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Abstract 

Breast cancer remains one of the most prevalent and challenging diseases affecting women globally. Early and accurate 

diagnosis plays a pivotal role in improving patient outcomes and reducing mortality rates. This project aims to improve 

the current state of the art by employing several deep learning methodologies to be used as diagnostic support in 

Dynamic Contrast Enhanced Magnetic Resonance Imaging (DCE-MRI). 

The work has been carried out as part of an InnovateUK project named “Intelliscan” (project reference: 104192), 

funded by UK Research and Innovation. UK Research and Innovation did not have any involvement in the study 

design, or the collection, analysis, and interpretation of data. The data collection was carried out in collaboration with 

consultant radiologist Dr Naveed Altaf (North Tees and Hartlepool NHS Foundation Trust) and Dr Susann Wolfram 

(Teesside University). 

The research begins by providing an overview of neural networks, including structure, activation, regularization, 

training, architectures, loss functions, and performance metrics for model evaluation.  

The first contribution to knowledge is provided as the diagnostic process is then presented from a clinician’s point of 

view, along with empirical evidence of the subjectivity of the process prevents the application of ground truth data for 

the development of algorithms in this area. 

The core contributions of this thesis lie in the development of several deep learning methodologies that are aimed at 

reducing human errors and increasing the speed of the diagnosis in clinical settings. These methodologies include: the 

first lesion detection algorithm based on unsupervised deep learning, which matches the performance of the current 

state of the art, while not relying on manually annotated data, significantly lowering the cost of research in the field; 

the development of a state of the art deep learning methodology to segment the organs within the chest wall from the 

breast; a novel application of deep learning in lesion morphology characterisation.  

Overall, this thesis contributes to advancing the state-of-the-art in breast DCE-MRI diagnosis by introducing 

innovative deep learning methodologies that offer enhanced accuracy, efficiency, and interpretability.  
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Chapter 1. Introduction 

National Health Services (NHS) are experiencing delivery difficulties in almost any country in Europe, and not only, 

due to the continuous ageing of the population and the shortfall of personnel; this situation is in general affecting all 

fields of NHS, but for this work I will focus on medical imaging, central to the diagnosis and treatment of many 

medical conditions, cancer first. 

The demand for imaging services such as Computed Tomography (CT) or Magnetic Resonance Imaging (MRI) is 

growing at a rate of 7% (see Figure 1.1.1) per year, whereas the Clinical Radiology (CR) workforce is growing at a lower 

rate, in the order of 4% ([1]); this mismatch is likely to continue for the years to come: workforce growth is evaluated 

to be 24% lower than the required growth. 

 

Figure 1.1: demand volumes for X-ray, CT, and MRI diagnosis [1]. 

Compared with the rest of Europe, the UK averages >30% fewer clinical radiologists per headcount (see Figure 1.2). 
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Figure 1.2: clinical radiologists per 100.000 population in UK countries, vs. European average [1]. 

In absolute values, the Royal College of Radiologists ([2]) estimates a shortfall of almost 2000 CR consultants across 

the UK, accounting for about 33% of the total needed workforce. Breast radiology is the second biggest radiology 

consultant specialist area but the first in terms of percentage shortfall, with 25% of the radiologists in service in the 

year 2020 expected to retire within 2025. 

As of September 2020, well over 300.000 UK citizens were on a waiting list for CT or MRI, and one quarter had to 

wait for more than six weeks; this is unacceptable for a prompt cancer diagnosis. Such numbers were of course 

impacted by the COVID-19 pandemic, however, given the personnel shortage, recovery from such delays will be hard 

to achieve; nevertheless, reducing a lengthy waiting list is of paramount importance, since timely detection of serious 

medical conditions will positively impact the full NHS. 

Let’s then focus on breast radiology, the topic of this research project. According to the related report by The Royal 

College of Radiologists released in 2016 ([3]), the situation for breast radiologists is as follows: 

• Breast radiologists comprise the larger subspeciality group of clinical radiologists. 

• The breast radiologists’ workforce accounts for a larger share of less than full-time (LTFT) consultants 

(35%) concerning general radiology (23%). 

• Breast radiologists have a higher share of older professionals, with 42% being over 50 years old. 

• The unfilled posts in breast radiology are doubling concerning general radiology. 
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These numbers suggest that, within an already critical situation for what concerns general radiology, the situation 

appears to be even worse for breast radiology, with a consistent number of consultants and professionals about to 

retire in the forthcoming years and a low substitution rate. 

For this work, it is also interesting to consider the results, evidenced in the same report ([3]), of the breast screening 

activities carried out by the interviewed persons. All the reported charts are divided for professional figures in clinicians, 

consultant radiologists and practitioners. In Figure 1.3, Figure  and Figure  it can be seen that MRI is by far the least 

performed screening activity, despite its importance for high-risk patients. 

 

Figure 1.3: type of breast-screening activities performed by clinicians [3]. 

 

Figure 1.4: type of breast-screening activities performed by consultant radiologists [3]. 
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Figure 1.5: type of breast-screening activities performed by advanced practitioners [3]. 

According to the North Tees and Hartlepool NHS Foundation Trust, interpreting and reporting of breast MRI is time-

consuming, requiring an average of 30 min. per patient. The introduction of automated detection and categorization 

of breast lesions could be of paramount importance for improving productivity, fostering the adoption of MRI 

techniques and help reducing waiting lists and cancer screening time, especially in a context in which breast radiology 

is experiencing a critical and constantly worsening shortfall of competencies. 

1.1 Aim of the work 

Breast cancer is the most frequent cancer among females, amounting to 24% of all cancer occurrences in 2018 ([4]), 

accounting for 684,996 deaths in 2020 worldwide ([5]). The World Health Organisation (WHO) indicates screening 

programmes aimed at early detection as one of the key factors in reducing mortality. Magnetic Resonance Imaging 

(MRI) is an increasingly popular procedure for the screening of high-risk groups ([7]) and evaluating the response to 

neo-adjuvant chemotherapy ([8]). MRI has several benefits over X-ray mammography; it does not utilise ionising 

radiation, generates high-resolution images and contains dynamic information. Moreover, recent developments in MRI 

image processing ([9]) indicate that MRI is gaining popularity even with its major drawbacks (time-consuming, stressful, 

and costly), and is actively being targeted by the research community. Dynamic Contrast-Enhanced MRI (DCE-MRI) 

is regarded as one of the main diagnostic tools for breast cancer. It outputs four-dimensional data (three spatial 

dimensions + one temporal dimension), consisting of images acquired before and after the intravenous injection of a 

contrast agent (CA). The change in tissue appearance in response to the CA is tissue-specific and, therefore, indicative 

of the presence of malignant breast lesions ([10]). These changes in tissue appearance are extremely like the ones of 

the internal organs such as the heart, making automatic lesion detection in breast DCE-MRI sequences challenging. 
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Manual delineation of the chest wall is an extremely time-consuming activity. Therefore, the automatic removal of the 

internal organs from the images by segmenting the chest cavity is instrumental to the development of an automatic 

lesion detection methodology. Figure 1.6 shows the results of an automatic lesion detection algorithm for a properly 

segmented image and a poorly segmented image of a breast DCE-MRI sequence. The algorithm is based on the 

statistical properties of the whole sequence and indicates areas with a high likelihood of containing a lesion, with red 

indicating the most likely candidate area. By not excluding the chest cavity, the system evaluates the heart as an area of 

high likelihood. As the chest cavity is segmented, the actual lesion is correctly highlighted.  

   

Figure 1.6: Results of an automatic lesion detection algorithm of a lesion. The original image with the lesion is visible on the left, with the lesion highlighted in the red 

circle. The colouring scheme of the other images (centre and right) is based on the statistical properties of the full breast volume. Red represents a high likelihood of a 

lesion, while green and blue represent a lower likelihood. In the centre image, the chest cavity is incorrectly segmented, and the lesion detection algorithm identifies the heart 

as an area of high likelihood to be a lesion. In the right image, the chest cavity is correctly segmented, and the area of high likelihood to contain a lesion is correctly 

identified. 

Several methodologies have been developed to automatically localize suspect malignant breast lesions. Changes in 

tissue appearance in response to the injection of the contrast agent (CA) are indicative of the presence of malignant 

breast lesions. However, these changes are extremely like the ones of internal organs, such as the heart. Thus, the task 

of chest cavity segmentation is necessary for the development of lesion detection.  

The clinical objective of this work is to enhance breast cancer diagnosis by providing AI-based tools that improve 

lesion detection and characterisation. Specifically, this methodology aims to automate the segmentation of the chest 

cavity in DCE-MRI sequences to exclude non-breast tissue, thus preventing false positives caused by the presence of 

internal organs (e.g., the heart). It also seeks to develop interpretable and trustworthy deep-learning algorithms to 
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detect and characterize lesions based on their statistical and dynamic properties. Furthermore, this work provides 

decision-support tools to radiologists for the assessment of breast lesions, aiding in distinguishing between benign and 

malignant findings. By improving detection accuracy, it aims to minimize unnecessary biopsies by accurately identifying 

lesions that are clearly benign, reducing patient anxiety, healthcare costs, and procedural risks. 

The main purpose of the work described in the following chapters is the realization of a technique to support the 

diagnosis of breast cancer by choosing the best tools enabled by Artificial Intelligence, to compensate for the problems 

due at least partially to the shortfall of competencies and operators in the NHS. These tools include support for lesion 

detection in a trustworthy, interpretable way, followed by deep-learning-based lesion characterisation support.  

1.2 Specific objectives 

Given its aim to find the best possible solution for supporting the correct and timely detection of BC by supporting 

the analysis of DCE-MRI images, the main objectives of this work, which will be further detailed in the following 

chapters, are: 

1. Identification of suspicious areas in DCE-MRI, using methodologies that would result in ease of integration 

in clinical practice. This objective was achieved, and the results are presented in chapter 4. 

2. Minimisation of false positive results by the suspicious areas identification process to allow for increased 

productivity of the proposed solutions in clinical practice. This objective was achieved, and the results are 

presented in chapter 5. 

3. Development of lesion characterization methodologies for faster and more accurate morphology 

classification of suspect lesions in clinical settings. This objective was achieved, and the results are presented 

in chapter 6. 

1.3 Summary of the Data 

The data collected is comprised of 113 DCE-MRI scans, acquired on a 1.5T scanner (MAGNETOM Avanto, Siemens 

Healthcare GmbH, Erlangen, Germany) with the patient positioned lying face down. TR/TE/flip angle was 

4.33s/1.32s/10° for each scan with a slice thickness of 1.1 mm with no gaps between slices. The resolution of each 

slice was 448 x 448 pixels. Each breast DCE-MRI protocol consisted of one pre-contrast T1-weighted sequence and 
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seven post-contrast T1-weighted sequences collected at intervals of 1:01 minutes between sequences. All data points 

were attached to a biopsy report, providing a ground truth on the correctness of the diagnosis. 

An additional dataset, void of biopsy confirmation, was utilised in the classification portion of this work (chapter 6). 

In this, 86 scans were provided, of which 24 presented a benign lesion (no biopsy was performed), and the remaining 

62 did not feature a lesion at all. The work was carried out solely on the 24 cases with benign lesions, with the sole 

purpose of decreasing the severe imbalance in the dataset.  

1.4 Summary of methodology 

The first objective was met through an unsupervised methodology for identifying suspect regions in DCE-MRI scans 

by treating them as outliers. The approach involved encoding the temporal intensity of a single pixel into a low-

dimensional space, using neural networks, and utilizing algorithmic heuristics to determine the likelihood of a pixel 

being part of a cancerous region. The second objective is addressed through a deep learning segmentation model. The 

approach consisted of supervised training of state-of-the-art models to identify the inner portion of the chest wall. The 

third and final objective was addressed by training bleeding-edge deep learning algorithms for lesion classification on 

a labelled dataset based on biopsy results. 

1.5 Organisation of the document 

The document is organized as follows: 

• Chapter 2 will review the state of the art and will describe the related work that has been used, evaluated, and 

improved during the research activities for finding the best solution. 

• Chapter 3 will describe the material that has been used for the experimental activities, and will describe the 

structure of the datasets, the labelling approaches, etc., and will include recommendations about data 

structuring, data labelling and data standardization to replicate the workflow adopted during this project.  

• Chapter 4 will describe the solution as a first-ever truly explainable AI approach to breast lesion detection in 

DCE-MRI. 

• Chapter 5 will describe in detail the approach followed for the chest cavity segmentation, which is the core 

of the work. The complete research methodology is duly described, and experimental evidence of the 
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effectiveness of the technique is reported, therefore granting consistent progress concerning the state of the 

art. 

• Chapter 6 will describe the method that was implemented for lesion classification based on their 

characterization and will present an algorithm for pseudo-interpretation of the results. 

• Chapter 7 will derive conclusions and propose steps for future work based on the outcomes of this research 

project.  

1.6 Contribution to New Knowledge 

The main outcomes of the project are: 

1. A novel, interpretable approach to automatic lesion detection and kinetic behaviour characterisation. The 

technique aims to address the growing concerns over the trustworthiness of artificial intelligence systems 

while providing practitioners with diagnostic tools for enhanced and safer diagnosis. The four-dimensional 

data from dynamic contrast-enhanced MRI scans of breasts were analysed using matrix decomposition 

techniques based on principal component pursuit to extract the transient behaviour of tissues and highlight 

potential lesions. Several signal-processing techniques were there applied to limit the number of false positives 

obtained from the main algorithm and to create composite images that would be easy to interpret. The output 

was aligned with the standard diagnostic process to allow fast and reliable validation of the resulting images. 

2. A novel, DL-based methodology for the segmentation of the chest cavity from breast DCE-MRI scans. The 

solution addressed the main challenges in chest cavity segmentation, especially sternum detection, by using a 

data-based approach. To showcase the potential of the solution, the target area to segment was selected to be 

the upper half of the chest cavity. The purpose of the work was to define a data-efficient approach, to 

automatically segment breast MRI data. Specifically, a study on several UNet-like architectures (Dynamic 

UNet) based on ResNet has been extensively performed and is presented in detail in the following sections. 

Experiments quantify the impact of several additions to baseline models of varying depth, such as self-

attention and the presence of a bottlenecked connection. The proposed methodology is demonstrated to 

outperform the current state of the art both in terms of data efficiency, as well as in terms of similarity index 

when compared to manually segmented data. 
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3. A novel, DL-based methodology to classify the morphology of the suspicious regions highlighted by the 

previous outcomes. The work proves the feasibility of utilising an automatic system as support to practitioners 

in the challenging phase of determining the regularity (or lack thereof) of a lesion, which can guide to 

appropriate treatment, reducing the number of biopsies that are carried out, hence greatly benefitting patients. 

The main technique uses several state-of-the-art deep learning classifiers based on ResNet to predict the 

irregularity of a lesion. Moreover, a technique to interpret the results is implemented, leading to allowing 

access to practitioners in the inner workings of the algorithm and providing them with an immediate and 

intuitive tool to gauge the accuracy of the prediction. The methodology uses the hidden activations of the 

neural network to construct a heatmap to be overlayed on top of the input image, thus visualising the attention 

map of the algorithm. 

1.7 List of publications 

Part of the work reported in this thesis resulted in the following publication: 

• Berchiolli, M.; Wolfram, S.; Balachandran, W.; Gan, T.-H. Fully Automatic Thoracic Cavity Segmentation in 

Dynamic Contrast-Enhanced Breast MRI Using Deep Convolutional Neural Networks. Appl. Sci. 2023, 13, 

10160. https://doi.org/10.3390/app131810160 

Other publications are in the process of being prepared for submission to the same journal. 

  

https://doi.org/10.3390/app131810160
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Chapter 2. Background 

2.1 Deep Learning in DCE-MRI Breast Cancer Diagnosis 

Recent advancements in deep learning for breast cancer detection using magnetic resonance imaging are making 

progress, though challenges remain due to limited datasets and suboptimal image quality. Unlike mammography, only 

a few public datasets for ultrasound and MRI have been released, often with small sample sizes. Notable datasets for 

DCE-MRI include Duke Breast Cancer [111] and BreastDM [112]. 

A review by Adam et al. in July 2023 highlighted the use of Convolutional Neural Networks (CNNs) for tasks like 

classification, detection, and segmentation in breast cancer diagnosis via MRI [113]. Although small studies show 

promising results, larger, well-designed studies are still lacking to assess deep learning performance in real-world clinical 

settings. 

Recent studies have focused on automated segmentation of breast cancer using DCE-MRI, which offers precise lesion 

segmentation for staging, treatment planning, and response evaluation. For example, a 2023 study by Janse et al. trained 

an nnU-Net segmentation pipeline for local breast cancer and showed significant correlation between automated 

volumetric measurements and functional tumour volume [114]. 

Another emerging area is the generation of synthetic post-contrast MRI images using Generative Adversarial Networks 

(GANs). This technology, still in its early stages, could help improve breast cancer staging and treatment evaluation, 

especially for patients unable to receive intravenous contrast. Studies by Chung et al. [115] and Osuala et al. [116] 

explored the feasibility and accuracy of generating synthetic post-contrast MRI images, demonstrating potential but 

also revealing challenges in segmentation performance. 

Finally, deep learning is being applied to radiomics for predicting treatment responses, such as neoadjuvant 

chemotherapy. A 2023 study by Li et al. [117] developed a deep learning-based radiomic model for predicting 

pathological complete response (pCR) to chemotherapy, outperforming traditional radiomic methods and showcasing 

its potential to improve treatment prediction accuracy. 

2.2 Introduction to Neural Networks 

In recent years, the field of artificial intelligence has witnessed remarkable progress, primarily propelled by 

advancements in neural networks. Neural networks, often referred to as artificial neural networks (ANNs), have 
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revolutionized various applications, such as computer vision, natural language processing, speech recognition, and 

more. These systems mimic the neural structure of the human brain, enabling them to learn from data and make 

accurate predictions. At its core, a neural network is a collection of interconnected computational units, or nodes, 

organized into layers. The network typically consists of an input layer, one or more hidden layers, and an output layer. 

Each node in a layer is connected to every node in the subsequent layer, forming a network of weighted connections. 

The architecture’s depth (number of layers) and width (number of nodes in each layer) can vary based on the 

complexity of the problem at hand. The mathematical representation of a neural network’s output can be formulated 

as follows: 

Let x be the input to the neural network, 𝑊𝑖 be the weight matrix of the connections between layer i and layer i+1, 

and 𝑏𝑖  be the bias vector of layer i+1. The output of the neural network, denoted as 𝑦̂, can be computed as: 

𝑦̂ =  𝑓(𝑊𝑛  ∗  𝑓(𝑊𝑛−1}   ∗  … ∗  𝑓(𝑊2  ∗  𝑓(𝑊1  ∗  𝑥 +  𝑏1) +  𝑏2) + … ) +  𝑏𝑛) (2.1)  

Here, f represents the activation function, which introduces non-linearity to the network and is essential for learning 

complex patterns. 

