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Big data show idiosyncratic patterns and
rates of geomorphic river mobility

Richard J. Boothroyd 1,2 , Richard D. Williams 1, Trevor B. Hoey3,
Gary J. Brierley 4, Pamela L. M. Tolentino1,5, Esmael L. Guardian5,
Juan C. M. O. Reyes5, Cathrine J. Sabillo5, Laura Quick 1, John E. G. Perez5,6 &
Carlos P. C. David5

Big data present unprecedented opportunities to test long-standing theories
regarding patterns and rates of geomorphic river adjustments. Here, we use
locational probabilities derived from Landsat imagery (1988-2019) to quantify
the dynamics of 600 km2 of riverbed in 10 Philippine catchments. Analysis of
lateral adjustments reveals spatially non-uniform variability in along-valley
patterns of geomorphic river mobility, with zones of relative stability inter-
spersed with zones of relative instability. Hotspots of mobility vary in magni-
tude, size and location between catchments. We could not identifymonotonic
relationships between local factors (active channel width, valley floor width
and confinement ratio) andmobility. No relation between the channel pattern
type and rates of adjustment was evident. We contend that satellite-derived
locational probabilities provide a spatially continuous dynamicmetric that can
help unravel and contextualise forms and rates of geomorphic river adjust-
ment, thereby helping to derive insights into idiosyncrasies of river behaviour
in dynamic landscapes.

Systematic appraisals of geomorphic river adjustment attained
through digital representations of rivers1–4 present enormous potential
to test key understandings of river morphodynamics. Fluvial geo-
morphologists have developed a range of predictive tools to appraise
forms and rates of adjustment for different channel pattern types (e.g.,
meandering and braided5, wandering6 and anastomosing7). Satellite-
derived global-scale analyses now highlight hotspots of river extent
change (erosion and deposition) when observing the wetted parts of
rivers8,9. To date, however, few studies have rigorously documented
both system- and local-scale geomorphic mobility across the entire
active width of river systems10, despite the importance of looking
beyond the surface waters to the wider riverscape11–13.

The locational probability approach pioneered by Graf14,15 mea-
sures the proportion of time that a channel occupies a particular
location. Dependence upon manually digitised georeferenced images

restricted initial applications of this approach16,17. In the era of big
data18, digital representations of rivers derived from multi-decade
satellite imagery archives provide new opportunities to test predic-
tions in fluvial geomorphology19–21. Cloud-based computing platforms
suchasGoogle Earth Engine (GEE)22 facilitate newways ofworkingwith
multi-temporal satellite imagery that can be used to differentiate
between riverscape features, including surfacewater, alluvial sediment
and vegetation1. Together, these digital possibilities make feasible the
systematic appraisal of geomorphic river mobility, realising the
potential of Graf’s innovation.

Several factors affect the morphologic evolution of alluvial river
channels23. At the landscape scale, confinement from adjacent topo-
graphy interacts with water and sediment inputs to fundamentally
control river character and behaviour, restricting the extent to which
rivers can laterally adjust24. Longitudinal variations in valley width have
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consequences for hydraulic and geomorphic processes, especially
where changes in valley morphology are rapid (e.g., constrictions and
expansions25,26). Channel pattern type is a product of slope, discharge,
bed material size and bank strength27. Essentially, this manifests as an
energy gradient wherein stream power (the product of slope and dis-
charge) acts on available materials of a given size and composition that
flowhas transported and deposited along a river course. A characteristic
downstream transition from braided and wandering gravel-bed rivers
(bedload/mixed load systems) through active mixed load systems
(active meandering) to passively adjusting suspended load rivers (pas-
sive meandering and anastomosing) is generally hypothesised28–30.
However, channel pattern types are not mutually exclusive and
demonstrate a continuumof variability, beingmore diverse than implied
by discrete channel classification schemes31. Big data nowallowus to test
conventional understandings of decadal geomorphic river adjustments
(i.e., channelmobility) and to assess where local factors in the context of
valley setting contribute to the nature of lateral channel mobility32.

Contemporary technical resources and skillsets now present
unprecedentedopportunities to use remotely-senseddata of sufficient
resolution, reliability and timeline to systematically appraise spatial
variability of river patterns and rates of river mobility. Importantly,
these opportunities extend to parts of the world that historically have
not been subject to such analyses and are under-represented in the
literature. By definition, this expands the information/knowledge base
with which to synthesise understandings of river diversity and beha-
vioural traits. Here we appraise controls on geomorphic river mobility
for 10 of the largest river systems in the Philippines. The Philippines’
diverse tectonics, lithology and climate produce catchments and
channels with variable hydro-morphological characteristics33,34, high
weathering rates35, high sediment supply36 and rapid lateral change37.
Such conditions are typical of steep tropical landscapes38,39. Recurrent
high-flow disturbance events in the Philippines create widespread
erosion and flood hazards, posing significant risks to people, property
and infrastructure40,41. The relatively limited extent to which anthro-
pogenic activities have altered flow and sediment regimes offers an
opportunity to use the records of river mobility in the Philippines to
advance the understanding of dynamic fluvial morphologies.

