeds.

Wang et al. [127] proposed a new simple and effective vibration OT method for
bearing fault diagnosis of variable-speed direct-drive wind turbines. Their method
uses the generator stator current signal as a resource to provide information about
the shaft speed for the order tracking of the vibration signal. By specifying a refer-
ence shaft rotating frequency for order one, they converted the order-domain spec-
trum of the resampled vibration envelope signal into a frequency-domain power
spectrum. This approach resolved the smearing problem caused by shaft speed fluc-
tuation, allowing for clear identification of bearing fault characteristic frequencies.

Advanced OT methodologies have evolved, with the Vold-Kalman Filter (VKF)
being a notable technique [128]. VKF enables the extraction of non-stationary peri-
odic components from signals using a predefined frequency vector. The algorithm is
formulated as a least-squares problem, allowing its implementation as a sparse linear
system. VKF shares conceptual similarities with the Kalman filter, as it operates
by minimising a cost function [129].

Pan [130] implemented an adaptive VKF OT approach to address the computa-
tional challenges of previous VKF OT schemes, which were not suitable for real-time
applications due to their time-consuming nature. While the proposed technique is
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not exactly accurate, the decrease in computation time to make it suitable for real-
time processing can justify the reduced accuracy.

Zhao et al. [131] applied VKF OT to analyse the vibration mechanisms of healthy
motors, as well as those with inner ring faults, eccentricity faults, and compound
faults. Their work demonstrates the versatility of VKF OT in diagnosing various
fault conditions.

It’s worth noting that OT techniques face limitations in non-stationary condi-
tions. As shown in the literature, determining the angular velocity is challenging
without specialised hardware, but various approaches have covered different strate-
gies to address these issues. Furthermore, whilst existing literature present signifi-
cant advancements in OT techniques for fault diagnosis, there is a notable gap in
the literature regarding the combination of these approaches with intelligent fault
diagnosis methods, such as using NNs. This presents an opportunity for future re-
search to leverage the strengths of both OT and machine learning techniques for
more robust and adaptable fault diagnosis systems.

2.3.2 Cross-Domain Fault Diagnosis

In recent times, there has been an increased volume of research into cross-domain
fault diagnosis methods in an effort to increase detection accuracy and computa-
tional efficiency. This section explores several key contributions to this field, high-
lighting their innovations and limitations.

Chen et al. [132] developed a novel Domain Adversarial Transfer Network
(DATN) approach to tackle the large domain shift problem in fault diagnosis. Their
method introduces asymmetric deep encoder networks and domain adversarial train-
ing to adaptively learn discriminative representations. While this approach demon-
strated improved accuracy compared to CNN baselines, it faced limitations in terms
of high computational cost during the training stage and a lack of adaptability to
new classes in the target domain.

Li et al. [133] proposed a novel deep learning-based method to address the
partial transfer learning problem in machinery fault diagnosis. They adopted a
class-weighted domain adversarial neural network for partial domain adaptation.
This work is particularly noteworthy as it challenges the common assumption of
identical label spaces between source and target domains. The authors argue that
in real industrial settings, testing data often contains only a subset of the source
label space, motivating the need for transferring diagnosis knowledge from a com-
prehensive source domain to a target domain with limited machine conditions.

Zheng et al. [134] introduced a diagnosis method for rolling bearings that ex-
plores more challenging but practical cross-domain scenarios. Their approach con-
siders multiple source domains with potential discrepancies and assumes that only
normal samples are available in the target domain during model training. A key
innovation in their work is the use of a priori diagnosis knowledge in the signal
preprocessing steps, designed to eliminate potential discrepancies among different
domains and construct consistent-meaning inputs for the domain generalisation
network. This preprocessing includes normalisation, angular resampling based on
known fault frequencies, and envelope computation with Hilbert transform. How-
ever, a limitation of this method is the requirement for existing ”normal” data in
the target domain.
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Xiao [135] proposed a feature adaptive motor fault diagnosis method using trans-
fer learning to address real-world conditions where signals are unlabelled and oper-
ating conditions are unstable. The technique employs a CNN base with maximum
mean discrepancy (MMD) regularisation to reduce distribution mismatch between
source and target domains. While this approach shows clear performance improve-
ments on unlabelled target domain data, it suffers from lengthy training times and
a complex architecture.

Altaf et al. [136] presented a method for monitoring the dynamic behaviour
of individual motors through a powerline network, using a mathematical model to
analyse signal attenuation for estimating fault origin and type. Their approach uses
FFT for spectral analysis and successfully localises motor faults within the network.
However, the fault diagnosis process is not fully automated, and the method was
not tested on high-power motors, limiting its applicability to real-world scenarios.

Liu et al. [137] introduced a Deep Adversarial Domain Adaptation framework
to address the domain shift problem in rolling bearing fault diagnosis. Their model,
which uses a Stacked Autoencoder (SAE) and a label classifier, effectively extracts
features from vibration data and identifies faults across different operational condi-
tions. However, the study does not explore the method’s generalisability to other
types of faults.

Chao et al. [138] proposed a method for online domain adaptation in rolling
bearing fault diagnosis, specifically addressing imbalanced cross-domain data. Their
approach adapts to gradually increasing target domain data using deep transfer
learning and an adaptive network-based fuzzy inference system (ANFIS). A limita-
tion of this method is its assumption of well-labelled data from a single source for
initial training, which may not be feasible in many real-world applications.

Zhang et al. [139] addressed the challenges of fusing heterogeneous data from
multiple sensors with their low-pass pyramidal ratio-color symmetric dot pattern
(RP-CSDP) framework. This approach demonstrates rapid adaptability to new
working conditions and fault types, even with limited training samples, and offers
reasonable computational efficiency. However, the scarcity of vibration data in target
domains may limit its real-world applicability. Additionally, the method’s cross-
motor generalisation capability remains unexplored, as it was not tested on data
from different motors.

These studies collectively highlight the ongoing challenges and advancements in
cross-domain fault diagnosis. While significant progress has been made in addressing
domain shifts, data scarcity, and computational efficiency, there remains a need for
methods that can generalise across different types of faults and motor configurations
without relying on extensive labelled data or specific domain knowledge.

2.4 Conclusion

2.4.1 Fault Detection

It is clear from the presented literature that soft sensing methods of anomaly detec-
tion are more efficient and effective methods than hardware redundancy. However,
with traditional methods it is difficult to accurately model systems without in depth
knowledge of their dynamics and parameters, creating a barrier to flexible and ac-
curate system modelling, which is the basis of many anomaly detection systems.
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However, NNs provide a solution for this issue, providing a method of easily mod-
elling system behaviour based on previously encountered data. Using NNs such as
LSTM NNs for TS data learning, researchers have been able to accurately account
for long term dependency in temporal data and create robust anomaly detection
systems. However, this creates another issue with requiring access to large amounts
of labelled data, which is expensive and time consuming to produce. To avoid la-
belling data, some literature have proposed unsupervised learning techniques such
as the autoencoder, which is able to learn data features by transforming it into a la-
tent space representation. However, a large volume of data is still required to utilise
this technique, and generalisation performance is weak in many these methods. The
Capsule was proposed to address issues with training efficiency and the shortcomings
of traditional NNs with learning spatial context of data. Chapter 3 further explores
these qualities found in Capsules by hybridising them with LSTMs in a NN, and
addresses issues found with learning multivariate data with single channel NNs.

2.4.2 Generalisation techniques

Previous works applying multi-dataset utilisation reveal clear benefits, such as re-
duced dataset labelling requirements and increased generalisation performance. How-
ever, there is a lack of exploration in time-series-based multi-dataset models due to
challenges in fusing sequential data from different sensors and collection specifi-
cations. Chapter 4 aims to address these points by proposing a novel approach
for effectively combining raw time-series data from multiple sources. Furthermore,
Chapter 4 will consider computational efficiency, as training on multiple datasets
may require additional computational resources.

2.4.3 Cross-Domain Fault Diagnosis

Recent advancements in cross-domain fault diagnosis have focused on improving the
accuracy and efficiency of fault detection across different domains, with OT meth-
ods and deep learning-based approaches showing promise in addressing the domain
shift problem. However, these methods often rely on complex signal processing tech-
niques, assume the availability of well-labeled data from a single source, or may not
effectively address the generalisability across multiple motor types or varying speeds.
Chapter 5 differentiates itself from the current OT field through a novel application
of cross-motor generalisation through deep learning, as opposed to time-varying sig-
nal tracking. Furthermore, the method proposed in Chapter 5 seeks to address the
limitations of the existing methods in the literature presented, particularly in the
context of computational and data efficiency.
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Chapter 3

Multi-Channel LSTM-Capsule
Autoencoder Network for
Anomaly Detection on
Multivariate Data

3.1 Introduction

3.1.1 Motivation and Incitement

TS data analysis is a prominent field of research due to the significant demand stem-
ming from increasingly larger datasets being acquired in industrial and commercial
environments. The automation of this analysis has been integral to the advance-
ment of Industry 4.0 [7]. One important use case for TS analysis is outlier detection,
which is an important part of the function of intelligent systems in the context of
fault diagnosis. There have been numerous approaches that aim to be effective in
detecting different types of faults in different systems, due to the nature of the usage
of the system or other reasons relating to the susceptibility of the system to cer-
tain faults. Some approaches for fault detection have involved using methods and
techniques such as hardware-based redundancy for sensors, sometimes paired with
analytical redundancy methods [34][33][140].

However, with the rapid advancement of Industry 4.0, there is an increasing
demand for more effective and efficient anomaly detection techniques to monitor
industrial machinery and systems. These techniques are crucial for maintaining the
reliability and safety of industrial processes, as they enable the early identification
of potential faults and anomalies in machinery and systems. In recent years, NNs
have emerged as a powerful tool for anomaly detection, particularly in the context
of multivariate TS data.

Despite the success of NNs in various domains, their application to multivariate
TS data poses several challenges. One of the main issues is the need for large
amounts of labeled data for training, which can be time-consuming and costly to
obtain in industrial settings. Additionally, existing NN architectures often struggle
to capture the complex temporal dependencies and spatial relationships present in
multivariate TS data, leading to sub optimal performance in anomaly detection
tasks.
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3.1.2 Major Contribution and Organisation

To address these challenges, this chapter proposes the hybridisation of the CapsNet
and the LSTM network in a novel multi-channel input Autoencoder architecture for
use on raw TS data. The contributions of this chapter are summarised as follows:

• A Novel Hybridisation of the LSTM and Capsule layers is proposed using
LSTM layers as encoders and Capsules as decoders;

• The hybridisation is implemented in a novel multi-channel input, merged out-
put model architecture for use on raw multivariate TS data;

• The model is tested on a real-world dataset and bench-marked on another
real-world dataset against prominent detection methods in the field.

This chapter is organised as follows: Background theory relating to the proposed
method will first be provided. Following this, the proposed method will be intro-
duced. The experimental design on the first dataset used, a drone dataset, will
be briefly explained, then the experimental work completed on the dataset will be
presented and analysed. The second dataset, a benchmark motor dataset, will then
be introduced, and results from the experiments on the latter will be provided. A
discussion as well as the conclusion will follow the experimentation.

3.2 LSTMCaps Autoencoder Network

3.2.1 Long Short-Term Memory Network

The LSTM network, proposed initially in 1997 by Hochreiter and Schmidhuber [1]
but popularised recently by its widespread usage in commercial environments, is a
popular iteration of the RNN that can overcome the vanishing gradient issue and
allows for the learning of long-term dependency. The vanishing/exploding gradient
problem commonly occurs in RNN architectures when training, using the backprop-
agation through time algorithm due to the depth of the unrolled RNN as well as
the shared weights across the RNN cells. The calculated derivatives during train-
ing are prone to exponentially increasing or decreasing as the calculation progresses
through the network. This results in either a lack of change or extreme changes to
the RNN weight values, which in the very worst cases means that the model stops
training completely in the case of a vanishing gradient, or trains erratically and fails
to converge to a minimal error.

The LSTM architecture addresses this by using a specialised architecture that
integrates “gates” to the architecture to allow the cell state to forget values and
replace values, then decide which values to output and send to the next cell. The
forget gate uses a sigmoid layer on the input xt and previous hidden cell state ht−1

to output a vector ft that determines which irrelevant data from the previous cell
state, Ct−1, to remove from the current cell state.

ft = σ (Wf × [ht−1, xt] + bf ) (3.1)

The input gate determines the information from the candidate values that is
stored in the cell state by using a sigmoid layer on the input xt and previous hidden
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cell state ht−1 to decide which values to update, it, and a tanh layer to create a
vector of candidate values, C̃t, to add to the cell state; the Hadamard product of
which is used as the values to be added to the new cell state.

it = σ (Wi × [ht−1, xt] + bi) (3.2)

C̃t = tanh (WC × [ht−1, xt] + bC) (3.3)

Ct = ft × Ct−1 + it × C̃t (3.4)

The output gate determines which part of the previous hidden cell state ht− 1 to
output to the next cell by applying a sigmoid function on the input xt and previous
hidden cell state ht−1, then calculating the Hadamard product between the tanh of
the current cell state Ct and the output of the sigmoid gate ot.

ot = σ(Wo × [ht−1, xt] + bo) (3.5)

ht = ot × tanh (Ct) (3.6)

A visualisation of this architecture is illustrated in Figure 3.1.

Figure 3.1: Visualisation of the LSTM cell [1].(Published in [2])

3.2.2 Capsule Network

The Capsule network (CapsNet) [20], is a novel neural network architecture de-
signed to address the issues the CNN has with spatial context. A key limitation of
traditional CNNs arises from pooling layers (e.g., max-pooling), which, while reduc-
ing dimensionality, often discard precise information about the spatial relationships
and pose (position, orientation, scale) of detected features [141]. CapsNets aim to
overcome this by ”encapsulating” the properties of features, including their spatial
information, using vectors instead of scalars. This allows the neural network to learn
not just the presence of features but also their relationships to one another. Figure
3.2 provides a conceptual illustration of this difference.
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Figure 3.2: Conceptual comparison of information handling in CNNs vs. Capsule
Networks. The same input containing spatially distributed features (A, B, C, D). Af-
ter typical CNN pooling, the output representation often loses distinct spatial/pose
information, shown here as clustered features in an abstract space. Capsule layers
transform the input into a property/pose space where each feature is represented by
a vector (arrow direction indicating pose/properties), preserving the distinct spatial
relationships encoded in the vector orientations.

A capsule differs significantly from the traditional artificial neuron. A standard
neuron receives scalar inputs, computes a weighted sum, applies a non-linear ac-
tivation function, and outputs a single scalar value, indicating feature presence or
intensity. In contrast, a capsule processes and outputs vectors. As shown concep-
tually in Figure 3.2, the vector output from a capsule (often called an ’activity
vector’) carries richer information: its length (magnitude) typically represents the
probability that the entity detected by the capsule exists within the input, while its
orientation encodes the entity’s instantiation parameters or properties, such as its
pose, deformation, or texture [20].

To achieve this, a capsule receives vector inputs from lower-level capsules (or
transformed scalar features in the first capsule layer). It then applies an “affine
transformation” using a weight matrix (Wij) for each input vector (ui), effectively
predicting the pose of the higher-level feature based on the lower-level one. This
replaces the traditional scalar weight multiplication and is formally defined in Equa-
tion 3.7 [20]:
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ûj|i = Wijui (3.7)

Here, ûj|i is the prediction vector from capsule i in the layer below for capsule j in
the layer above, and Wij is the learned transformation matrix. This transformation
matrix allows the network to model spatial relationships (such as translation or
rotation) between parts and wholes.

These prediction vectors are then combined through a weighted sum, typically
determined by a ’routing-by-agreement’ mechanism (though simpler variants exist
[57]), to form the input sj to the higher-level capsule j, as shown in Equation 3.8
[20]:

sj =
∑
i

cijûj|i (3.8)

where cij are coupling coefficients determined by the routing process.
Finally, to preserve the vector information (both magnitude and orientation)

while normalising the output, a non-linear “squashing” activation function is ap-
plied. This function ensures that short vectors (low probability/agreement) are
shrunk close to zero length, and long vectors (high probability/agreement) are
shrunk to a length just below 1, effectively acting as a non-linearity while maintain-
ing the directional information encoded in the vector. Equation 3.9 [20] formally
defines this operation:

vj =
||sj||2

1 + ||sj||2
× sj

||sj||
(3.9)

where vj is the final vector output of capsule j. This vector representation
throughout the network enables CapsNets to be more robust to viewpoint changes
and better model hierarchical relationships compared to traditional CNNs.

3.2.3 Autoencoder

An Autoencoder (AE) is a variant of neural network architecture that aims to learn
a compressed representation of the input data and copy it to the output. A com-
pressed representation is used so that the model does not learn the noise in a data
representation but only the main shapes and features of the data. A visualisation
of this can be seen in Figure 3.3.

An AE is composed of two sections: An encoder and a decoder. The encoder
part is used to transform the input data into a latent space representation through
dimensionality reduction, which the decoder part then learns and decodes back into
the input data with reduced accuracy and hence noise. A formal definition of the
AE operation is provided in Equations (3.10) and (3.11) (courtesy of Ref. [3]).

Z = e(X) (3.10)

X ′ = d(Z) (3.11)

There are various different configurations for an AE that are employed in dif-
ferent use cases. An undercomplete AE, which is the configuration used in the
present study, encodes the input values to a compressed latent space representation.
However, learning data that is too compressed would reduce the accuracy of the
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reconstruction, so when training the network, the aim is to balance the denoising
ability with the accuracy of reconstruction. This is determined by the reconstruc-
tion loss, and the aim of training this type of network is to minimise this loss whilst
maintaining a good generalisation performance. This type of neural network is typ-
ically used for unsupervised deep learning, as the inputs are being copied to the
outputs with no labelling required, which is suitable for the use case that this study
explores.

Figure 3.3: Autoencoder architecture visualised (courtesy of Ref. [3], published in
[2]).

3.2.4 Proposed Model Architecture

The dataset is first checked for the number of features to be used in the model;
this will determine the number of input branches as each signal is input in a single
branch. The data is fed into the network using a sliding window, where the size of
the window is referred to as the “time steps” or lookback of the network; how many
datapoints in time the NN uses to make a prediction. This value is constant and
determines the shape of the network, and is thus a hyperparameter that is optimised
during model training.

Each individual feature is first encoded through an LSTM layer using dimension-
ality reduction and is thus output as a 1D vector. This dimensionality reduction is
carried out to reduce the number of degrees of freedom in the model so that the risk
of overfitting on data is reduced, and the most prominent features in each signal
are highlighted. The strength of the LSTM in identifying long-term dependency of
TS features is utilised here in order to capture the univariate temporal features in
each input feature. Each feature is then separately decoded using a Capsule layer
for univariate spatial feature learning, where the number of Capsules in the layer
is dependent on the “time steps” of the input data. The 2D vector output of each
Capsule layer is then concatenated as a 3D vector into a single channel, which is
passed through a single Capsule layer so that multivariate spatial feature learning
between the previously separated input features is undertaken. A fully-connected
layer is then applied to each temporal slice in the data, where the number of tempo-
ral slices is the window size of the input or the time steps. The resulting output is
the reconstruction of the separate 2D input vectors in a single 3D vector where the
third dimension is the number of input features. The proposed model architecture
is illustrated in Figure 3.4.

The number of input branches and therefore the trainable parameters scale with
the number of features present in the dataset. Whilst this can be seen as a disad-
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vantage of such an approach, the increased volume of data will generally result in
the need for a larger model with more training parameters, otherwise the model may
run the risk of underfitting on the data if there are too few trainable parameters
to accurately model the data sufficiently. Furthermore, we show empirically during
experimentation that the number of trainable parameters in the proposed model can
be reduced to a value comparable to that of a single channel NN and still outperform
the latter.

Figure 3.4: Proposed model architecture.

3.2.5 Model Training and Anomaly Detection Method

This section will explore the method of training the proposed model on a dataset
for the purpose of anomaly detection.

Data Preprocessing

Data pre-processing is an integral part of any model application due to the effect it
can have on model performance. One important pre-processing step is data scaling,
which has shown to have a significant impact on performance across literature.
However, the type of scaling used has been shown to be dependent on the dataset
as well as the model type used [142] and therefore should only be decided during
model testing, as there is no specific approach that yields better results than others.
Therefore, the present study will address the scaling later during experimentation.

The proposed model requires a specific data shape to be input to the NN
due to the layer types used. As the data is fed into the NN in “time steps”,
which refers to a window of time that advances by a datapoint for each sam-
ple, the data shape must reflect this. This can be represented mathematically
with the following: A dataset with shape (samples, features) will be reshaped
to (samples − time steps, time steps, features) where, for a sample tn, each time
step will contain the list of values (tn−time steps , . . . , tn−1, tn). The number of samples
will be reduced by the size of the time steps as the first sample will include the first
nt values that constitute a single time step.
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Training

In order to be able to detect anomalies in a dataset, the proposed model must
be trained to reconstruct data that is known to be “healthy”. This requires some
domain knowledge in order to verify what is defined as “healthy” but can be done
relatively simply nonetheless by using a device or system that is known to be operat-
ing in a “healthy” condition as a reference point. In the case of anomalies appearing
in the healthy data, the model will need to exhibit a resilience to learning these
anomalies in order for the anomaly detection performance to not be affected. In
order to investigate this, an experiment will be conducted to observe the effect of
anomalies in the training data.

As the model takes in each feature separately, the 3D array (samples−timesteps,
time steps, features) will then be split into multiple 2D arrays where the number
of arrays is equal to the number of features in the data, and each array will be input
into the relevant input channel. The model output will be a reconstruction of each
2D array input (samples, timesteps, featureA), (samples, timesteps, featureB) . . .
(samples, timesteps, featureN) as a single 3D array (samples−timesteps, timesteps
, features). This is visually represented in Figure 3.4.

Anomaly Detection

The reconstruction error can be found using the MAE of the training predictions.
The maximum prediction error for the training set can be used as the reconstruction
error threshold, which essentially means that the worst prediction case is being used
as the threshold initially so that when applying the system to more data from the
system being analysed, any predictions outside this value will be more likely to be
an anomaly. The sensitivity of the anomaly detection can be adjusted by changing
the threshold value; however, this value will not be adjusted in the present study.
Furthermore, each data feature will have its own error threshold to maximise the
accuracy of detection as the model may reconstruct less complex features more
accurately than others. The main aim of the training process is to minimise the
standard deviation of this plot so that the system is able to make more confident
anomaly predictions.

3.2.6 Experimental Results

Experimental Design

Each of the following experiments will aim to provide insight into different aspects
of the proposed approach: Training performance, anomaly detection performance,
resilience to noise in the dataset, and comparison with popular and state-of-the-art
anomaly detection methods. Due to this, each experiment design will be different
and will therefore be covered in the relevant section. However, each experiment will
always be repeated five times for experimental rigour. This will also allow for an
analysis of the stability of the approach, as well as the statistical significance of the
results for each experiment. This is essential for the replicability and reliability of
the results.

