
Allan Costa Nascimento dos Santos⋆,†,‡,∗, Karina de Paula⋆,∓, Marcos T. L. Vidal⋆, João M. M. da Silva⋆,
Cledson de Sousa⋆,∗, Leandro A. F. Fernandes†, Tiago B. de Castro⋆,∗, Marcos Bedo†,Troy C. Kohwalter†,

Carlos A. M. Bastos⋆,∗, Flavio L. Seixas†,∗, Natalia C. Fernandes∗, Débora C. Muchaluat-Saade†,∗, Gheorghita Ghinea‡
⋆GTECCOM, ∗MidiaCom and ∓INCT-INEAC-UFF Labs

†Institute of Computing – IC/Universidade Federal Fluminense – Niterói, RJ – Brazil
‡Department of Computer Science/Brunel University London – London, United Kingdom
{allans, kp,mvon, jmarcos, cledsons, tiago bornia, camalcherbastos, nataliacf}@id.uff.br,

{laffernandes, marcosbedo, troy, fseixas, debora}@ic.uff.br, {Allan.Santos, george.ghinea}@brunel.ac.uk

Abstract—This study introduces MCOF, a multi-camera, com-
puter vision-based system designed to assist visually impaired
individuals with mobility on university campuses. The system
operates locally and achieves the following performance metrics:
(i) detecting body points within 1.2 · 10−2 seconds, (ii) identi-
fying people, objects, and animals in 2.4 · 10−2 seconds, and
(iii) detecting movements in 5.1 · 10−2 seconds. These results
were obtained using a GTX 1,660 GPU with up to 6 cameras (or
a 6,112MB stream) running concurrently. According to the MCOF
architecture, events trigger tickets that are sent to an external
information system, which can then implement its own safety
and personnel protocols. Additionally, MCOF includes modules to
handle electrical and network failures and features an obstruction
detection routine for the cameras.

Index Terms—Fall Detection, Computer Vision, Healthcare,
Human Activity Recognization, Campus Safety, Proactive Secu-
rity

I. INTRODUCTION

Vision impairment affects approximately 1.1 billion people
worldwide, according to Vision Atlas [2]. This condition,
which can lead to partial or total vision loss [3], has a profound
impact on both quality of life and self-esteem. Tasks that
are routine for sighted individuals, such as safely navigating
indoor and outdoor spaces, become challenging for those with
vision loss. Additionally, advancements in technology have
contributed to an aging population, with the proportion of
individuals aged 65 and above compared to those aged 15–
64 expected to reach 54 percent by 2050 in the EU [4].

Notoriously, visually impaired individuals often face a
significant risk of falls and injuries due to difficulties in
identifying hazards while moving [2]. Therefore, it is crucial to
alert them to potential dangers in both familiar and unfamiliar
environments. As a result, obstacle detection has become a
key aspect of mobility assistance for the visually impaired.
Utilizing computer vision for obstacle detection can be instru-
mental in improving accessibility for young individuals with
disabilities, especially on college campuses.

This study was financed in part by the Coordenação de Aperfeiçoamento
de Pessoal de Nı́vel Superior - Brasil (CAPES) - Finance Code 001, CAPES
Print, CNPq, FAPERJ, UFF and FINEP. Acknowledgments to the house Bem
Estar - Israeli Home for Elderly Care [1] for supporting the research.

Obstacle detection enables individuals with disabilities to
navigate physical barriers such as steps, floor obstacles, or
misplaced objects. This capability enhances their academic ex-
perience and promotes smoother integration into the university
community. By employing a multi-camera system integrated
with computer vision, individuals with disabilities can achieve
greater independence while moving through a university cam-
pus, reducing their reliance on external assistance. The ability
to detect obstacles simplifies the mobility of students with
disabilities, making it easier for them to access classrooms,
libraries, laboratories, and other campus locations, thereby
improving their overall efficiency.

In this study, we introduce MCOF, a multi-camera, computer
vision-based system designed to enhance mobility for visually
impaired individuals on university campuses by detecting falls
and obstructions. The quicker the model identifies a fall or
obstruction, the faster security staff can respond to assist or
remove the obstacle. The system utilizes campus cameras to
detect objects in the environment. With numerous cameras
covering pathways and corridors, the model automatically
identifies objects left in these areas. If an object remains
in the path for an extended period, the system generates an
alert and sends it to the messaging system through a ticketing
mechanism, operating in client-server mode.