Here, we use multi-decade satellite data to appraise geomorphic
river mobility over 101 – 102km river reaches. We use Landsat imagery
tomaximise studyduration, apply establishedmultispectral indices42,43

to delineate active channels and calculate locational probabilities over
600 km2 of predominately gravel-bed rivers in 10 Philippine catch-
ments. The specific aimsof the paper are to: (1) identify system-specific
patterns of geomorphic river mobility, (2) assess local factors that
control geomorphic river mobility, and (3) contrast adjustment
behaviours for different channel pattern types.

Results
Satellite-derived locational probabilities
We processed a 32-year record of Landsat satellite imagery between
1988-2019 into two-year time-windows (Fig. 1a, b) and classified active
channels as including both wetted channels and unvegetated alluvial
deposits; analogous to the bankfull channel extent44,45. Having quality
checked and manually edited the binary active channel outputs, we
calculated per-pixel locational probabilities14,15 to indicate the spatial
dynamics of geomorphic river mobility (Fig. 1c). Distributions of per-
pixel locational probabilities were summarised as cumulative fre-
quency distribution (CFD) curves. Swath profiles represented the
average per-pixel locational probability in the transverse direction
along a valley floor centreline at regular 0.01 km intervals; we termed
these cross-valley locational probabilities (Fig. 1d, e).

Geomorphic river mobility across spatial scales
CFD curves and summary statistics of per-pixel locational probabilities
providefirst-order representations of rivermobility at the system-scale

and indicate considerable differences between catchments (Fig. 2 and
Supplementary Table 1). For the full observable length of the trunk
channel (Fig. 2a), the average per-pixel locational probability ranges
from 0.51 (Abulug, least stable) to 0.75 (Abra, most stable). To varying
degrees, all trunk channels demonstrate somemobility. The intercept
position (λ) where locational probability = 1 denotes the proportion of
active channel area constantly occupied over the entire analysis period
(for Cagayan, λ =0.56 and therefore, 44% of the active area is con-
stantly occupied between 1988 and 2019). Approximately half of the
active channel areas were constantly occupied for the most stable
channels (for example, Abra andAgusan); comparedwith less thanone
fifth of the active channel areas for the least stable channels (for
example, Chico and Abulug). Although we focus on the full observable
length of the trunk channel, the CFD curves are visually similar when
the analysis is limited to only the downstream third of the trunk
channel (0.33 D; Fig. 2b). Only for the Abulug does the shape of the
CFD curve indicate relatively less stable behaviour over 0.33 D
(explained by the highly mobile reaches shown in Fig. 1).

Cross-valley locational probabilities reveal the spatially hetero-
geneous nature of geomorphic river mobility (Fig. 3). The normalised
distance along the valley floor centreline (d) is expressed over the total
distance of the valley floor centreline (D). In general, the along-valley
patterns are spatially non-uniform; channels are characterised by
zones of relative stability interspersed by zones of relative instability,
similar to sedimentation zones, and transfer reaches as defined by
refs. 6, 46. These spatial patterns are exemplified over the ~ 185 km
length of the Mindanao channel, whereby discrete zones of instability
(0.2-0.375 and 0.7-0.8 d/D) are located between zones of stability.
Variance in cross-valley locational probability is high for all trunk
channels, ranging from 0.12 (Abra) to 0.23 (Abulug).

Even for the most stable channels (for example, Agusan), discrete
pockets of mobility are observed (0.4-0.45 d/D). Hotspots of geo-
morphic river mobility vary in magnitude, size and location between
the 10 channels. Zones of mobility tend to be larger and of higher
magnitude for the least stable channels (for example, Pampanga,
Chico and Abulug). For Abulug, the zone of instability is located
towards the downstream end of the trunk channel (0.7–0.9d/D). For
Pampanga (0.4–0.6 d/D) and Chico (0.6–0.8d/D), the zones of
instability are located further upstream. Results demonstrate the
system-specific patterns of geomorphic river mobility.

To consider temporal variability in the spatial patterns, the 32-
year recordwas split into twonon-overlapping 16-year time spans (TS1:
1988-2003 and TS2: 2004-2019). Similarity in CFD curves and average
per-pixel locational probabilities (µ) indicate stationarity in geo-
morphic river mobility at the system-scale (Supplementary Fig. 1).
Amburayan (µ =0.85 in TS1, 0.78 in TS2) and Abra (µ =0.83 in TS1, 0.77
in TS2) became less stable whereas Ilog-Hilabangan became more
stable (µ =0.72 in TS1, 0.77 in TS2). However, the magnitudes of these
changes are insufficient to indicate a behavioural shift. To assess the
persistence of the spatial patterns, cross-valley locational probabilities
were subdivided into non-overlapping 1 km reaches and differences in
the locational probabilities between the time spans were calculated.
Although many of the reaches are characterised by small differences
(i.e., values closer to zero), a substantial proportion of reaches show
larger positive or negative differences (> ± 0.2) that indicate a lack of
persistence, reflecting temporal variability in geomorphic river mobi-
lity (Supplementary Fig. 2). The results show spatially inconsistent
patterns of persistence; many reaches are characterised by temporal
variability in geomorphic river mobility.