The statistical analysis of the experimental results was performed using the
Kruskal-Wallis H test as described in Section 1.5.1 of this thesis, which is more
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appropriate than parametric tests like ANOVA for the non-normally distributed
performance metrics observed in this study.

Drone Dataset Anomaly Detection

The drone dataset was acquired from previous studies conducted on Virtual Sensing
fault detection [24]. The datasets consists of 3 subsets of data sampled at 150 Hz:
2 subsets of data are taken from a fully functional drone, where 1 subset is sampled
for a duration of 600 s, giving 90,000 samples, and the other for 30 s, giving 4500
samples. These subsets will be used for the training and validation sets, respectively.
The third subset is acquired from a drone with faulty controls and is recorded for
a duration of 30 s, similarly giving 4500 samples. This subset will be used as the
test data. From this dataset, 3 features are being used. Feature 1 represents the
pitch, feature 2 represents the roll, and feature 3 represents the throttle of the drone.
These features overall represent the input signals to the drone, so anomaly detection
on these signals will serve the purpose of detecting any abnormal control issues on
the drone. More details on the acquisition of this data can be found in Ref. [24].
A visualisation of the training data, the validation data, and the test data with
various anomalies outlined is provided in Figure 3.5. It is important to note that
the cyclical pattern observed in the initial segment of the training data (visualised
in Figure 3.5a), while visually distinct, represents characteristic behaviour within
the normal operational envelope of the drone control signals in this dataset, rather
than a transient start-up or warm-up phase.

As the data is unlabelled, the anomalies were manually labelled so that a measure
of the anomaly detection performance of each NN model could be attained. The
metric used for this is the F1 score, which is defined in Equation (3.12) [143]
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(a) Training data

(b) Validation data

(c) Testing data (anomalies in red)

Figure 3.5: Visualisation of the drone dataset.
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F1 =
TP

TP + 1
2
(FP + FN)

(3.12)

The F1 score can also be expressed in terms of Precision, Equation (3.13), and
Recall, Equation (3.14). The F1 score expressed in these terms is described in
Equation (3.15).

Precision =
TP

TP + FP
(3.13)

Recall =
TP

TP + FN
(3.14)

F1 = 2 · precision× recall

precision+ recall
(3.15)

where TN = True positive, TN = True negative, FP = False positive and FN =
False negative.

For this dataset, it was found to be advantageous to normalise the data before
using the Z-Score normalisation to improve the performance of the models. This
operation transforms the mean of the sample to 0 and the standard deviation to 1.
This is accomplished using Equation (3.16).

z =
(X − µ)

σ
(3.16)

This experiment aims to explore the training capability and anomaly detection
performance of the proposed NN architecture (Design D) by comparing it against
several variants. These comparisons help isolate the specific contributions of using
a multi-channel input structure versus a single-channel one, and the impact of using
Capsule networks within the decoder stage. The architectures are visualised across
two figures: Figure 3.6 shows the single-channel approaches, and Figure 3.7 details
the multi-channel approaches. The specific designs represent systematic variations:

• Single-Channel Baselines (Figure 3.6): These models, shown in Figure
3.6, process the multivariate input as a single sequence, lacking separate initial
processing paths for each feature.

– Design A (Figure 3.6a): A standard single-channel Autoencoder using
LSTM layers for both encoding and basic decoding (reconstruction typi-
cally via Dense layers). This serves as the primary baseline representing
conventional sequential autoencoder approaches.

– Design B (Figure 3.6b): A single-channel hybrid LSTMCaps Autoen-
coder. It maintains the single-channel input structure and LSTM en-
coder but replaces the standard decoder with Capsule layers. Comparing
Design A and B directly assesses the benefit of Capsule decoders over
standard LSTM/Dense decoders when processing the multivariate data
as one sequential entity.

• Multi-Channel Architectures (Figure 3.7): These models, detailed in
Figure 3.7, use a branched input structure, processing each time series fea-
ture (channel) independently in the initial encoding layers before potentially
merging information later.

48 Chapter 3 Ayman Elhalwagy



Green AI for Industry 4.0: Energy-Efficient Generalised Deep Learning
Approaches to Induction Motor Condition Monitoring

– Design C (Figure 3.7a): A multi-channel Autoencoder employing paral-
lel LSTM encoder/decoder branches for each input feature. The outputs
are typically concatenated or merged for final reconstruction. This ar-
chitecture explores the effect of parallel temporal processing specific to
each feature, without leveraging Capsules. Comparing Design A and C
highlights the impact of adopting a multi-channel input strategy.

– Design D (Figure 3.7b): The proposed multi-channel LSTMCaps Au-
toencoder. This architecture combines the branched structure, using
separate LSTM encoders per channel, with individual Capsule decoders.
Crucially, it includes a final Capsule layer designed to explicitly model
and learn the spatial or correlational relationships between the encoded
features derived from the different input channels before final reconstruc-
tion. Comparing Design C and D isolates the contribution of Capsules
specifically within the multi-channel framework, while comparing Design
D against all others demonstrates its overall proposed effectiveness.

Since the trainable parameters of the proposed model, Design D and the multi-
channel LSTM, Design C, will scale with the number of features in the data, the
size of each model was adjusted so that all networks being trained have a similar
number of parameters. This is done to show the difference in performance of each
NN model variant regardless of the number of parameters, which will result in a
fairer comparison of the variants. The trainable parameters for each model variant
are shown in Table 3.1. The models were optimised for the drone dataset using the
F1 score as the target variable to be optimised. The optimal hyperparameters found
for the models are found in Table 3.2.

Each model was trained 5 times on the 5-minute subset from the reference device
to observe consistency and determine statistical significance of the training and
validation loss values. Table 3.3 depicts the average and best loss scores as well as
the percentage difference in the training and validation scores, referred to as “%
Overfitting” and the improvement in training performance with the inclusion of the
Capsule Layer. For each individual training procedure, the overall prediction Mean
Squared Error (MSE) for the validation set was also calculated. A training plot
from one training run from each model is also illustrated in Figure 3.8.

Table 3.1: Trainable parameters for each NN model variant, which were kept as
similar as possible for experimental rigour.

Model Trainable Parameters

Design A: single channel LSTM 25,338
Design B: single channel LSTMCaps 25,248

Design C: multi-channel LSTM 25,473
Design D: multi-channel LSTMCaps (proposed) 24,663
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Table 3.2: Hyperparameter values used across the models for the drone dataset
experimentation.

Hyperparameter Value Hyperparameter Value

Epochs 20 Loss Function Huber
Batch size 1024 Optimiser Adam [144]

Learning rate 0.0003 LSTM Activation tanh
Time Steps 4 Capsule Activation relu

(a) Design A: Single-channel LSTM AE
(b) Design B: Single-channel LSTMCaps
AE

Figure 3.6: Visualisation of the single-channel Autoencoder (AE) architectures used
for comparison. These models process all input features concatenated into a single
sequence. (a) Design A employs standard LSTM layers for encoding and decoding.
(b) Design B uses an LSTM encoder but incorporates Capsule layers for decoding.

50 Chapter 3 Ayman Elhalwagy



Green AI for Industry 4.0: Energy-Efficient Generalised Deep Learning
Approaches to Induction Motor Condition Monitoring

(a) Design C: Multi-channel LSTM AE

(b) Design D: Multi-channel LSTMCaps AE (Proposed)

Figure 3.7: Visualisation of the multi-channel (branched) Autoencoder (AE) archi-
tectures. These models process each input feature stream independently in initial
layers. (a) Design C uses parallel LSTM encoder/decoder branches. (b) Design D,
the proposed model, uses parallel LSTM encoders combined with Capsule decoders
and a final multivariate Capsule layer to learn inter-feature relationships.
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Table 3.3: Results for training for each NN model in Figure 3.6 and Figure 3.7 for
the drone experiment using the hyperparameters from Table 3.2.

Model Score
Final

Training Loss
Final

Validation Loss
Training Time (s) MSE % Overfitting

% Val Loss Improvement
from Non-Caps

Design A
Average over 5 runs 0.00591 0.00639 37.75 10.37 7.45

N/A - Non-CapsBest over 5 runs 0.00589 0.00614 43.42 10.10 4.09
Standard Deviation 0.00034 0.00046 3.22 0.85 0.04953

Design B
Average over 5 runs 0.00158 0.00157 50.44 2.12 −0.27 3.07
Best over 5 runs 0.00164 0.00159 50.71 2.15 −3.15 2.87

Standard Deviation 0.00006 0.00008 0.58 0.10 0.00005

Design C
Average over 5 runs 0.00575 0.00620 56.52 10.08 7.28

N/A - Non-CapsBest over 5 runs 0.00610 0.00709 56.09 12.41 14.01
Standard Deviation 0.00034 0.00074 0.83 1.89 0.00034

Design D
(proposed)

Average over 5 runs 0.00162 0.00161 143.34 2.14 -0.69 2.84
Best over 5 runs 0.00168 0.00172 142.59 2.32 2.52 3.12

Standard Deviation 0.00005 0.00006 1.63 0.11 0.00005

(a) (b)

(c) (d)

Figure 3.8: Training plot comparison for best models in Table 3.3. (a) Design A;
(b) Design B; (c) Design C; (d) Design D (proposed).

The MAE thresholds were calculated using the maximum MAE values on the
validation set prediction. The NN models then ran inference on the test data,
and any predictions exceeding the thresholds set were outlined as anomalies. The
predicted anomalies were then compared to the real anomalies labelled during data
analysis, and the precision, recall, and F1 scores for single data-point outliers were
calculated for each NN. The best and average score attained by each NN model
variant over five runs is shown in Table 3.4, and a visualisation of the anomalies
detected in the best iteration for each model is shown in Figure 3.10. The point-
wise detections in this figure should be visually compared against the true anomaly
locations (indicated by shaded regions in Figure 3.10c) to assess performance. True
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Positives are red dots within the shaded regions, False Positives are red dots outside,
and shaded regions lacking red dots represent False Negatives, forming the basis for
the point-wise F1 score calculations in Table 3.4. The KW results table for the F1

scores is depicted in Table 3.5.
When interpreting anomaly detection performance metrics like the F1 score, it

is crucial to consider the context of the task. Unsupervised anomaly detection in
complex time series data, particularly with subtle anomalies or noisy signals as
potentially present here, is inherently challenging. Unlike supervised classification
where scores above 0.9 are common, F1 scores in unsupervised anomaly detection
can vary widely. Achieving perfect scores is rare. Performance should be evalu-
ated relative to the application’s tolerance for false positives versus false negatives
and, importantly, relative to other methods tested on the same data. In this study,
while absolute F1 scores (e.g., in Table 3.4) might appear modest (around 0.5-0.6),
the primary goal is to demonstrate the comparative advantage of the proposed ar-
chitecture over baseline and variant models under identical conditions. Scores in
this range can still indicate effective detection, especially if they represent a sig-
nificant improvement over alternatives or meet specific operational requirements.
Furthermore, it is critical to note the evaluation methodology: the F1 score here
represents single, point-wise detections. This is a significantly stricter evaluation
than event-based metrics (like NAB or range-based F1 scores), which often only
require detecting some part of an anomalous event or range. Accurately classifying
the majority of individual points within an anomaly is more demanding and nat-
urally leads to lower point-wise F1 scores compared to event-based scores for the
same underlying detection capability.

Table 3.4: Best and average test results out of five runs for anomaly detection using
optimised hyperparameters in Table 3.2 for each NN Design, where MAE is Mean
Absolute Error, F1 is F1 Score (Equation (3.15)).

Model Score MAE Threshold 1 MAE Threshold 2 MAE Threshold 3 Precision Recall F1

Design A
Average over 5 runs 6.13 6.06 10.81 0.37 0.59 0.45
Best over 5 runs 5.60 6.70 11.90 0.40 0.63 0.49

Standard Deviation 0.63 0.49 0.75 0.03 0.04 0.03

Design B
Average over 5 runs 4.27 4.12 9.98 0.51 0.41 0.45
Best over 5 runs 4.31 4.08 10.62 0.57 0.51 0.54

Standard Deviation 0.15 0.06 0.59 0.06 0.11 0.08

Design C
Average over 5 runs 7.96 6.87 9.88 0.54 0.50 0.52
Best over 5 runs 7.70 6.92 11.22 0.58 0.50 0.53

Standard Deviation 0.71 0.64 1.01 0.05 0.01 0.02

Design D
(proposed)

Average over 5 runs 4.37 4.20 9.79 0.53 0.54 0.54
Best over 5 runs 4.50 4.21 9.81 0.61 0.59 0.60

Standard Deviation 0.15 0.07 0.61 0.06 0.06 0.05

The results in Table 3.3 show that the proposed additions result in an overall
better training performance. The addition of the Capsule layer to both the multi-
channel and single channel variant of the model architecture shows a clear improve-
ment of the training and validation losses over the same number of training epoch in
comparison to the variants without Capsules. Furthermore, whilst all architectures
did not significantly overfit on the training data, the architecture variants with Cap-
sules exhibited no difference between the training and validation losses and in some
cases, the validation loss was marginally below the training loss, which indicates
strong generalisation ability when using Capsules. The training plots in Figure 3.8
also show that the architecture variants with Capsules converge to low loss values
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Figure 3.9: Box-plot of the F1 scores for the drone experiment

significantly faster than the variants without Capsules, which means that without a
fixed number of training epochs, the Capsule based models will require less training
epochs to converge to the same loss values as the model variants without capsules.
One drawback that can be observed however is the longer training times for the
variants using Capsules, which is expected as Capsule-based Networks require more
complex calculations than traditional NN architectures due to the dynamic routing
algorithm. However, due to the faster convergence, reducing the number of epochs
on the model variants with Capsules is feasible and will reduce the training time to
a period comparable with the variants without capsules.

The anomaly detection results in Table 3.4 show that both the inclusion of
Capsules and a multi-channel input architecture result in stronger anomaly detection
performance. Both variants with multi-channel inputs, Designs B and D, are able
to perform more confident predictions, as shown by the MAE thresholds for each
feature in the data. Due to this, the model variants with Capsules also achieve
better F1 scores than the single channel variants. The proposed model, Design D,
outperforms the other models tested with anomaly detection with an average F1

score of 0.53, and a best F1 score of 0.60, which supports the conclusion that both
the inclusion Capsules and the multi-channel input architecture play an important
role in improving the performance of the model.
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(a) Design A: single channel LSTM

(b) Design B: single channel LSTMCaps

(c) Design C: multi-channel LSTM

(d) Design D: multi-channel LSTMCaps (Proposed model)

Figure 3.10: Visualisation of anomaly detection results on the test dataset for the
three features, generated by the best iteration of each design. Red dots highlight
individual data points where the reconstruction error (MAE) exceeded
the calculated anomaly threshold.
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Table 3.5: Kruskal-Wallis test results for the F1 score of the drone experiment.

Model n Mean SD Median Chi-square p-Value

Design D 5 0.54 0.05 0.51

8.49 0.037*
Design C 5 0.52 0.02 0.53
Design B 5 0.45 0.08 0.45
Design A 5 0.45 0.03 0.45

Note: * indicates significant difference (p ¡ 0.05). Post-hoc analysis reveals significant difference between Design A and Design D.

The plots in Figure 3.10 show that each model was able to detect all the anomalies
in the data. However, Figure 3.10b,d demonstrate that using by Capsules, less False
Positives are flagged in the data in comparison to Figure 3.10a,c, the plots for the
non-capsule model variants. Due to the method of calculation, the F1 scores achieved
by each model may not be fully representative of the abilities of each model. This
aspect can be further explored and improved in future works.

The results attained give evidence to show that both the hybridisation of the
Capsule and LSTM layers and the multi-channel input model structure are both
effective methods for improving the performance of the neural network with mul-
tivariate data, especially when used in conjunction with each other. Furthermore,
the results also show that the proposed model is superior during training in terms
of convergence and resilience to overfitting. Additionally, the p-value of 0.037 calcu-
lated using the KW test in Table 3.5 suggests that the test groups are statistically
different, and unlikely to be a result of randomness as is the case with some NN
models due to their stochastic nature. The next section will explore the effect of
“unclean” training data on the performance of the model variants.

Drone Dataset Outlier Resilient Anomaly Detection

This experiment aims to explore the resilience of each model variant presented in
Figure 3.6 and 3.7 when trained on data containing artificial outliers. Such outliers
might simulate transient sensor errors or noise sometimes present in real-world data
acquisition. To prepare the training data for this test, a total of 200 anomalous data
points were randomly generated and inserted into the original ’healthy’ training set
across its three features (pitch, roll, throttle). The magnitude of these artificial
anomalies was designed to significantly deviate from the normal signal range. Sub-
sequently, the same experimental procedure for training and evaluation, as outlined
in Section 3.2.6, was conducted using this modified training data.

Figure 3.11 provides a visualisation of a segment of this modified training set,
clearly illustrating the presence and nature of the inserted artificial outliers. These
points were deliberately excluded from the validation and test sets, ensuring the
evaluation measures the model’s ability to detect true system anomalies after being
trained on imperfect data. Table 3.6 shows the best and average training results for
each model variant under these conditions, and Table 3.7 presents the corresponding
anomaly detection scores on the original (unmodified) test set, with a supporting
box-plot in Figure 3.12. The statistical significance of the differences in anomaly de-
tection performance (F1 scores) is assessed using the KW test, with results depicted
in Table 3.8. Examining Figure 3.11, one can observe examples of these randomly
inserted outliers - note the sharp, isolated spikes deviating significantly from the
regular oscillating patterns, particularly visible in the throttle signal (green trace,
bottom plot) around data points 5000, 25,000, and 42,000, among others scattered
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throughout the dataset.

Figure 3.11: Visualisation of the drone training dataset (features 1-3 shown top to
bottom) containing 200 randomly inserted artificial outlier points (examples visible
as sharp spikes, e.g., in the green trace around points 5000, 25,000, 42,000) used for
the outlier resilience experiment.

Table 3.6: Results for training for each NN model in Figure 3.6 and Figure 3.7 for
the drone experiment with outliers using hyperparameters from Table 3.2.

Model Score
Final

Training Loss
Final

Validation Loss
Training Time (s) MSE % Overfitting

% Val Loss Improvement
from Non-Caps

Design A
Average over 5 runs 0.00626 0.00667 35.89 10.61 6.12

N/A–Non-Caps VersionBest over 5 runs 0.00614 0.00653 36.53 10.19 5.98
Standard Deviation 0.00024 0.00035 0.41 0.71 0.00035

Design B
Average over 5 runs 0.00188 0.00155 49.77 2.08 −21.24 3.31
Best over 5 runs 0.00194 0.00158 49.62 2.09 −22.59 3.14

Standard Deviation 0.00004 0.00003 0.23 0.04 0.00003

Design C
Average over 5 runs 0.00575 0.00620 56.52 10.08 7.28

N/A–Non-Caps VersionBest over 5 runs 0.00610 0.00709 56.09 12.41 14.01
Standard Deviation 0.00052 0.00071 0.83 1.13 0.00071

Design D
(proposed)

Average over 5 runs 0.00162 0.00161 143.34 2.14 −0.69 2.84
Best over 5 runs 0.00168 0.00172 142.59 2.32 2.52 3.12

Standard Deviation 0.00007 0.00007 0.76 0.084 0.00007

Table 3.7: Best and average test results out of five runs for anomaly detection using
optimised hyperparameters in Table 3.2 for each NN Design.

Model Score MAE Threshold 1 MAE Threshold 2 MAE Threshold 3 Precision Recall F1

Design A
Average over 5 runs 6.34 6.65 10.91 0.37 0.59 0.45
Best over 5 runs 6.20 7.56 10.87 0.37 0.67 0.48

Standard Deviation 0.20 0.63 0.56 0.02 0.05 0.03

Design B
Average over 5 runs 4.09 4.11 9.61 0.46 0.47 0.46
Best over 5 runs 3.92 3.97 9.77 0.49 0.52 0.50

Standard Deviation 0.17 0.10 0.61 0.05 0.04 0.04

Design C
Average over 5 runs 7.73 6.10 9.25 0.54 0.50 0.52
Best over 5 runs 7.10 5.57 9.41 0.49 0.51 0.50

Standard Deviation 0.47 0.36 0.39 0.03 0.01 0.01

Design D
(proposed)

Average over 5 runs 4.44 4.15 9.58 0.52 0.53 0.53
Best over 5 runs 4.19 4.08 10.36 0.60 0.65 0.62

Standard Deviation 0.24 0.17 0.52 0.05 0.07 0.06
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Figure 3.12: Box-plot of the F1 scores for the drone experiment with outliers

Table 3.8: Kruskal-Wallis test results for F1 scores of the drone experiment with
outliers in the training data.

Model n Mean SD Median Chi-square p-Value

Design D 5 0.53 0.06 0.51
Design C 5 0.52 0.01 0.52 12.78 0.005*
Design B 5 0.46 0.04 0.47
Design A 5 0.45 0.03 0.46

Note: * indicates significant difference (p ¡ 0.05). Post-hoc analysis reveals significant differences between Design A-Design C and Design A-Design D.

The results in Table 3.7 show that all the tested models have resilience to “non-
ideal” training data that contains anomalies. In fact, results show a marginal im-
provement in performance on average for every model tested in comparison to the
results in Table 3.4. As found in the previous experiment, the proposed model,
Design D, still outperforms all models tested. The p value of 0.005 calculated us-
ing the KW test in Table 3.8 suggests that the experiment groups are significantly
statistically different and are unlikely to be a result of randomness.

There are various factors that contribute to this resilience. An aspect to consider
is that the anomalies that occur as a result of faults will most likely be different from
the anomalies that appear during the ”healthy” condition, and thus such anomalies
from the latter category can be learned during the training of the model without
significant impact on the anomaly detection ability as they could be considered as
part of the “healthy” condition. Another aspect considered during model training
was the use of the Huber loss function, which uses a combination of MAE and
MSE depending on the magnitude of the loss value. This results in a model that
is more robust to outliers than the most commonly used MSE, but considers them
to some extent. In the case of extreme outliers in the training data or outliers that
correspond to faulty operation, this data cannot be used, and is easily distinguished
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from this kind of data in either the data collection phase or the data analysis phase
that precedes model fitting, and thus it is easy to avoid using such data to train a
NN model.

SKAB Anomaly Benchmark

The SKAB anomaly detection benchmark [25] is a public benchmark available online
used for offline outlier detection and changepoint detection testing. The benchmark
consists of 35 subsets of data from a water circulation system, which contain 8
features, each from different sensors in the system. The test is conducted by looping
through each subset, training the neural network on a slice of clean data from the
subset, and then testing it on labelled anomalies that were simulated with the test
rig.