2.3 Activations 

Activation functions play a pivotal role in introducing non-linear transformations to the neural network, allowing it to 

model intricate relationships within the data ([11]). Different types of activation functions exist, and each of them 

brings unique properties to the neural network, impacting its learning speed, convergence, and ability to handle 

vanishing or exploding gradients. Examples of classic activation functions that have been widely used are, for example, 

the Sigmoid ([12]), ReLU ([13]), and tanh ([14]); more recent functions, such as GELU ([15]), Leaky ReLU ([16]), 

SELU ([17]), have demonstrated promising results.  

More in detail: 
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Sigmoid function:  

𝑓(𝑥) =  
1

1 +  𝑒−𝑥
 (2.2) 

  

Rectified Linear Unit (ReLU):  

𝑓(𝑥) =  𝑚𝑎𝑥(0, 𝑥) (2.3)

Hyperbolic tangent (tanh):  

𝑓(𝑥) =  
𝑒𝑥 − 𝑒−𝑥

𝑒𝑥 + 𝑒−𝑥
(2.4)  

Gaussian Error Linear Unit (GELU): 

𝑓(𝑥) =  0.5𝑥 (1 + tanh (√
2

𝜋
(𝑥 +  0.044715 ∗  𝑥3)))  (2.5)  

The GELU function introduces smoothness, which aids in gradient propagation during training. Its close 

approximation to the identity function for positive values of x makes it an attractive choice in various deep-learning 

architectures, particularly in transformer-based models. 

Leaky ReLU:  

𝑓(𝑥) = {
𝑥, 𝑖𝑓 𝑥 ≥  0

𝛼 ∗  𝑥, 𝑖𝑓 𝑥 <  0
(2.6) 

where α is a hyperparameter (typically set to a small positive value, such as 0.01). The inclusion of α allows Leaky ReLU 

to prevent neurons from becoming inactive during training, mitigating the “dying ReLU” problem and improving the 

flow of gradients. 

Leaky ReLU strikes a balance between the linearity of ReLU, and the saturation issue faced by the Sigmoid and Tanh 

functions, making it a popular choice in deep neural networks, especially in scenarios where the rectification of negative 

values is essential. 
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Scaled Exponential Linear Unit (SELU): 

𝑓(𝑥) = {
 𝜆 ∗  (𝛼 ∗  𝑒𝑥 –  𝛼), 𝑖𝑓 𝑥 <  0

𝜆 ∗  𝑥, 𝑖𝑓 𝑥 ≥  0
(2.7)  

where α and λ are hyperparameters. The SELU function exhibits a unique property of maintaining the mean activation 

close to zero and the standard deviation close to one across layers during training. This self-normalization effect helps 

mitigate the vanishing and exploding gradient problems often encountered in deep neural networks, contributing to 

more stable and efficient learning. 

SELU is particularly well-suited for deep architectures, as its self-normalizing property reduces the need for extensive 

parameter tuning and enables better convergence even without batch normalization techniques. However, it is essential 

to ensure the proper initialization of weights and biases to fully exploit the benefits of SELU. 

In this work, the choice of activation functions was made upon examination of ample empirical evidence ([18]). The 

selection of Leaky ReLU with α = 0.01 for convolutional architectures and GELU for self-attention-based networks 

was justified by their respective abilities to address architectural challenges and improve the performance of the models 

in their specific domains. These choices have been widely adopted and validated, supporting their effectiveness in deep 

learning applications. 

2.4 Regularisation techniques 

Regularization is a crucial technique in deep learning that helps prevent overfitting and improve the generalization 

performance of neural networks. Overfitting occurs when a model performs exceptionally well on the training data 

but fails to generalize to unseen data, resulting in poor performance on test or validation sets. Regularization methods 

add constraints to the model during training, discouraging it from becoming too complex and fitting noise in the 

training data. This regularization encourages the model to learn more robust and generalizable patterns from the data. 

The combination of several techniques is vital to a successful application of deep learning. Examples of possible 

techniques to be combined are: 

L1 Regularization: 

L1 regularization ([19]) adds a penalty term to the loss function proportional to the absolute value of the model's 

weights. It encourages sparsity in the model, forcing some of the weights to be exactly zero. Loss with L1 regularization 

term is defined as follows: 
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𝐿𝐿1  =  𝐿0  +  𝜆 ∗  ∑ |𝑤𝑖|
𝑛

𝑖=1
 (2.8) 

  

Here, λ is the regularization parameter that controls the strength of the L1 penalty, and w represents the model's 

weights at each layer i. 

 

Weight Decay (L2 Regularization): 

Weight decay ([20, 21]), or L2 regularization, is a regularization technique that penalizes the model's weights by adding 

a term proportional to the sum of their squared values to the loss function. This penalty term encourages the model 

to prefer smaller weight values, leading to a smoother and less complex decision boundary. Loss with L2 regularization 

term (for weight decay) is defined as follows: 

𝐿𝑤𝑑  =  𝐿0 +  𝜆 ∗ √∑ |𝑤𝑖|2
𝑛

𝑖=1
 (2.9) 

In this formula, λ is the weight decay coefficient, controlling the strength of the regularization, and w represents the 

model's weights at each layer i..  

Data Augmentation: 

Data augmentation ([22]) is a technique used to artificially increase the size of the training dataset by applying various 

transformations to the original data. These transformations do not change the underlying label or meaning of the data 

but create new variations that the model can learn from. Data augmentation helps the model generalize better by 

exposing it to diverse examples of the same class, reducing the risk of overfitting. 

Common data augmentation techniques include rotation, flipping, scaling, cropping, and colour jittering for image 

data. For sequential or time-series data, augmentation methods may involve shifting, scaling, or adding noise to the 

input sequences. Data augmentation is typically performed on the fly during training, generating augmented samples 

from the original data on each epoch or batch. The augmented samples are then used as inputs for training the neural 

network. 
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Batch Normalization: 

Batch normalization ([23]) normalizes the activations of a layer to have zero mean and unit variance, which helps 

stabilize training and reduces internal covariate shifts. It acts as a form of regularization and can accelerate convergence. 

The batch normalization formula is: 

𝑧 =  
𝑥 −  𝜇

√𝜎2 +  𝜀
 (2.10) 

𝑦 =  𝑤 ∗  𝑧 +  𝑏 (2.11)  

where x is the input to the layer, μ and σ are the mean and variance of the mini-batch, ε is a small constant for numerical 

stability, and w and b are learnable parameters. 

 

Dropout: 

Dropout ([24]) is a popular regularization technique that randomly sets a fraction of neurons to zero during training, 

effectively dropping them out of the network for that iteration. This prevents neurons from relying too much on 

specific features, forcing them to learn more robust representations. The dropout formula (applied to the output of a 

neuron during training y) is: 

𝑦𝑑𝑟𝑜𝑝𝑜𝑢𝑡 =  𝑦 ∗  𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝑝) (2.12) 

where p is the dropout probability, representing the probability of dropping out each neuron, and Bernoulli refers to 

a Bernoulli distribution: 

𝑓(𝑘; 𝑝) = 𝑝𝑘 + (1 − 𝑝)(1 − 𝑘)       𝑓𝑜𝑟 𝑘 ∈ {0; 1} (2.13)  

2.5 Training Neural Networks 

The essence of neural networks lies in their ability to learn from data. The learning process involves updating the 

network's weights and biases iteratively, such that the model's predictions progressively improve. This optimization is 

typically achieved using algorithms based on backpropagation ([25]), where the gradients of the network's error 

concerning its parameters are computed and used to adjust the weights accordingly. 

Mathematically, the weight update rule during backpropagation can be expressed as: 

𝑤𝑖+1  =  𝑤𝑖  −  𝑙𝑟 ∗  
𝛻(𝑙𝑜𝑠𝑠)

𝛻(𝑤𝑖)
 (2.14) 
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Where lr is the hyperparameter controlling the step size during optimization, and 
𝛻(𝑙𝑜𝑠𝑠)

𝛻(𝑊𝑖)
 represents the gradient of the 

loss function concerning the weights w. 

2.5.1 Training Algorithm 

The goal of training is to find the optimal set of parameters that minimize the difference between the model's 

predictions and the actual target values in the training data. 

The training algorithm plays a central role in adjusting the model's parameters to optimize the loss function. The loss 

function measures the discrepancy between the predicted output of the model and the true target values. By minimizing 

this loss function, the model learns to make accurate predictions on unseen data, a process known as generalization. 

The training algorithm aims to find the optimal parameters by iteratively updating them based on the gradients of the 

loss function concerning each parameter. These gradients indicate the direction in which the parameters should be 

adjusted to reduce the loss and improve the model's performance. 

Training a deep learning model typically involves feeding the training data through the model, computing the loss, 

computing gradients through backpropagation, and then updating the model's parameters using the chosen training 

algorithm. This process is repeated for multiple iterations (epochs) until the model converges to a state where the loss 

is minimized, and the model generalizes well to unseen data. 

Below are brief explanations of some of the popular learning algorithms used in deep learning. 

Stochastic Gradient Descent (SGD)  

Stochastic Gradient Descent ([26]) is a fundamental optimization algorithm widely used in training neural networks. It 

updates the model's parameters based on the gradient of the loss function concerning each parameter. SGD computes 

the gradient using a randomly selected data point (or a mini-batch of data points) in each iteration, making it 

computationally efficient for large datasets. While SGD can converge to a minimum, it often exhibits noisy 

convergence and may suffer from slow convergence or getting stuck in local minima. 
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Adagrad (Adaptive Gradient Algorithm)  

Adagrad ([27]) is an adaptive learning rate optimization algorithm that adjusts the learning rate for each parameter 

based on the historical gradients of that parameter. It gives more weight to parameters with infrequent updates and 

less weight to frequently updated parameters, making it effective for training models with sparse features. 

The update rule for Adagrad is: 

𝐺𝑡  =  𝐺𝑡−1  +  (𝛻(𝜃𝑡))
2

 (2.15) 

𝜃𝑡+1  =  𝜃𝑡  −  𝛼 ∗
𝛻(𝜃𝑡)

√𝐺𝑡  +  𝜀
 (2.16) 

  

where: 

• 𝛼  is the learning rate. 

• 𝜃𝑡 represents the parameters at time step t. 

• 𝛻(𝜃𝑡) is the gradient of the loss function concerning parameters 𝜃𝑡. 

• 𝐺𝑡 is the sum of the squared gradients up to time step t. 

• 𝜀 is a small constant to prevent division by zero. 

RMSprop (Root Mean Square Propagation): 

RMSprop adapts the learning rate on a per-parameter basis, allowing it to converge faster and more reliably than 

standard SGD, especially when dealing with sparse or noisy data. The exponential moving average of squared gradients 

helps to normalize the learning rate, reducing its sensitivity to different scales of gradients for each parameter. This 

property makes RMSprop particularly effective in training deep neural networks. 

The update rule for RMSprop is: 

𝐺𝑡  =  𝛽 ∗  𝐺𝑡−1 +  (1 −  𝛽) ∗  (𝛻(𝜃𝑡))
2

(2.17) 

𝜃𝑡+1  =  𝜃𝑡  −  𝛼 ∗  
𝛻(𝜃𝑡)

√𝐺𝑡 +  𝜀
 (2.18) 

where: 

• α (alpha) is the learning rate. 
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• 𝜃𝑡 represents the parameters at time step t. 

• 𝛻(𝜃𝑡) is the gradient of the loss function with respect to the parameters 𝜃𝑡. 

• 𝐺𝑡 is the moving average of squared gradients up to time step t. 

• β is a decay factor, typically set to 0.9 to 0.999, controlling the exponential decay of the moving average. 

• ε is a small constant to prevent division by zero. 

 

Adam (Adaptive Moment Estimation)  

Adam ([28]) is an adaptive learning rate optimization algorithm that combines the benefits of both the momentum-

based optimization methods (RMSProp), and adaptive learning rate techniques. It maintains an exponentially decaying 

average of past squared gradients (second moments) and past gradients (first moments) to adaptively adjust the learning 

rate for each parameter. Adam's adaptive learning rates allow it to perform well across various types of neural network 

architectures. The update rule for Adam is: 

𝑚𝑡  =  𝛽1  ∗  𝑚𝑡−1 +  (1 − 𝛽1) ∗  𝛻(𝜃𝑡) (2.19) 

𝑣𝑡  =  𝛽2  ∗  𝑣𝑡−1  +  (1 − 𝛽2) ∗  𝛻(𝜃𝑡)2 (2.20) 

𝜃𝑡+1  =  𝜃𝑡  −  𝛼 ∗  
𝑚𝑡

√𝑣𝑡  +  𝜀
 (2.21) 

where: 

• α (alpha) is the learning rate. 

• 𝜃𝑡 represents the parameters at time step t. 

• 𝛻(𝜃𝑡) is the gradient of the loss function with respect to the parameters 𝜃𝑡. 

• 𝑚𝑡 and 𝑣𝑡 are the first and second moment estimates, respectively. 

• 𝛽1 and 𝛽2 are hyperparameters controlling the exponential decay rates of the moment estimates. 

• ε is a small constant to avoid division by zero. 

2.5.2 Loss Functions 

Loss functions, also known as objective functions or cost functions, are mathematical measures that quantify the 

difference between the predicted values generated by a machine learning or deep learning model and the actual target 
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values or ground truth. These functions play a crucial role in training models by providing a way to assess how well 

the model is performing on a given task. The primary purpose of a loss function is to guide the optimization process 

during training by providing a signal that helps adjust the model's parameters to improve its performance.  

Loss functions in the context of deep learning emerge as a response to the diverse requirements of quantifying errors 

across various tasks. These tasks span regression, classification, generative modelling, and beyond, each necessitating 

a distinct approach to measuring and managing errors. The intricacies of these tasks demand specialized loss functions 

that cater to their unique characteristics. In detail: 

Regression 

In regression tasks, the objective is to predict continuous numerical values. The discrepancy between predicted and 

actual values is quantified using loss functions that are sensitive to the magnitude of errors. Mean Squared Error (MSE) 

is a prime example, capturing the average squared difference between predictions and actual values. Its focus on the 

magnitude of errors suits regression tasks where accurate estimation of numeric values is crucial. 

𝑀𝑆𝐸 =
1

𝑁
∑(𝑦𝑖 − 𝑦𝑖̂)

2

𝑁

𝑖=1

 (2.22) 

Where ŷ is the predicted value, and y is the actual value. 

Classification 

Classification tasks entail assigning data points to predefined classes. Since the predicted outputs are categorical, 

specialized loss functions are needed. Cross-Entropy Loss serves as a natural choice here. It quantifies the divergence 

between predicted class probabilities and actual class probabilities, effectively penalizing incorrect predictions while 

encouraging high probabilities for the true class.  

𝐶𝐸 =  − ∑ 𝑞𝑖 log(𝑝𝑖)

𝑁

𝑖=1

 (2.23) 

Where p represents the predicted class probabilities and q represents the actual class probabilities. In classification 

problems, the probability distribution of a single prediction is obtained by applying SoftMax to the last activation of 

the neural network.  

The SoftMax function ensures that the values in the resulting probability distribution are between 0 and 1, and they 

sum up to 1, making it suitable for tasks where you want the model to assign a probability to each class.  
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Given a vector of 𝑧 = [𝑧1, 𝑧2, … , 𝑧𝑛], where each 𝑧𝑖 corresponds to the raw score for class 𝑖, the softmax function 

transforms these scores into probabilities 𝑝 = [𝑝1, 𝑝2, … , 𝑝𝑛]:  

𝑝𝑖 =
𝑒𝑧𝑖

∑ 𝑒𝑧𝑗𝑛
𝑗=1

 (2.24) 

Here, 𝑒𝑧𝑖  represents the exponential of the 𝑖 − 𝑡ℎ logit, and the denominator is the sum of exponentials of all logits 

in the vector. This denominator ensures that the resulting probabilities sum up to 1.  

Image Segmentation 

In image segmentation tasks, where pixel-wise categorization is vital, Dice Loss gains prominence. It quantifies the 

overlap between predicted and ground truth segmentation masks, favouring accurate segmentation and penalizing 

misalignments. 

𝐷𝐼𝐶𝐸 = 1 −
2 ∑ 𝑦𝑖𝑦𝑖̂

𝑛
𝑖=1

∑ 𝑦𝑖 + ∑ 𝑦𝑖̂
𝑛
𝑖=1

𝑛
𝑖=1

 (2.25) 

  

Where ŷ is the predicted value, and y is the actual value. 

2.6 Fully Connected Neural Networks 

Fully Connected Networks (FCNs), also known as Dense Networks or Multi-Layer Perceptron (MLPs), stand as a 

cornerstone architecture within the annals of artificial neural networks. They are the naïve approach to neural networks, 

as they manifest as layered arrangements of neurons, wherein each neuron within a given layer establishes connections 

to every neuron in the subsequent layer. This dense interconnectedness empowers FCNs to sculpt intricate nonlinear 

mappings, rendering them proficient in tasks necessitating a holistic comprehension of input data. 

Mathematically, the output 𝑦 of a neuron in an FCN can be expressed as: 

𝑦 = 𝑓 (∑ 𝑤𝑖𝑥𝑖 + 𝑏

𝑛

𝑖=1

) (2.26) 

  

Where 𝑦 is the neuron’s output; 𝑓 is the activation function, introducing nonlinearity; 𝑤𝑖 are the weights connecting 

the neuron to its inputs 𝑥𝑖; 𝑏 is the bias term, a learnable parameter that is added to each operation in the layer; 𝑛 is 

the number of inputs to the neuron.  
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The standard FCN architecture encompasses an input layer, one or more hidden layers, and an output layer. Neurons 

within hidden layers incorporate activation functions, thereby infusing nonlinearity and endowing the network with 

the prowess to apprehend intricate input-output relationships. The process of backpropagation, harmonized with 

optimization algorithms, orchestrates the fine-tuning of network weights and biases throughout training, aligning 

predictive outcomes with verifiable labels. 

However, despite their aptitude in capturing comprehensive relationships, FCNs are susceptible to overfitting in the 

presence of high-dimensional data. To counter this propensity, regularization techniques, including dropout and L2 

regularization, are frequently enlisted to mollify overfitting's adverse effects. Additionally, FCNs' inherent lack of 

spatial hierarchies might limit their efficacy in tasks mandating localized feature disentanglement, exemplified by image 

analysis. 

2.7 Convolutional Neural Networks 

Convolutional Neural Networks (CNNs) ([29]) are a specialized class of neural networks designed to excel at 

processing and analysing data with grid-like structures, such as images, video frames, and even sequential data. Unlike 

fully connected neural networks (also known as multi-layer perceptions), which treat each input feature independently, 

CNNs harness the power of spatial hierarchies and local correlations present in the data. 