Local factors as controls on geomorphic river mobility
Cross-valley locational probability trends can be used to investigate
hypotheses of local controls on lateral channel mobility. Segments
where the valleymorphology rapidly changes through expansions and
constrictions are identified on four different rivers, with each segment
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displaying distinctive patterns of per-pixel locational probability
(Fig. 4a). To draw comparisons between the segments, longitudinal
distances, valley floor widths and active channel widths are re-scaled
(Fig. 4b and Supplementary Table 2). There is marked longitudinal
variation in the active channel and valley bottom widths along the
segments, with average confinement ratios ranging from 0.25 (Caga-
yan) to 0.60 (Abra). All segments are characterised by longitudinal
variation in geomorphic river mobility, with sites on the Abra and
Cagayan more stable (average cross-valley locational probabilities =
0.77 and 0.78) than the Chico and Abulug (0.57 and 0.52).

Spearman correlation coefficients are calculated to measure the
monotonic dependence between the local factors (active channel
width, valley floor width and confinement ratio) and cross-valley
locational probability (Supplementary Table 3). The correlations
between active channel width and cross-valley locational probability
are strongest and negative (ranging from −0.80 to −0.37, P <0.001).

Through the sequence of constriction to expansion, narrower parts of
the active channel are more stable and wider parts of the active
channel are less stable. The strengths of correlations between valley
floor width and cross-valley locational probability are weaker and
negative (ranging from −0.69 to −0.01, P < 0.001 to >0.5). These
weaker correlations are unexpected, given that valley confinement has
previously been shown to be a dominant control on channel pattern
type47 and the capacity for lateral channel adjustment24. However, the
influence is likely limited when confinement ratios are low, and cor-
relations between active channel width and valley floorwidth are weak
(for example, Cagayan). Overall, the patterns of geomorphic river
mobility are partly explained by the interplay of local factors where
valley morphology rapidly changes, often as a result of changes in
lithology and/or faults and other geological structures.

The same local factors were assessed over the full observable
lengths of the 10 trunk channels (Supplementary Table 4 and

Fig. 1 | Geomorphic river mobility for a 25 km segment of the Abulug River
(Luzon; image centre: 18°18’13.91”N121°24’30.83”E).Cloud-free satellite imagery
at (a) the start and (b) the end of the analysis period (1988-2019), composited from
all available Landsat imagery for two-year time-windows (16 time-windows used for
the Abulug River). Geomorphic river mobility expressed as (c) the per-pixel loca-
tional probability and (d) the cross-valley locational probability. Locational prob-
ability values closer to 1 indicate that the active channelwas consistentlypositioned
at that location through time (i.e., more stable; see Methods section). Cross-valley

locational probabilities average the per-pixel location probabilities within a swath
in the transverse direction along the valley floor centreline at 0.01 km intervals
(dashed lines denote 1 km interval). The same cross-valley locational probabilities
are displayed longitudinally in (e). Along-valley patterns in geomorphic river
mobility are spatially non-uniform; a transition from a less stable (0–15 km) to a
more stable channel (15–25 km) is indicated within the example segment. The base
maps are (a, b) composite Landsat imagery and (c, d) extracts of the hillshaded
digital elevation model (see Methods section).
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Supplementary Figs. 3 and 4). Spearman correlation coefficients show
that the strength and direction ofmonotonic associations between the
local factors and cross-valley locational probability vary between the
trunk channels (Supplementary Table 5). Generally, active channel
width has the strongest, negative, correlation with geomorphic river
mobility, indicating that the narrower parts of the active channel are
relatively more stable than the wider parts. The strongest correlations
are for theChico (−0.81, P <0.001) andAbulug (−0.77, P < 0.001), these
correlations being consistent with previous findings for the sites at
specific valley settings (Fig. 4). However, correlations are weaker for
other trunk channels (for example, Agusan= −0.19, P < 0.001;
Laoag = −0.27, P <0.001). Valley floor width has a weaker, negative,
correlation with geomorphic river mobility than active channel width.
Some rivers show strong positive correlations between active channel
width and valley floor width (for example, Amburayan =0.92,
P <0.001; Abra = 0.85, P <0.001), but others do not (for example,
Pampanga = −0.19, P <0.001; Agusan =0.04, P <0.001). For many of
the trunk channels, stable and less stable parts of the river system are
distributed over the full range of valley floor widths (Supplementary
Figs. 3 and 4).