The ticket message includes key details such as name,
content, department, priority, and even georeferencing infor-
mation. MCOF operates as a real-time video streaming system
with image processing capabilities using Python. The client
(browser) sends an HTTP request to MCOF, which then creates
a thread to stream the camera feed to the client. MCOF captures
video frames from the camera, performs image preprocessing,
and applies algorithms for object detection, person detection,
and body points detection.

The remainder of this paper is organized as follows. Sec-
tion II discusses background concepts and related work. Sec-
tion III details the proposed model, and Section IV presents
the experimental evaluation. Finally, Section V offers the
conclusions and outlines future work.

A Computer Vision Model to Support Individuals
with Disabilities Within University Campuses

This article has been accepted for publication in a future proceedings of this conference, but has not been fully edited. Content may change prior to final publication.
Citation information: DOI: 10.1109/ACIT62805.2024.10877023, 2024 25th International Arab Conference on Information Technology (ACIT)

Copyright © 2024 Institute of Electrical and Electronics Engineers (IEEE). Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future
media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted
component of this work in other works (https://journals.ieeeauthorcenter.ieee.org/become-an-ieee-journal-author/publishing-ethics/guidelines-and-policies/post-publication-policies/).

Fig. 1. Dataflow in MCOF begins with the video stream originating from a university camera. The MCOF Systemd, SYS, and Threading modules receive
this data to initiate system integration. Next, the MCOF OpenCV, Motion Detector, Person Detector, Body Points Detector, and Fall Detection modules work
together to identify falls. Simultaneously, the MCOF Object and Animals Detector and Obstruction Detector modules detect obstructions. Finally, the MCOF
Control and Record, HTTP Server, Flask, Zoneminder, and Ticket modules are used to record incidents and trigger alarms for both obstructions and falls.

II. RELATED WORK

Nikhil et al. (2021) [5] proposed a system deployed on
a university campus to ensure the safety and hygiene of
individuals. This system includes three main modules: Crowd
Counting, Social Distancing, and Mask Detection, and it
continuously monitors activities using Computer Vision tech-
nology. Ritharson et al. (2022) [6] developed a preventive
method for detecting individuals wearing masks or carrying
weapons, whether lethal or non-lethal, utilizing the YOLOv3
algorithm for detection. Ashraf et al. (2022) [7] created a
model for detecting pistols with sufficient speed for alarm-
based surveillance systems, implementing YOLOv5s, which
demonstrates effective results and speed.

Guler et al. (2016) [8] described a system based on back-
ground subtraction that includes motion detection, camera
sabotage detection (covering issues such as moved, out-of-
focus, and covered cameras), abandoned object detection, and
object-tracking algorithms. Similarly, Vijetha et al. (2024) [2]
presented an obstacle detection system designed to aid visually
impaired individuals in navigating using smartphones. Their
approach combines semantic segmentation with depth esti-
mation data, arguing that this integration improves obstacle
detection compared to using depth data alone.

In contrast, Zhong et al. (2023) [9] proposed a computer
vision-based boundary detection system specifically for cam-
pus security. They demonstrated the effectiveness of achieving
real-time insights and improving campus security predictions
through the integration of various security factors. Addition-
ally, Olmos et al. (2018) [10] presented a study aimed at im-
proving weapon detection in surveillance videos using image
fusion techniques. Their approach involves applying a series
of filters to generate a map that highlights the primary areas
of interest. Their work addresses a solution to the real-time
pistol detection alarm problem using deep learning CNN-based
object detector. They developed a CNN-based classifier on
different datasets within the sliding window and region-based
detection methods. They developed a new labeled dataset that
makes the learning model achieve high detection qualities. The
experience in building the new dataset and detector can be
useful to guide the development of solutions for other different
problems in object detection.

Our proposal focuses on aiding visually impaired individu-
als with a multi-camera, real-time computer vision system for

campus mobility. Unlike prior research on crowd management
and weapon detection, it emphasizes precise body point and
object detection. It also features robust failure management
and obstruction detection, offering a solution for accessibility.

III. MATERIAL AND METHODS

The Multi-Camera Obstruction and Fall Detection System
(MCOF)1 is proposed as a modular pipeline for analyzing
real-time video streaming using image processing techniques.
This pipeline is divided into several functions, each serving
a distinct purpose within the system (see Figure 1). Initially,
the model receives the video stream from a set of IP cam-
eras, processes it, and then sends the processed stream to
Zoneminder [11] via HTTP requests/responses. The MCOF

begins by accessing the cameras and performing computer
vision tasks using YOLO and other applications for fall and
obstruction detection. After processing the video streams, the
records are saved to disk. The frame rate (FPS) for recording
is adjustable, allowing for customization according to specific
needs. Users can set recording criteria, such as time intervals
and frame regions, as parameters for the computer vision
module. This flexibility ensures that MCOF can be adapted
to different scenarios and requirements within the university
environment.