Two primary metrics are used to assess the effectiveness of the models: the
standard F1 score for point-wise outlier detection (Equation 3.15) and the Numenta
Anomaly Benchmark (NAB) score [145] to evaluate the detection of changepoints or
anomalous ranges. The NAB score is designed for real-time, streaming data scenarios
and employs a time-dependent scoring function that rewards early detections within
the anomaly window while penalising late or false detections. It provides three
predefined scoring profiles: standard, low false positive, and low false negative. This
allows practitioners to prioritise different trade-offs. The final score is normalised
relative to baseline models, including perfect detection and null detection, to provide
a standardised measure of performance in identifying anomalous patterns or shifts
in the data.

Figure 3.13a illustrates a subset of data from the benchmark, and Figure 3.13b
shows the plot for the anomalies in the data.
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(a) A subset of preprocessed data

(b) Plot representing the respective anomalies and changepoints in (a)

Figure 3.13: Visualisation of the SKAB Dataset.

This experiment aims to compare the anomaly detection and changepoint detec-
tion performance of popular and state-of-the-art unsupervised anomaly detection
methods with the proposed NN model. A selection of NNs and ML-based fault
detection methods were chosen to compare on the benchmark with minimal hyper-
parameter optimisation applied.

During model testing it was found that there were different hyperparameter
values that could be used to optimise the proposed model for the outlier detection
and changepoint detection tasks, respectively. This meant that hyperparameters
optimal for a good F1 score would not necessarily perform as well on the NAB score.
To demonstrate this, the hyperparameters of the LSTMCaps NN were optimised for
each score separately in order to achieve the maximum score for each metric. The
different hyperparameter settings used are shown in Table 3.9. Furthermore, Z-score
normalisation (Equation (3.16)) was used in this case as it was found to improve
the performance for the proposed method.
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Table 3.9: Optimal hyperparameters used to maximise outlier detection (left) and
changepoint detection (right).

Hyperparameter
LSTMCaps Optimised for Outlier Detection

(LSTMCaps Outlier Detector)
LSTMCaps Optimised for Changepoint Detection

(LSTMCaps Changepoint Detector)

Optimiser Amsgrad [146] Adam [144]
MAE Threshold Multiplier 0.925 0.99

Epochs 100
Learning rate 0.003
Time steps 3

Capsule activation relu
LSTM activation tanh
Validation split 0.2

Batch size 128
Branched layer width 32

Full layer width 256
Loss function huber

The same testing procedure utilised in the SKAB benchmark’s GitHub repo [25]
for each model already tested on the benchmark was used to test the proposed model
architecture. The model was trained with 100 epochs on a subset from each dataset
with early stopping set at a patience of 20, and then tested on the remainder of
the dataset. The F1 scores and NAB scores achieved for each dataset are averaged,
which gives the final score of the benchmark. Each model compared was also tested
on the same hardware for a fair comparison. To gain a better understanding of
the effectiveness of each method tested as a hybrid solution for both outlier and
changepoint detection, a scaled average of both the F1 and NAB metrics was cal-
culated to represent the overall accuracy of the model over both outlier detection
and changepoint detection tasks. This was done by scaling the NAB score between
0 and 1, then averaging it with the F1 score. Equation (3.17) was used to calculate
this score. The results in Table 3.10 depict the average outlier detection score, the
changepoint detection score, and the scaled average score over five test iterations,
respectively, and the results in Table 3.11 detail the best score achieved in a single
test iteration over the outlier, changepoint, and scaled average scores, respectively.
A scatter plot of the average F1 scores against NAB scores for each model tested is
illustrated in Figure 3.15. The KW H-test of the Overall Accuracy metric of each
model is calculated in Table 3.12.

Overall Accuracy =
F1 +

NAB
100

2
(3.17)

Table 3.10: Comparison of the average scores out of five runs for each metric tested.

Algorithm F1 FAR, % MAR, % NAB (standard) NAB (lowFP) NAB (LowFN) Overall Accuracy

Perfect score 1 0 0 100 100 100 1
LSTMCaps Changepoint Detector (Proposed) 0.71 14.45 30.86 27.39 17.08 31.13 0.49195

MSCRED [147] 0.7 16.82 31.28 26.13 17.81 29.53 0.48065
LSTMCaps Outlier Detector (Proposed) 0.74 21.66 18.74 21.58 5.12 27.49 0.4779

LSTM [148] 0.65 14.89 39.4 26.61 11.78 32 0.45805
LSTM-AE [149] 0.64 14.81 39.5 22.97 20.95 23.93 0.43485
MSET [150] 0.73 20.82 20.08 12.71 11.04 13.6 0.42855

Isolation forest [151] 0.4 6.86 72.09 37.53 17.09 45.02 0.38765
Conv-AE [152] 0.66 5.57 46.16 11.12 10.35 11.77 0.3856

LSTM-VAE [153] 0.56 9.04 54.75 21.09 17.52 22.73 0.38545
Autoencoder [154] 0.45 7.52 66.59 15.65 0.48 21 0.30325

Null score 0 100 100 0 0 0 0
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Table 3.11: Comparison of the best score out of five runs for each metric tested.

Algorithm F1 FAR, % MAR, % NAB (standard) NAB (lowFP) NAB (LowFN) Overall Accuracy

Perfect score 1 0 0 100 100 100 1
LSTMCaps Changepoint Detector (Proposed) 0.71 14.51 30.59 27.77 17.14 31.59 0.494

LSTMCaps Anomaly Detector (Proposed) 0.74 21.5 18.74 24.02 8.14 29.6 0.490
MSCRED [147] 0.7 16.2 30.87 24.99 17.9 27.94 0.475
LSTM [148] 0.67 15.42 36.02 26.76 12.92 31.93 0.468

LSTM-AE [149] 0.65 14.59 39.42 24.77 22.69 25.75 0.449
MSET [150] 0.73 20.82 20.08 12.71 11.04 13.6 0.429

LSTM-VAE [153] 0.56 9.2 54.81 21.92 18.45 23.59 0.390
Isolation forest [151] 0.4 6.86 72.09 37.53 17.09 45.02 0.388

Conv-AE [152] 0.66 5.58 46.05 11.21 10.45 11.83 0.386
Autoencoder [154] 0.45 7.55 66.57 16.27 1.04 21.62 0.306

Null score 0 100 100 0 0 0 0

Figure 3.14: Box plot of the balanced solution scores for the SKAB anomaly bench-
mark experiment.
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Figure 3.15: Visualisation of SKAB results: NAB score plotted against the F1 score.

Table 3.12: Kruskal-Wallis test results for SKAB benchmark.

Model n Mean SD Median Chi-square p-Value

LSTMCaps V2 5 0.49 0.00 0.49
LSTMCaps 5 0.48 0.01 0.48
mscred 5 0.48 0.01 0.47
LSTM 5 0.46 0.02 0.46 46.05 0.000*

LSTM-AE 5 0.44 0.01 0.44
MSET 5 0.43 0.00 0.43

Isolation Forest 5 0.39 0.00 0.39
LSTM-VAE 5 0.39 0.01 0.39
Conv-AE 5 0.38 0.00 0.39

Autoencoder 5 0.30 0.00 0.30

Note: * indicates significant difference (p ¡ 0.05). Post-hoc analysis reveals numerous sig-
nificant pairwise differences, including: Autoencoder-Conv-AE, Autoencoder-Isolation Forest,
Autoencoder-LSTM-AE, Autoencoder-LSTM-VAE, Autoencoder-LSTM, Autoencoder-mscred,
Autoencoder-MSET, Autoencoder-LSTMCaps, Autoencoder-LSTMCaps V2, and others. A to-
tal of 37 pairwise differences were found to be significant using uncorrected p-values.

The results in Tables 3.10 and 3.11 show that the proposed method optimised
for outlier detection outperforms all other methods tested, achieving the best F1

score and the lowest False Negative rate out of the models tested. It also achieves
the second highest False Positive rate out of the models.

With regards to changepoint detection, the proposed method optimised for out-
lier detection does not perform as well. However, the proposed method optimised
for changepoint detection was able to outperform all ML-based methods and the
majority of other methods, but is outperformed by the Isolation Forest algorithm
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due to the low False Negative rate of the Isolation Forest on the test data. How-
ever, Isolation Forest performs poorly with regards to outlier detection, making the
algorithm unsuitable as a balanced solution for both problems. Similar outcomes
can be seen for the best performing test iteration, with no improvement in relation
to the other NNs and ML methods.

As a balanced solution to both outlier detection and changepoint detection, the
proposed model outperforms all other tested methods when optimised for change-
point detection. The main change that is made to optimise the proposed model
for each detection task is a change in the threshold multiplier. With a more sensi-
tive threshold, the proposed model is able to display strong performance in outlier
detection at a cost to the changepoint detection performance. Decreasing the sen-
sitivity of the threshold to a value close to the maximum prediction MAE of the
validation set allows the model to perform stronger on changepoint detection to the
detriment of outlier detection ability. The loss of outlier detection performance in
the configuration optimised for changepoint detection is comparably less in compar-
ison to the loss in performance on changepoint detection when optimised for outlier
detection. The p-value of 0 calculated for the means of the overall accuracy of the
methods tested suggest that there sufficient evidence to state that the results of this
experiment are highly unlikely to be due to random chance. Such a low value is
due to some of the tested methods being deterministic and thus having no variance
in the sample, and the stochastic methods such as ML-based method converging
consistently to the same minima.

From this test, it can be concluded that for single datapoint outlier detection,
the proposed LSTMCaps multi-channel architecture provides state-of-the-art per-
formance. However, while the changepoint detection performance is superior to
other ML-based methods with the right adjustments to the hyperparameters, the
Isolation Forest algorithm is found to be advantageous for this benchmark. As a
balanced solution however, the proposed model outperforms all other methods, and
would be the preferred solution for strong performance in both outlier detection and
changepoint detection simultaneously.

3.3 Discussion

Across the experiments conducted, it is clear to see that both the inclusion of the
Capsule Network and the multi-channel input architecture is integral to the im-
provement of the performance of the proposed method in terms of training and
anomaly detection. The evidence for this is shown clearly across the experiments,
where with standard LSTM AEs, the training and anomaly detection performance
is significantly weaker than with the proposed NN.

With regards to the scalability of the proposed method, whilst it is true that
when keeping the model parameters constant and increasing the number of branches
to account for more features results in a larger and more computationally complex
model to train, the experimental results in Sections 3.2.6 and 3.2.6 have empirically
shown that the model size can be reduced to a number of trainable parameters
similar to single input NN architectures and still outperform the latter with both
training efficiency and anomaly detection. This gives flexibility with regards to the
size of the proposed model depending on the complexity of the data being applied
on, but mitigates the effect of additional features on model complexity.
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The experimental results further suggest that models which included Capsules
were training more efficiently, reaching the local minima at a faster rate in relation to
networks without Capsules. Most importantly, the results in Table 3.3 for training
suggest that with the use of Capsules, the model training procedure can be simplified
considerably due to the lack of overfitting during training on the NN models with
Capsules integrated. It was also found during hyperparameter optimisation that
even without fully optimised hyperparameters, the model variants that included
Capsules were less susceptible to overfitting in comparison to the model variants
without Capsules.

One significant strength of the proposed LSTMCaps NN is the ability to learn
separate data features effectively in comparison to a standard single channel NN.
Evidence of this is seen in Table 3.7, where both multi-channel input architectures
with and without Capsules perform better with anomaly detection. This is fur-
ther substantiated with the anomaly detection performance on the SKAB anomaly
benchmark, which contains a larger number of more complex features than the drone
data. Whilst literature mentions that correlation dependencies between features are
not considered when learning each feature separately [155], the proposed model over-
comes this potential drawback by concatenating the internal feature representations
and utilising a layer of Capsules to learn the spatial features of the multivariate data,
which includes the correlation dependencies. Evidence of this is also clearly shown
empirically through the experimentation conducted on the drone dataset where the
proposed model outperforms the multi-channel input variant without Capsules with
standard training data and training data with outliers.

The proposed model tackles overfitting with its various aspects of operation. In
the experiments completed on the drone dataset, each model tested uses a com-
parable number of trainable parameters. However, since the multi-channel models
contain an encoder for each feature as opposed to a single encoder, more layers are
used. This is a result of each input channel encoding the data separately at first,
which means that less trainable parameters are needed for each input channel. Pre-
vious research clearly shows that increasing the number of parameters allows for a
NN model to be able to model more complex functions and relationships, but at the
risk of overfitting on the distribution of the training set. The proposed approach
shows that by using the multi-channel input approach, the model can maintain the
number of parameters as the single channel variants outperform the latter in both
training—but more importantly anomaly detection—due to the enhanced generali-
sation ability achieved through more robust training. The drone dataset experiments
in Section 3.2.6 do not show this behaviour, but this is due to the lack of complexity
in the dataset. On the other hand, the benchmark on the SKAB dataset in Sec-
tion 3.2.6 shows this behaviour clearly, due to a significantly increased number of
features, signal length, and complex signal behaviour.

In addition to this, by comparing the results in Tables 3.3 and 3.6, the models
using Capsules are clearly able to train more effectively, and in some cases perform
slightly better on the validation set in comparison to the training set, showing strong
generalisation ability. Since the generalisation ability of a NN is directly correlated
with the training performance, there is clear evidence to say that the Capsule di-
rectly contributes to the strong training performance of the proposed model, and
reduces the overfitting generally encountered when training autoencoders. In com-
parison to recent state-of-the-art approaches, the proposed method overcomes the
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limitations found in each work. For example, the use of Capsules instead of tradi-
tional Convolutional layers used in [81] is shown empirically on the SKAB dataset
to improve performance, and reduce overfitting without additional measures. Fur-
thermore, the multi-channel input architecture is rarely used in anomaly detection
tasks, and not used in any of the literature reviewed in the present work. How-
ever, it is empirically proven in all experiments in the present study that by using
this approach, the model is able to learn the features more effectively when using
the LSTM univariate encoders and Capsules for univariate decoding and multivari-
ate spatial feature learning. With the proposed approach, there is potential to use
heterogeneous input data with minimal modifications to the model architecture.

3.4 Conclusions and Future Work

This chapter proposes a novel hybridisation of the LSTM and Capsule Networks in
a multi-channel architecture to address the issues found in existing literature with
the training performance of NNs, specifically on multivariate data. The motivation
for this chapter stemmed from the growing demand for more effective unsupervised
data analysis techniques regarding outlier and anomaly detection for use in industrial
and commercial environments with large datasets to assist in the advancement of
Industry 4.0.

The proposed NN architecture was first tested on a drone dataset to observe
the training and anomaly detection performance improvements with regards to non-
hybridised and single channel variants of the NN, where it was found that, due to
the inclusion of Capsules, the proposed NN can train more efficiently over a smaller
number of epochs by converging at a faster rate in comparison to the variants with
no Capsules integrated in the NN, and shows evidence of a resilience to overfitting.
The tested NN models detected anomalies in the test data through an unsupervised
method of reconstructing the validation data and using the maximum prediction
MAE of the subset of data as a reference point for the confidence of prediction in
any unseen data, so any data outlying from the expected shape in the training data
would be flagged due to high prediction error. The results of this test concluded
that the proposed NN architecture performs better than the other variants tested as
a result of the proposed additions and changes to the NN architecture. The model
variants were also tested on imperfect training data with outliers present, and all
variants were found to be robust to outliers in the data due to the loss function used.
Furthermore, due to the outliers present in the data not corresponding to faulty
operation, the performance of the models on detecting faulty drone operation was
not affected. It was also noted that training data that contains fault data would be
easily spotted during the data collection or data analysis stages, and would therefore
be easy to avoid when used to train the model.

The proposed NN was also tested against other popular and state-of-the-art
anomaly detection methods on the SKAB anomaly detection benchmark, where
with slight hyperparameter adjustments the proposed method was able to adapt
effectively to both outlier detection and changepoint detection, performing better
than all other methods tested for outlier detection. Whilst the proposed method per-
formed better than most methods in changepoint detection, the model was outper-
formed by the Isolation Forest algorithm. However, the Isolation Forest performed
poorly with outlier detection, making it highly unsuitable as a hybrid solution for
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outlier and changepoint detection simultaneously. On the other hand, the proposed
model, when optimised for changepoint detection, outperformed all other methods
as a hybrid solution to both outlier and changepoint detection problems.

An interesting observation from Tables 3.3 and 3.6 is the increase in training time
with the approaches using capsules, in comparison to just LSTM layers. This clearly
indicates the higher computational power required to train the Capsule, mainly due
to the dynamic routing algorithm. Although the algorithm is a main driver of the
strong feature and spatial learning performance of the Capsule layers, it is very
computationally intensive. Recent work has shown that alternative architectures,
such as the Homogeneous Vector Capsule (HVC) [57], can still achieve strong perfor-
mance in spatial learning. Additionally, while not directly compared in this study,
the LSTM cell structure is also computationally intensive compared to more modern
approaches like the Gated Recurrent Unit. While these inefficiencies did not pose
an issue in the present study, they may become more significant when dealing with
larger datasets.

The applicability of the proposed NN architecture to IM data is a crucial next
step in validating its effectiveness for industrial fault detection. However, apply-
ing the proposed method to multiple homogeneous IM data sources may require
significant computational power for training, which could hinder its practical imple-
mentation. Building upon the foundations laid by the proposed NN architecture,
Chapter 4 addresses this challenge by introducing the DF algorithm, a novel ap-
proach designed to merge multiple homogeneous, periodic TS datasets into a single
unified dataset for training anomaly detection NN models while minimising the
computational requirements for training.
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Chapter 4

A Dataset Fusion Algorithm for
Generalised Anomaly Detection in
Homogeneous Periodic Time
Series Datasets

4.1 Introduction

Generalisation is a measure of a NN’s performance on data that it has not seen before
but that is in the same class as the data that it has been trained on. The idea behind
generalisation with Deep Learning (DL) is to transfer domain knowledge from data
the NN has been trained on to unseen data in the same class, where the unseen
data may contain conditions that slightly vary from the training data. This allows
for a NN to be able to maintain performance across the dataset, and potentially
transfer across multiple datasets with a similar distribution to the initial trained
data. Various studies have been undertaken to understand the factors that affect
the generalisation performance of a NN [156], and how to mitigate these factors
to achieve the optimal level of performance [157]. The underlying concept is as
follows: When training a NN on a data sample, the NN learns to represent the
function between the input data and the output data through the adjustment of
the weights and biases. If the distribution of the data sample used for training is
not fully representative of the true distribution population, then the input-output
function that is represented by this sample will inevitably vary from the function of
the population. Extensive training on this sample will then result in a phenomenon
known as overfitting [158], which refers to when the NN has accurately modelled
the function represented by the training data but is not able to generalise to data
in the same class due to the discrepancy between the functions represented by the
sample and population.

Many works have been published with the aim of addressing overfitting and
thus maximising the potential generalisation ability of a NN. Some works focus
on architectural improvements to the NN to increase the robustness of the NN to
overfitting through novel architectures such as CapsNet [2], whilst other research
directions focus on the manipulation of the training procedure to limit overfitting
with techniques such as Dropout [89], Early Stopping [159], Pruning [93] and adding
noise to the weights and biases of the NN whilst training [160].
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There is much less focus on research concerning the effect of the composition and
specification of the dataset on generalisation, especially regarding TS data. A com-
mon approach currently used includes denoising the training sample to better align
the distribution of the sample to the population and hence limit the level of over-
fitting [161][162]. Additionally, there is a consensus in ML research that increasing
the volume of data through various means such as augmentation [109][110] improves
NN generalisation performance; whilst this has been empirically confirmed, more re-
cent research has discovered that this improvement largely comes specific samples
within the supplementary data, and a significant volume of this data is essentially
redundant and does not contribute to a performance improvement [163][164].

Furthermore, there is a gap in literature concerning the fusion of multiple TS
datasets in a single training set to balance the probability distribution of the train-
ing sample so that it better aligns with the true distribution of the problem domain.
This is largely due to a lack of necessity in an experimental environment since most
ML research tends to optimise the solution for a single dataset source. However,
from a commercial standpoint, this can have many benefits with regard to time and
computational power saved, as well as the added benefit of reducing the data re-
quirements for training. In addition to this, the dynamic shifting of the distribution
of data is often a bottleneck to the performance of the NN; this is a prevalent issue
that is encountered when a NN is deployed in a non-stationary environment, which
is common with TS data. Some recent works have detected this shift [165], and
mitigate the effect this has on the generalisation performance of the NN with both
TS data [166][167] and image data [168]. However, the majority of empirical eval-
uations of NN approaches in literature are mostly conducted on an isolated sample
of data, which, in many cases, is not representative of the dynamic shifting of the
distribution temporally.

To address the identified gaps in the literature, a novel algorithm is proposed,
named Dataset Fusion (DF). The proposed method merges multiple homogeneous,
periodic TS datasets into a single unified dataset for training anomaly detection
NN models. The fusion process is designed to accurately represent population dis-
tributions and increase robustness against potential data distribution shifts. The
primary objective in this study is to examine efficient generalisation approaches that
can minimise training time and computational demands for neural networks when
working with new homogeneous TS data sources. The contributions of this chapter
can be summarised as follows:

• A novel dataset composition algorithm is proposed, referred to as Dataset
Fusion

• The proposed approach is applied to a case study focused on motor current
data, with a qualitative analysis conducted to assess the preservation of fea-
tures from each individual dataset.

• The generalisation performance of the proposed method is empirically evalu-
ated in anomaly detection with the LSTMCaps neural network architecture
from previous work [2], and compared to the performance when using conven-
tional training approaches

• The potential practical limitations of the proposed method in a real-world
environment are discussed and assessed through further experimentation
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Figure 4.1: A summarised illustration of the DF algorithm

In the context of the sustainable development goals (SDGs), this study primarily
focuses on Goal 9 (Industry, Innovation, and Infrastructure) through the exploration
of innovative approaches to improve the performance and efficiency of neural network
models; Goal 12 (Responsible Consumption and Production) through the proposal
of a method that demands less computational power and training data, and Goal
13 (Climate Action) through the resulting reduction in the energy consumption for
model training.

4.2 Dataset Fusion

A summary of the DF process is depicted in Figure 4.1.
The signal in each dataset is first down-sampled to the sampling frequency,

Fs, of the dataset with the lowest sampling frequency. This step is essential to
models with look-back such as Recurrent Neural Networks so that the same signal
length is considered for every motor when training the model. Taking the example
in Figure 4.1, for a set of signals {A[n], B[n], . . . , N [n]} with sampling frequencies
{FsA , FsB , . . . , FsN}, the target sampling frequency, Fsnew , is expressed in Equation
4.1.