Control by local factors is further explored by aggregating all of
the observational data (Fig. 5). In relation to active channel width
(Fig. 5a), a pronounced cluster of more stable rivers (cross-valley
locational probability from0.5 to 1) is found where active channels are
narrow (< 1 km). Active channel width appears to be the strongest
predictor of geomorphic rivermobility, but there is considerable noise
in the observational record. The aggregated data (Fig. 5b) also show
that there is no particular valley floor width where geomorphic river

mobility is accentuated, except for the most confined and narrowest
valleys. Geomorphic river mobility, therefore, occurs across a range of
valley floor widths. Active channel width is not well predicted by valley
floor width (Fig. 5c), and the active channel rarely occupies the entire
valley floor (Supplementary Table 4). Across the range of valley floor
widths, rivers have the capacity to be more mobile than has been
observed. Overall, the aggregated data indicate the non-predictable
nature of geomorphic river mobility with considerable noise in the
record. Summarising the observational data across all of the scales
considered, it is not possible to identify a set of monotonic relation-
ships between local factors and geomorphic river mobility.

Towards dynamic channel pattern classification
To investigate adjustment behaviour for different channel pattern
types, we show five example 20 km river segments that include single-
thread and multi-thread channel patterns (Fig. 6), selected for their
similar average per-pixel locational probabilities (µ). The examples
illustrate the continuumof geomorphic rivermobility behaviours seen
in the dataset. As the average per-pixel locational probability decrea-
ses, shifts in the shape of CFD curves and intercept positions (λ) are
observed for all channel patterns. CFD curves tend to bemore convex
when the segment averaged per-pixel locational probability is higher
and more concave when this probability is lower. Both single-thread
and multi-thread channel patterns can have similar proportions of the
active channel area constantly occupied over the analysis period. For
river segments with similar average per-pixel locational probabilities,
geomorphic river mobility behaviours are similar irrespective of
channel pattern. No relation is found between channel pattern type

Fig. 2 | Inter-catchment comparisons of geomorphic river mobility expressed
as cumulative frequency distributions (CFD) of per-pixel locational prob-
abilities. aMobility assessed over the entire observable length (1.00D) of the trunk
channel. bMobility assessed over the downstream third of the trunk channel (0.33
D was selected to represent the most complete zone of data, see Fig. 3). Most CFD
curves in (a) and (b) plot below the line of equality, indicating that per-pixel loca-
tional probabilities are not evenly distributed against normalised cumulative

frequency. Variation in the intercept position (λ) between catchments indicates
differences in the proportion of active channel areas thatwere constantly occupied
over the analysis period. c Geographic distributions of the trunk channels and
catchments used in this study. The colours of catchment labels correspond to the
colours of the CFD curves in (a) and (b). The base maps are (a–c) the hillshaded
digital elevation model (see Methods section).
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and rate of adjustment. For example, the single-thread channel
(Fig. 6c; μ =0.51) and multi-thread channel (Fig. 6e; μ =0.42) have
similarly concave CFD curves and comparable intercept
positions (λ = 0.19 and 0.03). Therefore, the proportions of the active
channel area that are consistently occupied through time appear not
to be controlled by channel pattern, as defined using classical static
pattern classifications (e.g., refs. 5–7). Categorising the channel pat-
terns in these segments using static descriptions would suggest dis-
tinct (in this example, meandering and braided) patterns. Our analysis
of locational probabilities suggests that the degree of dynamic
adjustment over more than three decades is similar for these
two rivers. This suggests that the terminology of single-thread mean-
dering and multi-thread braided to describe these rivers needs sup-
plementing with either a metric (μ) to represent their dynamism or an
adjective that describes this dynamism relative to the range of
possible μ values.

Inter-reach variability in geomorphic river mobility is inherent at
the system-scale, as shown by differences in the shape of CFD curves
and intercept positions betweennon-overlapping 5 kmreaches (Fig. 7).
Taking the Cagayan as an example (μ =0.71), reaches have markedly
different CFD curve shapes from convex to concave and intercept
positions from 0.11 to 0.84. The CFD curves of individual reaches
deviate from the CFD curve for the full observable length of the trunk
channel (i.e., different reaches have different mobility behaviours).
Even for the systems that are identified to be most stable overall (for
example, Abra andAgusan),marked inter-reach differences inmobility

exist. Ilog-Hilabangan is the only river with limited inter-reach
variability, where all CFD curves have similar shapes and intercept
positions (i.e., all reaches have similar mobility behaviours). The
system-scale analyses indicate the continuum of geomorphic river
mobility behaviours that are observed regardless of channel pattern
type, further consolidating our findings (Figs. 3–6) of the idiosyncratic
nature of geomorphic river mobility from the reach- to the
system-scale.