At the core of CNNs lies the convolutional operation, a cornerstone for their success. This operation applies learnable 

filters to local patches of input data, yielding feature maps that capture salient patterns. Mathematically, the convolution 

operation is expressed as: 

𝑆(𝑖, 𝑗) = (𝐼 ∗ 𝐾)(𝑖, 𝑗) = ∑ ∑ 𝐼(𝑖 − 𝑚, 𝑗 − 𝑛)

𝑁

𝑛

∙ 𝐾(𝑚, 𝑛)

𝑀

𝑚 

 (2.27) 

Here, 𝐼 signifies the input data, 𝐾 represents the filter kernel (of shape 𝑀𝑥𝑁), and 𝑆 is the resulting feature map. The 

indices 𝑖 and 𝑗 refer to spatial positions within the feature map, while 𝑚 and 𝑛 denote positions within the kernel. As 

the operation convolves the kernel over the input data, it captures localized information, enabling the network to 

discern meaningful features. A fundamental paper in understanding how CNNs work has been [30], in which the 

increasing abstraction levels are show.  
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Furthermore, CNNs employ pooling layers for down sampling and non-linear activation functions to enhance 

abstraction. By stacking convolutional layers and pooling layers, the architecture can extract relevant information by 

building up increasingly complex representations of the data.  

This architecture facilitates the construction of hierarchical representations, mirroring the hierarchical structures 

present in real-world data. Comparatively, while FCNs excel at capturing global relationships in data, CNNs excel at 

localized pattern recognition. In essence, this leads to CNNs being considerably better in unstructured data (i.e. images, 

text) than FCNs ([31]). In images, this fact is intuitively visualised: an FCN could not learn the relative importance of 

a pixel as the location of relevant information varies at each data point, leading to the necessity to learn patterns that 

would in turn provide information on the relative importance of the pixels. A CNN, in contrast, would not need a 

relevancy map, as the features would be extracted in a bottom-up approach.  

2.8 Residual Networks 

Residual Networks, often abbreviated as ResNets, represent a pivotal advancement in deep learning architecture that 

addresses the challenges of training very deep neural networks. Developed by Kaiming He et Al. in 2015 ([32]), ResNets 

introduced a groundbreaking concept that revolutionized the way deep networks are constructed and optimized. 

The central innovation of ResNets lies in the introduction of residual blocks, which facilitate the training of extremely 

deep networks by alleviating the vanishing gradient problem. This problem arises when gradients become 

infinitesimally small as they backpropagate through many layers, hampering the training process. Residual blocks 

introduce skip connections, also known as shortcut connections, that allow the network to directly propagate 

information from one layer to a later layer, bypassing intermediate layers. This short-circuiting enables the network to 

learn the identity mapping more effectively when needed, providing a reference point for the network to optimize 

deviations from this identity. 

Mathematically, a residual block can be represented as: 

𝑦 = 𝐼 + 𝑓(𝐼) (2.28) 

Where 𝐼 represents the input to the layer and 𝑓(𝐼) is the residual function, learned by the block, which represents the 

deviation to an identity mapping. This approach ensures that even if the learned function is close to zero, the network 

can still propagate gradients through the skip connection, mitigating the vanishing gradient issue. ResNets come in 
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various depths, from shallow to extremely deep architectures, containing numerous residual blocks. The skip 

connections are commonly implemented as convolutional layers with zero padding to match the dimensions of the 

input and output. 

With the pivotal introduction of ResNets, it is possible to view deep neural networks as input modification machines, 

instead of feature extractors. In other words, a CNN would transform the input data into a high-dimensional 

representation of the information contained within the input, while ResNets merely enhance the features that are 

already present in the data. While in practice this difference is minute, as demonstrated by Hao Li et al. ([33]), the effect 

on stabilisation during training is massive.  

2.9 Self-attention Networks 

Self-attention, a transformative mechanism originating from the natural language processing domain ([34]), has been 

seamlessly integrated into the field of computer vision, reshaping how models perceive and analyse images. In the 

context of computer vision, self-attention provides a mechanism for capturing contextual relationships between 

different regions of an image, enabling models to weigh and emphasize pertinent information dynamically. 

At its core, self-attention operates by computing attention scores for each position in an input feature map, signifying 

the relevance of that position with respect to others. The attention scores are subsequently used to create weighted 

combinations of feature vectors from all positions, fostering a refined representation that explicitly considers the 

interdependencies within the input data. 

Mathematically, the self-attention mechanism involves three linear transformations: query (𝑄), key (𝐾), and value (𝑉) 

matrices. These matrices are multiplied together, yielding attention scores that are applied to the values to obtain the 

final attention-weighted representation. This process can be summarized as: 

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄, 𝐾, 𝑉) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 (
𝑄𝐾𝑇

√𝑑𝑘

) ∙ 𝑉 (2.29) 

Where 𝑄 represents query vectors, 𝐾 representes key vectors, 𝑉 represents value vectors and 𝑑𝑘 is the dimension of 

the key vectors. In the realm of computer vision, self-attention has proven particularly effective for tasks involving 

long-range dependencies, context understanding, and object relationships within images. Unlike convolutional 

operations that apply fixed filters, self-attention dynamically adapts its weights based on the relationships present in 

the input, thus capturing intricate patterns and relationships regardless of their spatial separation. Transformative 
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models such as the Transformer and its visual counterpart, the Vision Transformer (ViT) ([35]), leverage self-attention 

to enable image recognition without the need for traditional convolutional layers. By treating images as sequences of 

patches, these models apply self-attention to capture both local and global relationships, leading to state-of-the-art 

performance on various computer vision benchmarks. 

2.10 Losses 

In the context of deep learning, the training and validation loss serve as fundamental metrics for assessing the 

performance and convergence of a neural network model during the training process. The loss quantifies the 

discrepancy between the model's predictions and the actual target values. Mathematically, the training and validation 

loss can be expressed as follows: 

𝐿𝑡𝑟𝑎𝑖𝑛 =
1

𝑁𝑡𝑟𝑎𝑖𝑛
∑ ℒ(𝑦̂, 𝑦)

𝑁𝑡𝑟𝑎𝑖𝑛

𝑖=1

 (2.30) 

𝐿𝑣𝑎𝑙𝑖𝑑 =
1

𝑁𝑣𝑎𝑙𝑖𝑑
∑ ℒ(𝑦̂, 𝑦)

𝑁𝑣𝑎𝑙𝑖𝑑

𝑖=1

 (2.31) 

Where 𝑁 is the number of samples in each dataset; ℒ represents the error, based on the loss function of choice; 𝑦̂ 

represents the predicted value of the model. During the training process, the model's weights and biases are iteratively 

adjusted to minimize the training loss (𝐿𝑡𝑟𝑎𝑖𝑛). The validation loss (𝐿𝑣𝑎𝑙𝑖𝑑) is used to monitor the model's 

generalization performance and detect overfitting. Ideally, the training and validation loss should decrease in tandem 

during training, and if the validation loss starts increasing, it may signal overfitting. 

By analysing the training and validation loss, it is possible gain insights into the model's learning progress, convergence, 

and potential issues. This information guides the decision-making process regarding hyperparameter tuning, model 

architecture adjustments, and early stopping strategies. 

2.11 Performance Metrics 

Evaluating the performance of deep learning models is essential to assess their effectiveness in solving specific tasks. 

A plethora of performance metrics are employed, depending on the task at hand. These metrics offer valuable insights 

into various aspects of model behaviour, aiding in model selection, optimization, and deployment.  
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In the realm of classification tasks, evaluating model performance involves various metrics that offer distinct insights 

into the effectiveness of predictions. In this work, the following metrics were used to evaluate the effectiveness of 

classifiers: 

Accuracy: 

Accuracy quantifies the proportion of correct predictions made by a model over the total predictions. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 (2.32) 

Recall: 

Recall (also known as Sensitivity or True Positive Rate – TPR) measures the ratio of true positive predictions (correctly 

identified positive instances) to the total actual positive instances. 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (2.33) 

Precision: 

Precision gauges the ratio of true positive predictions to the total positive predictions made by the model. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (2.34) 

F1 Score: 

The F1 score is the harmonic mean of precision and recall, providing a balanced measure that considers both false 

positives and false negatives. 

𝐹1 =
2 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
=

2𝑇𝑃

2𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
 (2.35) 

Where TP (True Positives) are the instances correctly classified as positive, FP (False Positives) are the instances 

classified as positive which are negative, FN (False Negatives) are the instances classified as negative which are positive, 

and TN are the instances correctly classified as negative.  

These metrics are particularly valuable in diverse classification scenarios. Accuracy is a straightforward metric, but it 

might be misleading in cases of imbalanced classes, such as the one of this work. Recall emphasizes the ability to 

correctly identify all relevant instances, critical in scenarios where false negatives are undesirable, such as medical this 

one. Precision highlights the accuracy of positive predictions, essential when false positives have significant 
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consequences. The F1 score combines both precision and recall, providing a more comprehensive evaluation of model 

performance, especially when balancing trade-offs between precision and recall is important.  

2.12 Summary of Chapter  

This chapter provided an extensive overview of neural networks, covering their architecture, activation functions, 

regularization techniques, training algorithms, various types of networks, loss functions, and performance metrics.  

Overall, the text serves as a comprehensive introduction to neural networks, catering to readers interested in 

understanding the underlying principles, architectures, and applications of this rapidly evolving field in artificial 

intelligence.  
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Chapter 3. Materials 

3.1.1 Data Collection and characteristics 

The data for this project was sourced from T1-Weighted Dynamic Contrast Enhanced MRI (DCE-MRI) scans of 

female patients of North Tees and Hartlepool NHS Foundation Trust. The scans were of patients which were 

recommended for a biopsy, and all biopsy reports were made available for this work. All data was anonymised 

according to a data sharing protocol among North Tees and Hartlepool NHS Foundation Trust, Brunel University 

London, and Teesside University. In the following sections, the data and the labelling process will be presented. 

3.1.2 Ethical Approval 

The study was conducted by the Declaration of Helsinki and approved by the Institutional Review Board of HRA and 

HCRW (IRAS project ID 258617; latest amendment date: 18 December 2020). 

3.1.3 Dynamic Contrast Enhanced MRI Scans 

Magnetic Resonance Imaging (MRI) ([36, 37]) is a pivotal medical imaging technique that provides detailed and non-

invasive insights into the internal structures of the human body. Utilizing powerful magnets and radiofrequency pulses, 

MRI creates high-resolution images that aid in the diagnosis, evaluation, and monitoring of a wide range of medical 

conditions ([38]). Unlike other imaging methods, MRI does not involve ionizing radiation, making it a safer option for 

repeated examinations. Its versatility allows it to visualize various soft tissues, such as the brain, muscles, joints, and 

organs, enabling healthcare professionals to detect abnormalities, assess disease progression, and plan appropriate 

treatments. The information-rich images produced by MRI play a crucial role in improving patient care across 

specialties, from neurology to orthopaedics, oncology, and beyond ([39]). 

DCE-MRI is a crucial imaging technique for diagnosing and evaluating breast cancer. This method provides detailed 

insights into blood flow and vascularity within breast tissue, aiding in the detection, characterization, and staging of 

breast lesions. It has been proven to provide earlier and more accurate cancer detections in patients compared to the 

more popular techniques as of today, such as ultrasound and mammography, while providing lower long-term risk due 

to its lack of ionizing radiations ([40]). 
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Before the procedure, patients are typically asked to fast for several hours to reduce the likelihood of nausea caused 

by the contrast agent. Additionally, any metal objects such as jewellery or clothing with metal components need to be 

removed to prevent interference with the MRI scan. 

During the DCE-MRI process, a gadolinium-based contrast agent is injected into a vein in the patient's arm. 

Gadolinium is a paramagnetic substance that enhances the visibility of blood vessels and lesions in MRI images. The 

patient then lies on the MRI table, and images are acquired over time, capturing the distribution of the contrast agent 

within the breast tissue. This series of images includes different phases: pre-contrast, arterial, venous, and delayed 

phases. 

The acquired images are carefully analysed to create a dynamic series illustrating enhancement patterns as they evolve. 

Radiologists define regions of interest (ROIs) within the breast tissue and identify any suspicious lesions. These 

enhancement patterns are crucial indicators of lesion characteristics, such as malignancy, vascularity, and heterogeneity. 

For instance, rapid and intense enhancement in the early phases of DCE-MRI is often associated with malignancy due 

to the increased blood supply in cancerous tissue. 

Furthermore, kinetic analysis is conducted to quantitatively assess the behaviour of the contrast agent within the tissue. 

Parameters like peak enhancement, wash-in rate, wash-out rate, and time to peak enhancement are evaluated. These 

metrics provide additional insights into lesion characteristics and contribute to a more comprehensive assessment. 

Radiologists play a vital role in interpreting the DCE-MRI images, enhancement patterns, and kinetic analysis results. 

Their expertise is essential for differentiating between benign and malignant lesions based on the imaging findings. 

It's important to understand that DCE-MRI is frequently used in conjunction with other imaging modalities, such as 

mammography and ultrasound, to provide a well-rounded evaluation of breast health. While DCE-MRI is highly 

sensitive in detecting lesions, it may not always provide a definitive cancer diagnosis. Biopsy or further evaluation 

might be necessary to confirm the presence of cancer. 

Biopsy is a fundamental medical procedure used to diagnose and determine the nature of various diseases and 

conditions by obtaining samples of tissue or cells from the body for microscopic examination. This diagnostic 

technique plays a pivotal role in confirming or ruling out the presence of malignancies, infections, and other 

abnormalities. Biopsies provide invaluable insights into the cellular and molecular characteristics of the sampled tissue, 

aiding healthcare professionals in making accurate diagnoses and tailoring appropriate treatment strategies. Depending 
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on the location and suspected condition, biopsies can be performed through minimally invasive methods such as 

needle biopsies, where a thin needle is used to extract tissue, or more invasive surgical procedures for larger or deeper 

tissue samples. The collected specimens are then sent to a pathology laboratory, where specialized experts analyse the 

samples under microscopes and through other advanced techniques to provide definitive information about the 

underlying condition.  

3.1.4 Dataset Overview 

The project benefitted from accessing a total of 120 T1-weighted DCE-MRI scans. All data was from patients with a 

biopsy-confirmed diagnosis. Each DCE-MRI scan featured 160 slices, which are 2D images obtained from sectioning 

the plane perpendicular to the spine every 1.1 cm. Each of the 160 slices was captured 8 times, once before contrast 

injection, and once every minute after contrast injection for 7 times. The data was stored in DICOM format ([41]), 

and the extraction of the raw pixel data resulted in images with a resolution of 448x448 pixels. In total, the project had 

access to 153600 images. 

3.1.5 General Data Presentation 

It is essential for the reader to have a basic understanding of the dataset's structure, as the subsequent sections will use 

specific terminology and reference morphological features that may not be immediately clear to those without prior 

knowledge. To aid comprehension, Figure 3.1 below provides an example of a single image. 
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(a) (b) 

Figure 3.1: (a) single image. (b) breasts (green), lymph nodes (orange) and chest cavity (blue). 

First and foremost, it is possible to notice the breasts in the upper part of the image (green area in Figure 3.1b). As the 

images are taken from below, the left breast is on the right side of the image. In this case, it is possible to notice an 

unusual bend on the inner part of the right breast (left side of the image). This is due to how the examination is 

conducted, during which the patient is laying down on their stomach, with the breast contained in a cage. Part of the 

breast is then resting on the edge of the cage. The orange area in is where the lymph nodes are usually located. A 

radiologist would carefully examine this part for anomalies in the lymphatic system. The blue area represents the chest 

cavity, in which it is possible to see the spine (grey circle at the bottom of the image) and internal organs (in this case, 

the heart, in the centre of the image). The chest wall separates the breast area and the chest cavity. 

Each image is part of subset of images taken at the same location at each of the eight timesteps. The evaluation of how 

the tissue reacts to the contrast agent overtime is fundamental in the diagnostic process. A set of 8 images at any 

timestep will be referred to as a slice. The variation of the relative pixel brightness overtime is the quantification of 

how tissues are reacting to the contrast agent. The resulting patterns are referred to as enhancement. 

Each slice has a Z dimension assigned to it, corresponding to the vertical location relative to an arbitrary Z = 0 point. 

The slices are separated by 1.1 mm among each other in this specific dataset, covering a total of 17.6 cm. Depending 

on the dimensions of the chest cavity and breasts of the patient, the real-world dimensions of a single pixel can vary 
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slightly. The deviation, however, is rather minimal and does not influence the study, thus the reader should consider 

the area covered by a single pixel to be 0.76mmx0.76mm.  

In the following sections, the data will be presented as slices and no single images for clarity reasons and to provide 

necessary context.  

3.1.6 Dataset Labelling & Exploration 

The data was accompanied by a spreadsheet containing some relevant information on the radiologist’s report and 

biopsy report. A simplified table was extracted to remove additional information about the biopsy record and surgical 

procedure. An example of a few records can be found in the table here below. 

Table 3.1: example of records containing relevant information from radiologist’s report and biopsy report. 

Lesion 

Characterisation 
Side  Location  Root Sign Margin  Enhancement   Categorisation  

Mass  Right LOQ  No  Irregular  Heterogenous  Suspicious  

Mass  Right Lower central  No  Multifocal  Heterogenous  Suspicious  

Mass  Right Lower central  No  Multifocal  Heterogenous  Suspicious  

NME  Left  Lateral  No  Irregular  Heterogenous  Suspicious 

The spreadsheet was provided by expert radiologists and should be considered as the ground truth. In the following 

paragraphs, a brief overview of the available information is provided. 

The meanings of the main columns in such spreadsheet are as follows: 

• The “Lesion Characterisation” column refers to the nature of lesion as perceived by the radiologist during the 

diagnosis of the MRI. The possible values were “Mass”, “NME”, “Multifocal”, and “Axillary Nodes”. The 

value “Mass” refers to a well-defined, focal area of enhancement within the breast tissue. “Non-Mass 

Enhancement (NME)” refers to a finding that doesn't correspond to a distinct mass or lesion. “Multifocal” 

refers to a case in which there are multiple instances of suspect lesions in the breast volume. The scans 

featuring a “Axillary Nodes” diagnosis refer to the presence of cancer or metastasis in the axillary lymph 

nodes, but no breast cancer. 
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• The “Location” column in the table refers to where the suspect lesion has been identified. The standard 

procedure divides each breast in quadrants (Upper/Lower, Outer/Inner), hence a field with value “UOQ” 

refers to the fact that the location of the lesion was found in the upper outer quadrant, and so on. 

• The “Root Sign” column, also named Spiculation, is a Boolean which refers to the appearance of the lesion. 

• The morphology of the lesion is also characterised by the column dubbed “Margin”, which characterises how 

the overall shape of the lesion is. The possible values for this field are “Smooth” and “Irregular”. Lesions with 

smooth margins are more likely to be benign or non-cancerous. Irregular margins. On the other hand, can 

suggest a higher likelihood of malignancy or cancerous growth, as they may indicate invasive or aggressive 

behaviour of the lesion. 

• The “Enhancement” field describes the uniformity of the relative reaction to contrast within the lesion itself. 

The possible values were “Heterogeneous” and “Homogeneous”. 

For better understanding the meaning of such information and the way they are evaluated by radiologists, it is 

important to associate them to images; therefore, a set of examples are reported in the following section and further 

explained. Every figure consists of 8 images creating a complete scan sequence, and for ease of reading they are split 

onto two pages. 

