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Abstract
Digital Twin (DT) technology in healthcare is relatively new and faces several challenges, e.g., real-time data processing, 
secure system integration, and robust cybersecurity. Despite the growing demand for real-time monitoring frameworks, 
further improvements remain possible. In this study, an architecture has been introduced that utilises cloud computing 
to create a DT ecosystem. A group of 20 participants has been monitored continuously using high-speed technology to 
track key physiological parameters, i.e., diabetes risk factors, heart rate (HR), oxygen saturation (SpO2) levels, and body 
temperature (BT). To strengthen the study and enhance diversity, the dataset was supplemented with 1177 anonymized 
medical records from the publicly available MIMIC-III Public Health Dataset. The DT model functions as a tool, storing 
both real-time sensor data and historical records, to effectively identify health risks and anomalies. An MLP model was 
combined with XGBoost, resulting in a 25% reduction in training time and a 33% reduction in testing time. The model 
demonstrated reliability with an accuracy of 98.9% and achieved real-time accuracy of 95.4%, alongside an F1 score of 
0.984. Meticulous attention has been paid to cybersecurity measures, ensuring system integrity through end-to-end 
encryption and compliance with health data regulations. The incorporation of DT and AI within the healthcare sector 
is seen as having the potential to overcome existing limitations in monitoring systems, while workloads are relieved 
and data-driven diagnostics and decision-making processes are improved, e.g., through enhanced real-time patient 
monitoring and predictive analysis.

 Highlights

• A hybrid digital twin framework integrates IoT, AI, and secure systems to enhance real-time healthcare monitoring.
• Achieved 98.9% accuracy in predicting health metrics such as heart rate, oxygen levels, and diabetes risk factors.
• Implements robust cybersecurity and cloud computing to ensure data privacy, scalability, and efficient patient care.

Keywords Healthcare technology · Real-time monitoring · Autocorrelation analysis · Rolling average · MXBoost · End-to-
end encryption
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1 Introduction

Digital Twin (DT) has emerged as an essential tool in different sectors and has developed rapidly over time. As a 
dynamic digital replica of physical entities, its applications have been notably successful in engineering and indus-
trial sectors [1–3]. In healthcare, where chronic conditions, e.g., diabetes mellitus (DM), are increasingly prevalent, 
DT’s potential to transform patient health services is becoming an area of focus [4]. This paper aims to explore DT’s 
innovative applications in healthcare, particularly in addressing complex health challenges [5, 6].

Historically, DT has been applied in areas such as aerospace, simulating aerodynamics, and manufacturing to 
optimise production processes [7, 8]. Its integration with advanced technologies, i.e., IoT, AI, and machine learning 
(ML), further underscores its versatility [9–11]. However, the adoption of DT in Personal Health Systems (PHS) is still 
in its nascent stages, with current research primarily focusing on integrating electronic health records (EHR) and IoT 
devices for real-time monitoring [12, 13].

The rise of Industry 4.0 has enhanced DT’s relevance in healthcare by leveraging advanced computational and 
communication technologies. Despite its potential, implementing DT in healthcare presents challenges, e.g., data 
integration complexities, privacy concerns, and the need for constant updates [14–17]. The launch of models like 
VitalSense, designed for remote health monitoring in smart cities, signifies significant progress in healthcare tech-
nology. However, integrating numerous technological components and ensuring robust data security remain key 
challenges, necessitating a comprehensive approach to healthcare innovation [18, 19].

This paper navigates the complex landscape of DT in healthcare by identifying gaps and proposing novel solutions. 
The contributions of this work are as follows: 

1. An architectural design is presented that utilises real-time sensor data for monitoring vital signs-heart rate (HR), 
oxygen saturation (SpO2), and body temperature (BT), while combining historical data, real-time analytics, and AI 
for predictive analysis.

2. The MXBoost hybrid model has been developed, combining XGBoost and Multilayer Perceptron (MLP) to address 
challenges associated with real-time and historical data analysis.

3. A comprehensive DT model ( MDT ) has been designed for healthcare, integrating cloud computing with AI, IoT, and 
robust cybersecurity to enhance operational efficiency and security. A practical Jupyter Notebook dashboard has also 
been developed for real-time cost monitoring. Additionally, cost-effective concepts in sensor-assisted data acquisi-
tion and telemonitoring are introduced, ensuring that these advancements are feasible in healthcare settings.

4. A novel Autocorrelation Analysis technique has been introduced, improving the identification of temporal correla-
tions in healthcare data and assessing the statistical significance of identified disparities in patient health predictions. 
This method marks a significant advancement in long-term health trend analysis.

5. A state-of-the-art rolling average approach has been utilised by the model, tested on over 10,000 data points to 
ensure its effectiveness in managing fluctuating healthcare data. This approach removes biases, maintains uniform 
forecasts, and improves accuracy and reliability, setting a new standard for future healthcare prognostics.

This paper contributes to the academic discourse on DT in healthcare, providing practical insights with significant 
societal impact. The structure of the paper is as follows: Sect. 2 reviews the literature on DT in healthcare, Sect. 3 
details the proposed DT model architecture, Sect. 4 describes the MXBoost algorithm, Sect. 5 presents real-time 
analysis through Digital Twin Healthcare (DTH), Sect. 6 discusses evaluation and results, Sect. 7 outlines the meth-
odology and future work, and Sect. 8 concludes the study.