Discussion
Our quantification of geomorphic river mobility behaviour as satellite-
derived locational probabilities provide insights into the spatial
variability of lateral adjustment, offering an important interpretative
tool for further investigation of specific river dynamics. In assessing
dynamismacross thewhole activewidth of rivers, including thewetted
channel and unvegetated alluvial deposits, our results show spatially
non-uniform variability in along-valley patterns of geomorphic river
mobility, with zones of relative stability interspersed with zones of
relative instability (Fig. 3). Patterns and rates of adjustment vary within
a given reach and across different reaches, pointing to the idiosyn-
cratic nature of geomorphic river mobility across spatial scales48.
These idiosyncrasies have implications for the practice or conduct of
geomorphic enquiry, highlighting the complementary and dual
importance of timeless (process-based, linear, morphodynamical) and
timebound (historical, contingent, emergent, complex, non-linear)
geomorphology48–50.

Fig. 3 | Along-valley patterns in cross-valley locational probability. Individual
bars represent regular 0.01 km intervals in the downstreamdirection.White spaces
indicate zones of no data (for example, where the active channel was too narrow to
be resolved, see Methods section). Grayscale shading beneath barcode plots
represents the valley floor width smoothed over 1 km of river segments using a
moving mean. This wasmapped from a nationwide IfSAR-derived DEM acquired in

2013 with a 5m spatial resolution. Trunk channels are sorted by the mean cross-
valley locational probability (most stable, top, to least stable, bottom). Visually,
some of the prominent hotspots of geomorphic river mobility appear to coincide
with topographic settings where the valley floor widens (for example, Laoag,
Abulug and Chico). The satellite-derived observations indicate the spatially het-
erogeneous nature of geomorphic river mobility.
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Fig. 4 | Interplay of local factors (valley floor width, active channel width and
confinement ratio)ongeomorphic rivermobility for four segmentswith amid-
segment topographic constriction. aGeomorphic rivermobility expressed as the
per-pixel locational probability through the sequence of constriction to expansion;
flow direction is from bottom to top. Grey areas show the mapped valley floor.
Numbers denote the longitudinal distances before and after the inflection of the
constriction/expansion. Coordinate locations at zero longitudinal distances: Abra
(17°30'8“N 120°42'59“E), Cagayan (16°32'52“N 121°41'21“E), Abulug (18°9'45“N

121°21'38“E) and Chico (17°39'24“N 121°25'22“E). b Local factors in the context of
valley setting that contribute to the nature of lateral channelmobility. Longitudinal
distances and valley floor widths are re-scaled by dividing by the valley floor width
at the inflection (denotated by dashed line). Active channel widths are re-scaled by
dividing by the active channel width at the inflection. Locational probabilities use
the same colour scale in (a) and (b). The base maps are (a) extracts of the mapped
valley floors from the digital elevation model (see Methods section).
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We find it is not possible to identify a set of monotonic relation-
ships between either active channel width or valley floor width and
geomorphic river mobility. These factors are locally important where
the valleymorphology rapidly changes (Fig. 4), but when viewed at the
system-scale, these associations are weakened (Fig. 5). Although local
factors are important for lateral adjustment processes, many factors
operating over different scales influence geomorphic rivermobility51,52.
Predicting mobility is difficult because of the number of variables
involved and the complexity of their interactions in the natural
environment53. This includes the interplay of hydrological variability,
sediment supply and vegetation dynamics. Direct and indirect
anthropogenic activities further add to the challenge54. Complex
landscape systems produce outcomes that may be unpredictable at
particular places and times55 although with predictable time- and
space-integrated statistical properties. Big data provides a growing
record that increasingly supports the emergenceof geomorphology as
a data-rich, predictive science but initial findings of tests of long-
standing theories and principles highlight the complexity of
responses56. Noting the limited set of factors investigated, our findings
indicate non-predictable patterns of geomorphic river mobility, with
considerable noise in the observational record. The idiosyncratic
geomorphology reaffirms the primacy of timebound relations.
Although technological advancements enhance our ability to com-
prehend complex landscape systems57, the big data presented does
not enable the prediction of lateral adjustments in a “naughty”world58.

Satellite-derived locational probabilities provide a way of explor-
ing channel pattern classification that is spatially continuous and
explicitly accounts for the observed dynamism. Importantly, the
approach outlined here enables systematic (consistent) analysis of
adjustment (mobility) for all channel pattern types. We find no relation
between channel pattern type and rates of adjustment (Fig. 6). Inferred
geomorphic river mobility behaviours may be similar between chan-
nels that would ordinarily be categorised as distinct if described using
static descriptions, or may differ between channels that would have
identical static descriptions. More rigorous quantitative approaches
for process-based channel pattern classification that incorporate
mobility are needed to interpret spatial and temporal patterns59,60. The
use of satellite-derived locational probabilities as a spatially continuous
dynamicmetric (µ) presents opportunities to realise this ambition. This
refinement of channel pattern descriptions to include mobility will
support the reassessment of existing empirical61 and theoretical62,63

approaches to explain channel pattern, adding temporal change to
future analyses of statistical properties of river planform64,65. Moreover,
data-driven approaches to the systematic analysis of river mobility
have profound implications in determining ‘what tomeasure against’ in
the appraisal of river health and resilience66,67.