In the following figures 3.2 and 3.3, an example of a slice with a mass can be found. Such images will be used as a 

reference in the following of the section. 
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(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 3.2: first batch of 4 timesteps from the same reference sequence in which a mass is visible. The red circles in (c) and (d) highlights the suspect area. It is important 

to note the enhancement behaviour of the area inside the chest wall, as well as other smaller regions in the axillary area and breast area. 
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(e) 

 

(f) 

 

(g) 

 

(h) 

Figure 3.3: second batch of 4 timesteps from the same reference sequence in which a mass is visible. The red circles in (e) and (f) highlight the suspect area. It is 

important to note the enhancement behaviour of the area inside the chest wall, as well as other smaller regions in the axillary area and breast area. 

As previously explained, NME refers to a finding that doesn't correspond to a distinct mass or lesion. Instead, it 

represents an area of enhancement in the breast tissue that doesn't have a well-defined border. An example of a slice 

showing NME can be found below in figures 3.4 and 3.5. 
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(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 3.4: first batch of 4 timesteps from a sequence showing Non-Mass Enhancement. The red circles in (c) and (d) highlight the suspect area. 



48 
 

 

(e) 

 

(f) 

 

(g) 

 

(h) 

Figure 3.5: second batch of 4 timesteps from a sequence showing Non-Mass Enhancement. The red circles in (e) and (f) highlight the suspect area. 

In the case of “Multifocal”, there is the presence of multiple instances of suspect lesions in the breast volume. These 

can vary in shape, size, and appearance. The position of masses is also variable throughout the volume, hence often 

the diagnosis corresponds to the identification of multiple suspect lesions. An example of a multi-mass slice in which 

multiple distinct masses can be seen below in Figure 3.4. It is important to reiterate that, except for extreme cases, the 

appearance of a single slice of a scan resulting in a “Multifocal” diagnosis will appear like a “Mass” diagnosis. 
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(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 3.6: first batch of 4 timesteps from a sequence showing Multifocal lesion. The red circles in (c) and (d) highlight the suspect area. The three visible lesions are 

quite small and are located close to the top left of the circle, bottom left and middle. 
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(e) 

 

(f) 

 

(g) 

 

(h) 

Figure 3.7: second batch of 4 timesteps from a sequence showing Multifocal lesion. The red circles in (e) and (f) highlight the suspect area. The three visible lesions are 

quite small and are located close to the top left of the circle, bottom left and middle. 

Axillary nodes, also known as axillary lymph nodes, are a group of lymph nodes located in the axilla, which is the area 

under the arm or armpit. These nodes are an essential part of the lymphatic system and play a crucial role in filtering 

and draining lymphatic fluid from the breast, upper arm, and surrounding areas. The dataset contained one example 
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of this, and a representative slice is reported in figures 3.8 and 3.9. It is worth noting that an untrained eye might spot 

a mass in the centre of the left breast (right side of each image). The mass was confirmed to be benign, and more 

details on how one might have concluded this are provided in the following sections. 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 3.8: first batch of 4 timesteps from a sequence showing a visible Axillary nodes diagnosis. Red circles in (c) and (d) highlight the suspect area. The images show a 

clear abnormality in the middle of the left breast, especially in (a) and (b). This has been biopsy-confirmed to be a benign lesion. 
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(e) 

 

(f) 

 

(g) 

 

(h) 

Figure 3.9: second first batch of 4 timesteps from a sequence showing a visible Axillary nodes diagnosis. Red circles in (d) and (f) highlight the suspect area. The images 

show a clear abnormality in the middle of the left breast. This has been biopsy-confirmed to be a benign lesion. 

An example of a spiculated lesion, referring to the Root Sign column, is shown in figures 3.10 and 3.11 below. As it 

can be seen by the pictures, a spiculated lesion, also known as a spiky or irregular lesion, has irregular, jagged, or spiky 

edges. It often looks like it has tentacle-like extensions radiating out from the central mass. Spiculated lesions are more 
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concerning because their irregular shape is often associated with malignant or cancerous growth. They may indicate 

invasive or aggressive behaviour of the lesion. 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 3.10: first batch of 4 timesteps from a sequence showing a spiculated lesion. The red circles in (c) and (d) highlight the suspect area. 
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(e) 

 

(f) 

 

(g) 

 

(h) 

Figure 3.11: second batch of 4 timesteps from a sequence showing a spiculated lesion. The red circles in (g) and (h) highlight the suspect area. 

A smooth margin, also known as a well-defined or regular margin, refers to the presence of clear, smooth, and well-

defined edges or boundaries around a lesion. It typically appears as a round or oval shape with a uniform border that 

is easy to distinguish from the surrounding tissue. Lesions with smooth margins are more likely to be benign or non-

cancerous. An example of a smooth lesion is available in figures 3.12 and 3.13, which provide an example of the 

appearance of an MRI of a patient with breast implants.  
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(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 3.12: first batch of 4 timesteps from a sequence showing a smooth lesion. The red circles in (c) and (d) highlight the suspect area. The image shows the appearance 

of breast implants in DCE-MRI. 
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(e) 

 

(f) 

 

(g) 

 

(h) 

Figure 3.13: second batch of 4 timesteps from a sequence showing a smooth lesion. The red circles in (e) and (f) highlight the suspect area. The image shows the 

appearance of breast implants in DCE-MRI. 

An irregular margin refers to the presence of edges or boundaries that are not well-defined and exhibit an uneven or 

jagged appearance. Irregular margins can suggest a higher likelihood of malignancy or cancerous growth, as they may 



57 
 

indicate invasive or aggressive behaviour of the lesion. An example of an archetypical irregular lesion is shown in 

figures 3.14 and 3.15. 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 3.14: first batch of 4 timesteps from a sequence showing an irregular lesion. The red circles in (c) and (d) highlight the suspect area. The images are cropped to 

allow the viewer to appreciate the shape of the lesion. 
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(e) 

 

(f) 

 

(g) 

 

(h) 

Figure 3.15: second batch of 4 timesteps from a sequence showing an irregular lesion. The red circles in (e) and (f) highlight the suspect area. The images are cropped to 

allow the viewer to appreciate the shape of the lesion. 

Figure 3.12 and 3.13 (relative to the smooth lesion) show a homogenous enhancement behaviour, whereas figures 3.14 

and 3.15 (relative to an irregular lesion) show a heterogenous enhancement behaviour. 
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3.1.7 Observations on Available Data 

The available dataset is considerably different from the typical dataset found in literature, as all MRI scans resulted in 

a biopsy recommendation, hence the radiologist evaluated all of them to be potentially malignant. The result is an 

inherit bias towards malignancy which can be mitigated by the techniques shown in this work. However, evaluating 

the performances of the methodologies in terms of TNR would be statistically irrelevant. Moreover, the project aims 

to deliver diagnostic support to radiologists in identifying the lesions, limiting the misses, and speeding up the whole 

process. An overview of the distributions of the labels is shown in figures below. 

 

Figure 3.16: statistical distribution of lesion characterization labels and spiculation labels. 
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Figure 3.17: statistical distribution of enhancement pattern labels and morphology labels. 

The distributions of data paint a partial picture of the challenging nature of this dataset compared to the ones available 

in literature. However, it allowed the development of robust algorithms that can cover the wide array of real-world 

examples of malignant lesions, thus augmenting the impact of this work.   

3.2 Diagnostic Process 

3.2.1 Traditional Diagnostic Workflow 

Literature on the topic of breast cancer diagnosis is plentiful ([42 – 46]). For this work, a limited introduction will be 

provided, using figures 3.2 to 3.14 as reference and a simplified version of the schematic as in [47].  

The diagnostic and reporting processes are standardized by BI-RADS (Breast Imaging Reporting & Data System) 

([48]). The general procedure begins with a visual examination of the volume, with abnormalities being noted by the 

radiologist. As masses are identified, a standard flowchart is followed, a version of which is found in Figure below. An 

interactive flowchart such as this one is available at [49].  
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Figure 3.18: flowchart for Kaiser Score classification. 

The output of this standard flowchart is a score, known as Kaiser score ([50]), which indicates the likelihood of 

malignant lesions and thus the recommendation for biopsy. The low likelihood scores (1-4) signify a low chance of 

malignancy; hence patients are usually asked to reschedule an exam in a span of a few weeks or months. All other 

scores (5-11) represent a likelihood of malignancy which warrants a biopsy. It is important to note that the flowchart 

is often not followed to the letter, as variance in these cases is extremely high, and doctors must rely on their great 

experience to make critical decisions.  

The presence of spiculation is the first and most impactful observation, as a strong correlation between it and lesion 

malignancy has been shown. Spiculation is present in figures 3.4, 3.5, 3.10, 3.11, 3.14, 3.15.  

The enhancement pattern (or delayed phase) is the second determinant factor and will be discussed in detail in the 

following paragraph, as the unfortunate truth is that often these enhancement patterns are highly subjective, and 

doctors rely on several years of experience to determine if a lesion “looks” to be enhancing in a certain way. Tentative 

categorizations for this parameter are shown in the following table below, which was confirmed by an expert 

radiologist.  
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Table 3.2: categorisation of enhancement patterns for the previously presented scans. 

Figure Enhancement pattern 

3.3, 3.4 Plateau 

3.5, 3.6 Persistent 

3.7, 3.8 Persistent 

3.9, 3.10 Washout 

3.11, 3.12 Persistent 

3.13, 3.14 Plateau 

3.5, 3.16 Washout 

The morphology classification is only relevant in a restricted number of cases; however, the low resolution of the 

images makes the task of classifying the spiculation of a lesion particularly hard. Hence, in practice, the lesion 

morphology is the easiest and fastest classification to be made, which in some cases excludes the possibility of 

spiculation. The only example of a smooth lesion is in figure 3.12 and 3.13. The homogeneity of the enhancement is 

relevant to non-spiculated, washout lesions. The examples of heterogeneous enhancement are figures 3.2, 3.3, 3.8, 3.9, 

3.10, 3.11. It is worth noting that all of these are larger lesions: this is the cases for most heterogeneous lesions in the 

dataset.  The presence of oedema, necessary for the right side of the chart, is determinable by observation of a T1-

weighted MRI of the breast, which is not part of this study, as the results are invariably leading up to a biopsy.  

As a conclusion to this paragraph, it should be noted that the subjective decisions made by radiologists to classify 

borderline cases make life-changing impact every day on real people. When confronted with a hard decision, it is 

human and ethically sound to err on the side of caution.  

3.2.2 Kinetic cures and enhancement patterns 

Kinetic curves in DCE-MRI represent the transient behaviour of tissues when reacting with the contrast agent. They're 

fundamental to the diagnostic process, as highlighted by the previous paragraph, because they provide information 

about the blood flow in a particular area. They are the main way to visually identify cancerous lesions and are of great 

help during the characterization of suspect areas. A radiologist would often observe the enhancement patterns by 

scrolling through the 4-dimensional MRI scan, and later use this information to determine a Kaiser score.  
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The enhancement patterns refer to how kinetic curves in a suspect lesion behaves. As the contrast agent is injected, 

the pixel intensity for all tissues rises. As the circulation stabilizes, suspect tissues will behave in one of three possible 

ways: 

• Persistent behaviour: the intensity of the pixels rises slowly. 

• Plateau behaviour: the intensity of the pixels stabilizes. 

• Washout behaviour: the intensity of the pixels sharply drops. 

A stereotypical representation of these curves is found in the following figure. 

 

Figure 3.18: stereotypical representation of Persistent behaviour, Plateau Behaviour and Washout Behaviour curves. 

The division in three distinct categories provides easily interpretable reports, while enhancing the ability to research 

on the topic at a clinical level. As an example, area of 10 pixels by 10 pixels was selected from the lesion in figures 3.14 

and 3.15, as shown in figure 3.19 below. 
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Figure 3.19: detailed view of a suspect lesion in exam. It is important to note how the resolution is insufficient to determine boundaries of the lesion. 

The average enhancement curve relative to this area, along with the pixel variance, which is a suspect lesion, is shown 

in figure 3.20. The behaviour is persistent, with a steady increase in intensity.  

 

Figure 3.20: average enhancement curve related to figure 3.13, clearly showing a Persistent behaviour. 

Classifying the enhancement pattern, however, is often extremely hard, as parts of a heterogeneous lesion can exhibit 

different enhancement patterns. The clinician is left to decide what category the lesion falls into based on their 

experience and professional evaluation on the likelihood of the lesion being malignant. As an example of this, the non-
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mass enhancement in figures 3.4 and 3.5 was evaluated similarly to the previous example, shown below in Figure 3.21, 

with an area of 20 pixels by 20 pixels to account for the size of the enhancing region. 

 

Figure 3.21: detailed view of a suspect lesion in exam. It is important to note how the resolution is insufficient to determine boundaries of the lesion. 

The average enhancement curve relative to this area, along with the pixel variance, is shown here below. The behaviour 

is clearly plateau, with steady intensity levels throughout the suspect area.  

 

Figure 3.22: average enhancement curve related to figure 3.15, clearly showing a Plateau behaviour. 
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Inspecting the suspect area further, however, reveals a non-homogeneous behaviour. Figure 3.17 shows the pixel 

position and relative enhancement curves of the same area. As it is clearly shown all three enhancement behaviours 

would be correctly classified. 

 

Figure 3.23: location and relative enhancement curves for the lesion presented in Figure 3.15. It is important to note their divergent behaviour. 

This divergent behaviour is common in most lesions and renders the classification of enhancement behaviours a 

subjective task in which the result can vary with the size of the area that is taken into consideration during the diagnosis.  

An additional observation regarding enhancement curves is how these curves, typically associated with cancer, can 

appear in noncancerous areas. Figure 3.18 hereafter shows the enhancement curve of the top of the heart region in 

the slice featured in Figure 3.17. In a vacuum, the enhancement behaviour could be classified as plateau or washout, 

when this is a normal behaviour for the heart. This caveat is rarely mentioned in medical literature, as a radiologist 

would never analyse enhancement curves of the healthy heart. A fully automatic diagnostic system would need to be 

informed on the morphology of a human body, allowing for a selection of voxels to analyse. 
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Figure 3.24: average enhancement curve of the heart region related to figure 3.15. 

3.2.3 Notable exclusions and Diagnostic Ambiguity 

Radiologists often prioritize lesions larger than 5 mm in breast cancer diagnosis using DCE-MRI for several reasons. 

Smaller lesions, typically under 5 mm, can be more challenging to detect and characterize due to their size and the 

intricate breast tissue. Additionally, these tiny lesions may sometimes represent benign findings or artifacts, leading to 

unnecessary anxiety and further testing for the patient if they were closely examined. Radiologists focus on larger 

lesions as they are more likely to be clinically significant and are often better defined in DCE MRI images, allowing 

for a more accurate and confident diagnosis, which is crucial for patient care and treatment planning. An example of 

such exception is showcased in Figure 3.19, where the scan features a prominent lesion in the left breast, and a small 

lesion in the right breast. The report excluded the latter lesion; however, the behaviour of the area would suggest a 

suspicious lesion. 
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(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 3.25: first batch of 4 timesteps from a sequence showing a lesion that was excluded due to size. The red circles in (c) and (d) highlight an area that could be 
classified as suspicious if it was larger than 5 mm. 
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(e) 

 

(f) 

 

(g) 

 

(h) 

Figure 3.19: second batch of 4 timesteps from a sequence showing a lesion that was excluded due to size. The red circles in (e) and (f) highlight an area that could be 
classified as suspicious if it was larger than 5 mm. 

The figure above synthesizes the challenges with using the radiologists’ reports as ground truth: the labelling in the 

report reflects the perception of an expert, derived from a process that is optimized for patient care and time 

effectiveness. Neither of these priorities allow for an objective labelling or areas as “cancer” or “not cancer”, as small 

lesions could be a part of the “not cancer” areas.  
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An additional challenge in using the report data as ground truth comes from the diagnostic ambiguity regarding the 

dimensions of lesions. Given the low resolution of MRI scans, the decision on the extent of a lesion is made on the 

perception of a doctor, with subpixel accuracy. These decisions, however, are mostly to establish the need of a biopsy, 

hence the lesions are not measured with absolute and objective accuracy. 

3.3 Chapter Summary 

The section presented the challenge in diagnosing breast cancer from a clinician’s perspective, and how the output of 

the process can be used in algorithmic ways. In essence, the processes are largely subjective, and the ground truth data 

cannot be used in algorithms that do not consider the anatomy of the human body. Henceforth, an unsupervised 

methodology is recommended for lesion detection, with knowledge integration supplied by supervised techniques. In 

the following chapter, the constraints in the data are leveraged in the development of an unsupervised methodology 

for lesion detection. 
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Chapter 4. Automatic suspect area identification through unsupervised 

deep learning 

4.1 Introduction 

Breast cancer diagnosis through dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) has become a 

cornerstone in the detection and assessment of suspicious lesions. However, existing methodologies for lesion 

detection often face critical limitations, including reliance on supervised techniques, dependence on annotated datasets, 

and challenges in scalability. This chapter presents a novel, unsupervised deep learning approach aimed at addressing 

these limitations by facilitating diagnostic support without the need for labelled training data. The proposed 

methodology focuses on compressing temporal information from DCE-MRI sequences into a reduced dimensional 

space that is both interpretable and computationally efficient, enabling faster and more accurate identification of 

suspect lesions. 

The primary goal of this research is to develop a methodology that highlights suspicious regions in DCE-MRI scans 

through an unsupervised neural network framework. Unlike prior approaches that depend on manually designed 

features and exhaustive search algorithms, this work leverages an encoder-decoder architecture to process temporal 

enhancement curves, distilling the data into a few interpretable dimensions. This dimensionality reduction not only 

preserves meaningful information but also simplifies the identification of abnormal enhancement patterns indicative 

of malignancies. 

A key innovation of this study lies in the formulation of an "index of suspiciousness," derived from the low-

dimensional representations. This index enables clinicians to prioritize regions for further examination while mitigating 

the impact of false positives. Additionally, the methodology is adaptable to diverse imaging protocols and hardware 

configurations, ensuring broader applicability in clinical settings. 

Given the challenges associated with ground truth labelling in medical imaging, the proposed approach circumvents 

the need for extensive annotations by treating lesion detection as an anomaly detection problem. The algorithm 

identifies outliers based on reconstruction errors, leveraging patterns that deviate from typical enhancement behaviour. 

This unsupervised framework is designed to handle the high dimensionality of DCE-MRI data efficiently, making it 

scalable to large datasets without sacrificing performance. 
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The subsequent sections of this chapter detail the dataset preparation, network architectures, and experimental setups 

employed in this study. Comparative analyses with existing methods highlight the strengths of the proposed approach, 

particularly in terms of reconstruction error and true positive rates. The results underscore the potential of this 

methodology to streamline breast cancer diagnostics and improve clinical outcomes. 

By introducing a framework that prioritizes interpretability, scalability, and flexibility, this chapter aims to bridge the 

gap between algorithmic performance and clinical usability. The findings presented here pave the way for future 

advancements in unsupervised diagnostic tools, offering a robust foundation for enhancing breast cancer detection 

through automated imaging analysis. 