This manuscript employs several technical abbreviations and terminologies frequently used in the domain of DT 
in healthcare. Table 1 provides a detailed list of all abbreviations used throughout the manuscript.

2  Related work

The concept of Industry 4.0 has had a significant impact across multiple sectors, including healthcare, leading to the 
development of Healthcare 4.0. This new paradigm is characterised by the integration of automation, digitisation, 
and intelligent technologies to enhance operational efficiency and patient outcomes [20–24]. Extensive research 
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has focused on the integration of DT and IoT in healthcare [25]. In a study by Sarp et al. [26], a DT model integrated 
with AI was developed for chronic wound management, emphasising personalised treatments and real-time tracking 
capabilities. However, its application in resource-poor settings may be constrained by the need for consistent data 
collection and advanced technologies. Elayan et al. proposed a theoretical framework combining IoT devices with 
edge computing to improve the delivery of healthcare data [25].

Liu et al. explored innovative DT applications for improving elderly healthcare services [27]. Menon et al. analysed 
virtual copies of patient anatomical structures for personalised therapies [28]. Furthermore, Jia et al. examined enhanced 
methodologies for constructing DTs [29]. Das et al. focused on the potential of DT and IoRT in digital healthcare, particu-
larly in surgical advancements [30]. Corral-Acero et al. and Zhang et al. explored DT applications in specialised medical 
fields, e.g., cardiology and lung cancer treatment [31, 32]. These studies highlight the transformative potential of DT and 
IoT in healthcare, while also indicating that the field remains in its early stages.

Table 1  Abbreviations

Symbol Description Symbol Description

DT Digital Twin DTH Digital Twin Healthcare
IoT Internet of Things AI Artificial Intelligence
MLP Multilayer Perceptron XGBoost Extreme Gradient Boosting
SpO2 Oxygen Saturation HR Heart Rate
BT Body Temperature DM Diabetes Mellitus
EHR Electronic Health Records MIMIC-III Medical Information Mart for Intensive Care III
PaaS Platform as a Service RBAC Role-Based Access Control
HIPAA Health Insurance Portability and Accountability 

Act
GDPR General Data Protection Regulation

WBANs Wireless Body Area Networks JSON JavaScript Object Notation
MQTT Message Queuing Telemetry Transport API Application Programming Interface
MDT Digital Twin Model DC(t) Data Acquired by IoT Hub
BIoT(t) IoT-Based Gateway for Data RDT Data Transmission Rate
DT Amount of Data Transmitted Θtrans Transmission Time
Srequired Required Storage Space GANs Generative Adversarial Networks
TLS Transport Layer Security E2EE End-to-End Encryption
�AZH Azure IoT Hub Gateway �PDJ(d) Pack Data to JSON Function
SRMAX30102 Sensor Reading for MAX30102 SRMLX90614 Sensor Reading for MLX90614
RTd Real-Time Data HBp Historical Behavior Pattern
HP Historical Pattern Data RTP Real-Time Pattern
DoS Denial-of-Service CIA Confidentiality, Integrity, Availability
Pdata Patient Information Ppolicy Policy Details
Pid Patient Unique Identifier ΘDEHR Secure Data Transmission to EHR
REHR Response from EHR ΛDMHIS Data Mapping for HIS
Mdata Mapped Patient Data R User Roles
P Permissions ΔV Data Volume
ΔD System Demand B Backup Access
Ξ Scaled System Resources Ω Balanced Data Processing
Ψ Backup Service Status ΓSDP Adjust Processing Units
ΛLBD Load Balance Data L Load Balancer
N Node for Data Processing ΣRFT Redundancy and Fault Tolerance
Bs Backup Service ΦDCC Dynamic Cloud Capacity
Υhigh Upper Threshold for System Demand Υlow Lower Threshold for System Demand
ΘDR Disaster Recovery Bd Latest Backup
� Down-scaling Parameter � Up-scaling Parameter
Dhistorical Historical Dataset � Statistical Confidence Interval
N Total Number of Occurrences rk Autocorrelation at Lag k
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Research has also explored the application of machine learning (ML) algorithms and sensor technologies in healthcare 
[33–36]. Panahi et al. discussed the integration of wearable sensors with ML technology for personalised healthcare [37]. 
Rajesh and Dhuli presented a methodology employing resampling techniques with the AdaBoost ensemble classifier for 
heartbeat classification [38]. Mondéjar-Guerra et al. validated the effectiveness of ensemble classifiers for heartbeat clas-
sification [39]. Research in [40, 41] proposed an AI model for personalised diets in managing genetic predispositions to 
diabetes, focusing on individualised nutritional recommendations. Additionally, advancements in clustering techniques 
have enabled the identification of obesity-related patterns in health survey data, with lifestyle factors being key in dif-
ferentiating subgroups [42]. While these approaches assist in guiding healthcare interventions, they risk oversimplifying 
the multifaceted nature of obesity, possibly leading to less effective treatments.