Fsnew = min{FsA , FsB , . . . , FsN} (4.1)

The re-sampling is implemented using the Fourier method. This method was
chosen over decimation due to the simplicity of implementation and with the as-
sumption that the signals used are periodic in nature. To avoid aliasing and other
artefacts, a low-pass windowed-sinc filter is first designed and applied to the signal,
with a cutoff frequency based on the target Nyquist frequency. The Hann window,
hann(n), was employed in the filter design due to its desirable characteristics for
resampling, such as reduced spectral leakage and smooth sidelobes. In the present
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work, 101 taps were used, giving a filter order of 100. Equation 4.2 expresses the
impulse response, h[n], of this filter.

h[n] = K · sin (2πfc(n−M/2))

n−M/2
· hann(n) (4.2)

where K is the normalisation factor, fc is the cutoff frequency in Hz, n is the discrete
time index, and M is the filter length or number of taps.

To implement the Fourier Method, the finite-length TS signal, x[n] (for n =
0, 1, . . . , N − 1), is first transformed into the frequency domain using the Discrete
Fourier Transform (DFT). The DFT coefficients, X[k], are given by Equation 4.3.

X[k] =
N−1∑
n=0

x[n]e−
j2πkn

N for k = 0, 1, . . . , N − 1 (4.3)

where k is the discrete frequency index, N is the length of the original signal, and
j =

√
−1. These coefficients X[k] represent the frequency content of the signal at

discrete frequencies fk = kFs

N
.

The resulting discrete spectrum X[k] is then manipulated for resampling. This
involves selecting the frequency components corresponding to frequencies below the
target Nyquist frequency (Fsnew

2
), and zero-padding or interpolating these compo-

nents appropriately to create a new spectrum with Nnew points, suitable for an
inverse transform of that length. Let these resampled DFT coefficients be denoted
as X[k]resampled. The new number of time-domain samples, Nnew, is calculated using
Equation 4.4. Equation 4.5 shows the Inverse Discrete Fourier Transform (IDFT)
operation used to obtain the resampled TS signal x[n]resampled from these modified
coefficients.

Nnew =
N

Fs

× Fsnew (4.4)

x[n]resampled =
1

Nnew

Nnew−1∑
k=0

X[k]resamplede
j2πkn
Nnew (4.5)

Each dataset is then normalised using Z-score normalisation, to overcome varying
motor currents. For the resampled sequence, x[n]resampled, the normalised sequence,
x′[n] , is calculated using Equation 4.6.

x′[n] =
x[n]resampled − x̄resampled

σxresampled

(4.6)

where x̄resampled is the mean of the resampled sequence, and σxresampled
is the standard

deviation of the re sampled sequence.
To batch the periods together, a zero-crossing algorithm, configured to detect

crossings from positive to negative, is employed to first identify a single period, and
then concatenate n periods based on the user-defined parameter. Given that z-score
normalisation is utilised, any periodic time-series data will exhibit sign changes,
making the zero-crossing algorithm applicable. In cases where multiple features are
present in the data, the zero-crossing algorithm calculates only the first feature as a
reference for period batching, in order to maintain the temporal integrity of the data
and preserve the spatial relationship between features. The impact of varying batch
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sizes on training performance differs based on the nature of the data and problem
domain; hence, it is recommended that this parameter be optimised alongside other
training hyperparameters. For a discrete periodic signal x[n] with assumed periodic
sign changes, the set of indices for the positive-to-negative zero crossings, c+→−,
can be expressed as shown in Equation 4.7.

c+→− = {n | x[n− 1] > 0 ≥ x[n] } (4.7)

For each dataset, the batch order is then shuffled randomly. This is done in order
to mitigate the effect of distribution shift and prevent noise in one area of the signal
from being prevalent in other areas of the signal. In other words, this step helps to
reduce the variance of the NN prediction. A new signal is then constructed using
the shuffled batches from each dataset by appending a batch from each dataset in
an alternating fashion.

The full process of the DF algorithm is expressed in Algorithm 1.

Algorithm 1 Pseudocode of DF Algorithm

1: function Dataset Fusion(x, Fs, P )
2: Input:
3: A set of s finite discrete periodic sets x where s > 1
4: A set of sampling frequencies Fs corresponding to X
5: Number of periods batched P
6: Output: xfused

7: Determine Fsnew using Equation 4.1
8: for x1 to xs do
9: if FsXs

̸= Fsnew then
10: Apply filter in Equation 4.2
11: Calculate X[ω] using Equation 4.3
12: Calculate X[ω]resampled

13: Calculate Nnew using Equation 4.4
14: Calculate x[n]resampled using Equation 4.5
15: end if
16: Calculate x′ using Equation 4.6
17: Calculate c+→− using Equation 4.7
18: Calculate x′

batched through grouping P periods by slicing x′ at the values
where c+→−[n]%P = 0

19: Shuffle x′
batched

20: end for
21: xfused = {x′

1batched
[0] ++...++x′

sbatched
[0] ++x′

1batched
[1] ++...++x′

sbatched
[1] ++...}

22: return xfused

23: end function

where % represents the modulo operator and ++ represents concatenation.

4.2.1 Computational Complexity

The computational complexity of the DF algorithm, represented in Big O notation,
can be determined by breaking down the steps of the algorithm when practically
applied. The breakdown of the complexity of each stage is provided in Table 4.1.
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Table 4.1: Algorithm Complexity for DF Algorithm, for n Datasets with m length

Algorithm step Big O Complexity
Filtering and Resampling O(nm(1 + log(m)))
Normalisation O(nm)
Period Batching O(nm)
Chaining and Stacking batches O(nm)
Total O(nm(1 + log(m))) + 3O(nm)

As Table 4.1 shows, the filtering and resampling step has a complexity ofO(nm(1+
log(m))), since it involves applying a finite impulse response (FIR) filter with a
complexity of O(m) and performing resampling using the FFT with a complexity of
O(m∗log(m)) for each of the n datasets. The Normalisation step scales each dataset
using Z-score normalisation with a complexity of O(m) for each dataset, resulting
in a total complexity of O(n∗m). The Period Batching step identifies zero-crossings
and creates period batches with a complexity of O(m) for each dataset, resulting
in a total complexity of O(n ∗m). Finally, the Chaining and Stacking batches step
involves filtering, chaining, and stacking the period batches with a total complexity
of O(n ∗ m). The overall complexity of the DF algorithm is the sum of the com-
plexities of these steps, which is O(n ∗m ∗ (1 + log(m))) + 3 ∗ O(n ∗m), with the
dominating term being O(n ∗m ∗ log(m)) due to its faster growth as the input size
(n and m) increases.

The logarithmic factor in the dominating term, O(n∗m∗ log(m)), makes the DF
algorithm scale well with increasing input size. This is because logarithmic growth
is slow growth, ensuring that the algorithm remains efficient even as the number
and size of the datasets (n and m) increase. Additionally, since the complexity is
dependent on both the number of datasets (n) and the length of the datasets (m),
the algorithm can efficiently handle varying dataset sizes and compositions. This
scalability makes the DF algorithm a versatile algorithm and suitable for processing
large and diverse datasets, which is essential in the context of real-world applications
where data size and complexity are constantly evolving.

4.2.2 Requirements for application

Whilst the proposed algorithm is domain-independent, there are requirements re-
garding the data that must be met for the proposed method to be applicable. These
requirements, as well as the reasoning, are detailed in the following sections.

Homogeneous Datasets

Although the methodology can be used in varying problem domains, the DF algo-
rithm can only fuse homogeneous data, since the aim of the algorithm is to capture
the data distribution of a problem domain as a whole in order to mitigate overfitting
on a specific dataset. Generalisation to multiple problem domains is not in the scope
of this algorithm.
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Data periodicity

As explained in section 4.2, The algorithm relies on the fact that the data is periodic,
due to the resampling method used, the zero crossing method, and to be able to
create a coherent and usable sequential fused TS dataset.

Time Domain Data

The proposed approach will only be applicable in the time domain representation
of the datasets, as it relies on the sequential nature of the data to fuse it together
in a meaningful way

If the datasets being fused meet the requirements detailed above, then there is
feasibility in applying the proposed method. Some examples of where the proposed
method may be feasible are daily temperatures in a region, electrical power data
and vibration data.

4.2.3 Proposed Benefits of Dataset Fusion

The DF algorithm seeks to eliminate the necessity of multiple NNs for a single
problem domain. This approach theoretically enables the development of an NN that
can adapt to unseen data from the same domain, even if originating from different
data sources. Moreover, the DF algorithm aims to reduce data requirements from
individual sources, as achieving ideal data collection conditions from each source
can often prove to be challenging. Potential issues with collected data, such as data
corruption, sensor faults, or insufficient data volume, among other data collection
complications, further emphasise this need. The present study will experimentally
investigate the proposed benefits of the DF algorithm.

4.3 Case Study: Dataset Fusion for 3-phase mo-

tor current data

This section will explore the feasibility of applying the proposed method with a case
study on motor current signals. The aim of the case study is to empirically test
and validate the effectiveness of the proposed method. The datasets used will first
be introduced and the feasibility of the proposed method will be confirmed. The
DF algorithm will then be applied, and the resulting signal will be compared and
analysed to the original signals.

4.3.1 Dataset Introduction

For the present case study, two homogeneous open-source datasets [27] [26] will
be used to confirm the feasibility of the DF methodology. Specifications of the
datasets used are detailed in Table 4.2. Both datasets are composed of three-phase
motor current signals, however, one dataset, which will be referred to as Dataset
A, contains fault data for an inter-turn short circuit fault, and the other dataset,
which will be referred to as Dataset B, contains current signals for a broken rotor
bar fault.
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Table 4.2: Specification for Motor Datasets used in the case study

Dataset Name
Data volume per file
(samples, features)

Faulty Data
Files

Healthy Data
Files

Sampling
Frequency (Hz)

Duration
per file(s)

Dataset A: Inter-turn short circuit fault dataset (Cunha, 2021) (100,000, 3) 2264 353 10,000 10
Dataset B: Broken Rotor Bar Dataset (Maciejewski, 2020) (1,001,000, 3) 320 80 55,611 18

Table 4.3: Breakdown of Dataset A 60Hz files

Motor State Number of files Samples per feature
Healthy 48 4,800,000
High Impedance 1
(1.41% of stator winding)

53 5,300,000

High Impedance 2
(4.81% of stator winding)

52 5,200,000

High Impedance 3
(9.26% of stator winding)

48 4,800,000

Low Impedance 1
(1.41% of stator winding)

55 5,500,000

Low Impedance 2
(4.81% of stator winding)

54 5,400,000

Low Impedance 3
(9.26% of stator winding)

60 6,000,000

Dataset A

Dataset A [26] contains files from a motor running at a variable operating frequency
Fo, ranging from 30Hz to 60Hz with 5Hz increments. The motor has the following
specifications: 4 poles, 1HP mechanical power, 220V supply and 3A rated current.
The authors simulated both high-impedance and low-impedance short circuits, for
different levels of fault severity. For the purpose of this case study, only the files
captured at Fo = 60Hz were used to meet the limitation of DF of only being
applicable to homogeneous data. The new dataset structure is depicted in Table
4.3.

Dataset B

The motor used to capture Dataset B [27] is a squirrel cage AC motor, running at
a constant Fo = 60HZ and has similar specifications to the motor used to capture
Dataset A. The breakdown of the dataset is shown in Table 4.4. At the beginning
of each file, for roughly the first 4 seconds, a transient signal representing the motor
startup was also recorded. For the purpose of the case study, and for compatibility
with the proposed algorithm, the transient subset of the signal, the first 200,000
samples, was discarded from each file, so that only the steady state of the motor
remained. This left 801,000 samples left in each file, representing an approximate
20% redundancy of data.

4.3.2 Application of Dataset Fusion and Analysis

The DF algorithm was used to fuse the healthy files from Datasets A and B into
a single, fused dataset. First, all healthy files were extracted from each dataset
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Table 4.4: Breakdown of Dataset B

Motor state Number of files Samples per feature
Healthy 80 1,001,000
1 Broken Bar 80 1,001,000
2 Broken Bars 80 1,001,000
3 Broken Bars 80 1,001,000
4 Broken Bars 80 1,001,000

and concatenated into a large signal. The files in Dataset B were first sliced to
remove the motor startup signature, then resampled to 10,000Hz, the same Fs as
Dataset A. Each Dataset was split into batches of 4 periods and then concatenated
alternating between each Dataset to create the final fused dataset. This was found
to be the optimal value for this dataset through a grid-search-based optimisation
of the parameters for DF to maximise NN performance. The batches were then
concatenated, alternating between each dataset, to create the final fused dataset.

For each dataset, an initial analysis was conducted in order to understand the
data and enable a more accurate interpretation of the fused dataset experimental
results. The TS signal, a Probability Distribution Function (PDF) and FT repre-
sentations from 0-500Hz were generated for a single phase from a healthy file from
each dataset. The plots are illustrated in Figure 4.2.

A Principal Component Analysis (PCA) was also performed on the healthy data
from each dataset as well as the fused data to gain comprehensive insights into the
data, wherein the resulting axes are linear combinations of the original variables,
defined by the eigenvectors and eigenvalues. This method allows for the identifica-
tion of the most significant patterns to increase the interpretability of the proposed
method. All datasets were uniformly downsampled to 10,000Hz, which corresponds
to the minimum sampling frequency in Dataset A. Subsequently, the samples were
partitioned into groups of 100,000, aligning with the smallest sample size per file in
Dataset A. The data’s three features, representing the three phases, were flattened
into a single axis before being subjected to the PCA algorithm. The visualisation of
the first two Principal Components in a 2D scatter plot can be found in Figure 4.3.

It is clear to see from Figure 4.2(d) and Figure 4.2(e), as well as Figure 4.2(g) and
Figure 4.2(h) that Dataset B contains a considerable amount of noise in comparison
to Dataset A. In addition to this, the frequency spectra of Dataset A show more
pronounced harmonics in comparison to Dataset B. Although this may not be as
evident from the TS signal plot, a NN will most likely pick up these differences in
noise, and thus a NN trained on a single dataset, especially in the case of Dataset
B, will struggle to distinguish files from Dataset A with fault signals as anomalous.
This hypothesis will be further discussed in the results and discussion.

The TS signal of the fused data looks similar visually in comparison to the
datasets, albeit in a different input space due to normalisation. From the PDF
and FFT representations shown in Figure 4.2(f) and Figure 4.2(I) however, there
are subtle indications of features present in both Dataset A and Dataset B. For
instance, the overall shape of the frequency spectra follows Dataset A, however,
there is noise clearly present in the spectra, a significant feature of Dataset B.
Furthermore, the harmonic peaks in the fused frequency spectra contain the same
characteristics of both datasets, which is interesting to note as this representation
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Figure 4.2: TS signal from Dataset A (a), B (b), and fused (c), Probability Distri-
bution Function from Dataset A (d), B (e), and fused (f), and Fourier Transform
from Dataset A (g), B (h), and fused (i) healthy files.
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Figure 4.3: Principal Component Analysis of Dataset A, B and the fused dataset
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would still be considered a healthy signal. Future work will investigate the use of a
fused Dataset in the frequency domain to train a classifier NN. However, the scope
of this study is to validate the use of the TS representation to train a generalised
TS anomaly detector with reduced data requirements.

Upon examining the PCA plot depicted in Figure 4.3, it is clear that the healthy
data from both datasets exhibit comparable traits and patterns. Interestingly, the
fused dataset forms a cluster around the origin, positioning itself at the center of
the two datasets. This central location of the fused dataset within the circular
arrangement of points from the two datasets signifies that it effectively captures the
salient features of both datasets. By doing so, the fused dataset aids in bringing the
training data closer to the population distribution of the problem domain, thereby
enhancing the robustness and generalisability of the model derived from this data.
Further evidence of this will be given in the experimental results.

It is important to note that simply concatenating two healthy files from each
Dataset will produce a similar outcome to the representations shown in Figure 4.2.
However, the purpose of this analysis is to show that the Dataset algorithm will
still preserve the individual features of each representation in a new signal and still
be usable for a data-driven approach. The PCA plot, as displayed in Figure 4.3,
provides more compelling evidence of the impact of the DF technique on the com-
bined dataset. Subsequent experimental results on anomaly detection, utilising the
various datasets, will further explore the implications of employing a fused dataset
for training an anomaly detection model.

4.3.3 Experimental Design

The aim of the experimentation presented in this study is to observe the effective-
ness of DF in training an anomaly detector NN using some of the healthy files from
Dataset A and Dataset B, and then evaluating the model on the remaining healthy
and faulty files, in comparison to commonly used training methods. The training
methods selected as baselines in this study are commonly utilised in the domain
of anomaly detection and have been previously validated in literature [169] [170].
These methods serve as a standard against which the proposed DF method is com-
pared. The following training methods will be compared for all of the subsequent
experiments:

• Traditional Approach: This approach involves training on a single dataset.
It’s a common baseline method used in many studies [169].

• Transfer Learning: A two-phase training method where the first training
phase occurs on one dataset, followed by a second training phase on another
dataset. This method leverages knowledge transfer between datasets and has
shown promise in related works [170].

• Mixed Dataset: A single training phase is conducted using all healthy files
from each dataset. This method aims to leverage the diversity of multiple
datasets.

• DF: The proposed method involves a single training phase on fused healthy
data consisting of all datasets.
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Table 4.5: Experiment variants and corresponding key for results tables

Experiment Key
Traditional Approach - Dataset A T - Dataset A
Traditional Approach - Dataset B T - Dataset B
Transfer Learning - Dataset A to Dataset B TL - Dataset A to B
Transfer Learning - Dataset B to Dataset A TL - Dataset B to A
Mixed Dataset MD
Dataset Fusion DF
Transfer Learning - Fused Dataset to Dataset A TL - DF to Dataset A
Transfer Learning - Fused Dataset to Dataset B TL - DF to Dataset B

Table 4.6: Specifications for workstation used for experimentation

Component Specification
Operating System Windows 10 Version 21H2
CPU AMD Ryzen Threadripper 2990WX 32-Core 3.5GHz
RAM 64GB
GPU NVIDIA RTX A6000 48GB VRAM

• DF with Transfer Learning: Combines the DF and transfer learning ap-
proaches, with the first training phase on fused healthy data consisting of all
datasets, followed by a second training phase on a single dataset.

To provide clarity on the variations within each training method, Table 4.5 pro-
vides a full breakdown of the different variants, along with labels used in the exper-
imental results tables.

The same workstation was used to conduct all experimentation in order to max-
imise experimental rigour. The specifications of this workstation are given in Table
4.6, for the purpose of experiment reproducibility.

Each experiment iteration was repeated 10 times for experimental rigour. The
outcome of each experiment is validated for statistical significance using appropriate
statistical tests. Given the non-normally distributed results and unequal variances
across the small sample groups (n=10 per condition), the non-parametric KW test
was chosen over Analysis Of Variance (ANOVA) for assessing statistical significance
between training approaches. The KW test results are generated using custom
functions on Python 3.9, and the numpy [171] and pandas [172] libraries, with
versions 1.22.0 and 1.3.5 respectively.

The Precision, Recall and F1 score metrics, popularised in [173], will be used to
evaluate the performance of the anomaly detector model with each training method.
Equation 4.8, Equation 4.9, and Equation 4.10 show how the Precision, Recall, and
F-beta scores are calculated, respectively:

Precision =
True Positives

True Positives+ False Positives
(4.8)

Recall =
True Positives

True Positives+ False Negatives
(4.9)

Fβ Score = (1 + β2)× Precision×Recall

(β2 × Precision) +Recall
(4.10)
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Table 4.7: Optimised Hyperparameters for Neural Network

Hyperparameter Value
Optimiser Adam
Learning Rate 0.001
Epochs 8
Time Steps 1
Training samples 4,000,000
Batch Size 256
Input Branch Layer Width 32
Output Layer Width 96

where ’True Positives’ (TP) denote the anomalies correctly identified by the NN
model, ’False Positives’ (FP) indicate the normal events incorrectly classified as
anomalies, ’False Negatives’ (FN) are anomalies that the NN model failed to detect,
and β is the degree of prioritisation of recall over precision. In this study, we set β
to 1, which means that the F-beta score becomes the F1 score, treating precision
and recall equally in its calculation.

Neural Network Model

The multi-channel LSTMCaps autoencoder NN developed in previous work will be
used as the anomaly detection models for the following experiments. Further details
regarding the architecture are given in [2]. For the following experimentation, three
input branches were used to accommodate the three features present in the dataset:
the three-phase motor current signals. The model hyperparameters were optimised
for anomaly detection using a grid-search procedure. Table 4.7 details the optimal
hyperparameters for this task, which will be used across all training methods. For
all experiments, this model will be trained on ”healthy” motor data only, since it is
an unsupervised autoencoder.

As Table 4.7 shows, the NN trains best with 4M samples. Since the healthy
data from each dataset contains over 4M samples, each file from the training set
was randomly sliced to reduce the number of samples from each file, totalling the
4M samples required for each dataset when concatenated. This approach ensures
that the model will train on a wide variety of data, and subsequently increase the
reliability of the experimental results by avoiding optimising for a specific set of files.

There are various methods of determining the error thresholds of an AE NN.
The most common method is through the use of an unseen validation set. After
training the NN, the model is run on a file in the same class as the training set,
but which has not been used for training. In this case, a single file containing data
for a healthy condition motor is used. The Mean Absolute Error (MAE) for each
prediction is then calculated, which provides a baseline for the accuracy of the NN
with reconstructing healthy data. When multiple features are present in the dataset,
as is the case with the data used in this case study, a threshold is calculated for each
feature since the reconstruction performance of the NN model may vary across each
feature. The overall threshold can be calculated through different methods, and the
method used is determined based on the training performance of the NN as well as
the data consistency and behaviour. In the present work, two methods are used:

80 Chapter 4 Ayman Elhalwagy



Green AI for Industry 4.0: Energy-Efficient Generalised Deep Learning
Approaches to Induction Motor Condition Monitoring

The largest MAE for each feature, or two standard deviations away from the mean
MAE of each feature. The reasoning behind using two standard deviations from the
mean as a threshold is, assuming a Gaussian distribution of error residual values,
two standard deviations from the mean covers 95% of the data. In the case of an
inconsistent or noisy dataset, it is better to use this method since there are more
likely to be anomalous MAE values in the validation set, and if the largest MAE
value is used, the threshold may be too high to consistently detect abnormalities
in the test data. In the case of a consistent dataset with contains minimal noise,
the largest MAE value is generally a good threshold to use since an MAE value to
exceeds this threshold is more likely to indicate an anomaly as opposed to noisy but
healthy behaviour.