4.2 Dataset and labelling strategy 

The whole dataset of 19200 sequences was used in this study, with a total of over 153000 images. The data collection 

took place on a 1.5T scanner (MAGNETOM Avanto, Siemens Healthcare GmbH, Erlangen, Germany), with patients 

lying face down. Each scan utilized a TR/TE/flip angle of 4.33s/1.32s/10°, employing a slice thickness of 1.1 mm 

with no inter-slice gaps. The resolution per slice stood at 448 x 448 pixels. The DCE-MRI protocol encompassed a 

pre-contrast T1-weighted sequence and seven post-contrast T1-weighted sequences, separated by intervals of 1:01 

minutes.  

The selected methodology was unsupervised, as ground truth labelling would not be possible, as mentioned in Chapter 

3. The labelling provided in the attachments to the dataset was used to subjectively gauge at the effectiveness of the 

methodology a posteriori, however it was not used in the training process. 

The sequence data (4-dimensional: x, y, z axis and time) was collapsed in two dimensions by stacking the height, depth, 

and length dimensions into one. The resulting dataset was in tabular form, with records detailing the transient 

behaviour of each pixel at each point in the breast volume. A simple thresholding algorithm was applied to allow 

compliance with relatively limited computational resources, shown in figure 4.1. All data from a single MRI scan was 

standardized (mean equal to 0 and standard deviation equal to 1), then for each slice, all pixels with value lower than 

0 at either timestep 1 or timestep 3 were filtered out. This approach is meant to save computational resources and has 

no impact on the outcome of the solution. 
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 Standardise 

4-Dimensional Data 

Intensity < 0 on standardised timestep 1 Intensity < 0 on standardised timestep 3 

Filtered Image timestep 

Single Slice 

Figure 4.1: thresholding algorithm. 
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4.3 Related Work 

Methods for detecting breast lesions from DCE-MRI scans often rely on exhaustive search techniques and manually 

crafted features ([51 – 54]). Vignati et al. ([53]) introduced a method that involves thresholding an intensity-normalized 

DCE-MRI to identify voxel candidates, which are then combined to form lesion candidates. The classification process 

utilizes hand-designed region and kinetic features. However, the method exhibits low accuracy, attributed to its reliance 

on assumptions about DCE-MRI intensity while neglecting texture, shape, location, and size features, achieving a True 

Positive Rate of 0.89 on a largely uniform dataset. Renz et al. ([54]) expanded on Vignati et al.'s work by incorporating 

additional hand-designed morphological and dynamical features, demonstrating improved results, with TPR of 0.96. 

Gubern-Merida et al. ([51]) achieved further enhancements by introducing hand-designed shape and appearance 

features, with a TPR of 0.89 on a significantly harder dataset, as it featured extreme variability in image quality, and 

lesion sizes and shape characteristics.  

McClymont et al. ([52]) improved upon these methods by introducing unsupervised voxel clustering for initial lesion 

candidate detection, followed by a structured output learning approach that simultaneously detects and segments 

lesions. While this approach significantly enhances detection accuracy, it comes at a notable increase in computational 

cost, but achieved TPR of 1.00 in a small and varied dataset. The multi-scale deep learning cascade approach addressed 

runtime complexity concerns, enabling the extraction of optimal and efficient features while maintaining competitive 

detection accuracy, with a TPR of 0.80 on a small dataset (117 scans). 

The recent research has been focused on reduction of inference time and false positive rate (FPR), such as [56], in 

which a deep reinforcement learning algorithm was trained to optimize the resources and restrict the potential locations 

of lesions to subsets of the images, achieving a TPR of 0.80 on a dataset closer to real-world when compared to the 

ones from previous approaches.  

A critical aspect of previously proposed approaches involves two key issues: the absence of a standardized dataset for 

evaluating diverse methodologies and the lack of a consistent lesion detection criterion. In [53, 54], detections were 

visually inspected by a radiologist, while [51, 52] considered a lesion detected if a single voxel in the ground truth was 

identified. This study followed the methodology in [53, 54], with the addition of not considering false positives as part 

of the performance indicators, as presented in Chapter 3.  
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The absence of a standardized dataset also means that the biases that might be present in each dataset are grossly 

overlooked, hence any comparison would lack of scientific objectivity.  

Moreover, there is no example in literature in which an index of suspiciousness of an area has been proposed, which 

would greatly reduce the impact of false positives in the diagnostic process, as well as reducing the likelihood of false 

negatives.  

4.4 Methodology 

4.4.1 Problem Definition 

Given the challenges in data coherence and labelling outlined in Chapter 3, the chosen methodology for this study was 

an unsupervised one. Suspect regions in a DCE-MRI scan are identifiable as outliers or anomalies. This approach, 

which to the author’s knowledge does not appear in literature, allows for annotation-agnostic highlighting of suspect 

areas.  

The signal obtained by observing the intensity of a single pixel over time is inputted in a neural network encoder, 

which distils the information within 8 timesteps into n dimensions, with n being a small number (maximum 3). During 

training, the data is then decoded back to its original dimension. The reconstruction error of this process is defined as 

the MSE between the output of the decoder and the input and is the error function used to train the model. The 

distilled dimensions are processed via algorithmic implementations of heuristics derived from observation of the 

resulting data into an index which correlates with the likelihood of a pixel being part of a cancerous region. It is of 

paramount importance to note that a distance-based algorithm (i.e. k-nearest neighbours) would not work in this 

specific dataset, as all data features suspect lesions, hence a scan from a healthy patient would likely result in numerous 

false positives.  

A summary of the methodology is available in Figure 4.2 and Figure 4.3. A schematic of the training process for a 

single datapoint is shown in Figure 4.4. 
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Figure 4.2: summary of methodology 
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Figure 4.3: summary of methodology 
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Figure 4.4: training process for the proposed Encoder-Decoder structure. 

The data is inputted in the Encoder-Decoder architecture, which outputs an array of same dimensions. The arrays are 

confronted with MSE. The training aims to minimise this error, also known as reconstruction error. As the data from 

the labelling provides areas in which there is certainty of the presence of a suspect lesion, but there is no assurance on 

whether a single pixel is part of a lesion or not, the metric to determine the success of the methodology was chosen 

on overall accuracy of detection, with disregard of whether other areas highlighted were false positives or true positives. 

Part of further work on this data would be to improve upon the metric chosen in this project, as the only viable 

evaluation methodology for this study was a manual one. 

This phase of the work aimed to develop an algorithm that is inherently incapable of modelling the entirety of the 

possible enhancement patterns. This results in activations corresponding to the anomalous enhancement patterns to 

be extreme in the low-dimensional layers, allowing for easier and granular estimation of the abnormality of any given 

datapoint. The ability to map the enhancement space in lower dimension is highly desired, hence a lower reconstruction 

MSE was found to correlate well with lesion detection. 
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4.4.2 Neural Network Architectures 

The study focused on determining the best deep learning architecture in detecting the confirmed lesions in the dataset. 

The key factor in the quality of the outcome is the encoder architecture, hence, the decoder architecture was set to be 

mirroring the one of the encoders. Given the low dimensionality of the input data, a fully connected, feed forward 

architecture was chosen for the neural networks. 

An encoder architecture is a function of depth and width of the network, as well as the dimensionality of the low-

dimensional space. Therefore, the investigation focused on the effects of scaling these parameters on the prediction 

ability of the methodology. The chosen architectures, then, were combinations of different widths, depths, and 

bottleneck connections. Given the large number of combinations of these variables, a discretization of the search space 

was performed, illustrated in the following section.  

4.4.3 Experimental Setup 

The encoder search space for width of the layers was discretised by dividing it in two categories of size, expressed in 

the number 𝑃, which could assume the value of 2 or 3.  

Depth, width, and low dimensionality were ablated to obtain an optimal size and shape of the network. To this end, 

two depth levels were chosen, as a function parameter numbers. The shallow depth variant would have 𝑃 + 1 layers, 

while the deep variation would have 2𝑃 + 1 layers. 

This process was similarly conducted for width, which features a slim variant, with maximum width of 22𝑃+1, and a 

large variation with maximum width of 23𝑃+1. The maximum width was always assigned to the first layer, and any 

subsequent hidden was assigned a width equal to half of the one for the previous layer. As an example, if layer 1 had 

a width of 64, layer 2 would have a width of 32, layer 3 would have a width of 16, and so on. The minimum width was 

fixed at 4, hence a layer with width of 4 would have to feed into the low-dimensional layer. This only applies to the 

encoder/decoder structure, and not to the low-dimensional layer.  

The low-dimensional layer was assigned depths of 3 and 2 for every encoder/decoder architecture. It is important to 

note that these dimensions were later combined into one via hand-crafted algorithms to the best of the researcher’s 

ability, hence the results of study should not be considered as reliable in terms of dimensionality of low-dimensional 

representation size.   
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All models were trained to convergence five times, and the results reported represent the best performing model.  

The architectures covered in this study are presented in Table 4.1 below.  

Table 4.1: deep learning architectures overview. 

Name Maximum Width Depth Low Dimensionality 

P2_Low_Large_3 128 3 3 

P2_Low_Large_2 128 3 2 

P2_Low_Slim_3 32 3 3 

P2_Low_Slim_2 32 3 2 

P2_High_Large_3 128 6 3 

P2_High_Large_2 128 6 2 

P2_High_Slim_3 Not tested due to insufficient dimensions – would be equal to Low_Slim_3 

P2_High_Slim_2 Not tested due to insufficient dimensions – would be equal to Low_Slim_2 

P3_Low_Large_3 1024 4 3 

P3_Low_Large_2 1024 4 2 

P3_Low_Slim_3 128 4 3 

P3_Low_Slim_2 128 4 2 

P3_High_Large_3 1024 8 3 

P3_High_Large_2 1024 8 2 

P3_High_Slim_3 Not tested due to insufficient dimensions – would be equal to P2_High_Large_3 

P3_High_Slim_2 Not tested due to insufficient dimensions – would be equal to P2_High_Large_2 

4.4.4 Visual Evaluation 

The performance of the models was evaluated through a visual inspection of results on all slices in which a lesion was 

confirmed to be present by an expert radiologist. The encoded data (2 or 3-dimensonal) was transformed in 1-

dimensional data and reconstructed in a heatmap to be superimposed on the original image. Various methodologies 

for reducing the encoded data into a single dimension were tested, however it was observed that selecting the maximum 

absolute value among the activations yielded the best results in suspect area detection. Afterwards, a thresholding 
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algorithm was applied to remove low activation values. Finally, the values were normalised, and an expansion-erosion 

algorithm was applied to reduce the noise in the images. 

4.5 Experiments 

The unsupervised deep learning methodology for automatic suspect area identification in breast DCE-MRI scans was 

implemented and evaluated using a dataset consisting of 19,200 sequences and over 153,000 images. The methodology 

compressed the temporal information of eight timesteps into a limited number of dimensions for enhanced human 

interpretability, facilitating faster lesion identification. The results were assessed based on the ability of the models to 

reconstruct the input signals from the encoded space. Therefore, the chosen performance metric was MSE between 

the input and outputs of the network. The performance was later evaluated visually on the ability to detect cancerous 

lesions, and the TPR metric is reported.  

The best results for each model presented in Table 4.1 above are shown in Table 4.2 below. 

Table 4.2: reconstruction Error (MSE) and True positive rate (TPR) overview for all examined architectures. 

 

Name Reconstruction Error (MSE) True positive rate (TPR) 

P2_Low_Large_3 0.0945 0.7881 

P2_Low_Large_2 0.1466 0.6415 

P2_Low_Slim_3 0.1198 0.7089 

P2_Low_Slim_2 0.1478 0.6386 

P2_High_Large_3 0.0746 0.8673 

P2_High_Large_2 0.0830 0.8313 

P3_Low_Large_3 0.0534 0.9788 

P3_Low_Large_2 0.0717 0.8804 

P3_Low_Slim_3 0.0845 0.8255 

P3_Low_Slim_2 0.1566 0.6193 

P3_High_Large_3 0.0559 0.9635 

P3_High_Large_2 0.0766 0.8583 
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The results of the model evaluation, as presented in Table 4.2, provide valuable insights into the performance of 

various neural network architectures in the context of breast DCE-MRI suspect area identification. The reconstruction 

error, quantified by the Mean Squared Error (MSE), serves as an essential metric reflecting the fidelity of the models 

in reconstructing the original data. Lower MSE values indicate better reconstruction performance. Notably, 

architectures such as P3_Low_Large_3 and P2_High_Large_3 exhibit the lowest reconstruction errors, with MSE 

values of 0.0534 and 0.0746, respectively. These models effectively compress the temporal information into a low-

dimensional space while maintaining a high degree of accuracy in reproducing the original data. Simultaneously, it is 

possible to observe how the True Positive Rate (TPR) is highly correlated to the ability of a network to reconstruct 

the input data, hence the best performing models are P3_Low_Large_3 and P2_High_Large_3, with TPR values of 

0.9788 and 0.9635, respectively.  

It is worth noting how the performance scales with width, depth, and bottleneck dimensionality of the networks. 

Analysing the performance of networks with equal width but different depth, such as P2_High_Large_3 and 

P2_Low_Large_3, yields an average improvement on MSE of 23.11%, which translates to an average TPR increase of 

7.47%. A similar analysis results in a 41.07% decrease in MSE corresponding to a 15.08% increase in TPR for 

bottleneck dimensionality, and a 51.06% decrease in MSE with a 16.22% increase in TPR for width scaling. These 

improvements are phenomena with clear diminishing returns, and at higher widths and depths, detrimental, as it is 

possible to observe a decrease in MSE of 6.40% when depth is scaled beyond the optimal level, likely due to overfitting.  

4.5.1 Post-processing and Visual Results 

The lower-dimensional space was processed to allow it to be human readable. First, the absolute value of the output 

of the bottleneck layer was used to reconstruct images by using the known pixel position of the input signal. An 

example of this process is shown in Figure 4.5 below, which showcases the best performing P3_Low_Large_3 model 

on a known lesion. 
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The lower-dimensional images were then merged into one by taking the maximum value at each position. The resulting 

image was then filtered using a user-set threshold (mimicking the clinical use and offering customisability to the user) 

and superimposed onto one of the original images. All evaluations reported in Table 4.2 above were made by setting 

the threshold to 
𝑉𝑚𝑎𝑥

3
, where 𝑉𝑚𝑎𝑥 was the maximum value in a whole scan. Finally, the image was inputted in an 

erosion-dilation algorithm to remove noise, as shown in Figure 4.6 below. The resulting image is normalised for the 

whole scan and presented to the user, which can conveniently refer to a score between 0 and 1 to gauge at the likelihood 

of an anomaly in any given area. 

 

 

Figure 4.5: output of the low-dimensional layer for the best performing model (P3_Low_Large_3). The expert-confirmed lesion (ground truth) is circled in red on the left 

image. It is possible to note, however, high activations in the area circled in black on the rightmost image. These were later confirmed by the radiologist to be non-mass 

enhancement in early formation, further proving how reliance on ground truth diagnosis could lead to flawed algorithms. 
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Figure 4.6: outputs of the post-processing step for the low-dimensional layer for the best performing model (P3_Low_Large_3). 
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4.6 Discussion 

The proposed unsupervised methodology demonstrated considerable advantages over existing approaches that heavily 

rely on supervised techniques. First and foremost, this approach is the first in considering real-world clinical 

applications and usage of the methodology, offering the user a clear and linear way to interact with the results of the 

algorithms and adjust them to maximise the utility of them. Secondly, the proposed approach maximises interpretability 

by operating on enhancement curves, the same data as the practitioner during diagnosis, allowing the user to 

immediately and intuitively verify whether a suspect area is, in fact, worth considering. At the same time, operating on 

pure enhancement curves allows for fundamental transferability of this methodology to different imaging protocols 

and data from different MRI manufacturers. Moreover, the unsupervised nature of the solution allows for better 

scalability by reducing the need for labelled data, which is often biased, whilst maintaining similar or better performance 

levels compared to the state of the art. Finally, the methodology introduces an index of suspiciousness, offering a novel 

perspective on lesion detection in breast DCE-MRI scans and increases trustworthiness.  

The best performing model out of the ones examined was P3_Low_Large_3, however there are still open questions 

regarding performance scalability of width, along with the behaviour on larger datasets. 

Acknowledging the study's promising results, certain limitations were identified. The manual evaluation methodology 

used in this study requires refinement, and future work will explore alternative metrics for better assessing the 

performance of the models. The algorithm tends to identify the region inside the chest wall as suspicious, due to the 

behaviour of the heart (as shown in chapter 3). This limitation, while not detrimental for the accuracy of lesion 

detection, significantly impacts the clinical useability of the methodology by introducing noise in the algorithmic results.   

4.7 Conclusion 

The study successfully developed an unsupervised deep learning methodology for automatic suspect area identification 

in breast DCE-MRI scans. The detailed evaluation of various neural network architectures demonstrated the potential 

for improved diagnostic efficiency. The proposed approach showcased competitive results compared to existing 

techniques, highlighting its capability for annotation-agnostic detection of suspect lesions. 

In conclusion, the developed methodology holds promise in enhancing diagnostic capabilities and reducing 

dependence on ground truth labelling. The findings contribute to advancements in breast cancer diagnosis through 
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automated imaging analysis, paving the way for future research to refine evaluation metrics. Part of the limitations 

stemming from the noise generated in the heart region are addressed in Chapter 5.  
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Chapter 5.  Automatic thoracic cavity segmentation in DCE breast MRI 

using deep convolutional neural networks 

5.1 Introduction 

The segmentation of the thoracic cavity in dynamic contrast-enhanced (DCE) breast MRI is a fundamental task in 

medical imaging that plays a crucial role in the development of computer-aided diagnostic (CAD) systems. Accurate 

segmentation is essential for isolating the region of interest, enabling the detection and analysis of pathological 

structures while minimizing computational overhead associated with irrelevant anatomical regions. Despite the 

advancements in medical image processing, achieving high-precision, automated segmentation remains a challenging 

task due to variability in anatomical structures, imaging artifacts, and limited availability of annotated datasets. 

Deep learning-based methodologies have emerged as powerful tools for automating segmentation tasks by leveraging 

neural networks trained on manually annotated data. These approaches have demonstrated superior performance 

compared to traditional image processing techniques, achieving state-of-the-art results in various medical imaging 

applications. However, challenges remain in ensuring interpretability and generalizability of these methods, as well as 

addressing their dependency on large, well-annotated datasets and significant computational resources. These 

requirements present a barrier to widespread adoption, particularly in clinical environments with limited resources. for 

automating segmentation tasks by leveraging neural networks trained on manually annotated data. These approaches 

have demonstrated superior performance compared to traditional image processing techniques, achieving state-of-the-

art results in various medical imaging applications. However, the success of deep learning algorithms often depends 

on large, well-annotated datasets and significant computational resources. These requirements present a barrier to 

widespread adoption, particularly in clinical environments with limited resources. 