Despite these advancements, significant challenges remain in the healthcare sector regarding the implementation of 
these technologies. Kocabas et al. concentrated on data privacy and security concerns [43]. Further research has high-
lighted significant progress alongside the challenges inherent in healthcare technology [44, 45]. An essential component 
of these advancements is the incorporation of blockchain technology to enhance the security and confidentiality of 
healthcare data systems, which is crucial for the effectiveness of digital therapeutics [46, 47].

Hajar et al. discussed the applications and challenges of wireless body area networks (WBANs) [48]. Aghdam et al. 
analysed the transformational potential and challenges associated with the implementation of IoT in healthcare [49]. 
These studies underscore the need to address challenges such as data privacy, security, and real-time data integration 
to fully realise the potential of these technologies in healthcare. A summary of key contributions from the literature 
is provided in Table 2, categorising studies based on their scope, data sources, real-time capabilities, limitations, and 
practical implementations. This table serves as a quick reference for understanding the state-of-the-art in DT healthcare, 
highlighting the gaps this work seeks to address.

Our research aims to bridge these gaps. Unlike previous studies, this work introduces a novel hybrid algorithm that 
integrates physical devices with digital models for real-time health monitoring. Cloud computing has been leveraged for 
data storage, and a Jupyter Notebook dashboard has been employed for efficient data analysis. This approach improves 
the practicality and usability of the system, particularly within healthcare contexts. Additionally, the framework offers 
economic efficiency, reinforcing the feasibility and viability of the proposed solution.

Table 2  Overview of DT healthcare applications

a Real-time case study
b Real-world data
c Personalized food & diabetes

 d Smart healthcare
e Social distancing in healthcare
f  Wearable technology

Ref. no Scope RTC  a RWDb Limitations Practical work

[50] Healthcare Yes Case Studies Accuracy, latency VR DT cloud infrastructure
[46] IIoT Yes External RT Data Data collaboration Experiments, simulations
[27] Healthcare Yes Wearable RT Data Data transfer technology Hospital ward simulation
[29] IIoT Yes Multi-attribute RT Data Scalability, complexity Multi-attribute resampling
[40] PFDc N/A Product Data NN predictions, safety Dietary response analysis
[41] Healthcare Yes Clinical Data Resource scarcity Clinical analysis
[25] SHcd Yes ECG Data Data link issues Context-aware system

[26] Chronic Wound Care N/A Clinical Images Security, interoperability Camera imaging, segmentation
[44] SDHce Yes People Flow Data Security, privacy Context-aware system
[45] Diabetes Mgmt. N/A Glucose Time Series Glucose stability Glucose patient data
[33] Elderly Type-2 Diabetes Yes CGM, Insulin Pump Data Personalization Pilot studies, real-world setups
[34] WTf Real-world Data Yes Interactivity, accuracy HW-SW integration

[9] Healthcare Yes Simulated + Real Data Glucose simulation DT glucose simulation
Our work Healthcare Yes External RT Data (Glu-

cose, HR, SpO2, BT)
Sensor integration AI-based RT monitoring
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3  Proposed architecture

3.1  System overview

The healthcare monitoring system utilises DT technology to enhance patient monitoring, diagnosis, and real-time inter-
vention. In this study, 20 participants were selected, balancing the need for detailed insights with practical limitations. 
This selection aligns with the recommendation in [51] to determine sample size based on the study’s context and objec-
tives. To enhance the diversity and robustness of the analysis, the dataset was supplemented with 1177 anonymised 
medical records from the publicly available MIMIC-III Public Health Dataset. This hybrid approach ensures the system is 
evaluated across a wide range of demographics and healthcare scenarios.

The system’s foundation comprises a reliable network of sensors, including the NodeMCU ESP8266 microcontroller, 
Max30102 heart rate and blood oxygen sensor, and the MLX90614 infrared thermometer. These sensors continuously 
collect health data, transmitting it securely, as shown in Fig. 1. The collected data is processed in the Microsoft Azure 
Cloud infrastructure, where artificial intelligence (AI) models generate dynamic, predictive health insights to detect 
patterns and potential risks.

Within the DT model, the physical and digital realms influence each other, ensuring that changes in one are reflected 
in the other, thereby maintaining accuracy and relevance. Healthcare professionals can easily access patient data, identify 
trends, and detect health concerns via the system’s dashboard, improving the efficiency of remote patient monitoring. 
The platform employs advanced AI to reduce healthcare costs and enhance patient care, providing accessible data to 
both rural and densely populated healthcare areas. The system enables real-time monitoring, predictive analysis, and 
preventive therapies, supported by robust cybersecurity and a user-friendly visualisation interface.

3.2  IoT devices

The proposed design incorporates IoT devices equipped with various sensors, which serve as essential data collection 
points for monitoring key health indicators, including HR, SpO2, and BT. These sensors, selected for their robustness and 
accuracy, play a vital role in ensuring reliable data acquisition for healthcare monitoring, as demonstrated in similar use 
cases [34, 52].