Processed video streams can be transmitted via HTTP to a
designated IP address and port, enabling remote monitoring.
The MCOF is capable of running this service across multiple
nodes, which can receive and store streams as if they were ac-
cessing a camera directly. This redundancy provides enhanced
security through distributed storage. A key component of the
MCOF is the continue_service module, which initiates
and maintains the video streaming service. This module con-
currently launches threads for both the video streaming service
and the Flask server. This dual-threading approach allows
users to view video streams through a web interface while
the system continues processing the video in the background.

The main block of the code configures essential variables
and parameters for MCOF operation, including the IP address,
communication port, and background subtraction algorithm
(BGS). These parameters are adjustable, allowing the system
to be tailored to specific university requirements and various
operational contexts. To maintain uninterrupted and reliable

1https://github.com/mestrelan/MCOF IEEE Healthcom2024

This article has been accepted for publication in a future proceedings of this conference, but has not been fully edited. Content may change prior to final
publication.Citation information: DOI: 10.1109/ACIT62805.2024.10877023, 2024 25th International Arab Conference on Information Technology (ACIT)

Copyright © 2024 Institute of Electrical and Electronics Engineers (IEEE). Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or
future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any
copyrighted component of this work in other works (https://journals.ieeeauthorcenter.ieee.org/become-an-ieee-journal-author/publishing-ethics/guidelines-and-policies/post-publication-policies/).

operation, MCOF includes a control structure that automatically
restarts the service in the event of a failure. This structure
captures exceptions, logs debugging information, and restarts
the program if an error occurs. This robust error-handling
mechanism ensures that the system remains operational and
dependable, even when facing unexpected issues.

The MCOF for university security utilizes advanced computer
vision techniques to detect falls and obstructions, enhancing
safety for students and staff. Built with various Python mod-
ules, each component plays a role in the system’s functionality.

A. MCOF Functionality

Input and Output Management: The MCOF begins by
using the sys module to handle command-line arguments and
manage interaction with the Python runtime environment.
This enables efficient read/writing to memory buffers.

Operating System Interaction: The MCOF interacts with the
operating system using the os module. This enables essential
tasks such as file and directory manipulation, reading
environment variables, and managing directories, ensuring
dynamic interaction with the filesystem and environment.

Computation and Time Management: The math module
enables the MCOF to carry out essential mathematical
computations, including geometric transformations and
statistical analyses needed for image processing. The time
module offers functionalities for measuring execution time,
managing date and time values, and creating delays, which
are crucial for synchronizing tasks and handling timed events.

Parallel Processing: To manage multiple tasks
simultaneously, the MCOF uses the threading module.
This facilitates the creation and management of threads,
enabling parallel processing. This capability is crucial for
allowing multiple web browsers or Zoneminder systems to
access the camera stream concurrently.

Command-Line Interface: The argparse module streamlines
the creation of a command-line interface, simplifying the
configuration and execution of the MCOF with various options
and parameters. This enhances user interaction and provides
flexibility in configuring the MCOF.

Date and Time Manipulation: The MCOF uses the datetime
and time modules to handle date and time information. The
datetime module provides classes for manipulating dates and
times, while the time module offers functions for working
with time values. These tools are essential for timestamping
events, scheduling tasks, and managing time-based data.

Error Handling and Debugging: The traceback module
captures and prints tracebacks, helping to debug errors and
trace the source of exceptions. This feature ensures robust
error handling and logging, which are crucial for maintaining

reliable system operation.

Data Manipulation and Analysis: The MCOF employs the
pandas library for efficient analysis of data structures, tables,
and time series data. This is essential for recording and
analyzing the MCOF’s performance and detection information.

Failure Protection: The MCOF utilizes the subprocess
module to manage new processes and link their pipes to
exit codes, enabling interaction with external processes
and OS command execution. This configuration improves
fault tolerance by automatically resetting on errors. BIOS
settings ensure the PC restarts after a power loss, and a
scheduled time service initiates daily PC boot. A systemd
service is set up to launch MCOF during boot. If access
issues arise (e.g., network, electrical, or camera failure), the
service automatically restarts to restore the camera connection.