In this chapter, a novel approach to thoracic cavity segmentation in DCE breast MRI using deep convolutional neural 

networks is presented, specifically focusing on addressing the challenges of data efficiency and computational 

feasibility. Our methodology employs a Dynamic UNet architecture with a pre-trained ResNet encoder to leverage 

transfer learning and mitigate the impact of limited training data. Additionally, architectural enhancements are 

incorporated, including self-attention mechanisms, blurring layers to reduce checkerboard artifacts, and bottleneck 

connections to preserve spatial information. 
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This work aims to bridge the gap between segmentation accuracy and practical implementation by optimizing network 

configurations to operate effectively with limited data and computational resources. By evaluating multiple architectural 

variations, the configurations that deliver high segmentation accuracy while maintaining computational efficiency 

suitable for clinical environments were selected. The proposed approach demonstrates robust performance, achieving 

results comparable to or exceeding existing state-of-the-art methods, and offers a scalable solution for CAD 

applications in breast MRI. 

The remainder of this chapter outlines the methodologies employed, including dataset preparation, network 

architecture, and training strategies. An extensive evaluation of model performance based on segmentation accuracy, 

computational efficiency, and robustness to data augmentation strategies is also presented. Finally, a discussion on the 

implications of our findings and potential avenues for future research in medical image segmentation is presented. 

 

5.2 Related work in thoracic cavity segmentation 

The current state of the art addresses the thoracic cavity segmentation challenge by training a 3-dimensional cluster of 

2D UNets ([57]).  It is argued that implementing more recent deep learning techniques can lead to better results and 

generalisation performance. 

Given the importance of the task and its complexity, there have been numerous approaches proposed in the published 

literature. Marrone et al. DL-based approaches ([58]) are also included in the following overview. While the DL 

category has limited representation right now, it is currently considered as the state of the art. Moreover, it is expected 

that the popularity of this subfield would increase due to the vast representation of DL-based techniques in parallel 

fields, such as hand and brain segmentation ([59]). For these reasons, the section dedicated to DL approaches is being 

given higher importance. 

5.2.1 Pixel-based approaches 

Approaches in this category rely on classifying pixels or voxels individually, or with simple computations on the 

surrounding pixels ([60, 61]). Results are not always fully automatic and tend to produce suboptimal results, especially 

the boundary between the sternum and the internal organ, which is often wrongly segmented. On the other hand, they 

require minimal computational costs. For example, in the approach by Vignati et al. ([62]), the images are processed 
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using Otsu’s thresholding and a sequence of dilations and erosions. Results show good breast parenchyma 

segmentation performance. However, the limitations become apparent as the examples provided show imprecise chest 

wall segmentation, as specified by the authors, and require the aid of fat-saturated images, or an atlas-based 

segmentation. The study demonstrated that segmentation of the outer boundary of the breast is achievable by 

computationally efficient methodologies, while chest cavity segmentation would require more complex solutions. 

Given the importance of minimising the presence of internal organs (see Figure 1.6), specifically the heart, is 

fundamental in the development of lesion detection systems for DCE-MRI. Future studies should then focus on the 

detection of the chest wall. 

5.2.2 Atlas-based approaches 

The solutions in this category are generated by comparing anatomical atlas generated by manually segmented data ([15, 

63-66]). The approaches usually require a high number of instances in the atlas to guarantee generalisability to different 

anatomical features and acquisition protocols. The size of the atlas, however, is directly linked to an increased 

computational cost. To counteract such limitations, the solutions are often restricted to a specific anatomical part. An 

example of such an application was provided by Fooladivanda et al. ([67]), in which the authors use an atlas-based 

approach to segment the pectoral muscle, relying on a simpler pixel-based approach to segment the chest wall edge.   

5.2.3 Geometrical-based approaches 

The proposed solutions within the category revolve around constraining the segmentation results to predetermined 

anatomical and physiological characteristics. Their most common usage is as a refinement to pixel-based approaches 

([68, 69]). The main criticisms of the techniques are the extreme computational cost and extremely poor generalisation 

performance. Notable examples come from Wu et al. ([23]) in which the authors propose a methodology to extract 

the chest wall line from sagittal breast MRI. Results are based on a refinement of edge detection via enforcing 

geometrical constraints and are extremely effective. The fundamental assumptions, however, highlight the limitations 

in generalisability, as the methodology does not account for the edge detection algorithm failing. This limits the 

potential application in a contrast-enhanced MRI environment, as post-enhancement images usually feature high-

intensity chest wall and heart regions, as shown in the following figure. 
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Figure 5.1: pre-enhancement and post-enhancement (6 minutes after CA injection) images of a central slice of the breast. The area of the sternum highlighted in the 

picture on the left is not clearly defined through an edge detection algorithm in the picture on the right. 

5.2.4 Deep learning-based approaches 

Deep learning-based solutions allow for the creation of fully automated segmentation methodologies by exploiting 

previous examples in the form of manually segmented data. The limitations of the approaches consist in the training 

process, for which large quantities of data and computational resources are needed. The techniques have been applied 

with great success to an increasing amount of research problems in recent years ([70]). 

The pioneering solution is attributable to Dalmis et al. ([71]), in which the authors propose an automated breast and 

fibro-glandular tissue (FGT) segmentation using a UNet approach ([72]), obtaining considerable improvements in 

accuracy over the state of the art at that time in terms of DSC Similarity Coefficient (DSC), achieving a DSC of 0.944 

against 0.863 from the previous reported state of the art. The current state of the art is attributable to the previously 

mentioned work by Piantadosi et al., who have implemented a multi-planar UNet approach, obtaining some 

improvements over Dalmis et al. ([27]). The methodology uses three discrete UNets on the transverse, sagittal and 

coronal planes instead of a three-dimensional (3D) UNet to increase computational efficiency for the solution. The 

3D aspect of the network, however, effectively triples the computational cost. Moreover, the current state of the art 

was trained on a dataset comprised of fully labelled data from 117 patients, well above the data usually available for 

training to most developers. As the labelling process is the most time-consuming aspect of the development, solutions 
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should aim at maximising performance with a minimum amount of data. To this end, novel techniques need to be 

employed, from both an architectural and a data pre-processing point of view.  

Given the limitations of the approaches presented and their advantages, the convolutional neural network (CNN) 

methodologies are the most applicable for problems in computer-aided diagnostics (CAD). However, all DL 

approaches available in the literature fail to address the most limiting aspect of the issue, which is data availability. The 

proposed solution aims to improve the current state of the art by focussing on data efficiency, by employing 

architectures that are less prone to overfitting and behave better in transfer learning scenarios. Moreover, recent 

advancements in DL research, such as self-attention ([33]), have the potential to further improve upon the state of the 

art. In addition, computational efforts need to be compliant with hardware that is potentially available in a hospital; 

hence the algorithms should process patient data in a 2-dimensional fashion, as 3D data can be generated if needed. 

The work performed in these years has contributed to the improving the current state of the art by employing several 

techniques that have been successful in parallel fields. To this end, a total of 18 configurations were evaluated, 

corresponding to the combination of 3 different architectures and 3 different techniques to be applied. 

5.3 Datasets and labelling strategy 

A dataset comprising breast DCE MRI data from 44 patients served as the foundation for both training and evaluating 

the proposed segmentation model. The data collection took place on a 1.5T scanner (MAGNETOM Avanto, Siemens 

Healthcare GmbH, Erlangen, Germany), with patients lying face down. Each scan utilized a TR/TE/flip angle of 

4.33s/1.32s/10°, employing a slice thickness of 1.1 mm with no inter-slice gaps. The resolution per slice stood at 448 

x 448 pixels. The DCE-MRI protocol encompassed a pre-contrast T1-weighted sequence and seven post-contrast T1-

weighted sequences, separated by intervals of 1:01 minutes. 

For manual segmentation, a subset of slices was judiciously chosen and validated by a breast radiologist. Before manual 

segmentation, slices underwent size cropping to remove the posterior thorax half. In this development phase, the 

lowermost row of 131 pixels was discarded, as it yielded the optimal cropping outcome for our dataset. To account 

for anatomical variations across the upper body, eleven evenly distributed slices within the central 70 slices of the pre-

contrast sequence were meticulously selected for manual segmentation. To accommodate variations caused by contrast 

agent injection, the six central slices of the pre-contrast sequence were also manually segmented. The process was 
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replicated for these slices across all seven post-contrast sequences. Consequently, a total of 2552 slices underwent 

manual segmentation. From this pool, slices from 37 patients (n = 2146 slices) were allocated for model training, while 

the remaining seven patients' segmented slices (n = 406 slices) were dedicated for model testing (in summary: 81% of 

data was used for training, the remaining 19% for test). 

5.4 Methodology 

The automatic chest cavity segmentation algorithm proposed in this work is composed of two main parts. In the first 

part, the volume is sliced in its transverse plane images, and it is inputted in a Dynamic UNet (fast.ai, n.d.), inspired by 

the work of Iglovikov and Shvets ([73]). A schematic of the proposed solution is shown in Figure 5.2 below. 

DL Model

Mask 
Application

 

Figure 5.2: schematic of the proposed solution. The input image is inputted in a deep learning model, which outputs a generated mask. The segmentation mask is then 

applied to the input image. 
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This work proposes an automatic algorithm for chest cavity segmentation, designed to accurately delineate the chest 

cavity in medical imaging. The model processes 3D medical volumes by first slicing them into 2D transverse plane 

images. These images are then fed into a Dynamic UNet model, which performs the segmentation by generating a 

mask that highlights the chest cavity region. 

5.4.1 Deep learning model 

The segmentation model is based on a Dynamic UNet with a pre-trained ResNet encoder. A transfer learning approach 

was utilised with a pre-trained ResNet encoder to address the challenge of insufficient training data. Transfer learning 

([74]) is a widely used technique in computer vision tasks outside of medical image segmentation ([75, 76]). To leverage 

transfer learning, the technique employed in the proposed solution is the Dynamic UNet (fast.ai, n.d.), based on the 

original Unet proposed by Ronneberger et al. ([26]). A UNet architecture was chosen as it is the best methodology in 

terms of overall performance in medical imaging applications ([24, 77]) The flexibility derived from using custom 

encoders provided by Dynamic UNet allows for a much greater degree of exploitation of transfer learning.  

The original UNet architecture can be divided into an encoding part, or “down sampling”, and a decoding part, or “up 

sampling”. The encoding side performs a similar task to a conventional CNN, with regular down sampling steps, 

performed through the maxpool operation. At the same time, the decoding path follows a symmetrical structure, with 

the up-sampling steps performed through a fractionally-strided convolution layer. The symmetry allows for the 

activations of the down sampling layers to be concatenated to the activations of the up-sampling layers, thus better 

retaining spatial information throughout the up-sampling path.  

The Dynamic UNet architecture was originally presented in the previously mentioned work by Iglovikov and Shvets. 

It follows the same basic architecture as the original UNet but adds a pre-trained model as the encoder. The approach 

not only achieves considerable improvements over the traditional UNet, but it also allows to experiment with a variety 

of pre-trained encoders. In this study, the ResNet encoders were used, as it has been demonstrated that they reduce 

the reliance on regularization techniques ([78]). 

ResNets were first introduced in 2015 ([79]) to counteract the vanishing/exploding gradient problem in deeper 

networks, which had been a mainstay challenge in the deep learning research field since the inception of ConvNets 

([80]). The fundamental component of a ResNet is the residual block, which incorporates a “skip-connection”. The 

input to the block is passed through an identity mapping and is summed to the activation of a series of convolutional 
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layers. ResNets can reach theoretically infinite depths, due to the self-regularization method provided by the identity 

mapping ([43]). The flexibility of ResNets allows training for longer (more epochs), thus reducing the likelihood of 

overfitting ([43]). 

5.4.2 Model configurations 

In addition to the novel application of the Dynamic Unet in this field, a set of architectural configurations were made 

to the model. These model configurations further improve upon the current state of the art. The configurations 

introduced to the model were: 

• ResNet encoders. 

• Self-attention layer as part of the up-sampling path of the model. 

• Blurring algorithm to avoid checkerboard artefacts. 

• Bottleneck connection from input to output.  
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Figure 5.3: experimental layout. Purple represents the location of the self-attention layer (here represented in a simplified view of a ResNet18). Red represents the skip 

connection from the first to last layer. Green is the bottlenecked connection. 

5.4.2.1 ResNet encoders 

A ResNet encoder refers to the encoder portion of a neural network architecture known as ResNet, introduced in 

paragraph 2.1.9. ResNet is a deep learning architecture that was introduced by researchers at Microsoft Research ([81]) 

in 2015. 
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The ResNet architecture is commonly used for tasks like image classification and object detection, where deep 

networks are required. The encoder part of a ResNet typically refers to the initial layers that process the input data and 

extract features from it. The encoder processes the input data through a series of convolutional layers and pooling 

operations, gradually reducing the spatial dimensions while increasing the number of channels (i.e., features) extracted. 

This encoder part is usually followed by a fully connected layer or a global pooling operation that produces the final 

feature representation used for the task at hand. 

The chosen encoder architectures were ResNet18, ResNet34 and ResNet50 ([39]). It was important to convey the 

effect of architectural scaling on performance, and ResNets have been demonstrated to be an excellent choice for 

medical imaging work ([82, 83]). While the number of training parameters is considerably higher than most other 

solutions, the increased transferability of ResNets allows for improved results with lower amounts of data, validating 

the effort that was put into increasing data efficiency. The choice of not experimenting with bigger architectures, such 

as ResNet101, was made due to insufficient data for such architectures. This assumption was confirmed correct by the 

results. 

5.4.2.2 Self-attention layer 

Attention is a mechanism that was introduced by Bahdanau et al. ([84]) to improve neural machine translation tasks 

and attention-based models have been shown to excel in all contexts in which capturing global dependencies are 

necessary. Attention layers have since then been an integral part of transformer-based models ([29]). Attention-based 

models have demonstrated to excel in all contexts in which capturing global dependencies are necessary, including 

hybrid text-image tasks ([85, 86]), and computer vision tasks ([87]). Self-attention consists of a block of layers that 

outputs the attention feature maps of an input sequence with each element of the same sequence. Self-attention has 

been featured in promising research within CAD ([88]), with the usage of self-attention as a region-of-interest detection 

tool, thus allowing to obtain a cropped local image in which to perform a second classification.  

The experiments were run with the implementation described by Zhang et al. ([89]), who introduced a ResNet-like 

approach to self-attention by including a skip-connection within the final output of a layer 𝑦𝑖 : 

𝑦𝑖 =  𝛾𝑜𝑖 + 𝑥𝑖 (5.1) 
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Where γ is a learnable parameter that scales the output of a self-attention layer and 𝑥𝑖 is the input of the layer. The 

approach results in greater spatial awareness by the model, a trait that is highly desirable in medical imaging, as images 

often present themselves with a pseudo-symmetrical and repetitive structure.   

5.4.2.3 Blurring 

To counteract the natural occurrence of checkerboard artefacts in CNNs ([90]), a blurring mechanism was introduced. 

An average pooling layer with 2x2 dimensions and the unit stride was added after each activation in the up-sampling 

path of the Dynamic UNet.  

5.4.2.4 Bottleneck connection 

The original UNet architecture did not feature any direct connection between input and the final layer, opting instead 

for a concatenation of the activation of the third layer and the activation of the last deconvolution layer ([28]). Adding 

an even less processed pass-through could lead to better spatial awareness and improved performance. In this work, a 

bottlenecked connection is included, aiming at forcing the model to synthetise the input information by using a 

bottleneck within the residual block, which halves the number of features in the convolutional path of the block. 

5.4.2.5 Data augmentation 

In addition to transfer learning, we further address the issue of insufficient training data by employing an aggressive 

data augmentation strategy compared to published literature. Data augmentation is an ensemble of techniques that are 

employed to artificially increase the amount of available data to reduce overfitting and improve generalisation. 

Specifically, in computer vision images are slightly altered through affine or lighting transformations. These can include 

rotations, cropping, contrast, and colour correction. By heavily employing data augmentation, the chances for 

overfitting are drastically lowered, allowing for improved performance with data being equal (by employing a bigger 

architecture), or by achieving similar results with lower amounts of data, as presented by Wong et al. ([92]).  

Table 5.1: data augmentation overview. The probability column refers to the likelihood of any transformation to happen. 

Transformation Parameters Probability 

Horizontal flip N/A 0.5 

Rotation ±10° 0.75 

Cropping  1.1 magnification 0.75 
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Contrast adjustment ±20% 0.75 

Brightness adjustment ±10% 0.75 

Perspective warp ±20% position of the observation plane 0.75 

 

Several augmentation strategies were employed (summarised in Table 5.1), and augmented images were used for all 

model configurations. All transformations were performed with a reflection padding mode, mirroring the pixel values 

along the image border to fill the shape. Examples of augmented data can be seen in Figure . The combined probability 

of a transformation to a specific feature is: 

𝑝 =  1 − ∏(1 − 𝑝𝑖) (5.2) 

Where 𝑝𝑖 is the probability of the transformations that affect the specific feature to occur. The dataset was then 

comprised of ~99.95% data augmented images. The perfectly horizontal edge of the manually segmented mask was 

impacted by the perspective warp and the rotation transformation. This led to an overwhelming imbalance in the 

dataset, with ~93.75% of the images featuring an inclined mask as ground truth. 
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Figure 5.4: example of data augmentation on a small batch of data. The reflection padding can be seen in the top left corner. All images have their manually labelled 

ground truth featuring a straight line at the bottom of the mask. 

5.4.2.6 Hyperparameters 

To identify the best segmentation model for the segmentation task, a total of 18 different segmentation models were 

trained, each with a different combination of the configurations described above (see Table 5.2). The same training 

datasets (2146 images from 37 patients) were used for the training of all model configurations. Every model was trained 

with three distinct random seeds to ensure minimal stochastic noise in the results. 
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The optimiser for the training was Adam ([93]), with β_1 of 0.9 and β_2 of 0.99. The optimal learning rate for each 

architecture was found as shown by Smith ([94]). The training phase featured learning rate annealing, as described by 

the 1-cycle policy ([95]).  

The models were trained using a NVIDIA P40 with 24 GB of VRAM. Batch sizes were chosen empirically, with 

ResNet18 models having 64 (31,208,178 parameters), ResNet34 having 32 (41,316,338 parameters), and ResNet50 

having 8 (341,254,226 parameters).  

5.5 Experiments 

The performance of each of the 18 different models was tested with images from seven patients not used for training. 

The computational demand of each model was evaluated by calculating inference times for segmentation. Inference 

times were calculated for each image and for all images of the DCE-MRI sequence of each patient (n = 1260). 