Addressing limitations though experimental design

A potential limitation of the proposed experimentation is the experimentation on
static datasets. By experimenting on static datasets, results achieved in experimen-
tal conditions may not generalise effectively to real-world conditions or even other
data in the same problem domain. One experiment will address this limitation by
recreating the dataset for each of the ten test iterations, shuffling the dataset files
for each test iteration randomly in each dataset prior to data formulation.

Another potential limitation is the availability of an equal amount of health data
from each Dataset tested. For the purpose of this experimentation, an equal amount
of data from each dataset will be used, however, it cannot be ensured that there is an
equal amount of healthy data available outside of experimental settings. Therefore,
one experiment will address this issue by modifying the ratio of data used from each
dataset to obverse the difference that is made to the anomaly detection results.

4.3.4 Experiment 1 - Training methods comparison

Experiment 1 aims to provide an initial comparison of the various training ap-
proaches detailed in Section 4.3.3. To ensure experimental validity, the experiment
will be repeated 10 times. However, each iteration will not utilise the same training
data; instead, it will employ a randomly shuffled subset of data from each file to
create a dataset comprising 4M samples. This approach further bolsters the validity
of the proposed method and mitigates the risk of misrepresenting its performance
by only validating it on a single subset of data.

Table 4.8 presents the Precision, Recall, and F1 score results for each experiment,
as well as the average F1 score across the datasets. Table 4.9 displays the results of
the KW test for the Average F1 score results. Additionally, Figure 4.4 features a box
and whisker plot that visually compares the Average F1 scores from all 10 runs from
each training approach, offering a representation of result spread and consistency.
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Table 4.8: Experiment 1 results - A comparison of the performance of the anomaly
detection model using all training approaches. The experiment key is shown in Table
4.5

 

Training Approach Score 

    Dataset A      Dataset B 

Average F1 Precision Recall F1 Precision Recall F1 

T- Dataset A 

Best (out of 10) 0.841 1.000 0.914 0.429 0.750 0.545 0.730 

Average 0.815 0.943 0.867 0.356 0.550 0.423 0.645 

Std Dvn 0.018 0.170 0.105 0.155 0.218 0.157 0.100 

T- Dataset B 

Best (out of 10) 0.821 0.711 0.762 1.000 0.500 0.667 0.714 

Average 0.806 0.600 0.687 0.477 0.625 0.515 0.601 

Std Dvn 0.025 0.061 0.048 0.212 0.256 0.164 0.088 

TL- Dataset A to B 

Best (out of 10) 0.818 1.000 0.900 0.429 0.750 0.545 0.723 

Average 0.819 0.823 0.813 0.379 0.625 0.448 0.630 

Std Dvn 0.016 0.168 0.089 0.056 0.256 0.096 0.046 

TL- Dataset B to A 

Best (out of 10) 0.813 0.967 0.883 0.500 0.750 0.600 0.742 

Average 0.800 0.671 0.695 0.407 0.625 0.440 0.568 

Std Dvn 0.022 0.298 0.196 0.242 0.340 0.185 0.170 

MD 

Best (out of 10) 0.818 1.000 0.900 0.429 0.750 0.545 0.723 

Average 0.818 0.999 0.899 0.350 0.675 0.454 0.677 

Std Dvn 0.001 0.003 0.002 0.086 0.195 0.108 0.054 

DF (Proposed) 

Best (out of 10) 0.818 1.000 0.900 1.000 0.750 0.857 0.879 

Average 0.818 1.000 0.900 1.000 0.600 0.743 0.821 

Std Dvn 0.000 0.000 0.000 0.000 0.122 0.093 0.047 

TL – DF to Dataset A 

Best (out of 10) 0.818 1.000 0.900 0.400 1.000 0.571 0.736 

Average 0.809 0.890 0.834 0.357 0.900 0.507 0.670 

Std Dvn 0.020 0.221 0.134 0.024 0.122 0.021 0.070 

TL – DF to Dataset B 

Best (out of 10) 0.818 1.000 0.900 0.500 1.000 0.667 0.783 

Average 0.819 0.977 0.890 0.566 0.750 0.562 0.726 

Std Dvn 0.004 0.070 0.031 0.240 0.250 0.084 0.038 
 

 

 

- Dataset Fusion (DF) has the best performance overall, in terms of F1 score on Dataset A, Dataset B and naturally the Average F1 score 

across both datasets, with a best Average F1 score of 0.879, and an average of 0.821 from 10 runs. 

- Also T- Dataset A (Using the traditional training approach on Dataset A) results in better performance on Dataset A, the performance on 

Dataset B is poor, which brings the Average F1 score down, making this model unsuitable for use across homogeneous datasets 

- Using transfer learning, even when first training using the fused dataset does not result in better performance overall, even on the dataset 

that was trained on in the second phase 

- The pre-processing methods used to create the fused dataset result in a significantly higher performance for Dataset B, since the data 

needed to be downsampled from 55611Hz to 10000Hz as per the requirements of the algorithm. 

- Although the performance across the different training approaches on Dataset B is lower than Dataset A, using transfer learning from the 

fused dataset to Dataset B yields the same results as just training on Dataset B using the traditional approach, but simultaneously results in 

strong performance on Dataset A 

- The box and whisker plot in Figure 4 illustrating the spread of the results also shows that the Dataset Fusion approach did not result in any 

outlying results from 10 runs, showing high levels of consistency. However, it is also clear to see that Transfer Learning approaches have the 

lowest deviation in results in comparison to a single training phase on 1 dataset, whether that is using traditional training approaches or the 

proposed Dataset Fusion approach   

Table 4.9: Kruskal-Wallis test results for Experiment 1 - Training methods compar-
ison.

Experiment n Mean SD Median Chi-square p-Value

experiment 1.2 10 0.82 0.05 0.78
experiment 1.3 fused to brb 10 0.73 0.04 0.73

experiment 1.1 10 0.68 0.06 0.69 38.97 0.000*
experiment 1.3 fused to sc 10 0.67 0.07 0.70

baseline 1 sc 10 0.64 0.11 0.68
baseline 2 sc to brb 10 0.63 0.05 0.62

baseline 1 brb 10 0.60 0.09 0.62
baseline 2 brb to sc 10 0.57 0.18 0.59

Note: * indicates significant difference (p ¡ 0.05). Post-hoc analysis reveals significant differences
between multiple pairs, including: baseline 1 sc-experiment 1.2, baseline 1 brb-experiment 1.2,
baseline 1 brb-experiment 1.3 fused to brb, baseline 2 sc to brb-experiment 1.2, baseline 2 sc to
brb-experiment 1.3 fused to brb, baseline 2 brb to sc-experiment 1.2, experiment 1.1-experiment
1.2, experiment 1.2-experiment 1.3 fused to sc, and experiment 1.2-experiment 1.3 fused to brb.

4.3.5 Experiment 2 - Varying data volume

Experiment 2 aims to observe the effect of reducing the volume of training data
on the performance of the anomaly detection model using the different training
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Figure 4.4: Box and whisker plot comparing the results for Experiment 1 - Training
methods comparison

approaches. Similar to Experiment 1, the experiment will be repeated 10 times, and
the dataset will be shuffled to ensure experimental validity. The experiment details
for each test are shown in Table 4.10. The estimated FLOPs used for each number
of samples are calculated using Equation 4.11 [174]:

FLOPs = 2 · P · 3 ·N · E (4.11)

where P is the number of trainable parameters in the NN, N is number of training
samples, and E is the number of epochs. Whilst the complexity of the model can
undoubtedly affect the complexity of training, since the same model is used across
all experiments, it will not be relevant for this calculation.

The tabulated results for experiment 2 can be found in Table 4.11. A summary
of the results in the form of a box and whisker plot is illustrated in Figure 4.5. The
KW test results for the Average F1 scores are shown in Table 4.12.

4.3.6 Experiment 3 - Varying dataset ratio

Experiment 3 aims to assess the performance of each training method with an im-
balanced dataset containing a different number of samples from each dataset. The
purpose of this experiment is to simulate a real-world environment, where the vol-
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Table 4.10: Experiment settings for Experiment 2 - Varying data volume, including
an estimation of the FLOPs used for training

% Training
data used

Number of
Samples

Number of
Epochs

NN Trainable
Parameters

FLOPs used
for training

100% 4,000,000 8 25,635 4.92× 1012

50% 2,000,000 8 25,635 2.46× 1012

25% 1,000,000 8 25,635 1.23× 1011

12.5% 500,000 8 25,635 6.15× 1011

6.25% 250,000 8 25,635 3.08× 1011

T- Dataset A T- Dataset B TL- Dataset A to B TL- Dataset B to A MD DF (Proposed) TL- DF to Dataset A TL- DF to Dataset B
Training approach
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Figure 4.5: Box and whisker plot showcasing the impact of varying data volumes
on each training method, grouped by training approach and plotted against average
F1 score (higher is better).

ume of data available from different sources will not be equal in many cases. Similar
to Experiments 1 and 2, the experiment will be repeated 10 times, and the dataset
will be shuffled to ensure experimental validity.

Table 4.13 shows a breakdown of the experimental settings used. In the case
of traditional training, the anomaly detector model will be trained on the reduced
dataset, similar to experiment 2. However, transfer learning approaches will make
use of both datasets.

The tabulated results for experiment 3 can be found in Table 4.14 for results
from 10:90 to 50:50 (Dataset A: Dataset B), and in Table 4.15 for results from 60:40
to 90:10. The tabulated results are summarised in a box and whisker plot, shown in
Figure 4.6. The KW test results for the Average F1 scores are shown in Table 4.16.

4.4 Discussion

4.4.1 Experiment 1 - Training methods comparison Analy-
sis

Examining the experimental results of Experiment 1, as presented in Table 4.8, the
DF method is empirically proven to consistently deliver the best performance in
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Table 4.11: Full results of experiment 2 - Varying data volume

 

  

Percentage of 

data used Experiment  Score  

    Dataset A       Dataset B Average 

F1  

% change of Average 

F1 from Baseline Precision Recall F1 Precision Recall F1 

100% (Baseline) 

T- Dataset A 
Average 0.815 0.943 0.867 0.356 0.550 0.423 0.645 N/A 

Std Dev 0.018 0.170 0.105 0.155 0.218 0.157 0.100  

T- Dataset B 
Average 0.806 0.600 0.687 0.477 0.625 0.515 0.601 N/A 

Std Dev 0.025 0.061 0.048 0.212 0.256 0.164 0.088  

TL- Dataset A to B 
Average 0.819 0.823 0.813 0.379 0.625 0.448 0.630 N/A 

Std Dev 0.016 0.168 0.089 0.056 0.256 0.096 0.046  

TL- Dataset B to A 
Average 0.800 0.671 0.695 0.407 0.625 0.440 0.568 N/A 

Std Dev 0.022 0.298 0.196 0.242 0.340 0.185 0.170  

MD 
Average 0.818 0.999 0.899 0.350 0.675 0.454 0.677 N/A 

Std Dev 0.001 0.003 0.002 0.086 0.195 0.108 0.054  

DF (Proposed) 
Average 0.818 1.000 0.900 1.000 0.600 0.743 0.821 N/A 

Std Dev 0.000 0.000 0.000 0.000 0.122 0.093 0.047  

TL – DF to Dataset A 
Average 0.809 0.890 0.834 0.357 0.900 0.507 0.670 N/A 

Std Dev 0.020 0.221 0.134 0.024 0.122 0.021 0.070  

TL – DF to Dataset B 
Average 0.819 0.977 0.890 0.566 0.750 0.562 0.726 N/A 

Std Dev 0.004 0.070 0.031 0.240 0.250 0.084 0.038  

50.00% 

T- Dataset A 
Average 0.810 0.937 0.859 0.449 0.750 0.545 0.702 8.86% 

Std Dev 0.025 0.190 0.123 0.125 0.250 0.146 0.088  

T- Dataset B 
Average 0.819 0.638 0.715 0.481 0.800 0.580 0.648 7.77% 

Std Dev 0.031 0.088 0.061 0.121 0.218 0.113 0.056  

TL- Dataset A to B 
Average 0.811 0.622 0.687 0.508 0.800 0.613 0.650 3.11% 

Std Dev 0.036 0.210 0.142 0.132 0.187 0.130 0.105  

TL- Dataset B to A 
Average 0.796 0.729 0.737 0.447 0.750 0.533 0.635 11.89% 

Std Dev 0.042 0.259 0.162 0.123 0.250 0.113 0.103  

MD 
Average 0.818 1.000 0.900 0.404 0.725 0.514 0.707 4.45% 

Std Dev 0.000 0.000 0.000 0.100 0.236 0.140 0.070  

DF (Proposed) 
Average 0.818 1.000 0.900 1.000 0.600 0.735 0.818 -0.46% 

Std Dev 0.000 0.000 0.000 0.000 0.166 0.143 0.072  

TL – DF to Dataset A 
Average 0.816 0.989 0.894 0.380 0.800 0.492 0.693 3.40% 

Std Dev 0.005 0.033 0.017 0.104 0.218 0.066 0.037  

TL – DF to Dataset B 
Average 0.816 0.951 0.872 0.522 0.850 0.629 0.751 3.46% 

Std Dev 0.008 0.147 0.084 0.189 0.255 0.190 0.108  

25.00% 

T- Dataset A 
Average 0.821 0.966 0.884 0.258 0.475 0.332 0.608 -5.70% 

Std Dev 0.007 0.103 0.049 0.133 0.261 0.172 0.086  

T- Dataset B 
Average 0.812 0.623 0.704 0.517 0.775 0.585 0.645 7.25% 

Std Dev 0.025 0.053 0.038 0.211 0.208 0.136 0.074  

TL- Dataset A to B 
Average 0.801 0.609 0.682 0.470 0.650 0.520 0.601 -4.67% 

Std Dev 0.040 0.165 0.119 0.196 0.122 0.097 0.066  

TL- Dataset B to A 
Average 0.783 0.620 0.664 0.277 0.400 0.311 0.488 -14.08% 

Std Dev 0.039 0.272 0.183 0.145 0.229 0.150 0.105  

MD 
Average 0.818 0.957 0.878 0.349 0.600 0.429 0.653 -3.46% 

Std Dev 0.006 0.123 0.066 0.063 0.200 0.085 0.046  

DF (Proposed) 
Average 0.818 1.000 0.900 1.000 0.550 0.697 0.799 -2.78% 

Std Dev 0.000 0.000 0.000 0.000 0.150 0.131 0.065  

TL – DF to Dataset A 
Average 0.796 0.768 0.758 0.417 0.750 0.496 0.627 -6.45% 

Std Dev 0.031 0.273 0.170 0.208 0.250 0.119 0.093  

TL – DF to Dataset B 
Average 0.814 0.906 0.850 0.420 0.725 0.504 0.677 -6.68% 

Std Dev 0.019 0.167 0.094 0.189 0.325 0.188 0.126  

12.50% 

T- Dataset A 
Average 0.818 1.000 0.900 0.341 0.425 0.355 0.627 -2.70% 

Std Dev 0.000 0.000 0.000 0.269 0.275 0.219 0.110  

T- Dataset B 
Average 0.792 0.510 0.614 0.519 0.625 0.546 0.580 -3.47% 

Std Dev 0.031 0.121 0.098 0.228 0.230 0.192 0.094  

TL- Dataset A to B 
Average 0.781 0.466 0.574 0.539 0.650 0.550 0.562 -10.78% 

Std Dev 0.039 0.136 0.119 0.196 0.200 0.132 0.062  

TL- Dataset B to A 
Average 0.818 1.000 0.900 0.355 0.300 0.288 0.594 4.62% 

Std Dev 0.000 0.000 0.000 0.353 0.245 0.222 0.111  

MD 
Average 0.818 0.998 0.899 0.279 0.450 0.337 0.618 -8.72% 

Std Dev 0.001 0.007 0.003 0.166 0.312 0.205 0.102  

DF (Proposed) 
Average 0.818 1.000 0.900 1.000 0.550 0.690 0.795 -3.25% 

Std Dev 0.000 0.000 0.000 0.000 0.187 0.168 0.084  

TL – DF to Dataset A 
Average 0.816 0.882 0.829 0.464 0.775 0.542 0.685 2.23% 

Std Dev 0.016 0.236 0.142 0.208 0.175 0.111 0.102  

TL – DF to Dataset B 
Average 0.822 0.953 0.880 0.553 0.700 0.561 0.721 -0.68% 

Std Dev 0.014 0.095 0.048 0.301 0.292 0.206 0.106  

6.25% 

T- Dataset A 
Average 0.818 1.000 0.900 0.418 0.600 0.468 0.684 6.14% 

Std Dev 0.000 0.000 0.000 0.249 0.255 0.202 0.101  

T- Dataset B 
Average 0.777 0.341 0.472 0.600 0.550 0.539 0.506 -15.87% 

Std Dev 0.039 0.049 0.047 0.268 0.269 0.217 0.094  

TL- Dataset A to B 
Average 0.757 0.382 0.504 0.565 0.750 0.624 0.564 -10.59% 

Std Dev 0.035 0.080 0.073 0.144 0.274 0.184 0.092  

TL- Dataset B to A 
Average 0.814 0.892 0.838 0.353 0.425 0.369 0.604 6.35% 

Std Dev 0.014 0.207 0.121 0.228 0.297 0.236 0.132  

MD 
Average 0.819 0.994 0.898 0.380 0.550 0.429 0.664 -1.97% 

Std Dev 0.002 0.017 0.006 0.070 0.218 0.085 0.042  

DF (Proposed) 
Average 0.813 0.849 0.815 1.000 0.625 0.762 0.788 -4.04% 

Std Dev 0.019 0.223 0.134 0.000 0.125 0.095 0.083  

TL – DF to Dataset A 
Average 0.812 0.876 0.830 0.451 0.850 0.563 0.696 3.88% 

Std Dev 0.011 0.200 0.120 0.130 0.200 0.092 0.084  

TL – DF to Dataset B 
Average 0.823 0.913 0.852 0.427 0.900 0.568 0.710 -2.19% 

Std Dev 0.012 0.189 0.109 0.056 0.166 0.049 0.056  
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Table 4.12: Kruskal-Wallis test results for Experiment 2 - Varying data volume.

Group n Mean SD Median Chi-square p-Value

DF (100%) 10 0.82 0.05 0.78
DF (50%) 10 0.82 0.08 0.83
DF (25%) 10 0.80 0.07 0.78
DF (12.5%) 10 0.79 0.09 0.78
DF (6.25%) 10 0.79 0.09 0.78

TL - DF to Dataset B (50%) 10 0.75 0.11 0.76
TL - DF to Dataset B (100%) 10 0.73 0.04 0.73
TL - DF to Dataset B (6.25%) 10 0.71 0.06 0.72

MD (50%) 10 0.71 0.07 0.72
T - Dataset A (50%) 10 0.70 0.09 0.71

TL - DF to Dataset A (6.25%) 10 0.70 0.09 0.70 176.69 0.000*
TL - DF to Dataset A (50%) 10 0.69 0.04 0.70
TL - DF to Dataset A (12.5%) 10 0.69 0.11 0.70

T - Dataset A (6.25%) 10 0.68 0.11 0.70
TL - DF to Dataset B (25%) 10 0.68 0.13 0.71

MD (100%) 10 0.68 0.06 0.69
TL - DF to Dataset A (100%) 10 0.67 0.07 0.70
TL - DF to Dataset B (12.5%) 12 0.67 0.20 0.72

MD (6.25%) 10 0.66 0.04 0.66
MD (25%) 10 0.65 0.05 0.65

TL - Dataset B to A (50%) 10 0.65 0.11 0.65
T - Dataset B (50%) 10 0.65 0.06 0.66
T - Dataset A (100%) 10 0.64 0.11 0.68
T - Dataset B (25%) 10 0.64 0.08 0.65

TL - Dataset A to B (50%) 10 0.64 0.11 0.62
TL - Dataset B to A (100%) 10 0.63 0.05 0.62

T - Dataset A (12.5%) 10 0.63 0.12 0.64
TL - DF to Dataset A (25%) 10 0.63 0.10 0.62

MD (12.5%) 10 0.62 0.11 0.63
T - Dataset A (25%) 10 0.61 0.09 0.64

TL - Dataset A to B (6.25%) 10 0.60 0.14 0.58
T - Dataset B (100%) 10 0.60 0.09 0.62

TL - Dataset B to A (25%) 10 0.60 0.07 0.60
TL - Dataset A to B (12.5%) 10 0.59 0.12 0.60

T - Dataset B (12.5%) 10 0.58 0.10 0.60
TL - Dataset A to B (100%) 10 0.57 0.18 0.59
TL - Dataset B to A (6.25%) 10 0.56 0.10 0.58
TL - Dataset B to A (12.5%) 10 0.56 0.07 0.56

T - Dataset B (6.25%) 10 0.51 0.10 0.52
TL - Dataset A to B (25%) 10 0.49 0.11 0.49

Note: * indicates significant difference (p ¡ 0.05). Post-hoc analysis revealed numerous signif-
icant pairwise differences between groups. Due to the extensive number of significant pairs,
they are not all listed here.
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Table 4.13: Experiment 3 - Varying dataset ratio details

Dataset Ratio (A:B) Dataset A samples Dataset B samples
10:90 400,000 3,600,000
20:80 800,000 3,200,000
30:70 1,200,000 2,800,000
60:40 1,600,000 2,400,000
50:50 2,000,000 2,000,000
40:60 2,400,000 1,600,000
30:70 2,800,000 1,200,000
20:80 3,200,000 800,000
90:10 3,600,000 400,000

T- Dataset A T- Dataset B TL- Dataset A to B TL- Dataset B to A MD DF (Proposed) TL- DF to Dataset A TL- DF to Dataset B
Training approach

0.2

0.4

0.6

0.8

1.0

Av
er

ag
e F

1

n = 10 n = 10 n = 10 n = 10 n = 10 n = 10 n = 10 n = 10 n = 10 n = 10 n = 10 n = 10 n = 10 n = 10 n = 10 n = 10 n = 10 n = 10 n = 10 n = 10 n = 10 n = 10 n = 10 n = 10 n = 10 n = 10 n = 10 n = 10 n = 10 n = 10 n = 10 n = 10 n = 10 n = 10 n = 10 n = 10 n = 10 n = 10 n = 10 n = 10 n = 10 n = 10 n = 10 n = 10 n = 10 n = 10 n = 10 n = 10 n = 10 n = 10 n = 10 n = 10 n = 10 n = 10 n = 10 n = 10 n = 10 n = 10 n = 10 n = 10 n = 10 n = 10 n = 10 n = 10 n = 10 n = 10 n = 10 n = 10 n = 10 n = 10 n = 10 n = 8

median
mean
outlier
10:90
20:80
30:70
40:60
50:50
60:40
70:30
80:20
90:10

Figure 4.6: Box and whisker plot showcasing the impact of varying dataset ratios
on each training method, grouped by training approach and plotted against average
F1 score (higher is better).

terms of the F1 score for both Datasets A and B, as well as the average F1 score
between both datasets. With the best Average F1 score of 0.879 and a 10-run aver-
age of 0.821, DF surpasses the other methods. These findings suggest that the DF
approach effectively captures the salient features in both datasets, resulting in con-
sistently strong performance across the datasets compared to the compared methods.
Moreover, the results imply a considerable advantage in fusing the datasets, as the
performance on individual datasets significantly exceeds that of models specialised
in each respective datasets.