HTTP Server for Video Streaming: The MCOF employs
the werkzeug.serving and make server modules to set up an
HTTP server using Werkzeug, a WSGI library that manages
HTTP requests. This configuration is crucial for streaming
processed video over HTTP, making the MCOF accessible to
web clients and integrated systems like Zoneminder. The Flask
web framework is used to develop the MCOF web application.
Flask’s lightweight tools, such as Response for sending HTTP
responses and render template for rendering HTML templates,
facilitate the display of the video stream on a web page. This
setup provides easy access and monitoring through a web
browser or video monitoring management system.

B. You Only Look Once – YOLO

The “stream” module manages the real-time processing of
video frames. Each frame is captured, pre-processed, and
optionally subjected to object detection algorithms such as
YOLO and YoloPose [12], [13]. Depending on the model
configurations and objectives, the processed frames are either
displayed on-screen or recorded in a video file. YoloPose is
integrated to identify key body points of individuals. The
pretrained weights of YOLOv8 (yolov8n.pt and yolov8n-
pose.pt) are utilized for person and object detection. Table
I lists the objects identified by the model.

The MCOF processes video frames using the YOLO object
detection model to identify objects in each frame. It draws
bounding boxes around detected objects, displays the object
class and detection confidence, and may also perform a count
of detected persons. For each bounding box, the MCOF identi-
fies the coordinates (top-left x1, y1, and bottom-right x2, y2),
converts floating-point coordinates to integers for compatibility
with OpenCV and extracts the detection confidence.

C. OpenCV

The MCOF utilizes OpenCV [14] to read, record, and ma-
nipulate the video stream. It performs various image pro-
cessing tasks, including filtering, geometric transformations,
and edge detection. OpenCV provides a comprehensive set

This article has been accepted for publication in a future proceedings of this conference, but has not been fully edited. Content may change prior to final publication.
Citation information: DOI: 10.1109/ACIT62805.2024.10877023, 2024 25th International Arab Conference on Information Technology (ACIT)

Copyright © 2024 Institute of Electrical and Electronics Engineers (IEEE). Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future
media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted
component of this work in other works (https://journals.ieeeauthorcenter.ieee.org/become-an-ieee-journal-author/publishing-ethics/guidelines-and-policies/post-publication-policies/).

TABLE I
OBJECTS IDENTIFIED BY THE MODEL.

Category Objects
People person

Vehicles bicycle, car, motorcycle,
plane, bus, train, truck, boat

Traffic Signs traffic light, fire hydrant, stop sign, parking meter

Animals bird, cat, dog, horse, sheep, cow,
elephant, bear, zebra, giraffe

Accessories backpack, umbrella, bag, tie, suitcase

Sports Equipment

frisbee, skis, snowboard,
sports ball, kite, baseball bat,

baseball glove, skateboard,
surfboard, tennis racket

Kitchen Items

bottle, wine glass, cup, fork,
knife, spoon, bowl, banana,

apple, sandwich, orange, broccoli,
carrot, hot dog, pizza, doughnut, cake

Furniture chair, sofa, potted plant,
bed, dining table, bathroom

Electronics

TV monitor, laptop, mouse,
remote control, keyboard,

cell phone, microwave, oven,
toaster, sink, fridge

of functions for image processing, such as resizing, rotating,
cropping, color conversion, filtering, smoothing, and edge
highlighting [14]. The MCOF defines three main functions
for image processing operations: getKernel, getFilter,
and getBGSubtractor. The getKernel function takes a
KERNEL_TYPE parameter to specify the type of kernel (struc-
turing element) to return. Kernels are used in morphological
operations to define the neighborhood around a pixel. If the
type is “dilation,” the function creates and returns a 3x3 el-
liptical kernel using cv2.getStructuringElement with
cv2.MORPH_ELLIPSE [14], [15].

The getFilter function performs various morphological
operations on an image. It takes an image and a filter type
as parameters. If the filter type is “closing,” the function
applies the closing operation using cv2.morphologyEx
with the kernel obtained from the getKernel(”closing”)
function [14], [15].

The getBGSubtractor function creates and returns
a background subtractor object based on the type speci-
fied by the BGS_TYPE parameter. Background subtractors
are used to segment moving objects in video [15]. The
function returns a KNN background subtractor, created us-
ing cv2.createBackgroundSubtractorKNN with the
specified history parameter [14].