The segmentation result of each model was compared to 406 images (58 images per patient) that were manually 

segmented. Comparisons of agreement between the model segmentation and the manual segmentation were made 

using the DSC Similarity Coefficient (DSC) and the Jaccard Similarity Coefficient (JSC):  

𝐷𝑆𝐶 =
2|𝑋 ∩ 𝑌|

|𝑋| + |𝑌|
 (5.3) 

𝐽𝑆𝐶 =
|𝑋 ∩ 𝑌|

|𝑋 ∪ 𝑌|
 (5.4) 

Where X is the number of pixels inside the thoracic cavity that are part of the manual segmentation and Y is the 

number of pixels inside the thoracic cavity that are part of the model segmentation. The DSC represents the mean 

overlap and the JSC represents the union overlap of pixels that are common to both the manual and automatic 

segmentation. For each model, DSC and JSC were determined for each image and the mean ± standard deviation (SD) 

of each coefficient was calculated for all 406 images. 

5.5.1 Results 

DSC and JSC for each model are summarised in Table 5.2. Inference times are summarised in Table 5.3. The best 

agreement between model segmentation and manual segmentation was found for the ResNet34 with self-attention, 

bottlenecked connection, and blurring mechanism model configuration with a DSC of 0.9359, JSC of 0.8874 and 

inference times of 33.56 ms/image and 42.3 s for all 1260 images of one DCE sequence. The worst agreement between 
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model segmentation and manual segmentation was found for the ResNet50 with self-attention model configuration 

with a DSC of 0.9210, JSC of 0.8670, and inference times of 194.8 ms/image and 245.2 s for all 1260 images of one 

DCE sequence. 

Table 5.2: similarity coefficients for all models. The similarity coefficients are represented as mean ± standard deviation. The best performing model was the ResNet34 

model with self-attention layer, bottleneck connection and blurring mechanism, which is highlighted in bold. Abbreviations: BC – bottleneck connection, BL – blurring 

mechanism, DSC – DSC Similarity Coefficient, JSC – Jaccard Similarity Coefficient, SA – self-attention layer. 

Model configuration Mean DSC (n = 406) Mean JSC (n = 406) 

Resnet18  0.9253 ± 0.1034 0.8760 ± 0.0758 

ResNet18 + SA 0.9296 ± 0.1028 0.8757 ± 0.0765 

ResNet18 + BL 0.9273 ± 0.1033 0.8795 ± 0.0764 

ResNet18 + BC 0.9283 ± 0.1045 0.8742 ± 0.0763 

ResNet18 + SA + BL 0.9348 ± 0.1045 0.8846 ± 0.0760 

ResNet18 + SA +BL + BC 0.9293 ± 0.1036 0.8755 ± 0.0765 

Resnet34  0.9244 ± 0.1017 0.8721 ± 0.0756 

ResNet34 + SA 0.9230 ± 0.1012 0.8652 ± 0.0752 

ResNet34 + BL 0.9227 ± 0.1015 0.8714 ± 0.0749 

ResNet34 + BC 0.9292 ± 0.1009 0.8754 ± 0.0755 

ResNet34 + SA + BL 0.9337 ± 0.1008 0.8780 ± 0.0750 

ResNet34 + SA + BL + BC 0.9359 ± 0.1004 0.8874 ± 0.0748 

Resnet50 0.9240 ± 0.1055 0.8717 ± 0.0781 

ResNet50 + SA 0.9210 ± 0.1069 0.8670 ± 0.0790 

ResNet50 + BL 0.9233 ± 0.1063 0.8708 ± 0.0777 

ResNet50 + BC 0.9257 ± 0.1059 0.8730 ± 0.0775 

ResNet50 + SA + BL 0.9278 ± 0.1061 0.8727 ± 0.0766 

ResNet50 + SA +BL + BC 0.9289 ± 0.1053 0.8740 ± 0.0770 
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Table 5.3: inference times for all models. Times are represented in ms/image for single image processing, and in seconds for batch processing. The best performing model 

was the ResNet18 with no additions, which is highlighted in bold. Abbreviations: BC – bottleneck connection, BL – blurring mechanism, DSC – DSC Similarity 

Coefficient, JSC – Jaccard Similarity Coefficient, SA – self-attention layer. 

Model configuration Inference time (ms/image) Batch inference time (1260 images) (s) 

Resnet18  26.83 30.0 

ResNet18 + SA 33.56 42.3 

ResNet18 + BL 31.88 40.2 

ResNet18 + BC 27.68 34.9 

ResNet18 + SA + BL 33.56 42.3 

ResNet18 + SA +BL + BC 33.56 42.3 

Resnet34  31.88 40.2 

ResNet34 + SA 33.56 42.3 

ResNet34 + BL 33.56 42.3 

ResNet34 + BC 30.2 38.1 

ResNet34 + SA + BL 33.56 42.3 

ResNet34 + SA + BL + BC 33.56 42.3 

Resnet50 179.5 226.2 

ResNet50 + SA 194.6 245.2 

ResNet50 + BL 196.3 247.3 

ResNet50 + BC 194.6 245.2 

ResNet50 + SA + BL 196.3 247.3 

ResNet50 + SA +BL + BC 198 249.5 

 

Upon visual inspection of the model segmentation results, it was found in all models that the lower edge of the 

segmented area was not straight, which influenced the results of the similarity coefficients. This phenomenon is an 
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artefact caused by the data augmentation strategy, which allowed for reduced overfitting, and better training outcomes. 

The training data rarely was not augmented before being inputted into the models, resulting in the horizontal line at 

the bottom of the manually segmented mask to be interpreted as always inclined. A simple adjustment step was then 

taken to ensure the real-world usability metrics of the methodology. The refinement algorithm consists of a simple 

loop over the columns of the output of the model, forcing any pixel between the highest true value in a column and 

the 131st from the bottom to be true. The updated schematic of the solution can be seen below in Figure 5.4.  

The sole purpose of the refinement algorithm is to remove the bias inserted into the training process by the aggressive 

data augmentation strategy. Such an algorithm would not be used in a workflow for lesion detection, or in clinical 

practice, as it aims at improving performance in areas that result in no additional value in CAD or diagnosis. 

Performance metrics of the refined masks should then be interpreted as directly correlated with the actual capability 

of models to segment the chest cavity. 

Application of the refinement algorithm led to considerable improvements in the similarity coefficients, but with a 

slight increase in inference times (see Table 5.5 and Table 5.5). The best agreement between model segmentation and 

manual segmentation was again found for the ResNet34 with self-attention, bottlenecked connection, and blurring 

mechanism model configuration with a DSC of 0.9612, JSC of 0.9789 with inference times of 98.99 ms/image. The 

worst agreement between model segmentation and manual segmentation was found for the ResNet50 with self-

attention model configuration with a DSC of 0.9465, JSC of 0.9708, with inference times of 261.7 ms/image. 
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Figure 5.5: schematic of the solution. The input image is inputted in a deep learning model, which outputs a generated mask. A refinement algorithm then removes the 

bottom part of the mask. The segmentation mask is then applied to the input image. 

Table 5.4: similarity coefficients for all models after refinement algorithm. The similarity coefficients are represented as mean ± standard deviation. The best performing 

model was the ResNet34 model with self-attention layer, bottleneck connection and blurring mechanism, DSC – DSC Similarity Coefficient, JSC – Jaccard Similarity 

Coefficient, SA – self-attention layer. 

Model configuration DSC (n = 406) JSC (n = 406) 

Resnet18  0.9750 ± 0.0451 0.9552 ± 0.0667 

ResNet18 + SA 0.9731 ± 0.0449 0.9552 ± 0.0669 

ResNet18 + BL 0.9739 ± 0.0447 0.9536 ± 0.0701 

ResNet18 + BC 0.9717 ± 0.0450 0.9497 ± 0.0670 
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Model configuration DSC (n = 406) JSC (n = 406) 

ResNet18 + SA + BL 0.9751 ± 0.0448 0.9556 ± 0.0665 

ResNet18 + SA +BL + BC 0.9737 ± 0.0447 0.9533 ± 0.0674 

Resnet34  0.9744 ± 0.0420 0.9541 ± 0.0682 

ResNet34 + SA 0.9734 ± 0.0419 0.9527 ± 0.0628 

ResNet34 + BL 0.9698 ± 0.0417 0.9512 ± 0.0642 

ResNet34 + BC 0.9766 ± 0.0422 0.9577 ± 0.0677 

ResNet34 + SA + BL 0.9775 ± 0.0425 0.9584 ± 0.0633 

ResNet34 + SA + BL + BC 0.9789 ± 0.0411 0.9612 ± 0.0621 

Resnet50 0.9718 ± 0.0493 0.9541 ± 0.0627 

ResNet50 + SA 0.9665 ± 0.0502 0.9538 ± 0.0721 

ResNet50 + BL 0.9708 ± 0.0488 0.9465 ± 0.0704 

ResNet50 + BC 0.9732 ± 0.0499 0.9526 ± 0.0706 

ResNet50 + SA + BL 0.9712 ± 0.0501 0.9532 ± 0.0710 

ResNet50 + SA +BL + BC 0.9766 ± 0.0497 0.9577 ± 0.0708 

 

Table 5.5: inference times for all models with subsequent refinement algorithm. Times are represented in ms/image for single image processing, and in seconds for batch 

processing. The best performing model was the ResNet18 with no additions, which is highlighted in bold. Abbreviations: BC – bottleneck connection, BL – blurring 

mechanism, DSC – DSC Similarity Coefficient, JSC – Jaccard Similarity Coefficient, SA – self-attention layer. 

Model configuration Inference time (ms/image) Batch inference time (1260 images) (s) 

Resnet18  92.28 116.3 

ResNet18 + SA 93.96 118.4 

ResNet18 + BL 92.28 116.3 

ResNet18 + BC 92.28 116.3 

ResNet18 + SA + BL 95.64 120.5 
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Model configuration Inference time (ms/image) Batch inference time (1260 images) (s) 

ResNet18 + SA +BL + BC 95.64 120.5 

Resnet34  90.6 114.2 

ResNet34 + SA 95.64 120.5 

ResNet34 + BL 95.64 120.5 

ResNet34 + BC 92.28 116.3 

ResNet34 + SA + BL 97.32 122.6 

ResNet34 + SA + BL + BC 98.99 124.7 

Resnet50 258.4 325.6 

ResNet50 + SA 263.4 331.9 

ResNet50 + BL 261.7 329.7 

ResNet50 + BC 260.1 327.7 

ResNet50 + SA + BL 261.7 329.7 

ResNet50 + SA +BL + BC 266.8 336.2 

 

5.6 Discussion 

The main aim of this work was to develop a fully automatic methodology for the segmentation of the chest cavity to 

use for the development of automatic lesion detection systems. All 18 models showed excellent agreement with the 

manual segmentation with DSCs of over 0.92 and JSCs of over 0.86. After the introduction of a refinement algorithm 

to compensate for artefacts due to the aggressive data augmentation strategy, the DSCs and JSCs improved to over 

0.95 and 0.96, respectively. The best performing model was found to be the ResNet34 model with self-attention layer, 

blurring mechanism and bottleneck connection resulting in very high agreement with manual segmentation with a 

DSC of 0.9612 and a JSC of 0.9789. 

Overall, the techniques proposed show a significant improvement over the current state of the art (Piantadosi et al., 

2020), which features a DSC of 0.9660 on the full breast segmentation. While the tasks are not directly comparable, 

the body-air segmentation has been shown to achieve more than optimal results in the past ([25]), hence highlighting 
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the need for novelty solely on the chest cavity segmentation. Moreover, DSC is expected to be lower with smaller 

regions to segment. Hence, it is reasonable to assume that the cost to DSC and JSC of generating an incorrect chest 

wall segmentation is lower in Piantadosi et al. ([11]). 

The best configuration also improves on inference timings, matching the previous state of the art after post-processing 

on comparable hardware, but dramatically improving on it without. As previously mentioned, the post-processing 

algorithm is solely used to highlight the validity of the proposed solution and is not meant to be included in any CAD 

workflow. 

The agreement between the model segmentation and the manual segmentation is very good to excellent for all model 

configurations. The addition of each configuration to the model provided marginal improvements for all architectures, 

however, the models with all configurations added consistently resulted in higher performance. This improvement was 

particularly striking for the ResNet 34 encoder, which showed an increase in the DSC from 0.9541 (ResNet34 only) 

to 0.9612 (ResNet34 with self-attention layer, blurring and bottleneck). However, adding to the complexity of the 

model comes with an increased computational cost, especially when adding the self-attention layer. For example, 

inference time for the entire DCE image sequence is 114.2 s for ResNet34 only, but this increases by 6.3 s when adding 

the self-attention layer while adding the bottleneck connection causes an increase of only 2.1 s (Table ). The best 

performing model before post-processing is the ResNet34 featuring all proposed additions. The considerable 

improvement in segmentation accuracy over a standard ResNet encoder may justify the additional computational cost. 

ResNet50 configurations performed worse than the smaller ResNet34 architectures. This is likely due to under fitting 

and having access to more data would be extremely beneficial, and most likely would lead to better performance than 

ResNet34 on larger training datasets.  

In cases of limited computational resources, both at training time and at inference time, the ResNet18 configurations 

would be the recommendation. 

As the refinement algorithm is applied, improvements can be uniformly observed across all model configurations. By 

removing the bottom boundaries of the generated masks, the mean JSC is increased by 0.098, and the average DSC is 

increased by 0.026. The low variance of both similarity coefficients corroborates the observation that aggressive data 

augmentation is one of the main causes of irregularities in the generated masks (Table ).  
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In summary, this chapter reported about a series of experiments that were run on Dynamic UNet architectures to 

determine their performance in chest cavity segmentation, achieving the best performance with a ResNet34 down 

sampling path, a self-attention layer, a blurring mechanism, and a bottlenecked connection between the activation of 

the first block and the last block of the model. The average model performance without any post-processing achieved 

a DSC of 0.9359 and a JSC of 0.8874. Applying a simple algorithm aimed at correcting artefacts that were generated 

by aggressive data augmentation yielded an average DSC of 0.9612 and JSC 0.9789, thus setting a new state of the art.  

While the results are a significant step in the direction of clinical usability, future research should aim to expand the 

overall training datasets, as well as test the solution with different acquisition protocols and/or tasks.  
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Chapter 6. Lesion characterisation 

6.1 Introduction 

This chapter focuses on the development and evaluation of advanced machine learning models for the classification 

of breast cancer lesions based on their morphological characteristics, specifically lesion margins. It highlights the 

importance of selecting the right classifiers and methodologies for improving diagnostic accuracy in medical imaging. 

The chapter presents a comprehensive overview of various architectures, data augmentation techniques, and training 

methodologies aimed at enhancing model performance in a challenging dataset of breast cancer lesions. 

The dataset includes a diverse set of images, annotated by radiology specialists, with detailed descriptions of irregular 

and smooth lesions. The chapter also includes a detailed comparison of model performance, analysing the effects of 

different training techniques and architectures, offering insights into their applicability to medical image classification 

tasks. This work sets a new benchmark in the field, contributing to the ongoing efforts to enhance machine learning's 

role in supporting medical professionals with accurate diagnostic tools. Classification is the final step for providing a 

comprehensive support to professionals in breast cancer diagnosis.  

6.2 Datasets and Labelling Strategy 

The margin of the lesion is one of most important morphological descriptors ([96]) for breast cancer diagnosis, and 

therefore margin identification is the key outcome of the classifier. The training data was chosen by manually selecting 

suspicious cases, according to involved radiology specialist, and properly labelling them; in addition, the considered 

cases have been object of further biopsy analysis for review and confirmation. The training data was comprised of 

2405 images of irregular lesions (referring to 96 cases) and 561 images of smooth lesions (referring to 20 cases), from 

the total of 8 time steps, plus the high-resolution scan of lesions that were validated by an expert radiologist. The 

validation set was comprised of 476 images of irregular lesions (19 cases) and 63 of smooth lesions (2 cases).  

The images were obtained by cropping the images to an area of 224 by 224 pixels symmetrically around the lesion, in 

a way to enforce centrality of the suspect tissues. In cases where insufficient pixels were available to enforce centrality 

(see Figure 6.2 left), the image was cropped asymmetrically.   



109 
 

 

 

 

Figure 6.2: examples of smooth lesions. 

6.3 Methodology 

To create a state-of-the-art margin classifier to support doctors in their diagnostic process, a selection was made 

between several pre-trained architectures for image analysis available on an open-source repository ([97]). As a side 

product, it was also possible to verify the transfer learning capabilities of these architecture to a small and difficult 

dataset such as this one. 

In the end two transformer architectures (the type of architectures that have proven to be the best performers in 

natural language processing) were chosen and tested in combination with three fine-tuning techniques, and the 

performances were duly compared on the dataset. Transformer-based architectures have shown to strongly outperform 

traditional convolutional approaches in this specific task. The potential explanation is the greater spatial awareness that 

transformer-based architecture benefit from ([98]). To further provide substance to the claim, it is worth noting that 

Figure 6.1: examples of irregular lesions. 
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both reported architectures (best performing out of all experiments) were developed to enhance spatial awareness in 

ImageNet classification. 

6.3.1 XCiT: Cross Co-Variance Image Transformers 

Cross-Covariance Image Transformers, or XCiT ([99]), builds upon the transformer architecture and introduces cross-

covariance attention, which allows the model to capture relationships between patches in an image. 

The XCiT model replaces the self-attention mechanism found in traditional transformers with cross-covariance 

attention. In the original transformer, self-attention calculates the attention weights between all pairs of tokens (in the 

case of vision transformers, tokens correspond to image patches). However, this self-attention mechanism has a 

quadratic complexity concerning the number of tokens, making it computationally expensive for large images. 

XCiT addresses this problem by introducing cross-covariance attention, which computes attention weights based on 

the cross-covariance between token pairs. Cross-covariance measures the relationship between two variables, 

indicating how changes in one variable are associated with changes in another variable. In the case of XCiT, the cross-

covariance is computed between the feature representations of two tokens. 

The XCiT model consists of an encoder that processes the input image by dividing it into patches and linearly 

projecting them into a higher-dimensional feature space. These projected patches are then passed through multiple 

layers of the XCiT encoder. Each encoder layer performs cross-covariance attention, followed by feed-forward neural 

networks (FFNs) and layer normalization. The FFNs introduce non-linear transformations to capture complex 

relationships between tokens. 

During cross-covariance attention, the model calculates the cross-covariance matrix between pairs of tokens and 

applies SoftMax normalization along rows and columns to obtain attention weights. These attention weights are then 

used to compute weighted sums of token representations, resulting in context-aware representations for each token. 

By using cross-covariance attention, XCiT can capture long-range dependencies and relationships between tokens 

efficiently, enabling the model to understand the global context of the image. This helps the model perform well on 

various vision tasks such as image classification, object detection, and segmentation. 
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6.3.2 BEiT: BERT Pre-Training of Image Transformers 

BEIT ([100]) (Bidirectional Encoder representation from Image Transformers), or BERT ([101]) with vision, borrows 

concepts from natural language processing to computer vision tasks.  

The main idea behind BEiT is to adapt the transformer architecture, originally designed for sequential data like text, 

to handle images. It aims to leverage the success of pre-training transformers on large text corpora and apply similar 

techniques to pre-train vision transformers on large-scale image datasets. 