The IoT-based health monitoring system utilises an asynchronous communication model, leveraging the publish/
subscribe method inherent in the MQTT protocol. The system logs indicate that IoT nodes periodically transmit 
telemetry data, such as HR, SpO2, and BT readings, to the cloud. Each data transmission is timestamped to ensure 

Fig. 1  Architecture of healthcare digital twin based on cloud
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a non-blocking, efficient sequence of operations. The data packets are subsequently published as JSON objects to 
designated cloud endpoints, enabling further processing and analysis. This design highlights the system’s capacity 
to handle high-frequency data from multiple IoT devices simultaneously, optimising cloud communication for scal-
ability and real-time responsiveness in DTH applications, as depicted in Fig. 2.

Figure 2a illustrates the interconnection of the NodeMCU ESP8266, MLX90614, and MAX30102 sensors within the 
system. Figure 2b demonstrates the transfer of data from physical devices to cloud storage, showcasing the system’s 
secure and efficient data transmission capabilities. Figure 2c displays live sensor data on an Arduino monitor, while 
Fig. 2d presents a simulation of the physical system in the cloud-based MDT , involving data transmission to the 
Azure IoT Hub.

Algorithm 1 outlines a systematic process for data collection and transmission within the IoT-based healthcare 
system. The initial setup involves creating a wireless network connection and configuring the sensor interfaces. The 
system then continuously collects data from the health monitoring sensors, structures it in JSON format, and transmits 
it to multiple destinations. These destinations include an API for data processing, a dashboard for data visualisation, 
and MDT , ensuring comprehensive management of health data and efficient analysis.

Algorithm 1  Data transfer and acquisition using the IoT device

3.3  Cloud computing infrastructure

The cloud platform is employed to model DT through the use of Platform as a Service (PaaS). The PaaS architecture has 
been specifically tailored for DTH applications, providing a cost-effective and practical solution for handling complex 
healthcare data. The cloud-based IoT Hub is responsible for receiving and transmitting data collected from IoT devices, 
ensuring secure and efficient data flow, which is essential in healthcare contexts.

The equation above defines a data collection function, DC(t) , representing the data acquired by the IoT Hub at time t  . This 
function underscores the system’s real-time data collection capabilities, which are essential for maintaining the respon-
siveness of the DT model. The management of data latency, i.e., the reduction of transmission delays, and the assurance 
of timely processing are facilitated by the component BIoT(t) , which plays an essential role in the system’s performance.

(1)DC(t) ∶ Sr(t) → BIoT(t)
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where RDT , DT , and Θtrans represent the data transmission rate, amount of data transmitted, and transmission time, 
respectively. The necessity for optimised transmission rate is highlighted, ensuring the system’s efficiency and reliability 
in real-time health monitoring, e.g., for continuous patient data transmission. 

1. Scalable and secure cloud storage systems enable the persistent storage of raw sensor data and health indicators, 
such as HR, SpO2, and BT. By scaling storage capacity to accommodate patient data growth, the system addresses 
the challenges posed by digital healthcare.

2. Compliance with healthcare regulations and modern security protocols ensures data security and adherence to 
legal requirements. These measures safeguard critical health data, while the system’s extensive monitoring network 
enables accurate storage capacity estimation for patient records, as shown in Eq.(3).

In this equation, Srequired denotes the required storage space, with N representing the total number of patients, Dv the 
average data generated per patient per unit time, and T  indicating the storage duration.

3.4  Security and privacy design in healthcare surveillance systems

The healthcare surveillance system has been carefully designed to ensure the highest standard of security, safeguarding 
the confidentiality, integrity, and availability (CIA) of patient data. These core security principles are crucial for protecting 
sensitive healthcare information. The integrated security framework is fully aligned with healthcare data regulations, 
including the Health Insurance Portability and Accountability Act (HIPAA) and the General Data Protection Regulation 
(GDPR), ensuring compliance while providing a strong defence against emerging threats.

(2)RDT =
DT

Θtrans

,

(3)Srequired = N ⋅ Dv ⋅ T

Fig. 2  Schematic representation of data flow from sensors to cloud-based M
DT

 ; (a) Sensor configuration. b Transmission from physical 
device to cloud. c Arduino monitor data read. d Cloud-based M

DT
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3.4.1  Encryption and data integrity

For secure data transmission, RSA encryption is employed, as outlined in Algorithm 2. This method ensures that data 
remains confidential when transmitted over HTTPS channels. The integrity of data is rigorously maintained through 
cryptographic hashing and digital signatures, establishing a verifiable trust chain from the data’s origin to its intended 
destination. The following formalisation encapsulates this process:

[53] the encryption function EK (D) , is defined as the process of transforming plaintext data D using a cryptographic key 
K  to generate the corresponding ciphertext C . This procedure ensures the preservation of data confidentiality when 
transmitted over networks that may be susceptible to security breaches. The integrity of transmitted data and the authen-
tication of its origin are verified through the use of cryptographic hashes and digital signatures.

[54] in this case, H(D) denotes the hash function, which is responsible for transforming the input data D into the result-
ing hash value H′.

Algorithm 2  Secure data transmission with multi-layered security

3.4.2  Access control and anomaly detection in DT model

The MDT system uses a robust role-based access control (RBAC) framework to protect patient information, meeting 
regulatory requirements and assigning access rights appropriately. User roles are linked to specific permissions, and 
ensuring that patient data is accessible only to authorised staff is expressed by the following equation:

where AC represents the access control mechanism, U denotes the user, R refers to the assigned role, and P specifies 
the permissions. Regular reviews and updates of user roles ( R ) and permissions ( P ) ensure that access aligns with job 
responsibilities, thereby maintaining both security and operational efficiency.