D. MonitoraUFF Project

The MCOF is currently being tested in a large video surveil-
lance project, developed and deployed at Fluminense Federal
University by the Information and Communication Technology
Management Laboratory – GTECCOM2, a unit of the UFF
School of Engineering. The project aims to install monitoring
systems across all university buildings and blocks, totaling
over 2000 cameras, more than 100 independent monitoring

2https://gteccom.uff.br/

systems, and several control centers integrating multiple sys-
tems throughout the campus. For monitoring buildings and
their surroundings, the project employs ZoneMinder [11].
Additionally, a proprietary system has been developed for
the control center, which will include functionalities such as
ticket management. ZoneMinder is an open-source platform
for security camera monitoring [11], offering a comprehensive
solution for capturing, analyzing, recording, and monitoring
CCTV or security cameras on a Linux-based system [11]. By
choosing ZoneMinder, the institution ensures a robust, cost-
effective, and adaptable solution while maintaining control
over its data and infrastructure. The project also aims to remain
flexible and utilize free software whenever possible.

IV. EXPERIMENTAL EVALUATION

A. Datasets

We evaluated the model using the NTU RGB+D
dataset3 [16]. This openly available dataset includes 60 ac-
tion modalities (classes) for activity recognition tasks and
comprises 56,880 videos. The tasks are categorized into
three groups: Activities of Daily Life (ADL), health-related
movements (such as falling), and interactions between people
(such as shaking hands). Each entry in the dataset features
recordings ranging from 2 to 4 seconds, captured with depth
cameras (512×424 resolution), RGB color maps (1920×1080
resolution), and IR cameras (512× 424 resolution).

B. Setup

The performance evaluation was conducted on two ma-
chines with the following configurations:

Machine 1:
• Debian 12 64-bit operating system
• 1 TB of disk space
• NVIDIA GeForce GTX 1660 graphics card
• 11th Gen Intel Core i7-11700F x 16 processor
• 16 GB RAM
• ASUS PRIME H510M-E motherboard
Machine 2:
• Ubuntu 22.04.4 LTS 64-bit operating system
• 4 TB of disk capacity
• NVIDIA GeForce GTX 1050 Ti graphics card
• Intel Core i7-9700K CPU @ 3.60GHz x 8
• 16 GB RAM
• Gigabyte Z390 Gaming X motherboard
Anaconda was used to manage all tools, with Python v3.8.18

and the following libraries:
• Flask 2.2.2
• ffmpeg 6.1.1
• imutils 0.5.4
• numpy 1.24.4
• pandas 2.0.3
• pytorch 2.2.0
• torchvision 0.17.0

3Available at https://rose1.ntu.edu.sg/dataset/actionRecognition/

This article has been accepted for publication in a future proceedings of this conference, but has not been fully edited. Content may change prior to final publication.
Citation information: DOI: 10.1109/ACIT62805.2024.10877023, 2024 25th International Arab Conference on Information Technology (ACIT)

Copyright © 2024 Institute of Electrical and Electronics Engineers (IEEE). Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future
media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted
component of this work in other works (https://journals.ieeeauthorcenter.ieee.org/become-an-ieee-journal-author/publishing-ethics/guidelines-and-policies/post-publication-policies/).

• werkzeug 2.3.8
• OpenCV 4.8.1

All evaluations leverage the infrastructure provided by the
Information and Communication Technologies Management
Laboratory (GTECCOM) at Fluminense Federal University.
This infrastructure includes a comprehensive wired and wire-
less computer network, a multi-camera monitoring system,
and a centralized control center currently under development.
This work supports the extensive university video monitoring
project MonitoraUFF, which involves both developing solu-
tions and installing new equipment across UFF campuses, as
well as integrating existing equipment. The project promotes
accessibility and aligns with mobility expectations from a
broad perspective. Additionally, it aims to create a dataset to
advance computer vision applications in university security.

C. Fall detection

Figure 4 illustrates a frame after motion detection, back-
ground removal, filtering, and body point detection in a video
stream. It captures a moment of a fall. The green contour
outlines the person’s body region, while the red line represents
the body axis orientation. Typically, the body axis is vertical
when the person is upright and horizontal when lying down.
The model detects a fall when there is a sudden shift from
vertical to horizontal in the body axis.