BEiT introduces several key modifications to adapt BERT for vision tasks: 

• Image Patch Embeddings: Like vision transformers, BEiT divides an input image into smaller patches. Each 

patch is then linearly projected to a high-dimensional feature space to obtain patch embeddings. These 

embeddings serve as the input tokens for the transformer. 

• Positional Embeddings: To capture the spatial information of the image, BEiT incorporates positional 

embeddings that encode the relative positions of the image patches. These embeddings help the model 

understand the location of each patch within the image. 

• Patch Tokenization: BEiT introduces a patch tokenization strategy to encode the information about patch 

locations. Each patch is assigned a unique token, including special tokens like [CLS] and [SEP] used in BERT. 

These tokens help the model differentiate between patches and provide additional positional information. 

• Pre-training: BEiT pre-trains the vision transformer in a self-supervised manner. It uses a large-scale dataset 

containing unlabelled images and applies various pretext tasks, such as patch order prediction and masked 

patch prediction, to learn meaningful representations. The model learns to predict the correct order of 

randomly shuffled patches and to reconstruct the original image from masked patches. 

By adapting the BERT architecture to images, BEiT demonstrates strong performance on various vision benchmarks, 

often surpassing or achieving competitive results compared to other vision transformer models. It benefits from the 

large-scale pre-training on unlabelled data, which helps the model learn general visual representations that can be fine-

tuned for specific tasks. 

In specific, BEiTv2 ([102]) was used during this study, which greatly enhances BEiT’s performance by employing a 

Vector-Quantized Knowledge Distillation (VQ-KD) algorithm to discretise a semantic space, rather than a pixel-space, 
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to employ as an input and target for the optimisation of BEiTv2. This has led to significant improvements in the 

transfer learning capabilities of the original BEiT.  

6.3.3 Progressive resizing  

The intuition of using differently sized images during training was first introduced in 2019 by Hoffer at al. ([103]). It 

leverages the properties of modern deep learning architectures ([104]) to allow for scale-agnostic learning of relevant 

features by training networks with gradually increasing input dimensions. This has been empirically proven to yield 

results akin to having additional data, with diminishing returns by myself in this study and other practitioners ([105, 

106]). The additional benefits of using lower resolution images during training is to force the training process to involve 

low-frequency patterns first (high-level), and later adding finer details.  

In this work, training images with resolution of 224 by 224 pixels were used to generate datasets representing the same 

images, although with resolutions of 112 by 112 pixels and 168 by 168 pixels. The training process was then carried 

out by transferring from a pretrained architecture, fine tuning on the lowest resolution dataset, followed by subsequent 

transfers and trainings to higher resolution datasets.  

Progressive resizing is not always possible, as in the case of BEiT, which has invariable input dimensions. The aim of 

this work also includes the comparison between state-of-the-art methodologies that allow for progressive resizing as 

part of the fine tuning, and ones that do not. 

6.3.4 Mix-up augmentation  

Mix-up augmentation is a data augmentation technique that aims at improving the generalization and robustness of 

models by creating new training examples through mixing pairs of existing examples ([107]). 

The key idea behind Mix-up augmentation is to combine two or more training images and their corresponding labels, 

to generate a new training example. This mixing process occurs at the input level, meaning that the input data is linearly 

interpolated, and the labels are also mixed proportionally. 

In essence, Mix-up is carried out as follows: 

• Select two training examples randomly from the dataset. 

• Randomly generate a mixing coefficient, typically drawn from a beta distribution. The mixing coefficient 

determines how much influence each example will have on the mixed example. 
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• Combine the input data of the selected examples by taking a weighted average. This is done by blending the 

pixel values based on the mixing coefficient. 

• similarly combine the corresponding labels. For classification tasks, such as the one employed in this work, 

the labels are one-hot encoded vectors, and the mixing process involves taking a weighted average of these 

vectors. 

• Repeat the process for a specified number of times or until a desired augmented dataset size is achieved. 

The main intuition behind Mix-up augmentation is that by creating new examples that lie between two existing 

examples, the model is encouraged to learn more generalizable representations and decision boundaries. It introduces 

a form of regularization that encourages the model to be more robust to small perturbations and variations in the input 

data. 

Mix-up augmentation is effective in reducing overfitting, improving model accuracy, and enhancing generalization in 

various computer vision tasks, such as image classification, object detection, and segmentation. 

6.3.5 Label smoothing 

Label smoothing is a regularization technique involving smoothing the target labels during training by redistributing a 

portion of the probability mass from the true label to other classes ([108]). 

The target labels are represented as one-hot encoded vectors, where the true class is assigned a probability of 1 and all 

other classes have a probability of 0. However, this can lead to models that are excessively confident and prone to 

overfitting. Label smoothing addresses this issue by introducing a small amount of uncertainty into the training process.  

Instead of assigning a probability of 1 to the true class, label smoothing redistributes a portion of that probability mass 

to other classes. This is typically done by subtracting a small value, ε, from the true class probability and adding ε/(K-

1) to the other classes, where K is the total number of classes. The label smoothing operation results in a smoothed 

target distribution, where the true class has a probability of 1-ε, and the other classes have a probability of ε/(K-1). 

The main idea behind label smoothing is to encourage the model to be more calibrated and to learn more robust 

decision boundaries. By introducing some uncertainty into the training labels, the model becomes less certain and more 

tolerant of small errors or noise in the input data. This regularization can help prevent overfitting, improve 

generalization, and make the model more resilient to adversarial examples. 
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Label smoothing is particularly useful in scenarios where the training dataset may contain noisy or incorrect labels, 

such as this one. It helps the model to be less reliant on individual training samples and reduces the risk of over-

optimization on the training set. The hyperparameter ε could be a source of underperformance, as too high values 

could lead to uncertainty and instability in the prediction at inference time. Multiple values of ε were tested (ranging 

from 0 to 0.3 in steps of 0.03), and only the best performing one is presented in this work (ε = 0.1).  

6.3.6 Training Hyperparameters 

To identify the best lesion characterization model for the classification task, a total of 11 different classification models 

were trained, using the methodologies described above. Each model was trained 5 times each with varying random 

seeds with a weight decay of 0.01; 5 times with no weight decay; 5 times with a weight decay of 0.01. All best results 

feature weight decay of 0.01. Results are reported for the best performing model on the validation set.  

The optimizer for the training was Adam, with 𝛽1 of 0.9 and 𝛽2 of 0.99. The optimal learning rate for each architecture 

was found as shown by Smith ([86]). The training phase featured learning rate annealing, as described by the 1-cycle 

policy ([87]).  

The models were trained using a NVIDIA RTX 3090 with 24 GB of VRAM. Batch sizes were chosen empirically to 

be 8 for all models, however the number is inconsequential as gradient accumulation was employed.  

A benchmark ResNet34 model was also used to gauge the gains that these new architectures bring to the field of 

medical images classification. The training methodology employed was identical, with differences in batch size, which 

was chosen to be 64. 

6.4 Experiments 

The models were evaluated on the relevant performance metrics, namely Accuracy, Recall, Precision and F1 Score, 

summarised in tables 6.1, 6.2, 6.3. Each model was evaluated with the proposed additions during training, with the 

exceptions of progressive resizing for BEiTv2, as the fixed input nature of the architecture does not allow it. 

The best performing models were the BEiTv2 architectures, with the configuration featuring Mix-up augmentation 

and label smoothing, scoring highest in all metrics, with an accuracy of 0.9314, a recall if 0.8923, a precision of 0.9748 

and an F1 score of 0.9317. Inference times were comparable, as the model sizes are, with BEiTV2 being slightly faster 
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than alternatives. It is important to note how larger these times are to the benchmark ResNet34. This is due to 

inefficient operations (self-attention), as well as smaller model size in the case of BEiTv2.  

The losses agree with the actual performances of the models, as expected given the similarities within the training set. 

However, it is important to note how a validation loss of 0.2174 (such as the one from the best performing BEiTv2 

model) and a loss of 0.5141 (such as the one of the worst performing ResNet34 model) will not feature dramatically 

different metrics (i.e. F1 scores of 0.961498 and 0.872776 respectively). 

Table 6.1: results for the architecture xcit_tiny_12_p8_224_dist 

 
Model 

Size 

Train 

loss 

Valid 

loss 

Inference time  

(images/s) 

Accuracy  Recall Precision F1 score 

Normal 7M 0.6199 0.3273 216.5 0.8479 0.8807 0.9622 0.9197 

+ Progressive resizing 7M 0.6019 0.3111 216.5 0.8553 0.8885 0.9706 0.9277 

+ Mix-up 7M 0.5718 0.3098 216.5 0.8590 0.8923 0.9745 0.9317 

+ Label smoothing 7M 0.5422 0.3628 216.5 0.8738 0.9036 0.9453 0.9240 

 

Table 6.2: results for the architecture xcit_small_24_p16_224 

 Model 

Size 

Train 

loss 

Valid 

loss 

Inference time  

(images/s) 

Accuracy  Recall Precision F1 score 

Normal 48M 0.6259 0.3263 174.4 0.8798 0.8898 0.9552 0.9214 

+ Progressive resizing 48M 0.6254 0.3231 174.4 0.8851 0.8952 0.9610 0.9269 

+ Mix-up 48M 0.6072 0.3215 174.4 0.9017 0.9119 0.978992 0.9443 

+ Label smoothing 48M 0.6229 0.3945 174.4 0.8850 0.9036 0.945378 0.9240 

 

Table 6.3: results for the architecture beitv2_base_patch16_224_in22k 

 Model 

Size 

Train 

loss 

Valid 

loss 

Inference time  

(images/s) 

Accuracy  Recall Precision F1 score 

Normal 87M 0.4126 0.2655 193.2 0.8544 0.9267 0.9875 0.9561 
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+ Progressive resizing 87M n.a. n.a. n.a. n.a. n.a. n.a. n.a. 

+ Mix-up 87M 0.3986 0.2174 193.2 0.9314 0.9526 0.9706 0.9615 

+ Label smoothing 87M 0.5980 0.4284 193.2 0.8664 0.9529 0.8929 0.9219 

 

Table 6.4: results for the benchmark architecture ResNet34 

 Model 

Size 

Train 

loss 

Valid 

loss 

Inference time  

(images/s) 

Accuracy  Recall Precision F1 score 

Normal 21.8M 0.93952 0.514113 299.4 0.795058 0.928364 0.823468 0.872776 

+ Progressive resizing 21.8M 0.897209 0.496763 299.4 0.80743 0.94541 0.83157 0.884844 

+ Mix-up 21.8M 0.86314 0.49291 299.4 0.807524 0.949459 0.832978 0.887413 

+ Label smoothing 21.8M 0.849426 0.4748 299.4 0.820037 0.952915 0.836134 0.890713 

 

6.5 Discussion 

The main aim of this work was to develop a lesion morphology classifier. All 11 models showed excellent agreement 

with the manually annotated data and decisive improvements over the benchmark models. The best performing model 

was a BEiTv2 with Mix-up augmentation which resulted in values for accuracy, recall, precision and F1 score of 0.93, 

0.95, 0.97, 0.96 respectively on the validation set.  

Overall, the novel application of these state-of-the-art techniques to medical images classification has shown 

remarkable improvements over the previous state of the art, represented by the benchmark ResNet34 model, with an 

improvement of 0.07 for the F1 score (7.9%) and an improvement of 0.11 for accuracy (13.5%). The significancy of 

these results is further exemplified by the wide gap in validation loss between the best performing BEiTV2 model and 

the reference ResNet34, with the former being 2.18 times lower than the latter. 

While a comparison to previous literature is impossible, as to the author’s knowledge there are no comparable proposed 

solutions to the lesion morphology classification, it is observable how the application of state-of-the-art techniques to 

the problem establishes a strong benchmark as state of the art for future work to aim at improving upon. 
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Progressive resizing and Mix-up augmentation provided added performance to all configurations, proving the 

effectiveness of these proposed techniques. The performance gain, however, differed from architecture to architecture. 

XCiT featured an average validation loss improvement of 3.00% with the application of progressive resizing, however 

the improvement is consistent only on smaller variants (XCiT Tiny, 7M parameters, -4.8%). The behaviour with Mix-

up augmentation is similar for XCiT, with average reductions of 3.47% in validation losses, and with minute differences 

in the bigger variants (XCiT Small, 48M parameters, -1.53%). It is possible to conclude, then, that these data efficiency 

techniques, while improving on all fronts, are much more suited to smaller architectures, where selective learning of 

size-invariant features is of higher importance. Hence, Mix-up augmentation and label smoothing are strong 

recommendations for tasks in which data is limited and smaller models need to be employed.  

BEiTV2 featured strong improvements with Mix-up augmentation, and in general the models would have performed 

worse than XCiT Small variants without it. The improvement is so massive (-19.5% in validation losses) that it should 

be mandatory for any solution in the medical imaging space looking to transfer from this pretrained architecture.  

Overall, the recommended solution for datasets similar in size and nature to the one in this work is the BEiTV2 with 

Mix-up augmentation, as it represents a marked improvement over the benchmark ResNet34 in terms of performance, 

with minimal cost in terms of inference timings. To further elaborate, a transferability evaluation of these architectures 

was performed by obtaining top-1 accuracy metrics on ImageNet ([109]) and comparing to accuracies obtained in this 

work. The most transferrable architecture was defined to be the one with highest improvement over the pretrained 

model on ImageNet in terms of accuracy. Once again, the recommended architecture was the only one to improve 

upon this metric (0.9314 vs 0.8974), proving its extreme capacity for transfer learning to medical images. 
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Chapter 7. Conclusions and Recommendation for Further work 

7.1 Key Findings 

Several advancements in the field of computer-aided diagnosis for breast cancer in DCE-MRI are presented in this 

work. All the objectives for this project were met. In chapter 4, a novel unsupervised deep learning methodology was 

presented to allow less reliance on costly manual data annotation, while maintaining comparable true positive rates 

against the state of the art. Moreover, the technique is based on the radiologists’ diagnostic protocol, allowing for 

greater interpretability compared to other examples in literature. The limitations of this approach, namely the tendence 

of identifying the heart region as suspicious, was addressed in chapter 5, in which a state-of-the-art semantic 

segmentation algorithm was presented, which decisively improved upon the previous state of the art, while being 

significantly more computationally efficient. Finally, a novel deep learning algorithm for lesion morphology 

classification was shown in chapter 6, laying the groundwork for further improvement in this area of study. 

Overall, the results of the project are a significant step forward in integrating machine learning methodologies in clinical 

practice, as the proposed algorithms address the key weaknesses of the previously available methodologies by greatly 

reducing clinicians’ involvement in the data labelling, increasing the interpretability of results, and by performing 

groundbreaking progress in morphology characterisation.  

7.2 Limitations 

The proposed methodologies, while significant, are limited to a relatively small dataset of images compared to the 

variability in human anatomy. Validation on more data, especially for ethnic groups that are underrepresented in the 

UK women population, is still needed to ensure the safety and usability of the solutions. Regarding this matter, the 

validation strategy proposed in chapter 4 of this work was chosen to ignore false positives, as there was no certainty 

on the nature of the highlighted area without a biopsy. A more comprehensive study would incorporate evaluation in 

clinical practice. Similarly, the evaluation of the accuracy in chapter 6 is based on ground truth that was obtained by a 

biopsy, but with labels based on visual perception.  

While this study furthers the usability of machine learning tools in breast DCE-MRI diagnosis by having algorithms 

that mimic the diagnostic process, a clinician would still need to reconstruct the algorithmic process by inspecting the 

data, without the possibility of accessing a logical reasoning. On this topic, the algorithms proposed in this work would 
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greatly speed up and reduce errors in the identification and analysis of suspect areas only if paired with today’s 

diagnostic process, which consists of analysing the volume by looking at every slice. Currently, there is no functionality 

for aggregating the results across the z-axis of the volume, allowing doctors to gain information of lesions that span 

multiple slices.  

7.3 Implications  

The results presented in this work propose several points of interest for the research community. First and foremost, 

by demonstrating that annotated data can be avoided, the ever-present challenge of obtaining labelled data could be 

considered voided, opening to research on wider datasets. Secondly, the empirical demonstration that neural networks 

can predict not only the location, but also morphology of lesions could lead to diagnostic support tools that aid 

radiologists in more ways than previously thought possible. Lastly, the quantitative observations made on the data and 

its annotations raise serious questions on the current research methodologies in the field, with researchers assuming 

correctness of labels attached to data. While unverified, it is reasonable to assume that similar inductive biases in the 

data are present for parallel research fields.  

7.4 Recommendations for Further Work 

The primary aim of research in the field of automated tools for diagnostic processes should be to reduce the need for 

labelled data, as requiring medical professionals to devote their time to data validation and annotation defeats the 

purpose of the research itself. Another main goal of research should be to allow for doctors to work alongside the 

algorithms, allowing them to understand the intricacies of an algorithmic decision. To this end, further research on 

this topic is recommended to follow the intuitions and ideas presented in chapter 4.  

In detail, the following avenues for research are, to the extent of the author’s interpretation of the challenges ahead, 

what would maximise real-world impact. 

7.4.1 Logical Reasoning Functionality 

As mentioned in the limitations section, the proposed methodologies are restricted to a workflow in which the 

radiologist examines the scan volume with the aid of deep learning algorithms to ensure faster and safer decisions. At 

the same time, if the doctor and the algorithm have diverging results, the clinician is forced into trying to understand 

why the outcome of the automated process is as such. Following future developments in large language modelling, it 
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would be possible to provide a brief explanation in natural language on the decision, allowing to add another layer of 

interpretability to the process. 

7.4.2 Validation Methodologies 

The challenges highlighted in chapter 3 and 4 regarding the truthfulness of labelled data and subsequent decisions to 

ignore false positive data stem from the limitations of current evaluation methodologies, which are far too reliant on 

ground truth data. The desired alignment, however, resides in increased accuracy and speed in clinical settings of users. 

To this end, standardised validation methodologies should be explored. In absence of these solutions, a more 

achievable target could be to have a publicly accessible validation dataset, in which the effectiveness of various 

methodologies could be objectively measured. Such dataset would have several categories and workflows to allow for 

benchmarking at various steps of the diagnostic process (i.e. one could start from the state-of-the-art lesion detection 

tool output to evaluate the capability of a lesion morphology classifier). 

7.4.3 Improved methodologies 

As highlighted previously, the proposed solution for lesion localisation relies on data on a singular enhancement curve 

and can highlight suspect lesions with state-of-the-art TPR. The methodology could be further improved by including 

information of the surrounding areas, both in the same plane, as well as on the x-axis. Taking this a step further, while 

losing interpretability, a whole slice or even a whole scan could be used as input for an unsupervised methodology.  

As the field of machine learning keeps evolving at a fast pace, it is foreseeable that the methodologies presented in this 

work will eventually be superseded by equivalents employing more advanced neural networks architectures that will 

be developed for parallel fields.  

7.4.4 Parallel Fields 

The techniques presented in this work are, in principle, appliable to all other branches of radiology in which a contrast-

enhanced MRI is employed for diagnosis. Attempts at adapting the contents of this work to different fields could 

provide valuable insight into potential improvements and limitations, as well as allowing for a broader impact of this 

work. 
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