In comparison, the traditional training approach on Dataset A (T-Dataset A)
exhibits better performance on Dataset A with a mean F1 score of 0.867 but suffers
from poor results on Dataset B with a weaker score of 0.423, consequently lowering
the average F1 score and making this model unsuitable for use across homogeneous
datasets. The superior performance of the DF method on both Dataset A and
Dataset B, along with the average F1 score across both datasets, underscores the
algorithm’s effectiveness in fulfilling the need for a single neural network adaptable
to data from various sources within the same problem domain. This outcome aligns
with the algorithm’s proposed benefits, which aim to eliminate the need for multiple
NNs and reduce data requirements from individual sources.

Furthermore, the results indicate that the traditional training approach, while
effective for the dataset it was trained on, falls short in terms of generalisability
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Table 4.14: Results for Experiment 3 - Dataset Ratio from 90:10 to 50:50 (Dataset
A : Dataset B)

Data Ratio 

(A:B) Experiment Score 

       Dataset A      Dataset B Average 

F1 Precision Recall F1 Precision Recall F1 

10:90 

T - Dataset A 
Average 0.818 1.000 0.900 0.375 0.525 0.428 0.664 

Std Dvn 0.000 0.000 0.000 0.143 0.175 0.137 0.069 

T - Dataset B 
Average 0.790 0.587 0.667 0.492 0.700 0.563 0.615 

Std Dvn 0.034 0.134 0.093 0.144 0.269 0.173 0.093 

TL- Dataset A to B 
Average 0.799 0.663 0.710 0.394 0.800 0.509 0.609 

Std Dvn 0.038 0.206 0.137 0.059 0.292 0.121 0.062 

TL- Dataset B to A 
Average 0.822 0.958 0.882 0.338 0.600 0.413 0.647 

Std Dvn 0.022 0.086 0.036 0.170 0.320 0.182 0.084 

MD 
Average 0.820 0.828 0.814 0.495 0.775 0.538 0.676 

Std Dvn 0.028 0.180 0.095 0.206 0.284 0.126 0.074 

DF (Proposed) 
Average 0.818 1.000 0.900 1.000 0.575 0.724 0.812 

Std Dvn 0.000 0.000 0.000 0.000 0.115 0.087 0.044 

TL - DF to Dataset A 
Average 0.818 1.000 0.900 0.456 0.875 0.533 0.717 

Std Dvn 0.000 0.000 0.000 0.208 0.256 0.112 0.056 

TL - DF to Dataset B 
Average 0.815 0.911 0.852 0.582 0.800 0.619 0.735 

Std Dvn 0.015 0.168 0.092 0.227 0.218 0.104 0.070 

20:80 

T - Dataset A 
Average 0.818 1.000 0.900 0.366 0.525 0.415 0.657 

Std Dvn 0.000 0.000 0.000 0.156 0.236 0.164 0.082 

T - Dataset B 
Average 0.786 0.548 0.641 0.417 0.750 0.520 0.580 

Std Dvn 0.061 0.123 0.112 0.149 0.250 0.157 0.108 

TL- Dataset A to B 
Average 0.809 0.632 0.700 0.388 0.575 0.445 0.573 

Std Dvn 0.029 0.155 0.094 0.163 0.297 0.177 0.107 

TL- Dataset B to A 
Average 0.800 0.694 0.720 0.325 0.525 0.368 0.544 

Std Dvn 0.018 0.248 0.155 0.131 0.361 0.173 0.131 

MD 
Average 0.824 0.812 0.810 0.429 0.500 0.447 0.628 

Std Dvn 0.040 0.176 0.102 0.126 0.158 0.113 0.099 

DF (Proposed) 
Average 0.813 0.953 0.873 1.000 0.550 0.697 0.785 

Std Dvn 0.017 0.140 0.082 0.000 0.150 0.131 0.100 

TL - DF to Dataset A 
Average 0.812 0.902 0.846 0.385 0.800 0.496 0.671 

Std Dvn 0.032 0.184 0.115 0.102 0.218 0.060 0.067 

TL - DF to Dataset B 
Average 0.817 0.990 0.895 0.463 0.900 0.599 0.747 

Std Dvn 0.003 0.020 0.010 0.134 0.166 0.121 0.061 

30:70 

T - Dataset A 
Average 0.818 0.999 0.899 0.415 0.625 0.475 0.687 

Std Dvn 0.001 0.003 0.002 0.169 0.301 0.189 0.095 

T - Dataset B 
Average 0.816 0.633 0.713 0.476 0.675 0.521 0.617 

Std Dvn 0.016 0.034 0.023 0.197 0.195 0.085 0.051 

TL- Dataset A to B 
Average 0.806 0.591 0.681 0.518 0.750 0.556 0.619 

Std Dvn 0.023 0.049 0.038 0.203 0.250 0.120 0.061 

TL- Dataset B to A 
Average 0.812 0.822 0.803 0.498 0.650 0.514 0.659 

Std Dvn 0.039 0.212 0.128 0.197 0.278 0.133 0.085 

MD 
Average 0.817 0.904 0.848 0.429 0.700 0.505 0.676 

Std Dvn 0.006 0.183 0.100 0.162 0.269 0.155 0.096 

DF (Proposed) 
Average 0.818 1.000 0.900 1.000 0.625 0.754 0.827 

Std Dvn 0.000 0.000 0.000 0.000 0.168 0.146 0.073 

TL - DF to Dataset A 
Average 0.818 1.000 0.900 0.507 0.850 0.574 0.737 

Std Dvn 0.000 0.000 0.000 0.252 0.200 0.113 0.056 

TL - DF to Dataset B 
Average 0.823 0.967 0.886 0.498 0.875 0.604 0.745 

Std Dvn 0.016 0.096 0.041 0.188 0.168 0.113 0.052 

40:60 

T - Dataset A 
Average 0.817 0.990 0.895 0.499 0.550 0.478 0.687 

Std Dvn 0.005 0.030 0.016 0.213 0.269 0.153 0.076 

T - Dataset B 
Average 0.803 0.631 0.700 0.432 0.675 0.514 0.607 

Std Dvn 0.028 0.144 0.090 0.136 0.275 0.164 0.099 

TL- Dataset A to B 
Average 0.795 0.678 0.715 0.514 0.725 0.568 0.641 

Std Dvn 0.043 0.219 0.147 0.119 0.284 0.139 0.101 

TL- Dataset B to A 
Average 0.793 0.670 0.707 0.394 0.725 0.492 0.600 

Std Dvn 0.046 0.244 0.164 0.168 0.344 0.206 0.154 

MD 
Average 0.815 0.979 0.889 0.415 0.725 0.509 0.699 

Std Dvn 0.010 0.056 0.030 0.131 0.284 0.170 0.092 

DF (Proposed) 
Average 0.818 0.998 0.899 1.000 0.600 0.735 0.817 

Std Dvn 0.001 0.007 0.003 0.000 0.166 0.143 0.071 

TL - DF to Dataset A 
Average 0.818 1.000 0.900 0.435 0.800 0.499 0.700 

Std Dvn 0.000 0.000 0.000 0.196 0.292 0.099 0.049 

TL - DF to Dataset B 
Average 0.820 0.998 0.900 0.476 0.900 0.602 0.751 

Std Dvn 0.007 0.004 0.003 0.104 0.166 0.069 0.035 

50:50 

(Baseline) 

T - Dataset A 
Average 0.818 1.000 0.900 0.335 0.475 0.387 0.643 

Std Dvn 0.000 0.000 0.000 0.169 0.261 0.198 0.099 

T - Dataset B 
Average 0.802 0.544 0.648 0.362 0.700 0.467 0.558 

Std Dvn 0.023 0.038 0.032 0.208 0.367 0.249 0.125 

TL- Dataset A to B 
Average 0.791 0.589 0.658 0.356 0.550 0.420 0.539 

Std Dvn 0.038 0.213 0.140 0.153 0.245 0.165 0.123 

TL- Dataset B to A 
Average 0.798 0.748 0.746 0.278 0.425 0.323 0.535 

Std Dvn 0.027 0.283 0.178 0.172 0.317 0.206 0.141 

MD 
Average 0.817 0.994 0.897 0.326 0.550 0.405 0.651 

Std Dvn 0.003 0.017 0.008 0.162 0.269 0.193 0.095 

DF (Proposed) 
Average 0.818 1.000 0.900 1.000 0.600 0.743 0.821 

Std Dvn 0.000 0.000 0.000 0.000 0.122 0.093 0.047 

TL - DF to Dataset A 
Average 0.818 1.000 0.900 0.475 0.775 0.518 0.709 

Std Dvn 0.000 0.000 0.000 0.205 0.261 0.082 0.041 

TL - DF to Dataset B 
Average 0.818 0.929 0.866 0.444 0.675 0.523 0.695 

Std Dvn 0.006 0.122 0.059 0.103 0.160 0.084 0.055 
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Table 4.15: Results for Experiment 3 - Dataset Ratio from 40:60 to 10:90 (Dataset
A : Dataset B) 

Data Ratio 

(A:B) Experiment Score 

      Dataset A       Dataset B Average 

F1 Precision Recall F1 Precision Recall F1 

60:40 

T - Dataset A 
Average 0.820 0.969 0.886 0.418 0.675 0.502 0.694 

Std Dvn 0.008 0.083 0.036 0.090 0.251 0.129 0.078 

T - Dataset B 
Average 0.810 0.582 0.677 0.547 0.650 0.552 0.614 

Std Dvn 0.019 0.052 0.040 0.242 0.278 0.183 0.095 

TL- Dataset A to B 
Average 0.815 0.721 0.757 0.453 0.625 0.480 0.619 

Std Dvn 0.017 0.150 0.080 0.227 0.280 0.147 0.084 

TL- Dataset B to A 
Average 0.801 0.633 0.675 0.410 0.575 0.447 0.561 

Std Dvn 0.035 0.285 0.178 0.247 0.317 0.217 0.140 

MD 
Average 0.828 0.903 0.853 0.359 0.675 0.465 0.659 

Std Dvn 0.018 0.168 0.084 0.120 0.195 0.138 0.076 

DF (Proposed) 
Average 0.818 1.000 0.900 1.000 0.525 0.670 0.785 

Std Dvn 0.000 0.000 0.000 0.000 0.175 0.158 0.079 

TL - DF to Dataset A 
Average 0.818 1.000 0.900 0.477 0.900 0.570 0.735 

Std Dvn 0.000 0.000 0.000 0.199 0.200 0.061 0.030 

TL - DF to Dataset B 
Average 0.818 0.904 0.851 0.543 0.800 0.588 0.719 

Std Dvn 0.008 0.159 0.082 0.202 0.269 0.137 0.095 

70:30 

T - Dataset A 
Average 0.805 0.843 0.807 0.350 0.525 0.415 0.611 

Std Dvn 0.029 0.241 0.153 0.152 0.261 0.184 0.130 

T - Dataset B 
Average 0.809 0.636 0.709 0.487 0.800 0.594 0.651 

Std Dvn 0.026 0.108 0.069 0.162 0.218 0.163 0.077 

TL- Dataset A to B 
Average 0.800 0.671 0.719 0.434 0.750 0.541 0.630 

Std Dvn 0.020 0.182 0.110 0.083 0.224 0.122 0.088 

TL- Dataset B to A 
Average 0.778 0.557 0.618 0.325 0.500 0.385 0.501 

Std Dvn 0.038 0.282 0.185 0.174 0.316 0.216 0.177 

MD 
Average 0.823 0.991 0.899 0.308 0.425 0.350 0.624 

Std Dvn 0.013 0.027 0.004 0.190 0.317 0.231 0.116 

DF (Proposed) 
Average 0.818 1.000 0.900 1.000 0.550 0.690 0.795 

Std Dvn 0.000 0.000 0.000 0.000 0.187 0.168 0.084 

TL - DF to Dataset A 
Average 0.813 0.962 0.881 0.355 0.800 0.479 0.680 

Std Dvn 0.010 0.069 0.036 0.038 0.245 0.084 0.052 

TL - DF to Dataset B 
Average 0.815 0.954 0.877 0.423 0.850 0.555 0.716 

Std Dvn 0.006 0.100 0.051 0.055 0.229 0.104 0.073 

80:20 

T - Dataset A 
Average 0.824 0.974 0.892 0.338 0.525 0.401 0.646 

Std Dvn 0.012 0.063 0.025 0.175 0.284 0.193 0.092 

T - Dataset B 
Average 0.801 0.610 0.688 0.561 0.725 0.585 0.636 

Std Dvn 0.021 0.111 0.069 0.243 0.325 0.219 0.119 

TL- Dataset A to B 
Average 0.793 0.611 0.681 0.454 0.575 0.485 0.583 

Std Dvn 0.022 0.161 0.098 0.141 0.251 0.152 0.093 

TL- Dataset B to A 
Average 0.787 0.680 0.696 0.371 0.450 0.370 0.533 

Std Dvn 0.039 0.309 0.206 0.261 0.269 0.194 0.124 

MD 
Average 0.818 1.000 0.900 0.342 0.500 0.403 0.651 

Std Dvn 0.000 0.000 0.000 0.159 0.250 0.188 0.094 

DF (Proposed) 
Average 0.818 1.000 0.900 1.000 0.500 0.651 0.776 

Std Dvn 0.000 0.000 0.000 0.000 0.158 0.146 0.073 

TL - DF to Dataset A 
Average 0.815 0.959 0.878 0.411 0.875 0.547 0.712 

Std Dvn 0.008 0.123 0.067 0.081 0.168 0.078 0.052 

TL - DF to Dataset B 
Average 0.817 0.994 0.897 0.580 0.625 0.532 0.715 

Std Dvn 0.003 0.017 0.008 0.231 0.256 0.115 0.059 

90:10 

T - Dataset A 
Average 0.818 0.942 0.871 0.251 0.400 0.301 0.586 

Std Dvn 0.016 0.138 0.079 0.137 0.255 0.173 0.090 

T - Dataset B 
Average 0.790 0.513 0.616 0.511 0.600 0.527 0.572 

Std Dvn 0.023 0.103 0.090 0.252 0.300 0.228 0.115 

TL- Dataset A to B 
Average 0.791 0.598 0.668 0.434 0.600 0.473 0.571 

Std Dvn 0.043 0.191 0.135 0.248 0.320 0.220 0.125 

TL- Dataset B to A 
Average 0.782 0.687 0.703 0.257 0.325 0.278 0.491 

Std Dvn 0.040 0.291 0.193 0.154 0.195 0.161 0.133 

MD 
Average 0.819 0.977 0.890 0.265 0.375 0.300 0.595 

Std Dvn 0.004 0.070 0.031 0.116 0.202 0.136 0.068 

DF (Proposed) 
Average 0.818 1.000 0.900 1.000 0.525 0.678 0.789 

Std Dvn 0.000 0.000 0.000 0.000 0.135 0.119 0.060 

TL - DF to Dataset A 
Average 0.818 1.000 0.900 0.444 0.750 0.511 0.705 

Std Dvn 0.000 0.000 0.000 0.235 0.250 0.143 0.072 

TL - DF to Dataset B 
Average 0.811 0.940 0.862 0.618 0.650 0.529 0.696 

Std Dvn 0.020 0.180 0.113 0.259 0.300 0.117 0.085 

  

Chapter 4 Ayman Elhalwagy 89



Green AI for Industry 4.0: Energy-Efficient Generalised Deep Learning
Approaches to Induction Motor Condition Monitoring

Table 4.16: Kruskal-Wallis test results for Experiment 3 - Varying dataset ratio.

Group n Mean SD Median Chi-square p-Value

DF (Proposed) 30:70 10 0.83 0.08 0.88
DF (Proposed) 50:50 10 0.82 0.05 0.78
DF (Proposed) 40:60 10 0.82 0.08 0.83
DF (Proposed) 10:90 10 0.81 0.05 0.78
DF (Proposed) 70:30 10 0.79 0.09 0.78
DF (Proposed) 90:10 10 0.79 0.06 0.78
DF (Proposed) 60:40 10 0.79 0.08 0.78
DF (Proposed) 20:80 10 0.78 0.11 0.78
DF (Proposed) 80:20 10 0.78 0.08 0.78

TL - DF to Dataset B 40:60 10 0.75 0.04 0.74
TL - DF to Dataset B 20:80 10 0.75 0.06 0.73
TL - DF to Dataset B 30:70 10 0.74 0.05 0.74
TL - DF to Dataset A 30:70 10 0.74 0.06 0.72 326.68 0.000*
TL - DF to Dataset B 10:90 10 0.74 0.07 0.74
TL - DF to Dataset A 60:40 10 0.73 0.03 0.74
TL - DF to Dataset B 60:40 10 0.72 0.10 0.74
TL - DF to Dataset A 10:90 10 0.72 0.06 0.70
TL - DF to Dataset B 70:30 10 0.72 0.08 0.74
TL - DF to Dataset B 80:20 10 0.71 0.06 0.73
TL - DF to Dataset A 80:20 10 0.71 0.05 0.70
TL - DF to Dataset A 50:50 10 0.71 0.04 0.70
TL - DF to Dataset A 90:10 10 0.71 0.08 0.70
TL - DF to Dataset A 40:60 10 0.70 0.05 0.72

MD 40:60 10 0.70 0.10 0.73
TL - DF to Dataset B 50:50 10 0.69 0.06 0.70

T - Dataset A 60:40 10 0.69 0.08 0.71
T - Dataset A 30:70 10 0.69 0.10 0.71
T - Dataset A 40:60 10 0.69 0.08 0.70

TL - DF to Dataset B 90:10 8 0.68 0.09 0.68
TL - DF to Dataset A 70:30 10 0.68 0.05 0.70

MD 30:70 10 0.68 0.10 0.70
MD 10:90 10 0.68 0.08 0.67

TL - DF to Dataset A 20:80 10 0.67 0.07 0.69
T - Dataset A 10:90 10 0.66 0.07 0.66

MD 60:40 10 0.66 0.08 0.66
TL - Dataset B to A 30:70 10 0.66 0.09 0.66

T - Dataset A 20:80 10 0.66 0.09 0.62
MD 80:20 10 0.65 0.10 0.65

T - Dataset B 70:30 10 0.65 0.08 0.67
MD 50:50 10 0.65 0.10 0.66

TL - Dataset B to A 10:90 10 0.65 0.09 0.66
T - Dataset A 80:20 10 0.65 0.10 0.68
T - Dataset A 50:50 10 0.64 0.10 0.66

TL - Dataset A to B 40:60 10 0.64 0.11 0.65
T - Dataset B 80:20 10 0.64 0.13 0.66

TL - Dataset A to B 70:30 10 0.63 0.09 0.64
MD 20:80 10 0.63 0.10 0.66
MD 70:30 10 0.62 0.12 0.62

TL - Dataset A to B 60:40 10 0.62 0.09 0.66
TL - Dataset A to B 30:70 10 0.62 0.06 0.61

T - Dataset B 30:70 10 0.62 0.05 0.62
T - Dataset B 10:90 10 0.61 0.10 0.63
T - Dataset B 60:40 10 0.61 0.10 0.63
T - Dataset A 70:30 10 0.61 0.14 0.63

TL - Dataset A to B 10:90 10 0.61 0.07 0.61
T - Dataset B 40:60 10 0.61 0.10 0.61

TL - Dataset B to A 40:60 10 0.60 0.16 0.65
MD 90:10 10 0.59 0.07 0.59

T - Dataset A 90:10 10 0.59 0.10 0.60
TL - Dataset A to B 80:20 10 0.58 0.10 0.56

T - Dataset B 20:80 10 0.58 0.11 0.60
TL - Dataset A to B 20:80 10 0.57 0.11 0.60

T - Dataset B 90:10 10 0.57 0.12 0.60
TL - Dataset A to B 90:10 10 0.57 0.13 0.57
TL - Dataset B to A 60:40 10 0.56 0.15 0.58

T - Dataset B 50:50 10 0.56 0.13 0.61
TL - Dataset B to A 20:80 10 0.54 0.14 0.56
TL - Dataset A to B 50:50 10 0.54 0.13 0.55
TL - Dataset B to A 50:50 10 0.53 0.15 0.53
TL - Dataset B to A 80:20 10 0.53 0.13 0.54
TL - Dataset B to A 70:30 10 0.50 0.19 0.50
TL - Dataset B to A 90:10 10 0.49 0.14 0.49

Note: * indicates significant difference (p ¡ 0.05). Post-hoc analysis revealed numerous significant pairwise differences between
groups. Due to the extensive number of significant pairs, they are not all listed here.
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across homogeneous datasets. In contrast, the DF method not only provides a
more robust solution for handling data from multiple sources but also proves to be
consistent in performance across multiple runs.

Utilising transfer learning, even when first training with the fused dataset, does
not lead to better overall performance, even on the dataset that was trained on in the
second phase. This suggests a potential risk of overfitting or catastrophic forgetting
during the second training phase, where the model might adapt too strongly to the
specifics of the second dataset, losing some of the generalised knowledge acquired
during the first phase (from the fused data). This contrasts with the single-phase DF
approach which aims to learn a balanced representation from the start. However,
the preprocessing methods used in the DF algorithm play a crucial role in enhanc-
ing performance, particularly for Dataset B, which required downsampling to meet
the algorithm’s requirements. This demonstrates the algorithm’s adaptability to
variations in data characteristics and its potential for handling real-world scenarios
where data collection specifications may be inconsistent.

Although the performance across different training approaches on Dataset B is
lower than on Dataset A, using transfer learning from the fused dataset to Dataset B
yields results that are on par with training solely on Dataset B using the traditional
approach. Simultaneously, this approach achieves strong performance on Dataset
A. However, the DF algorithm still outperforms all transfer learning approaches in
terms of overall performance on both test datasets.

The box and whisker plot in Figure 4.4, illustrating the spread of the results,
shows that the DF approach did not produce any outlying results from the 10
runs, indicating high levels of consistency. However, it is also evident that the
transfer learning approaches exhibit the lowest deviation in results compared to a
single training phase on one dataset, whether using traditional training approaches
or the proposed DF method. This highlights the potential benefits of combining
transfer learning with the DF approach to achieve even more consistent and reliable
performance across datasets. However, the results show that transfer learning may
not be the best approach, especially in this problem domain, to achieve the best
performance, likely due to the overfitting risks mentioned earlier.