We evaluated the MCOF on a machine equipped with an
NVIDIA GeForce GTX 1050 Ti. The MCOF is capable of
processing on either the GPU or CPU. Figure 2 shows that
without GPU utilization, the application took approximately
1.8 seconds per frame, with GPU utilization at around 0% and
GPU memory consumption of 159MB out of 4096MB total.
In contrast, Figure 3 illustrates that when Python applications
are compiled to leverage the GPU, the processing time per
frame is reduced to approximately 0.12 seconds. As shown in
Figure 5, GPU utilization increases to about 25%, with GPU
memory usage rising to approximately 704MB. Therefore, this
GPU can initially handle video streams from up to 4 cameras
simultaneously, utilizing approximately 2816MB of the total
4096MB GPU memory.

Next, we evaluated the MCOF on a machine with an NVIDIA
GeForce GTX 1660. Without GPU utilization, the application
requires approximately 7 seconds per frame. Figure 6 shows
that when compiled to leverage the GPU, the total processing
time per frame is approximately 0.12 seconds, similar to the
performance on the previous GPU. Figure 7 indicates that GPU
utilization is around 9%, with GPU memory consumption
rising to 1528MB out of a total 6144MB.

Initially, it appears feasible to run the application on streams
from up to 10 cameras to maximize GPU utilization. However,
GPU memory constraints become apparent, as the total re-
quired memory (10×1528MB = 15280MB) exceeds the avail-
able 6144MB. Consequently, the GPU’s memory limitations
restrict the simultaneous use of computer vision applications
to a maximum of 6 cameras (6×1528MB = 6112MB), which
accommodates two more cameras than the previous GPU.

D. Comparison with related work

Nikhil et al. (2021) [5] proposed an object detection system
using computer vision techniques, incorporating three distinct
modules that apply object detection algorithms and OpenCV
to identify rule violations. The system faced challenges due
to variations in CCTV camera orientations across different
areas, leading to inconsistent results [5]. To address these
issues and manage potential obstructions or sudden changes
in the camera’s field of view (such as if a malicious agent
moves the camera), the MCOF tracks the date of the last person
detected by each camera. If no one passes by within a user-
defined timespan, the system generates a ticket indicating that
the camera has not detected a person for an extended period,
signaling a potential problem or obstruction requiring physical
intervention.

Additionally, the system processes a set of frames to calcu-
late a matrix of pixel medians. It then compares the average
pixel values of new frames to this matrix. If the average value
of a new frame exceeds a predefined threshold, the system
generates a ticket for a sudden change in the camera view. To
minimize false alarms due to natural variations in lighting, the
pixel median matrix is recalculated every two hours.

Ritharson et al. (2022) [6] developed a face recognition
system utilizing the HAAR classifier, a color detection al-
gorithm for uniform/dress code detection, and weapon detec-
tion in schools using CNN with YOLOv3. In contrast, the
MCOF aims to enhance university security through computer
vision by monitoring human activities. The MCOF leverages
YOLOv8 [17], integrating it with background subtraction and
image filtering techniques. While both studies use computer
vision for object identification within a university context,
the MCOF is designed to classify and recognize a broader
range of objects. Guler et al. (2016) [8] describe a real-time
intelligent video surveillance system implemented on a GPU.
Their experiments, conducted on a PC with an Intel Core
i7 CPU and 3.5 GB of usable RAM, utilized an NVIDIA
Tesla C2075 GPU with 6.144 GB of total memory. At a
resolution of 1,024 × 768, their GPU processed video from 7
cameras in real-time, whereas the CPU could not process any
cameras in real-time. The object tracking algorithm achieved
a frame processing time of 0.0161 seconds. In comparison,
Figure 6 illustrates that the MCOF’s object detection starts at
approximately 0.023 seconds per frame and reduces to around
0.0060 seconds.

Ashraf et al. (2022) [7] aimed to minimize false negatives
and false positives in weapon detection while ensuring fast
detection speeds. Their framework also employs YOLO and
processes frames with background removal using the Gaus-
sian blur algorithm. The detection speed achieved was 0.010
seconds per frame, significantly faster than Faster R-CNN,
which processed frames at 0.17 seconds. The experiments
were performed on a 2015 MacBook Pro with 16 GB of RAM,
a 256 GB SSD, a 2.8 GHz Intel Core i7 processor, and Intel
Iris Pro 1536 MB graphics. Anaconda managed the tools, with
Python 3.7.3 and Jupyter Notebook used for implementing the

This article has been accepted for publication in a future proceedings of this conference, but has not been fully edited. Content may change prior to final
publication.Citation information: DOI: 10.1109/ACIT62805.2024.10877023, 2024 25th International Arab Conference on Information Technology (ACIT)

Copyright © 2024 Institute of Electrical and Electronics Engineers (IEEE). Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or
future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any
copyrighted component of this work in other works (https://journals.ieeeauthorcenter.ieee.org/become-an-ieee-journal-author/publishing-ethics/guidelines-and-policies/post-publication-policies/).