Such analyses can support appropriately contextualised place-
based (catchment-specific) management applications55 that work with
the river (i.e., Nature-based Solutions), giving space, time, energy and
materials for rivers to adjust, erode, flood, function, change and
evolve68–70. Estimating the mobility space requirements of rivers is
challenging, especially for geodiverse rivers with varying hydro-bio-
geomorphological properties71,72. Our findings highlight the complex
spatial patterns of geomorphic river mobility and the difficulties of
relating local factors to these observations. Simple predictive
approaches for estimating mobility space requirements based on
measurable factors such as confinement are unlikely to provide an
adequate solution. Rather, satellite-derived locational probabilities
transform our ability to visualise and quantitatively delimit the space
occupied by the channel over multiple decades, regardless of channel
pattern type. However, we note that the locational probability
approach implicitly assumes the temporal stationarity of the datasets.
We observed system-scale stationarity in geomorphic river mobility
but identified spatially inconsistent patterns of persistence. The tem-
porality of planform changes should be further explored as real river

Fig. 5 | Aggregated observational data from the 10 trunk channels indicate the
non-predictable nature of geomorphic river mobility, with considerable noise
in the observational record. Relationship between (a) active channel width and
cross-valley locational probability, (b) valley floor width and cross-valley locational
probability and (c) valley floor width and active channel width. A blackmarker with
aplus sign symbologydenotes themedian.Marginal boxplots show themedian and
interquartile range; outliers are defined as values more than 1.5 times the inter-
quartile range.
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dynamics are a product of space-time interactions. Insights from
satellite-derived locational probabilities offer a way of unravelling
records of river adjustment. The digital representations can be recur-
rently updated as the temporal duration of the satellite imagery record
extends, providing a “living database” to make data-driven river man-
agement decisions in dynamic landscapes.

Methods
Catchment and trunk channel context
Trunk channels from 10 Philippine catchments were included in the
analysis (Supplementary Tables 6 and 7). The geographical coverage

included the three main island groupings of Luzon, Visayas and
Mindanao. The selected catchments were large (catchment area
> 1250km2) with a range of topographic, climatic, geologic and land
cover properties. The catchment area varied over two orders of mag-
nitude (from 1262 to 27684km2) and most catchments were char-
acterised by high relief (80% of catchments relief > 2350m).
Catchment average slope varied from 9 to 28° whilst the average
channel slope ranged from 0.01 to 0.09m/m. The catchments have
mean annual rainfall totals in the range of 1881 to 2450mm, but this is
variable across individual catchments (maximum range in mean
annual rainfall within a catchment = 1578mm). The catchments are

Fig. 6 | Continuum of geomorphic river mobility behaviours for characteristic
segments with single-thread and multi-thread channel patterns. Upper panels
show the spatial distribution of per-pixel locational probability across 20 km river
segments; lower panels show the corresponding CFD curves. Bold numbers denote
the segment averaged per-pixel locational probability (μ). Thick blue lines repre-
sent CFD curves for the full segment; thin grey lines represent non-overlapping
5 km reaches. The symbol ( ) denotes coordinate locations close to the selected
river segments: (a) Cagayan (17°09’52.6”N 121°49’43.9”E); (b) Cagayan

(17°24’02.2”N 121°44’19.8”E); (c) Cagayan (17°49’04.0”N 121°39’31.1”E); (d) Abra
(17°33’46.7”N 120°41’30.2”E); and, (e) Chico (17°32’09.1”N 121°25’50.7”E). For river
segments with similar segment averaged per-pixel locational probabilities (for
example, c and e), the shape of the CFD curves and intercept positions (λ) are
comparable. We note that inter-reach variability is considerable within segments
(for example, c), indicating a range of mobility behaviours over relatively short
lengths. The base maps are (a–e) extracts of the hillshaded digital elevation model
(see Methods section).
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distributed across all four of the major zones of the modified Coronas
climate classification73, with tropical cyclones more frequently cross-
ing catchments in the northeastern part of the Philippines than the
southwestern part74. The primary lithology varies between catch-
ments, including sandstone, shales, reef limestone (3 catchments),
recent deposits (3 catchments), undifferentiated metavolcanic (2
catchments), marl, reworked tuff, pyroclastic (1 catchment) and
Pliocene-Pleistocene limestone (1 catchment). The primary land cover
includes annual crops (4 catchments), wooded grassland (3 catch-
ments), shrubs (1 catchment), closed forest (1 catchment) and open
forest (1 catchment).