To further enhance security, the MDT system integrates an advanced anomaly detection algorithm, as detailed 
in Algorithm 3. This algorithm effectively identifies and addresses potential threats by detecting unusual patterns, 
ensuring the integrity and availability of the system.

(4)EK (D) → C,

(5)H(D) → H�,

(6)AC(U, R) → P,
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Algorithm 3  Anomaly detection in digital twin model

3.4.3  Visualisation of the security framework

In Fig. 3, the multi-layered security framework of the healthcare monitoring system is illustrated, showing the various 
security protocols that are implemented across different levels. This visualisation demonstrates how patient data is 
protected comprehensively. 

1. Physical layer attacks:
• Tampering and Device Hijacking: Unauthorized physical access to IoT devices poses risks such as manipula-

tion of sensor data or the hijacking of devices. To mitigate these threats, the framework integrates secure boot 
mechanisms, encrypted storage solutions, and stringent physical access safeguards.

2. Network layer attacks:

• Spoofing occurs when an attacker impersonates a legitimate device to intercept or disrupt communication. 
To block unauthorised access, secure methods like TLS and token-based authentication are employed.

• Eavesdropping and packet sniffing involve intercepting sensitive information without authorization. To coun-
ter these threats, the framework utilises end-to-end encryption and implements network segmentation for 
enhanced security.

3. Cloud layer attacks:

• Denial-of-Service (DoS) attacks occur when malicious individuals flood cloud services with excessive traffic, 
rendering them inaccessible to legitimate users. To address this issue, the framework incorporates auto-scaling 
of cloud resources and DDoS protection strategies.

• Data exfiltration refers to the unauthorised extraction of sensitive information from cloud systems. To safe-
guard data integrity and confidentiality, measures such as multi-factor authentication, role-based access 
controls, and ongoing monitoring are implemented.

4. IoT and DT layer attacks:

• Data poisoning occurs when inaccurate or malicious information is introduced into IoT devices or digital twins, 
potentially compromising healthcare decisions. To combat this, the framework utilizes anomaly detection 
algorithms.

• Firmware tampering, which involves targeting the firmware of IoT devices, can disrupt system operations. To 
counter this, the framework relies on routine firmware updates and integrity verification processes.

The outlined threats and their associated security measures are concisely presented in Tables 3 and 4, with further rein-
forcement provided by the framework’s integrated components detailed in Algorithm 4. By targeting vulnerabilities 
across all layers-physical, network, cloud, and IoT/DT-the proposed security framework delivers comprehensive protec-
tion against a wide range of attack vectors.

3.4.4  Assessment of potential threats

A clear understanding of potential threats is crucial for mitigating them and establishing a secure structure. We con-
ducted a comprehensive risk assessment to identify and prepare for various threat vectors, as detailed in Tables 3 and 4. 
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These tables classify common security risks, outline their objectives, and detail their impact on the CIA (Confidentiality, 
Integrity, and Availability) triad, ensuring that the implemented security measures remain adaptive and responsive to 
the evolving threat landscape.

Thus, the further development of our security framework encompasses encryption, authentication, access control and 
monitoring for suspicious activity serve to strengthen our view that healthcare surveillance systems, at the very least, 
should follow standard security protocols.

Fig. 3  Ontology framework 
for healthcare digital twin 
cybersecurity
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3.5  Connectivity to healthcare infrastructure

The proposed framework can be used individually or integrated into other structures within healthcare data institu-
tions, with a high priority on data utilisation and incorporation. Algorithm 4 serves as the foundation for this approach, 
prioritising continuous and seamless connectivity to healthcare systems while ensuring flexibility and compliance with 
healthcare specifications, including FHIR and HL7.

This algorithm serves as a pivotal component, offering a comprehensive approach for the secure and efficient han-
dling, transmission, and processing of patient data within healthcare systems. It begins by capturing key inputs: Pdata , 
representing the patient’s information; Ppolicy , which outlines relevant policy details; and Pid , the patient’s unique iden-
tifier. Following the initial input, ΘDEHR ensures the secure transmission of patient data to the EHR system, awaiting a 
confirmation response, REHR , upon successful completion.

Subsequently, the module ΛDMHIS transforms the patient data into Mdata , a format optimized for compatibility, thereby 
facilitating seamless information sharing across diverse healthcare systems. This algorithm not only returns the updated 
access policy but also consolidates responses from both the EHR and HIS systems. The incorporation of standardized APIs 
and advanced mapping techniques further enhances the integration process, enabling secure, flexible data manage-
ment across healthcare infrastructures.

Algorithm 4  Unified patient data management

3.6  Scalability and fault tolerance

The efficiency of healthcare systems is dependent on the strength of scalability and fault tolerance in managing patient 
data and maintaining uninterrupted service. These requirements are addressed by Algorithm 5, which implements reactive 
scaling in the cloud by dynamically adjusting resource allocation based on real-time data requests. Future developments in 
proactive scaling, which rely on previous data patterns, are also recognised.