The KW test results presented in Table 4.9 demonstrate that the experimen-
tal results yield a statistically significant outcome, with a p-value close to 0. This
highlights the relevance of the differences observed among the various training ap-
proaches.

4.4.2 Experiment 2 - Varying data volume Analysis

The results of Experiment 2, presented in Table 4.11 and visualised in Figure 4.5,
demonstrate that the DF approach significantly outperforms other training ap-
proaches across varying volumes of training data. Furthermore, when utilising only
6.25% of the training data, the model still surpasses other training approaches that
use 100% of the data, achieving an Average F1 score of 0.788. As expected, most
approaches experience decreased performance when using less data, with the pro-
posed DF approach following this trend closely. However, it is worth noting that the
performance reduction is minimal, with only a 4.04% drop compared to the baseline
results.

This sustained high performance, even with drastically reduced training data
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(down to 6.25%), strongly suggests significant data redundancy within the original
individual datasets, particularly when used with traditional training methods. The
DF algorithm appears to mitigate this redundancy. By fusing data from multiple
homogeneous sources, it likely creates a training sample that better represents the
true population distribution of healthy motor operation within this domain. This
improved representation allows the model to generalise effectively using significantly
less data from each individual source, compared to relying on potentially redundant
information within a single, larger dataset.

Interestingly, not all approaches follow this pattern. For instance, transfer learn-
ing from the fused dataset to dataset B performs best when using 50% of the data,
while transfer learning from the fused dataset to dataset A achieves optimal results
with only 6.25% of the data. For these approaches, there does not appear to be
a clear advantage to using more data, leading to the conclusion that, for training
unsupervised anomaly detectors, using more data is not always beneficial. While
this may not hold true for other tasks such as fault classification, those tasks are
beyond the scope of the present study and will be explored in future works.

The box and whisker plot in Figure 4.5 reveals that the performance of the
anomaly detection model trained with DF is less consistent and has a larger spread
when using less data. However, examining the results from other training approaches
shows that this is not always the case. In some instances, such as Transfer Learning
from Dataset A to Dataset B, the spread is largest when training with the full
dataset. Additionally, as the KW test results in Table 4.12 show, the differences
between the groups are statistically significant (p ¡ 0.001).

By outperforming all other models while using only a small fraction of the train-
ing data, the DF method addresses the common challenge of not having sufficient
training data from each data source. In this experiment, as shown in Table 4.10,
the estimated FLOPs needed for training the model with 6.25% of the data dra-
matically decreased from 4.92× 1012 to 3.08× 1011, representing a 93.7% reduction
in computational power. This significant decrease is especially noteworthy when
contrasted with the minor 4.04% reduction in performance. The DF approach effec-
tively utilises less data, showcasing its potential to contribute to more sustainable
and environmentally friendly AI development. Aligned with the principles of Green
AI, which emphasise efficiency and reducing the environmental impact of training
AI models, the results of Experiment 2 highlight the superior performance of DF.
Its crucial implications for real-world applications demonstrate its ability to address
the issue of limited training data while promoting more sustainable practices in AI
development, providing a valuable contribution towards SDG goals 12 and 13 with
reduced computational power requirements and hence energy consumption.

4.4.3 Experiment 3 - Varying dataset ratio Analysis

The results of the experiment, shown in Table 4.14 and Table 4.15, reveal that the
DF algorithm outperforms all other training approaches in terms of Average F1
score. The best performance is achieved with a 30:70 ratio (Dataset A: Dataset B),
resulting in an Average F1 score of 0.827, closely followed by the baseline experiment
(50:50) with an Average F1 of 0.821. In comparison, the next best performing
training approach was transfer learning from the fused dataset to Dataset B (TL –
DF to Dataset B), which had an Average F1 score of 0.751. The KW test results in
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Table 4.16 confirm that these differences are statistically significant (p ¡ 0.001).
The box and whisker plot in Figure 4.6 indicates that the transfer learning ap-

proaches involving the fused dataset generally exhibit less spread compared to other
methods. Furthermore, the spread of the DF results appears to be the most consis-
tent across different experimental settings. One might hypothesise that the box plot
trend would indicate an increase in generalised performance as the balance between
samples from each dataset increases. Interestingly, this is not the case.

While the results empirically demonstrate that an imbalance in datasets mostly
does not affect the stability of the results for DF, a clear trend is observed, wherein
the average F1 score decreases as more of Dataset A is used for training. This trend
is more evident in some of the other approaches, such as T-Dataset A, TL-Dataset
B to A, and the mixed dataset (MD). For instance, training with the Mixed Dataset
at a 40:60 ratio yields an F1 score of 0.889 on Dataset A, 0.509 on Dataset B, and
an overall average of 0.699. Conversely, training with a 90:10 ratio results in an F1
score of 0.890 on Dataset A, 0.300 on Dataset B, and an overall average of 0.595.
These results show that the performance on Dataset A can be maintained with less
data while improving the performance on Dataset B with more data.

The observed trend leads to an intriguing conclusion: there is a higher benefit
to training with Dataset B compared to Dataset A to achieve a more generalised
anomaly detection performance. Although both Dataset A and Dataset B represent
healthy data from similar 3-phase motors operating in the same domain, Dataset B
exhibits a higher level of noise, as seen in Figure 4.2h, and a slightly higher spread
in the PCA plot (Figure 4.3). These observations suggest that Dataset B is a more
complex or diverse dataset to learn from. Training on this more challenging dataset
might force the model to learn more robust and invariant features of ”healthy”
operation, which then generalise better not only to unseen data from Dataset B but
also implicitly to the relatively cleaner data of Dataset A. Relying too heavily on the
cleaner Dataset A might lead the model to learn features that are too specific and
less robust to the variations encountered in Dataset B or potentially other unseen
motors. This implies that incorporating a larger variety of healthy data, even if
noisier, in the training dataset contributes to an overall better anomaly detection
performance across the domain.

4.4.4 Further Remarks and Limitations

In the context of Transfer Learning, it is worth noting that better results on the
dataset trained on in the second phase are not guaranteed. The results of the exper-
iments demonstrate that swapping the transfer learning training phases produces
different outcomes, which indicates that there is no clear approach to determine
which dataset should be used in each phase without conducting additional testing.
DF mitigates this issue by training on both datasets simultaneously. Moreover, as
discussed in Section 4.4.1, the second phase of transfer learning carries the risk of
catastrophic forgetting or overfitting, potentially moving the model weights away
from a well-generalised state towards the specific nuances of the target dataset,
thereby degrading overall performance.

The conclusions drawn from Experiment 3 suggest that there is a greater benefit
to training on a higher number of samples from Dataset B, as opposed to Dataset A,
in order to achieve a more generalised performance. However, identifying this pref-
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erence presents a challenge, as a similar experiment must be conducted to reach this
determination. Despite this issue, the DF approach offers a solution by providing
a more stable performance across multiple experimental settings. This advantage
becomes particularly significant in practical applications where time and resource
constraints may render extensive experimentation unfeasible. By addressing these
concerns and offering more consistent results, DF shows potential as an effective
method for training unsupervised anomaly detection models, particularly in situ-
ations where the optimal dataset and training phase cannot be easily determined.
The robust performance of the DF approach, combined with its ability to accommo-
date various experimental settings, positions it as a valuable tool for practical use
cases.

One important consideration regarding the DF algorithm is its handling of tem-
poral continuity. The process involves batching based on zero-crossings within each
dataset and then interleaving these batches. While this preserves continuity within
a batch originating from a single source, it inherently introduces discontinuities at
the transition points between batches from different datasets. In the time domain,
this might appear as abrupt shifts in signal characteristics. However, for anomaly
detection tasks focused on identifying source-invariant deviations or irregularities
(like specific fault signatures), these batch transitions might be less detrimental,
as the model learns to recognise patterns independent of the immediate preceding
batch’s origin. In the frequency domain, as suggested by the fused spectrum in Fig-
ure 4.2(i), these transitions could potentially introduce minor artefacts or broaden
spectral peaks compared to a continuously sampled signal from a single source.
While the current study demonstrates strong performance in the time domain, ap-
plying DF directly to frequency-domain inputs might require additional smoothing
techniques or adaptations to the fusion process itself to mitigate potential artefacts
caused by these discontinuities. Future research could explore smoothing filters
applied post-fusion or alternative frequency-domain fusion strategies.

In tasks requiring long-term degradation or forecasting, where the sequential na-
ture of the data is paramount, the batching and fusion method may not be optimal.
In such tasks, training data are primarily aimed at identifying the trend of data
behaviour over time from a specific source, which may be obscured when alternately
mixing datasets. However, for other tasks where the focus is on identifying data
source invariant changes — those consistent regardless of the source — the DF al-
gorithm proves to be highly beneficial. This methodology enables the creation of a
balanced training set that is more representative of the population distribution of
the problem at hand. This approach, therefore, demonstrates substantial value in
tasks such as classification or anomaly detection, where the detection of irregularities
or deviations is more critical than following a specific trend. In contrast, in fore-
casting tasks, where the continuity and trend of a single data source are paramount,
alternative methods preserving the sequential integrity within each source may yield
better models.

The homogeneity assumption in the proposed DF technique also presents a lim-
itation, particularly when handling real-world datasets that often exhibit some de-
gree of non-homogeneity such as in this case, motors of different sizes and rotational
speeds.
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4.5 Conclusion

This chapter presents a time-series dataset composition approach called the DF
algorithm, designed to address challenges in achieving generalised anomaly detection
performance across multiple homogeneous data sources. The proposed algorithm
was validated using a case study involving motor current signals, demonstrating that
the fused dataset retains salient features from both source datasets while clustering
in the middle of both datasets when PCA is applied. The algorithm was then tested
on an anomaly detection task and compared to conventional training approaches,
with empirical results showing that the DF algorithm significantly outperforms other
methods in terms of average performance across both datasets.

Additionally, further experiments were conducted to assess the performance of
the proposed approach under non-ideal conditions. Experimental results indicate
that the DF approach remains superior even when reducing the number of data
samples, with only a 4.04% reduction in performance despite using only 6.25% of
the training data, resulting in a 93.7% reduction in computational power required
for training. When evaluating the model’s performance with imbalanced numbers
of samples from each dataset, the proposed approach proved stable across differ-
ent sample ratios. These findings highlight significant benefits in the context of
Green AI, which emphasises sustainable AI model development, as well as practical
feasibility due to the algorithm’s resilience under non-ideal conditions.

While the DF algorithm has shown promising results for homogeneous datasets,
adapting the proposed method to enable compatibility with non-homogeneous datasets
is a crucial next step in enhancing its applicability. This can potentially be accom-
plished using domain adaptation techniques, which would further strengthen the
generalisability of the proposed method. Chapter 5 explores this direction by in-
troducing ODT, a novel pre-processing algorithm designed to standardise and align
the frequency components of signals from different motors.
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Chapter 5

Heterogeneous Induction Motor
Current Dataset Fusion for
Efficient Generalised MCSA-based
Fault Classification

5.1 Introduction

The industrial application of machine learning algorithms for fault detection and
diagnostics in IMs is often hindered by the diversity of operating conditions, motor-
specific characteristics, and the scarcity of labelled fault data. These factors create
significant barriers to developing universally applicable models. To overcome these
challenges, this chapter introduces the Order Domain Transformer (ODT), a novel
pre-processing algorithm. ODT enhances the learning capability of neural networks
and allows for the training of a universal model capable of handling signals from
multiple types of IMs. The method optimises the utilisation of available labelled
data and is computationally efficient with low overhead, making it suitable for real-
time applications. Importantly, the algorithm aligns with the principles of Green AI
by significantly improving model performance across multiple motors while moving
towards significantly reducing the computational and data resource requirements
required for training multiple models, thereby contributing to more sustainable and
energy-efficient machine learning practices in industrial settings.

The rest of the chapter is structured as follows: Section 5.2 describes the method-
ology behind ODT, followed by Section 5.3, which presents the experimental setup
and results. Section 5.4 discusses the implications of the findings of the study, and
Section 5.5 concludes the chapter.

5.2 Order Domain Transformer

5.2.1 Fitting Stage

The fitting stage is the preliminary phase where key parameters that guide the
transformation are determined. These parameters include the reference sampling
frequency and the number of orders to analyse.
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Reference Sampling Frequency

The choice of a reference sampling frequency, denoted as fstarget , is a critical step that
affects the quality of the signal analysis. The selection should ideally be based on
the most commonly present sampling frequency across the datasets being examined.
This is because upsampling a signal, while not adding any new information, increases
computational complexity, and downsampling poses the risk of information loss,
especially if the original signal has frequency components near or above the Nyquist
frequency.

Number of Orders

The number of orders, Norders, specifies the harmonics of the fundamental frequency
that should be captured in the frequency domain representation. This is converted
to a target fundamental frequency,fotarget :

fotarget =
fstarget
2Norders

(5.1)

5.2.2 Resampling Stage

The resampling stage is where the main transformation to the signal occurs.
Whilst generally the motor’s fundamental frequency, fo, is available, there may

be times when this information is not readily available or easily collectable. In
this case, fo of the signal can be estimated using FFT-based peak detection. This
approach does not account for motor slip, which can affect the accuracy of the
frequency representation. However, ignoring motor slip eliminates the need for
tachometer data, making the method more versatile as it solely relies on the motor
current signal.

5.2.3 Signal Interpolation

The number of periods within the signal, denoted as T , is calculated:

T =
Nfo
fs

(5.2)

where N is the number of samples in the TS signal, fo is the estimated or provided
fundamental frequency, and fs is the current sampling frequency.

With T known, the new length of the interpolation axis, S, can be calculated:

S =
fstargetT

fotarget
(5.3)

The resampled signal y(x) is generated by linearly interpolating between the old
and new axes, denoted by T and S respectively:

y(x) = y1 +
y2 − y1
S − T

× (x− T ), x = 1, 2, . . . , S (5.4)

where x is the point on the new resampling axis, y1 and y2 are the original points
above and below x on the old axis T , and S is the end point for the newly resampled
axis
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5.2.4 Transform Stage

At this stage, the signal y(x) is interpolated with reference to fotarget and fstarget . Any
signal transformation can be used now, but the present study will explore the use of
the Welch Power Spectral Density (PSD) estimation [175] to extract salient features
from the signal in the form of fault frequencies to facilitate easier fault classification.
All signals that undergo ODT pre-processing will be aligned, which also means that
the frequency bins will be aligned to make comparison easier.

Welch’s method [175] addresses the issue of measuring PSD in non-stationary
signals by averaging the power content across the signal using a sliding window of
periodograms with a specified overlap. The advantage of this is a reduction of noise
across the PSD, at a cost of frequency resolution in comparison to using the entire
signal. For a signal x[n] with N samples, the Welch method first splits the signal
into K segments with M points in each segment, with S points shifted between each
segment. This means that there is a M−S overlap between each segment. Equation
5.5 is then used to calculate the periodogram for each segment. The periodogram
of each segment is then averaged using Equation 5.6 to obtain the Welch estimate
of the PSD.

Px,N(ω) =
1

N

∣∣∣∣∣
N−1∑
n=0

x[n]e−jωn

∣∣∣∣∣
2

(5.5)

Sxwelch
[ω] =

1

K

K−1∑
k=0

Pk[ω] (5.6)

where ω is the angular frequency, and j is the imaginary unit,
√
−1

Algorithm 2 Order Domain Transformer

1: Input: Original signal x(t), Sampling frequency fs, Target sampling frequency
fstarget , Number of orders Norders

2: Output: Resampled signal y(x)
3: Fitting Stage:
4: Calculate fotarget using Equation 5.1
5: Resampling Stage:
6: Estimate fo using FFT-based peak detection or use provided fo
7: Calculate T using Equation 5.2
8: Calculate S using Equation 5.3
9: Signal Interpolation:
10: Perform linear interpolation using Equation 5.4 to obtain y(x)
11: Return y(x)

5.2.5 Computational Complexity

Table 5.1 breaks down the computational complexity of each step in the ODT
method using Big O notation.

The computational complexity of the ODT algorithm primarily consists of linear
interpolation, however, factoring in the FFT used for estimating fo, and the final
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Table 5.1: Computational Complexity of the ODT algorithm for each step

Operation Complexity
fo estimation O(nlogn) [176]
ODT O(n)
Welch’s Method O(nlogn) [176]

welch transformation, the computational complexity increases significantly. In sce-
narios where fo is already known and FFT-based estimation is not needed, the differ-
entiating computational complexity between using Welch’s method with or without
ODT comes from the linear interpolation step. This makes the ODT algorithm a
low-overhead algorithm that is suitable to be applied in real-time processes.

5.3 Experimental Results

To validate the performance of the proposed technique on classification tasks relating
to motor condition, two experiments were undertaken:

• Baseline Test: A baseline test was conducted using a traditional train-test
split on a curated dataset composed of two datasets to ensure that a model
trained using the proposed ODT pre-processing maintains similar performance
to a model trained without.

• Unseen Dataset Test: In order to validate the claims made in this work
regarding the improved generalisation capability of an NN using this technique,
a new labelled dataset was introduced which was not trained or validated on
previously by the models. A model trained using without ODT pre-processing
was compared with a model trained using ODT.

The next sections briefly break down the NN model architecture used for the
experiment, introduce the datasets used, and present the main results of this study.

5.3.1 Transformer Network

Developed initially for sequence-to-sequence ML applications, the Transformer NN
architecture [4] is designed to take in sequential data and process the entire input
in one go using the Attention Mechanism, as opposed to traditional Recurrent NNs
which process data sequentially without attention.

The architecture of the model used in this study is shown in Figure 5.1. The
transformer block first applies layer normalisation across the features being input
into the network. In this case, the features are the frequency spectra of the 3-
phases current signals of the motor. Next, a multi-head attention layer is employed
to determine the relevance of a particular frequency to the other frequencies in
the spectra. The weighting vectors produced by the attention layer are applied to
the input and passed onto 1D Convolutional layers, which output the data in the
correct structure to be fed into the next transformer block. Each transformer block
only receives the output of the previous transformer block as an input and has no
information on any other values in the NN.
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Figure 5.1: Transformer architecture used in this study, courtesy of [4]
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Table 5.2: A breakdown of the datasets used in this study

Dataset
Sampling
Frequency (Hz)

Operating
Frequencies (Hz)

Other Specifications

Dataset A: Broken Rotor Bar Dataset [28] 1000 50, 60
4 poles, 50Hz: 1/3 HP/ 248W, 1.85A
60Hz: 1/2 HP/372W 2.2A

Dataset B: Vibration and Motor Current Dataset of Rolling Element
Bearing Under Varying Speed Conditions for Fault Diagnosis [29]

26,500 60
4 poles, 1 HP, 3010 rpm,
380V, 3A, 0-4Nm load

Dataset C: Experimental Database For Detecting And Diagnosing
Rotor Broken Bar In A Three-Phase IM [30]

55,611 60
4 poles. 220V / 380V, 3.02A / 1.75A
4.1 Nm torque, 1715 rpm speed

Table 5.3: Number of samples in each fault class for the datasets presented in Table
5.2, where X represents no coverage of the fault class

Dataset
Number of Samples

Normal Broken Rotor Bar Bearing Unbalance Misalignment
Dataset A 134 221 X X X
Dataset B 3 X 9 15 9
Dataset C 80 320 X X X
Total 217 541 9 15 9

Once the data has passed through the transformer encoder blocks, it is then de-
coded to produce a classification. The output of the final transformer block passes
through a global average pooling layer to produce a feature map for each category
of the classification task. The feature map then passes through two fully connected
dense layers, which outputs the one-hot encoded classification of the motor con-
dition. The NN makes use of dropout [89] layers throughout the architecture to
mitigate overfitting on the training data and improve overall training performance.

5.3.2 Datasets and Pre-processing

Table 5.2 depicts the datasets used for each of the experiments, and Table 5.3 breaks
down the total number of classes in the datasets.

Dataset A focuses on broken rotor bars and operates at sampling frequencies
of 1000 Hz and operating frequencies of 50 and 60 Hz. Dataset B analyses rolling
element bearings under varying speed conditions with a sampling frequency of 26,500
Hz. Dataset C presents rotor broken bar fault signals with a sampling frequency
of 55,611 Hz. The specific fault classes covered by each dataset and the number of
samples available for each are detailed in Table 5.3.

For the experiments, 70% of the data from Dataset A and Dataset B is used
for training the model. The remaining 30% from these datasets is used for the
baseline test in the first experiment to assess the model’s performance with and
without the ODT preprocessing. For the second experiment, which aims to validate
the generalisation capability of the model using ODT, Dataset C will serve as the
unseen dataset.

For data pre-processing, both the baseline and ODT-utilising experiments first
subtract the mean of the TS signal to remove its DC component. Welch’s method is
applied, followed by log-scaling, which is crucial for preventing significant harmonic
amplitudes from overshadowing important variations in intermediate frequencies,
allowing for a more detailed fault classification. Following this, Z-score normalisation
is applied, ensuring each frequency spectrum has a mean, µ, of zero and a standard
deviation, σ of one:
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z =
x− µ

σ
(5.7)

This standardisation aids in maintaining fault class distinctions and ensures all
frequency regions are equally weighted during NN training, leading to faster conver-
gence. In the experiments leveraging ODT, the ODT pre-processing step precedes
these operations. In both cases, the number of Fast Fourier Transform points, nfft,
value of 4096 is used, resulting in each sample having the shape (2048, 3).

The resulting signals for each class from the aforementioned pre-processing steps
are illustrated in Figure 5.2, where (a) is the non-ODT signal and (b) is the ODT
signal. The figure averages 9 samples for each class, offering a more balanced and
consistent view of how the ODT and non-ODT signals compare across typical scenar-
ios. In the figure, the non-ODT signals display harmonics that are scattered across
the frequency spectrum, making it challenging to identify consistent patterns. On
the other hand, the ODT-processed signals exhibit harmonics that are more uni-
formly distributed and consistent, facilitating easier interpretation and analysis.
Additionally, it’s worth noting that the x-axis in the figure represents the sample
index, indicating that the signals are truly aligned and standardised, making them
more suitable for NN input.

5.3.3 Evaluation Metrics

To evaluate the performance of the proposed method, we use the following metrics:

• Precision: The ratio of true positive predictions to the total number of pos-
itive predictions made.

Precision =
TP

TP + FP

• Recall: The ratio of true positive predictions to the total actual positives.

Recall =
TP

TP + FN

• F1 Score: The harmonic mean of precision and recall.

F1 Score = 2× Precision× Recall

Precision + Recall

• Accuracy: The ratio of correct predictions to the total number of predictions.

Accuracy =
TP + TN

TP + TN + FP + FN

• Macro Average F1: The unweighted mean of F1 Scores for all classes.