Fig. 2. Average elapsed time without GPU.

Fig. 3. Average elapsed time using the GTX 1050 Ti GPU and compiled python.

Fig. 4. (a) Frame after fall detection. (b) Frame after motion detection,
background removal, filtering and body point detection.

Fig. 5. GPU utilization – GTX 1050 Ti GPU with compiled python.

CNN model. YOLOv5 was implemented on Google Colab
with Python 3.6.9 and a 1.85 GB GPU provided by Google.
However, reliance on Google’s GPU introduces a dependency
on Internet connectivity, which could be problematic in real

security applications if a connection failure occurs, potentially
leaving the environment exposed.

The computer vision model described in [10] achieved a
processing time of 0.19 seconds per frame. The Faster R-
CNN model [7] recorded a time of 0.17 seconds per frame.
In contrast, the computer vision model presented by Ashraf
et al. (2022) [7] demonstrated a significantly faster processing
time of 0.010 seconds per frame. The model described in this
work achieved the following processing times: 0.0118 seconds
for detecting body points, 0.0236 seconds for detecting peo-
ple, objects, and animals, and 0.0514 seconds for detecting
movements in real-time camera streaming. Figure 6 illustrates
frame time for each examined computer vision model.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we proposed MCOF, a multi-camera, computer
vision-based fall and obstruction detection system designed
to enhance mobility for visually impaired individuals on
university campuses. The MCOF detects falls and sends alerts
to the MCOF Control and Record unit, which facilitates further
response by the university security team. It also identifies
abandoned objects in pathways and corridors, generating alerts
for such incidents. The Ticket system categorizes these alerts
by time and priority. We assessed the MCOF’s ability to manage
multiple cameras, given the expansive university environment,
and evaluated its processing time to ensure prompt detection
of critical alarms for campus security.

Our evaluation compared MCOF processing times with re-
lated work in the literature. The results indicated that the
system achieves elapsed times similar to those reported by

This article has been accepted for publication in a future proceedings of this conference, but has not been fully edited. Content may change prior to final publication.
Citation information: DOI: 10.1109/ACIT62805.2024.10877023, 2024 25th International Arab Conference on Information Technology (ACIT)

Copyright © 2024 Institute of Electrical and Electronics Engineers (IEEE). Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future
media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted
component of this work in other works (https://journals.ieeeauthorcenter.ieee.org/become-an-ieee-journal-author/publishing-ethics/guidelines-and-policies/post-publication-policies/).

Fig. 6. Frames per second – GTX 1660 GPU with compiled python.

Fig. 7. GPU usage over time – GTX 1660 GPU with compiled python.

Ashraf et al. (2022) [7], but within a multi-camera frame-
work. Specifically, the MCOF recorded 0.0118 seconds for
detecting body points. Among the GPUs tested, the GTX
1660 provided the best performance, suggesting its potential
to handle simultaneous streams from up to six cameras—two
more than the GTX 1050 Ti GPU. This finding is crucial for
efficiently managing computational resources in the large-scale
MonitoraUFF project, which necessitates deploying multiple
GPUs to accommodate the extensive network of cameras.

The MCOF builds upon recent advancements by integrating
YOLOv8 with background subtraction and image filtering,
aiming to deliver a robust solution for university security.
The addition of GPU acceleration and the system’s flexibility
in processing further amplify its effectiveness, making it a
valuable asset for modern security infrastructures. Currently,
the MCOF is capable of detecting the fall of a single individual.
However, large, fast-moving objects, such as vehicles, can
disrupt fall detection. Additionally, crowded environments
with numerous background movements can interfere with the
system’s ability to detect falls accurately. While the MCOF can
identify and monitor objects and detect abandoned items based
on their duration of presence, it does not yet differentiate be-
tween different environmental contexts where these objects are
located. Future improvements will focus on enhancing object
detection capabilities to further bolster safety and accessibility
for individuals with disabilities in university campuses.

REFERENCES

[1] Froien Farain, Bem Estar - Israeli Home for the Elderly, https://bemestar.
froienfarain.org.br/contato/, accessed on June 10 (2022).