Table 3  Classification of cyber 
threats and effects on DTH 
security

Cyber threat aim Impact on security measures

Data access Confidentiality [55]
Data modification Integrity [55]
Data destruction Confidentiality, integrity
Denial of service Availability [55]
System disruption Availability
Ransomware Confidentiality, integrity, availability[56]
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Algorithm 5 further outlines methods for managing cloud resources dynamically, including both horizontal and vertical 
scaling, to accommodate the varying demands of healthcare data processing. The ΓSDP algorithm efficiently handles large 
data volumes by adjusting processing capacity ( Ξ ) dynamically, based on the data received ( ΔV ). When data volumes exceed 
a predefined threshold ( Θ ), additional processing units are deployed, ensuring optimal resource usage for varying data loads.

The management of data distribution across multiple processing nodes ( N  ) is primarily facilitated by the load balancing 
component, symbolised as ΛLBD , which holds significant importance in system functionality. The deployment of a sophis-
ticated load ( L ), the allocation of workloads is enhanced, and enhancement in system efficacy ( Ω ). Also, extra stratum of 
robustness is established through the incorporation of ΣRFT , guaranteeing that the system is stable of maintaining uninter-
rupted operations. This methodology ensures both the integrity and functionality of the system, even amidst challenging 
circumstances. The provision of availability and fault tolerance within sensitive healthcare settings is reinforced by the backup 
service ( Ψ ), whose operational role is paramount and meticulously adjusted in accordance with variations in instantaneous 
demand ( ΔD ). The capacity of the cloud is additionally enhanced by ( Υhigh and Υlow ), in conjunction with the precise cali-
bration of resource allocation ( � ), in this case will fostering increased efficiency while concurrently mitigating expenditures. 
Collectively, these improvements substantially enhance the operational efficacy of Digital Twin Healthcare (DTH) systems, 
as delineated in Algorithm 5.

Algorithm 5  Resilient and scalable DTH system optimisation

4  Hybrid model algorithm

The relevance of health-related variables is evaluated utilising a random forest estimator, which further augments the 
model’s predictive performance. This feature assessment procedure not only improves the model’s overall accuracy but 
also enhances its efficiency relative to conventional MLP and XGBoost frameworks. MXBoost model is the integration 
of MLP and XGBoost. The architectural framework of the MXBoost model is illustrated in Fig. 3, providing a lucid visual 
representation of its configuration.
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4.1  Data loading and preprocessing

The research uses numerous features and a heavily-imbalanced dataset across all target variables: TargetHR (YHR) , Tar-
getSpO2 (YSpO2) , TargetBT (YBT ) , and TargetDM (YDM) . Advanced imputation methods are used to preserve the quality 
and reliability of the medical data, ensuring its robustness for model training in future modeling systems and accurate 
predictions. A wide range of real-time patient sensor data is incorporated with historical datasets, enhancing the model’s 
efficiency and strengthening the dataset to ensure better predictive performance.

In addition to standard performance metrics, a dedicated healthcare analysis was conducted to improve the model’s 
interpretability and deployability in clinical settings. In our study, we utilised the MIMIC-III Public Health Dataset, which 
contains 1177 medical records from [30], to evaluate performance measures such as accuracy, precision, recall, and F1 
score. These metrics are crucial in assessing the model’s quality across a variety of healthcare records, providing a detailed 
evaluation of its applicability to real-world healthcare scenarios.

4.2  Model training and structure

The MLP classifier has been implemented using 100 neurons in one hidden layer for healthcare data classification task. 
To avoid overfitting and improve the robustness of the model, L2 regularization with Alpha coefficient was used. As 
shown in Fig. 4, this regularisation term is incorporated into the loss function, which effectively limits the complexity of 
the model and increases its ability to generalise well across healthcare environments.

Likewise, the XGBoost classifier operating on a gradient boosting foundation has been parameterised with manually 
predefined reg_alpha = 0.5 and reg_lambda = 2.0 . We tune these parameters to achieve a balance between compu-
tational complexity and prediction accuracy. This reduces overfitting risk and makes the model more accurate overall.

4.3  Multi‑target classification

Hence, among the multiple clinical measurements are, in SpO2, BT and DM which require to be focused as target vari-
ables since they are the most significant ones across the other targets of concern under this multi-output classification 
scenario. They are crucial to make the model more accurate, useful, and providing a means to effectively predict the 
important health indicators. Due to healthcare categorisation standards, we transformed columns YSpO2 , YBT , and YDM 
into binary variables switching label 1 to 0 for labels 2,3 or 4 as shown in Algorithm 6.

Fig. 4  Hybrid model architecture
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Algorithm 6  Pseudo code of data preprocessing

The ensemble feature of the MXBoost method utilises predictions from both the MLP and XGBoost models, providing a 
more comprehensive analysis by accounting for potential misclassifications. Robust performance is thereby ensured when 
dealing with various types of medical data and supporting decision-making processes.

Robust performance is thereby assured when dealing with multi types of medical data and supporting decision- making 
processes. The final prediction of the MXBoost model is deduced by calculating the mode of the forecasts generated by both 
the MLP and XGBoost models, as outlined in Eq.(12).

in this environment, the final prediction, denoted as Pfinal , is attained through the integration of the individual prog-
nostications produced by the ( PMLP ) model Pmlp and the XGBoost model ( PXGB ). This combined approach harnesses the 
strengths of both models, thereby perfecting the delicacy and trustability of the performing affair.