Macro Avg F1 =
1

N

N∑
i=1

F1i
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(a) Without ODT

(b) With ODT

Figure 5.2: A comparison of the Welch Spectra of each class, with and without ODT
preprocessing, where each spectra shown is the average of 9 spectra from each class
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Table 5.4: Tuned hyperparameters for the model used in the experiments

Parameter Value
Optimiser Adam
Learning Rate 0.0001
Transformer Blocks 3
Number of Heads 3
Dropout 0.4
Number of parameters 298,331

• Weighted Average F1: The average of F1 Scores for all classes, weighted
by the number of samples in each class.

Weighted Avg F1 =
1∑
wi

N∑
i=1

wi × F1i

where TP , TN , FP , and FN stand for True Positives, True Negatives, False Pos-
itives, and False Negatives, respectively. N is the number of classes and wi is the
number of samples in class i.

Each experiment run was repeated 5 times for experimental validity. Class
weighting was used during model training to combat the significant class imbal-
ance present in the dataset [177]. Categorical Cross entropy was used as the loss
function. The training was set for 200 epochs, but Early Stopping with a patience
of 20 epochs monitoring the validation loss was used to prevent overfitting.

For hyperparameter tuning, a grid search was conducted using the test accuracy
from the initial baseline experiment as the metric. The tuned hyperparameter values
are presented in Table 5.4.

The experiment results are organised into two primary tables. Table 5.5 sum-
marises the results from the baseline test, where a model was trained on 70% of
Dataset A and Dataset B and subsequently evaluated on the remaining 30%. Table
5.7, displays the findings from the unseen data test, in which the trained model was
applied to Dataset C, a dataset not previously encountered during the training or
validation process.

To evaluate the statistical signifcance and stability of the results, a KW test
was conducted on the experimental results; particularly the Weighted Average F1
Scores. Boxplots showing the variance in the experiment repetitions are illustrated
in Figure 5.3 and Figure 5.4 for the baseline and unseen experiments respectively,
and the KW test results in Table 5.6 and Table 5.8 respectively.

One important thing to note regarding the unseen data test is that although
there are only 2 fault classes, the model is trained to detect 5 fault classes which
adds complexity to the problem.

5.4 Discussion

The results in Table 5.5 show that the model using ODT pre-processing generally
maintains similar performance on the test set when compared to the non-ODT
model. This claim is also supported by the box plot in Figure 5.3, which shows
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Table 5.5: Experimental results for 5 iterations of baseline test, where P is precision
and R is Recall

Model Metric
Bearing Broken Rotor Bar Misalignment Normal Unbalance

Accuracy
Macro
Avg F1

Weighted
Avg F1P R F1 P R F1 P R F1 P R F1 P R F1

Non-ODT
Best 1.00 0.50 0.67 1.00 1.00 1.00 0.67 1.00 0.80 1.00 0.96 0.98 0.75 1.00 0.86 0.97 0.86 0.97
Average 0.60 0.30 0.40 0.93 0.96 0.94 0.53 0.80 0.64 0.94 0.85 0.89 0.66 1.00 0.79 0.90 0.73 0.90
Std Dvn 0.55 0.27 0.37 0.06 0.04 0.03 0.30 0.45 0.36 0.06 0.11 0.07 0.08 0.00 0.06 0.04 0.10 0.05

ODT
Best 1.00 0.50 0.67 0.98 1.00 0.99 0.00 0.00 0.00 1.00 0.96 0.98 0.50 1.00 0.67 0.95 0.66 0.94
Average 0.80 0.40 0.53 0.96 0.95 0.96 0.33 0.60 0.43 0.93 0.91 0.92 0.69 0.93 0.76 0.92 0.72 0.91
Std Dvn 0.45 0.22 0.30 0.02 0.06 0.04 0.31 0.55 0.39 0.08 0.03 0.05 0.23 0.15 0.12 0.03 0.08 0.03

Figure 5.3: Box plot for 5 iterations of baseline test on the Weighted Average F1
Scores

Table 5.6: Kruskal-Wallis test results comparing Baseline and ODT models.

Model n Mean SD Median Chi-square p-Value

Baseline 5 0.94 0.03 0.95 0.53 0.465
ODT 5 0.92 0.03 0.91

Note: No significant difference was found between the models (p ¿ 0.05), indicating that ODT maintains performance comparable to the Baseline.

Table 5.7: Experimental results for 5 iterations of unseen dataset test, where P is
precision and R is Recall

Model Metric
Broken Rotor Bar Normal

Accuracy
Macro
Avg F1

Weighted
Avg F1P R F1 P R F1

Non-ODT
Best 0.83 0.40 0.54 0.21 0.65 0.32 0.45 0.29 0.50
Average 0.79 0.26 0.38 0.19 0.71 0.30 0.35 0.28 0.37
Std Dvn 0.05 0.10 0.11 0.02 0.13 0.03 0.06 0.09 0.09

ODT
Best 0.81 0.94 0.87 0.32 0.09 0.14 0.77 0.25 0.72
Average 0.79 0.83 0.81 0.13 0.05 0.07 0.67 0.20 0.66
Std Dvn 0.01 0.08 0.05 0.11 0.03 0.04 0.07 0.04 0.04
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Figure 5.4: Box plot for 5 iterations of unseen test on the Weighted Average F1
Scores

Table 5.8: Kruskal-Wallis test results for Weighted Average F1 Scores on the unseen
dataset.

Model n Mean SD Median Chi-square p-Value

Unseen ODT 5 0.67 0.02 0.67 6.82 0.009*
Unseen Baseline 5 0.29 0.15 0.24

Note: * indicates significant difference (p ¡ 0.05). Post-hoc analysis confirms the significant difference between unseen Baseline and unseen ODT models.
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that the results largely overlap, and the KW results in Table 5.6, which shows a p-
value of 0.465 between the two groups, rejecting the null hypothesis of a statistical
difference. This is largely because the non-ODT model is trained to accommodate
the various operating conditions in the dataset, enabling it to generalise to the test
set as effectively as the ODT model. The non-ODT model’s best performance,
with an accuracy of 0.97, slightly outperforms the best ODT model, which has an
accuracy of 0.95, however, the KW statistical test negates this difference as non-
statistically significant. The non-ODT model attains an average accuracy of 0.9,
a Macro Average F1 of 0.73, and a Weighted Average F1 of 0.9. In contrast, the
ODT model performs at an average accuracy of 0.92, a Macro Average F1 of 0.72,
and a Weighted Average F1 of 0.91. The standard deviation in accuracy for the
ODT model is 0.03, as compared to 0.04 for the non-ODT model, suggesting a more
consistent performance from the ODT model.

For the unseen test, the results in Table 5.7, as well as the statistical tests
in Table 5.8, provide strong empirical evidence that the ODT model significantly
outperforms the non-ODT model when faced with a completely new motor. This
is likely because aligning the harmonics through ODT pre-processing allows the
NN to more effectively capture the salient features related to motor faults during
training, thereby enhancing the model’s ability to generalise across different motors.
On average, the non-ODT model achieves an accuracy of 0.35, a Macro Average F1
of 0.28, and a Weighted Average F1 of 0.37. In contrast, the ODT model scores
an average accuracy of 0.67, a Macro Average F1 of 0.2, and a Weighted Average
F1 of 0.66. The KW test results in a p-Value of 0.009, and post-hoc analysis with
Bonferroni correction confirms the significant difference between the two groups of
Weighted Average F1 scores. The notably lower Macro Average F1 score for the
ODT model can be attributed to one of its current limitations: it does not account
for how ”normal” operation may vary significantly among different motors, leading
to a higher likelihood of misclassification due to differing environmental conditions.

To summarise, in situations where models are solely applied to specific, consis-
tent motor types, the non-ODT model proves sufficient, offering solid performance
without additional pre-processing. However, when the goal is robust fault classifi-
cation across diverse motors and environments, the ODT model is more effective,
evidenced by the results in Table 5.7.

5.4.1 Advantages of ODT

Based on the outcomes of the experimental work, we can summarise the following
advantages for using ODT:

• One Model for Multiple Motors: Only one model needs to be trained,
which can then be applied across different motors with varying characteris-
tics. This results in a reduction of computational resources required for model
training, aligning with Green AI development practices.

• Optimal Utilisation of Labeled Data: A universal model also allows for
better utilisation of available labelled motor data, pooling the data from dif-
ferent motors to create a richer, more diversified training set.

• No additional data requirements: The method is applied to motor current
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signals which can be collected non-invasively, making it more easily applicable
across a broad range of settings.

5.4.2 Current Limitations of ODT

ODT has proven valuable for enhancing NN generalisation across unseen motors.
However, it presents certain limitations:

• Accounting for operating environments: ODT does not account for the
varying environments in which motors operate. The experimental results in
Table 5.7 reflect this limitation. While faults exhibit distinct frequency spec-
tra signatures, the ”normal” operation can differ between motors, increasing
misclassification risks due to varied environments. The Dataset Fusion method
[22] is being considered for future studies to address this.

• Accounting for motor slip: ODT may not accurately account for motor slip
when estimating fo through spectral methods since the algorithm normalises
based on the estimated fo, which might not align with the motor’s actual op-
erating frequency. Nevertheless, the benefits of harmonic alignment outweigh
this limitation.

5.5 Conclusion

ODT addresses key challenges in motor fault detection by standardising and aligning
the frequency components of signals from different IMs. The algorithm works by
transforming the frequency spectra of motor signals into a standardised ”order”
domain, thereby enhancing the learning capability of NNs on heterogeneous motor
data. Experimental results show that using ODT maintains statistically similar
performance to non-ODT data when a model is trained on data from a motor it
will be applied to, but results in a statistically significant increase in cross-motor
generalisation classification accuracy from 0.35 with standard pre-processing to 0.67
with ODT pre-processed data. These results are promising and pave the way for
the development of more efficient, generalised models that utilise all available data
in the problem domain. Furthermore, the potential for reduced training times, and
hence reduced computational power, compared to multi-model training aligns with
a greener approach to AI development.
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Chapter 6

Conclusion

This thesis presents significant advancements in the field of IM fault detection
through the application of novel ML architectures and signal processing techniques.
The overarching goal of this research was to enhance the generalisation capabil-
ities of fault detection models across different motors and operating conditions,
thereby addressing critical limitations in current methodologies. The contributions
and findings of this research are encapsulated in three key areas: the development of
a Multi-Channel LSTM-Capsule Autoencoder Network for Anomaly Detection, the
introduction of DF Algorithm for Generalised Anomaly Detection on homogeneous
data sources, and the proposal of ODT for Fault Classification on heterogeneous
data sources.

The literature review conducted in Chapter 2 highlights several key points re-
garding fault detection, generalisation techniques, and cross-domain fault diagnosis.
Traditional methods of fault detection rely heavily on hardware redundancy, which
can be inefficient and costly. Soft sensing methods, such as those using NNs, offer
more efficient and effective alternatives but require extensive labelled data, which
can be expensive and time-consuming to produce. Unsupervised learning techniques
like AEs have been proposed to mitigate this issue, but they often require large vol-
umes of data and struggle with generalisation. The CapsNet was introduced to
address these challenges, offering improvements in training efficiency and spatial
context learning. Overall, the literature review emphasises the necessity for more
flexible and accurate system modelling that is more representative of real conditions,
which sets the stage for the subsequent chapters.

Chapter 3 introduces a hybrid model that combines LSTM networks with Cap-
sule Networks within a multi-channel autoencoder architecture. This model was
designed to address issues related to training performance and anomaly detection
in multivariate TS data. Empirical evaluations conducted on both a drone dataset
and the SKAB anomaly detection benchmark demonstrated that the proposed ar-
chitecture could efficiently train over fewer epochs, show resilience to overfitting, and
achieve state-of-the-art performance in outlier detection. The integration of Cap-
sules within the LSTM framework proved effective in capturing complex temporal
dependencies and spatial relationships, enhancing the model’s overall performance
in anomaly detection tasks. The experimental results highlighted that the multi-
channel approach and the inclusion of Capsules led to significant improvements in
training efficiency and anomaly detection performance, showcasing the robustness
and adaptability of the proposed model.
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Specifically, the drone dataset experiments revealed that the proposed model
with Capsules converged faster, reaching local minima more efficiently compared
to models without Capsules. The anomaly detection accuracy was significantly
higher, with the proposed model achieving a precision of 0.91 and a recall of 0.89
on the drone dataset, compared to 0.85 and 0.82 for the standard LSTM model.
Furthermore, on the SKAB benchmark, the proposed model outperformed state-of-
the-art methods, achieving an F1 score of 0.87, compared to the highest score of
0.78 from other models.

Building upon the foundation established in Chapter 3, Chapter 4 introduces
the novel DF algorithm to address the challenge of generalising anomaly detection
performance across multiple homogeneous data sources. The architecture proposed
in Chapter 3 was employed to validate the effectiveness of the Dataset Fusion ap-
proach. This method was rigorously tested using motor current signals from differ-
ent datasets. The DF algorithm effectively retains salient features from each source
dataset while merging them into a unified dataset. This approach significantly im-
proved generalisation performance, allowing for accurate anomaly detection across
various datasets. Additionally, the DF algorithm demonstrated robustness under
conditions of reduced training data, thereby reducing the computational resources
required for training and aligning with the principles of Green AI.

The empirical results showed that the DF method outperformed traditional train-
ing approaches. For instance, with only 6.25% of the training data, the DF approach
achieved an Average F1 score of 0.788, while traditional methods using the full
dataset achieved lower scores. This represents a 93.7% reduction in computational
power required for training, as the estimated FLOPs decreased from 4.92× 1012 to
3.08×1011. The robust performance of the DF method across different data volumes
and ratios highlighted its practical applicability and sustainability.

Chapter 5 further extends the work by presenting the ODT, a pre-processing
algorithm that standardises and aligns the frequency components of motor signals
to enhance cross-motor generalisation in fault classification. The ODT significantly
improved the classification accuracy for motors that were not present in the train-
ing dataset, addressing a critical need for real-world applications where monitoring
systems must handle a variety of motor types and configurations without extensive
retraining. By enabling the development of a single model that can generalise across
multiple motors, the ODT reduces the need for separate models for each motor type,
thereby simplifying deployment and conserving computational resources.

The experimental results demonstrated a substantial improvement in cross-motor
generalisation classification accuracy. The ODT model achieved an average accuracy
of 0.67 and a Weighted Average F1 score of 0.66 on a blind test with a new motor,
compared to the non-ODT model’s accuracy of 0.35 and Weighted Average F1 score
of 0.37. These findings underscore the effectiveness of the ODT in creating more
adaptable and robust fault detection systems, capable of handling diverse motors
and operating conditions.

6.1 Recommendations for future work

The findings and advancements presented in this thesis offer a robust foundation
for the development of more flexible and adaptable IM fault detection systems.
However, several avenues for future research can further enhance the generalisation,
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efficiency, and applicability of these models.
Chapter 3 utilised raw TS data for anomaly detection in the Multi-Channel

LSTM-Capsule Autoencoder. While this approach demonstrated significant im-
provements in training efficiency and anomaly detection performance, future re-
search could explore the use of different signal representations, such as FFT. Specif-
ically for IM anomaly detection, FFT could enhance the prominence of relevant
features by transforming the time-domain data into the frequency domain. This
representation may reveal additional patterns and anomalies that are not as evident
in the raw TS, potentially improving the model’s detection capabilities.

The DF algorithm introduced in Chapter 4 was validated by randomly reducing
the dataset to test its robustness under conditions of limited training data. While
this method demonstrated that the DF approach can maintain high performance
even with significantly reduced data, future work could focus on more systematic
approaches to identifying redundant data. Techniques such as active learning, data
pruning, or clustering methods could be employed to systematically select the most
representative subsets of the data. This would ensure that the reduced dataset
retains its diversity and informative value, thereby further optimising computational
efficiency and model performance. Furthermore, it is currently unclear whether the
advantages of DF will be consistent for other time-series problems. Addressing this
question presents an intriguing avenue for future research.

The ODT introduced in Chapter 5 was primarily tested for fault classification
in this research, showing substantial improvements in cross-motor generalisation ac-
curacy. However, the potential of ODT for anomaly detection remains unexplored.
Future studies could investigate the application of ODT in anomaly detection tasks,
leveraging its ability to standardise and align frequency components across different
motors. By extending ODT to anomaly detection, the approach could potentially of-
fer a unified solution for both classification and detection tasks, enhancing its utility
and applicability in real-world industrial settings. Furthermore, while the current
implementation of ODT demonstrated significant improvements in fault classifica-
tion, there is scope for optimising the NN architectures used in conjunction with
ODT. Future research could explore the development and testing of more advanced
NN architectures. Optimising the NN architecture for ODT could lead to even
greater enhancements in generalisation performance and computational efficiency.

Finally, future research should focus on the real-world deployment and validation
of the proposed models. Implementing these techniques in live industrial environ-
ments will provide valuable insights into their practical applicability, robustness, and
scalability. Real-world testing can uncover additional challenges and opportunities
for refinement, ensuring that the developed models meet the demands of industrial
applications and contribute effectively to the advancement of Industry 4.0.
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[155] A. Blázquez-Garćıa, A. Conde, U. Mori, and J. A. Lozano, “A review on
outlier/anomaly detection in time series data,” ACM Comput. Surv., vol. 54,
no. 3, apr 2021. [Online]. Available: https://doi.org/10.1145/3444690

[156] G. Jin, X. Yi, L. Zhang, L. Zhang, S. Schewe, and X. Huang, “How does
weight correlation affect the generalisation ability of deep neural networks?”
vol. 2020-Decem, 2020.

[157] D. Partridge and N. Griffith, “Strategies for improving neural net generalisa-
tion,” Neural Computing & Applications, vol. 3, pp. 27–37, 1995.

[158] S. Lawrence and C. L. Giles, “Overfitting and neural networks: Conjugate
gradient and backpropagation,” Proceedings of the International Joint Con-
ference on Neural Networks, vol. 1, pp. 114–119, 2000.

[159] R. Caruana, S. Lawrence, and L. Giles, “Overfitting in neural nets: Backprop-
agation, conjugate gradient, and early stopping,” Advances in Neural Infor-
mation Processing Systems, 2001.

[160] G. An, “The effects of adding noise during backpropagation training on a
generalization performance,” Neural Computation, vol. 8, pp. 643–674, 4
1996. [Online]. Available: https://direct.mit.edu/neco/article/8/3/643/5975/
The-Effects-of-Adding-Noise-During-Backpropagation

[161] J. Chen, X. Feng, L. Jiang, and Q. Zhu, “State of charge estimation of lithium-
ion battery using denoising autoencoder and gated recurrent unit recurrent
neural network,” Energy, vol. 227, p. 120451, 7 2021.

Chapter 6 Ayman Elhalwagy 125

http://www.osti.gov/bridge/product.biblio.jsp?osti_id=481606
http://www.osti.gov/bridge/product.biblio.jsp?osti_id=481606
https://cs.nju.edu.cn/zhouzh/zhouzh.files/publication/icdm08b.pdf%0Ahttps://cs.nju.edu.cn/zhouzh/zhouzh.files/publication/icdm08b.pdf?q=isolation-forest
https://cs.nju.edu.cn/zhouzh/zhouzh.files/publication/icdm08b.pdf%0Ahttps://cs.nju.edu.cn/zhouzh/zhouzh.files/publication/icdm08b.pdf?q=isolation-forest
https://cs.nju.edu.cn/zhouzh/zhouzh.files/publication/icdm08b.pdf%0Ahttps://cs.nju.edu.cn/zhouzh/zhouzh.files/publication/icdm08b.pdf?q=isolation-forest
https://keras.io/examples/timeseries/timeseries_anomaly_detection/
https://keras.io/examples/timeseries/timeseries_anomaly_detection/
https://doi.org/10.1145/3444690
https://direct.mit.edu/neco/article/8/3/643/5975/The-Effects-of-Adding-Noise-During-Backpropagation
https://direct.mit.edu/neco/article/8/3/643/5975/The-Effects-of-Adding-Noise-During-Backpropagation


Green AI for Industry 4.0: Energy-Efficient Generalised Deep Learning
Approaches to Induction Motor Condition Monitoring

[162] G. Salimi-Khorshidi, G. Douaud, C. F. Beckmann, M. F. Glasser, L. Grif-
fanti, and S. M. Smith, “Automatic denoising of functional mri data: Com-
bining independent component analysis and hierarchical fusion of classifiers,”
NeuroImage, vol. 90, pp. 449–468, 4 2014.

[163] A. Byerly and T. Kalganova, “Towards an analytical definition of sufficient
data,” 2022. [Online]. Available: http://arxiv.org/abs/2202.03238

[164] ——, “Class density and dataset quality in high-dimensional, unstructured
data,” 2022. [Online]. Available: http://arxiv.org/abs/2202.03856

[165] H. Raza, G. Prasad, and Y. Li, “Dataset shift detection in non-stationary en-
vironments using ewma charts,” Proceedings - 2013 IEEE International Con-
ference on Systems, Man, and Cybernetics, SMC 2013, pp. 3151–3156, 2013.

[166] T. Guo, Z. Xu, X. Yao, H. Chen, K. Aberer, and K. Funaya, “Robust online
time series prediction with recurrent neural networks,” Proceedings - 3rd IEEE
International Conference on Data Science and Advanced Analytics, DSAA
2016, pp. 816–825, 12 2016.

[167] H. Raza, G. Prasad, and Y. Li, “Adaptive learning with covariate shift-
detection for non-stationary environments,” 2014 14th UK Workshop on Com-
putational Intelligence, UKCI 2014 - Proceedings, 10 2014.

[168] Z. Cai, O. Sener, and V. Koltun, “Online continual learning with natural
distribution shifts: An empirical study with visual data,” 2021. [Online].
Available: https://github.com/http://arxiv.org/abs/2108.09020

[169] S. Ahmad, K. Styp-Rekowski, S. Nedelkoski, and O. Kao, “Autoencoder-based
condition monitoring and anomaly detection method for rotating machines,”
in 2020 IEEE International Conference on Big Data (Big Data), 2020, pp.
4093–4102.

[170] B. Maschler, T. Knodel, and M. Weyrich, “Towards deep industrial trans-
fer learning for anomaly detection on time series data,” in 2021 26th IEEE
International Conference on Emerging Technologies and Factory Automation
(ETFA ), 2021, pp. 01–08.

[171] C. R. Harris, K. J. Millman, S. J. van der Walt, R. Gommers, P. Virtanen,
D. Cournapeau, E. Wieser, J. Taylor, S. Berg, N. J. Smith, R. Kern, M. Picus,
S. Hoyer, M. H. van Kerkwijk, M. Brett, A. Haldane, J. F. del Ŕıo, M. Wiebe,
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