Extracting binary active channel masks from Landsat satellite
imagery
We used Google Earth Engine (GEE) to extract binary active channel
masks from Landsat satellite imagery. The active channel is analogous
to the bankfull extent44,45 and includes the wetted channel and unve-
getated alluvial deposits. Vegetated bars and islands are excluded as
these may be anywhere on a continuum from being permanent fea-
tures to bars that experience annual cycles of seasonal vegetation
growth and erosion. For the 10 catchments we defined the trunk
channel (see topographic analysis section), applied abufferwith a 3 km
radius to encompass the active channel and imported the shapefiles
into GEE. Using the shapefiles as the regions of interest (ROI) for
analysis, we selected all available atmospherically corrected Landsat 5,
7 and 8 surface reflectance imagery for two-year time-windows
between 1988 and 2019 (Supplementary Fig. 5). The two-year time-
windows started on 1 January, with a total of 16 time-windows over the
analysis period (for example, time-window 1: 01/01/1988 to 31/12/1989;
time-window2: 01/01/1990 to 31/12/1991). A two-year time-windowwas
selected to maximise the opportunity for cloud-free acquisitions,
necessary for classifying the active channel from optical satellite ima-
gery. This was because the Philippines represents a challenging
environmental setting with highly variable cloud cover conditions75.
We constructed image collections containing all available Landsat

imagery for each time-window and applied the CFmask algorithm to
each image based on pixel quality assessment, to mask obstructions
from cloud and cloud shadow76. Only cloud-free pixels were retained,
with bicubic resampling applied on a per-image basis to smooth the
representationof the river channel77. Cloud-freepixelswere retained in
allmonths of the year, covering the full range of hydro-meteorological
conditions (Supplementary Fig. 6).

Different multispectral indices support highly differentiated flu-
vial geomorphology applications78,79. We classified the active channel
using the normalised difference vegetation index, NDVI42, and the
modified normalised difference water index, MNDWI43. An approach
using relational operators between the NDVI and MNDWI has pre-
viously performed well in classifying active channels in the vicinity of
large river bridges in the Philippines; with the reported classification
accuracy greater than 80%40. Moreover, an NDVI threshold of 0.2 is
established in the literature for identifying dense riparian vegetation80.
In the current application, we computed pixel-wide NDVI and MNDWI
values for all cloud-masked images in the time-window collections,
thresholded and selected pixels where (i) MNDWI ≥ −0.4 and (ii)
NDVI≤0.2, rescaled the selected pixels to a value range between [0,1]
and reduced the image collection to a single image based on the 10th

percentile of values. The percentile reducer was chosen as a consistent
approach for reducing the time-window image collections that con-
tained a variable number of images to a single output image. The 10th

percentile was selected following sensitivity testing; it provided the
most realistic representation of active channel extents across the 10
catchments. In the final GEE processing step, the single output images
for NDVI andMNDWI in each time-windowwere converted into binary
masks (presence/absence form) with the Boolean (‘and’) operator
applied to generate the intersection of themasks. The resulting binary
active channel masks were exported to Google Drive as GeoTIFF files.

Cleaning and quality checking the binary active channel masks
The binary active channel masks containedmisclassified artefacts that
did not belong to the river channel (for example, built-up areas and

Fig. 7 | CFD curves over the full observable length of trunk channels (thick blue
lines) and over 5 km non-overlapping reaches (thin grey lines). Average per-
pixel locational probability (μ) values are shown in bold. The intercept position (λ)
indicates the proportion of the active channel area consistently occupied over the

analysis period (the proportion is calculated as 1 – λ). The majority of rivers are
characterised by large inter-reach differences in CFD curve shape and intercept
position, indicating considerable variability in geomorphic river mobility at the
system-scale.
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agricultural fields). We applied standard image processing techniques
in MATLAB to remove these artefacts and clean the binary images.
First, disconnected areas containing < 500 pixels were assumed to
have been erroneously classified and removed. Next, a disk-shaped
structuring element with a radius of two pixels performed a single
iteration of morphological closing to eliminate small gaps and smooth
jagged edge representations81. In the final processing step, dis-
connected areas containing < 500 pixels were removed as these
represented large, isolated features positioned away from the trunk
channel. The final binary active channel images for each time-window
were reviewed in GIS to sense-check the data. A manual editing step
was necessary to remove connected locations that did not correspond
with the main trunk channel (e.g., adjoining tributary channels). Given
the 30m spatial resolution of the Landsat imagery, we acknowledge
that narrow (< 30m) secondary channels are unlikely to be resolved in
the current processing workflow.