[2] U. Vijetha, V. Geetha, Obs-tackle: an obstacle detection system to assist
navigation of visually impaired using smartphones, Machine Vision and
Applications 35 (2) (2024) 20.

[3] S. R. Flaxman, R. R. Bourne, S. Resnikoff, P. Ackland, T. Braithwaite,
M. V. Cicinelli, A. Das, J. B. Jonas, J. Keeffe, J. H. Kempen, et al.,
Global causes of blindness and distance vision impairment 1990–2020:
a systematic review and meta-analysis, The Lancet Global Health 5 (12)
(2017) e1221–e1234.

[4] G. Carone, D. Costello, Can europe afford to grow old, Finance and
development 43 (3) (2006) 28–31.

[5] N. Raote, M. S. Khan, Z. Siddique, A. K. Tripathy, P. Shaikh,
Campus safety and hygiene detection system using computer vi-
sion, in: 2021 International Conference on Advances in Com-
puting, Communication, and Control (ICAC3), 2021, pp. 1–7.
doi:10.1109/ICAC353642.2021.9697148.

[6] P. Isaac Ritharson, G. Madhavan, M. Rajeswari, D. Brindha, Prevention
of school shooting using neural networks and computer vision, in:
2022 Third International Conference on Intelligent Computing Instru-
mentation and Control Technologies (ICICICT), 2022, pp. 1703–1709.
doi:10.1109/ICICICT54557.2022.9917656.

[7] A. H. Ashraf, M. Imran, A. M. Qahtani, A. Alsufyani, O. Almutiry,
A. Mahmood, M. Attique, M. Habib, Weapons detection for security
and video surveillance using cnn and yolo-v5s, CMC-Comput. Mater.
Contin 70 (2022) 2761–2775.

[8] P. Guler, D. Emeksiz, A. Temizel, M. Teke, T. T. Temizel, Real-time
multi-camera video analytics system on gpu, Journal of Real-Time
Image Processing 11 (2016) 457–472.

[9] B. Zhong, J. B. M. Sharif, S. Salam, C. Ran, Y. Liang, Z. Cheng,
Research on optimization of boundary detection and dangerous area
warning algorithms based on deep learning in campus security system,
Journal of Information Systems Engineering and Management 8 (4)
(2023) 22898.

[10] R. Olmos, S. Tabik, F. Herrera, Automatic handgun detection alarm in
videos using deep learning, Neurocomputing 275 (2018) 66–72.

[11] R. Stürmer, E. M. Ahlert, Implementação de sistema de videomoni-
toramento de baixo custo utilizando zoneminder e câmeras ip, Revista
Destaques Acadêmicos 12 (4).

[12] D. Maji, S. Nagori, M. Mathew, D. Poddar, Yolo-pose: Enhancing yolo
for multi person pose estimation using object keypoint similarity loss,
in: Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 2022, pp. 2637–2646.

[13] P. Jiang, D. Ergu, F. Liu, Y. Cai, B. Ma, A review of yolo algorithm
developments, Procedia computer science 199 (2022) 1066–1073.

[14] G. Bradski, The opencv library., Dr. Dobb’s Journal: Software Tools for
the Professional Programmer 25 (11) (2000) 120–123.

[15] W. Burger, M. J. Burge, Digital image processing: an algorithmic
introduction using Java, Springer, 2016.

[16] A. Shahroudy, J. Liu, T.-T. Ng, G. Wang, Ntu rgb+d: A large scale
dataset for 3d human activity analysis, in: 2016 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 2016, pp. 1010–
1019. doi:10.1109/CVPR.2016.115.

[17] F. N. Ortataş, M. Kaya, Performance evaluation of yolov5, yolov7,
and yolov8 models in traffic sign detection, in: 2023 8th International
Conference on Computer Science and Engineering (UBMK), 2023, pp.
151–156. doi:10.1109/UBMK59864.2023.10286611.

This article has been accepted for publication in a future proceedings of this conference, but has not been fully edited. Content may change prior to final publication.
Citation information: DOI: 10.1109/ACIT62805.2024.10877023, 2024 25th International Arab Conference on Information Technology (ACIT)

Copyright © 2024 Institute of Electrical and Electronics Engineers (IEEE). Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future
media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted
component of this work in other works (https://journals.ieeeauthorcenter.ieee.org/become-an-ieee-journal-author/publishing-ethics/guidelines-and-policies/post-publication-policies/).