4.4  Role of AI in real‑time diagnosis and prediction

A unique hybrid AI algorithm has been employed within the system for real- time data analysis, specifically developed to 
identify abnormalities of data and prognosticate health conditions in healthcare settings. The prediction score for diabetes 
mellitus ( PDM ) is calculated through a function f  , which integrates both real- time health criteria and historical data.

The historical dataset ( Dhistorical ) has been constructed by incorporating variables such as glucose levels, renal failure, 
COPD, hypertension, and other pertinent health factors. As a result, more comprehensive and informed forecasting is 
achieved, particularly in clinical and medical environments.

4.4.1  Anomaly detection threshold

Structural anomalies are determined by analysing both the overall diabetes mellitus prediction score ( P ) and the historical 
diabetes mellitus score ( Phistorical ). This dual approach allows for a more nuanced detection of irregularities, integrating both 
current and past data for a comprehensive evaluation. A threshold ( � ) is applied to detect significant deviations, as shown 
below:

This threshold is particularly important in the aspect of early detection in a health care setting.

4.4.2  Feedback loop adjustment

The current model parameters ( Θ ) are adjusted based on the learning rate ( � ) and the gradient of the loss function ( ∇L(Θ) ) 
to improve predictive performance. The adjustment is governed by the following equation:

(12)Pfinal = Mode(PMLP, PXGB),

(13)PDM Score = f (SpO2, HR, BT, Dhistorical)

(14)Anomaly =

{
1, if ||P − Phistorical

|
| > 𝜃

0, otherwise.

(15)Θ� = Θ − � ⋅ ∇L(Θ)
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This feedback loop could help a model improve and update itself very well since it has to work with the most recent 
data possible.

5  DTH‑based real‑time analysis and diagnosis

Figure 1 illustrates the data flow and interaction between the components within the DTH architecture. The real-time 
dashboard serves as an interactive interface, displaying key health metrics retrieved from MDT . It enables healthcare 
professionals to monitor patients in real time. The dashboard interacts with an API to obtain metrics such as BT, SpO2, HR, 
and DM status. Initially, the dashboard presents a set of data, and it continuously updates every two seconds by making 
API requests. This process ensures that the displayed metrics remain current, as shown in Figs. 5 and  6.

6  Evaluation and results

6.1  Model training and testing time

The empirical data indicate that the training and testing durations for each model were meticulously recorded. For 
instance, the MLP model assigned to TargetHR required a training time of 6.3140 s, followed by a testing time of 6 mil-
liseconds. The consistently swift testing times across all models, e.g., the MLP and XGBoost models, demonstrate the 
system’s suitability for real-time applications.

6.2  Model performance

The classification performance of a hybrid model for patient health data, including HR, SpO2, BT, and DM, is illustrated by 
the confusion matrix heatmap in Fig. 7. Each element within the matrix represents the number of accurate and inaccurate 
classifications produced by the model. A comprehensive analysis of true positives, false positives, true negatives, and false 
negatives for each health measure is provided, offering insights into the model’s predictive accuracy and highlighting 
specific areas where improvements could be made.

The performance characteristics of the prediction models are depicted in Fig. 8, which is divided into two subfigures 
for clarity. Figure 8a illustrates the performance metrics of the baseline models, where each axis represents a performance 

Fig. 5  Sequence diagram illustrating real-time data flow within the dashboard
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parameter such as accuracy, precision, recall, and F1 score. The lines in this subfigure correspond to the baseline models, 
demonstrating their relative strengths and limitations.

In contrast, Fig. 8b showcases the performance metrics of the hybrid models using the same parameters. Exceptional 
performance for these metrics is reflected in the lines approaching the outer edges of the radar chart, highlighting the 
advantages of the hybrid models over the baseline. The separation into two subfigures allows for a more detailed and com-
parative visualisationn of the model performances,emphasisingg the improvements achieved through the hybrid approach.

(1) Prediction of YHR : A testing accuracy of 98.80% was achieved by the MLP model, with precision and recall rates of 
100.00% and 94.79%, respectively. A testing accuracy of 100% was recorded for the XGBoost model. The MXBoost model 
achieved a testing accuracy of 98.80%, as depicted in Fig. 9a.

(2) Prediction of YSpO2 : The MLP model recorded a testing accuracy of 98.90%, with precision and recall values of 100.00% 
and 95.31%, respectively. The XGBoost model demonstrated a testing accuracy of 100%. The MXBoost model reached a 
testing accuracy of 98.90%, as shown in Fig. 9b.

(3) Prediction of YBT : A testing accuracy of 97.05% was registered for the MLP model, with precision and recall rates of 
97.03% and 96.17%, respectively. A testing accuracy of 100% was observed in the XGBoost model. The MXBoost model 
achieved a testing accuracy of 98.50%, as illustrated in Fig. 9c.

(4) Prediction of YDM : A testing accuracy of 99.80% was recorded for the MLP model, with precision of 100% and recall of 
99.54%. The XGBoost model exhibited a testing accuracy of 100%. The MXBoost model attained a testing accuracy of 99.80%, 
as presented in Fig. 9d.