Only binary images where the active channel was correctly
resolved were included in the analysis of geomorphic river mobility.
The amount of satellite imagery in the Landsat archive is not constant
from year to year, geographically, or among sensors82, meaning that
‘data poor’ time-windows exist (i.e., fewer acquisitions available to
delineate the active channel). Coupled with variation in the availability
of cloud-free acquisitions at different locations across the Philippines,
binary images of sufficient quality were not available at all locations for
all time-windows (Supplementary Table 8). Catchments with the few-
est usable images were located on the island ofMindanao (Agusan and
Mindanao), indicating a geographic control on data availability (for
example, greater cloud obscuration or fewer Landsat acquisitions in
these locations).

Quantifying geomorphic river mobility using locational
probabilities
We calculated the locational probability of active channels to quantify
geomorphic river mobility14,15. Multi-temporal sequences of manually
digitised georeferenced images (for example, historical maps16 and
aerial photographs17,83,84) have been used to calculate locational
probabilities and identify river planform dynamics at reach- to
segment-scales (10−1-102km). We calculated locational probabilities
from binary active channel masks derived from multi-temporal Land-
sat imagery. We calculated the locational probability as:

p= W 1F1

� �
+ W 2F2

� �
+ . . . WnFn

� � ð1Þ

where p is the final locational probability for each pixel of the active
channel, Fn is the binary active channel occurrence at time-window n,
equal to 1 when a pixel is occupied by the active channel or 0 when a
pixel is unoccupied, and Wn is the weighting value assigned to time-
window n. The weighting values were calculated as:

Wn =
1:00
x

ð2Þ

where x is the total number of time-windows (varies per catchment;
Supplementary Table 8). We assigned equal weighting to the time-
windows because we assumed that each time-window represents a
different morphological condition following a bankfull event (i.e.,
bankfull flow has occurred within the two-year period). Consequently,
each time-window represents the product of an event-driven change,
regardless of the time between events.

Locational probabilities ðlpÞ rangedbetween0 (never occupiedby
the active channel) and 1 (always occupied by the active channel).
Where locational probabilities are low (0 < lp <0.25), the active chan-
nel has infrequently occupied the pixel. Where locational probabilities
are high (0.75 < lp < 1), the active channel has frequently occupied the
pixel. Lower locational probabilities indicate channel mobility,

whereas higher locational probabilities indicate channel stability. We
resampled the locational probability images to 10m spatial resolution,
to match the resolution of the topographic data.

Integrating topographic and geomorphic river mobility
analyses
We used a nationwide digital elevation model (DEM) acquired in 2013
and generated through airborne Interferometric Synthetic Aperture
Radar (IfSAR) for topographic analysis. The DEM has 5m spatial reso-
lution and 1m root-mean-square error vertical accuracy85. We used
TopoToolbox V2 to resample the DEM to 10m spatial resolution (due
to computational processing constraints) and delineated catchments
and stream networks with a minimum drainage area of 1 km2 using
standard flow-routing algorithms86. For each of the 10 selected
catchments, we calculated fundamental topographic metrics (Sup-
plementary Table 6) and extracted trunk channels (defined as the
longest streamwithin the catchment). The trunk channelswere used to
define the regions of interest (ROI) to complete the multi-temporal
satellite imagery analysis in GEE.

Valley floors were manually mapped in GIS using the nationwide
DEM. We defined the valley margins morphologically, by identifying
breaks in slope from relatively flat, low elevation areas to relatively
steep hillslopes24,37,87. The valley floor included active floodplains and
terraces, in addition toother valleyfloor landforms (for example, fans).
It was not feasible to distinguish additional margins (for example,
anthropogenic or channel margins) at the catchment-scale using the
topographic data available.

We used the SWATHobj function in TopoToolbox V2 to sample
attribute values for per-pixel locational probabilities along the valley
floor centreline. We set the SWATHobj width to 10 km to fully
encompass the transverse width of the active channel and set the
resampling distance to 0.01 km (‘dx’ parameter) to extract attribute
values at along-valley intervals equal to the resampled DEM resolution.
Attribute values for per-pixel locational probability were extracted
across the transverse width of the swath profile at the regular intervals
and then averaged to provide a generalised output (termed the cross-
valley locational probability). Active channel width was calculated
from the non-zero per-pixel locational probability values across the
transverse width of the swath profile at regular intervals. The con-
finement ratio was calculated as the active channel width divided by
the valley floor width. Distances along the swath profile were normal-
ised by the total swath length; this provided a standard framework to
compare along-valley patterns of geomorphic rivermobility and valley
floor width between multiple catchments.

Data availability
The locational probability data generated in this study have been
deposited in the NERC Environmental Information Data Centre (EIDC)
along with supporting documentation (https://doi.org/10.5285/
a2bcc66e-4dcc-4ed1-897d-cdf36dde246d).

Code availability
Google Earth Engine and MATLAB codes for processing the loca-
tional probability data have been deposited in the NERC Environ-
mental Information Data Centre (EIDC) along with supporting
documentation (https://doi.org/10.5285/a2bcc66e-4dcc-4ed1-897d-
cdf36dde246d).
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