(5) Macro Average Calculations: The macro average F1 score and the recall values were calculated to be 0.984 and 0.97, 
respectively. These metrics indicate exceptional performance across all classes.

[57] where N is the number of classes, and Metrici is the metric calculated for the i-th class.

(16)Macro Avg =
1

N

N∑

i=1

Metrici ,

Fig. 6  Real-time patient monitoring dashboard
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Fig. 7  Heatmap of the confu-
sion matrix for the hybrid 
model

Fig. 8  Radar charts depicting performance metrics of the models. a Baseline model performance metrics. b Hybrid model performance 
metrics
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(6) Weighted Average Calculations: The weighted average F1-score and recall were found to be extremely high at 
0.984 and 0.97, respectively.

[58] where wi is the weight of the i-th class, and Metrici is the metric calculated for the i-th class.
Table 5 reveals that both the macro and weighted averages are nearly identical, suggesting a balanced distribution 

among the classes, and thereby implying that each class has a comparable number of instances.

6.3  The distribution of prediction errors

The distribution of errors between predicted and actual values for the four targets (DM, HR, SpO2, and BT) is illustrated 
in Fig. 10. A concentration of errors around the zero line has been observed, indicating that a close alignment between 
the predictions and actual values was achieved by the hybrid model. This alignment demonstrates the robustness of 
the model. The autocorrelation plot, as depicted in Fig. 11, reveals temporal patterns in the discrepancies between 
predicted and actual values. Several observations can be made based on this visual representation:

(1) Statistical Significance: The level of confidence in the results of statistical analyses is represented by bands set 
at ± 2

√
N

 , where N is the total number of occurrences. Correlation coefficients within these bands are considered sta-

tistically significant. The Eq.(18) was derived by [59].

(17)Weighted Avg =
1

N

N∑

i=1

wi ⋅Metrici ,

Fig. 9  Hybrid model performance
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(2) Temporal Lag Interpretation: The concept of lag in data analysis is explained, wherein a lag of one compares data 
points with their immediate predecessors, and a lag of five compares data from five periods earlier. The autocorrelation 
related to lag k:

(3) Diminishing Autocorrelation: A decrease in autocorrelation values over time suggests a pattern in the data.
(4) Stochastic Fluctuations: Irregular peaks in the dataset may indicate a lack of a strong seasonal pattern, while 

repeated high points at regular intervals suggest a seasonal pattern.
(5) Negative Autocorrelation Phenomena: Instances where values above the mean are followed by values below the 

mean, and vice versa, are often observed. This is mathematically represented as rk < 0.
Figure 11 shows that the actual differences and rolling average lines consistently intersect at zero, indicating that the 

model’s predictions are both stable and objective over time. This consistent pattern suggests the absence of systematic 
errors in the model’s predictions, thereby enhancing their reliability across the entire dataset. The analysis of more than 
10,000 data points revealed synchronized behavior across various indices, further validating the robustness of the model.

6.4  Performance comparison of healthcare prediction models

A comparative analysis of the performance of several models, including our proposed work, is provided in the Table 6 
in terms of accuracy, F1-score, precision, and response time. A superior balance between high accuracy (98.90%) and 
rapid response time (6 ms) is demonstrated by our model, indicating its suitability for real-time healthcare applications.

The other models exhibit varied performance metrics, with differences in response times and accuracy depending 
on the application. For instance, the model by Zhang and Jin demonstrates a faster response time of 0.25 s; however, 
its accuracy is lower at 81.90%. Similarly, the work of Manocha et al. focuses on health monitoring in rural areas with 
minimal delay, but the accuracy remains below that of our model.

6.5  Comparative analysis of digital twin applications in healthcare research

To contextualise the contributions and effectiveness of our approach, we present a comparative analysis with existing 
DT applications in healthcare. This comparison serves to highlight the unique aspects and advantages of our work and 
establish its position relative to current research in the field. The metrics and methodologies used for this comparison 
are aligned with those used in our evaluation, providing a direct basis for comparison.

Table 7 provided an analytical overview of various applications of DT technologies in healthcare. The objectives of these 
studies span a wide range of healthcare issues, from post-stroke rehabilitation [50] to type 1 diabetes management [9]. The 
research designs employed in these studies also vary. Some studies, such as [50] and [27], focus on frameworks and case 

(18)� = ±
2

√
N

(19)rk =

∑N

i=k
(Yt − Ŷ)(Yt−k − Ŷ)
∑N

i=1
(Yt − Ŷ)2

,

Table 5  Performance metrics 
across different classes

Metrics Average type Precision Recall F1-score

HR Macro Avg 0.9923 0.9740 0.9828
Weighted Avg 0.9882 0.9880 0.9879

SpO2 Macro Avg 0.9926 0.9795 0.9858
Weighted Avg 0.9892 0.9890 0.9889

BT Macro Avg 0.9857 0.9847 0.9850
Weighted Avg 0.9854 0.9850 0.9850

DM Macro Avg 0.9970 0.9985 0.9978
Weighted Avg 0.9980 0.9980 0.9980
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studies, while others, such as [46] emphasise architectural designs and mechanisms. The technological platforms used in 
these studies are diverse. For instance, cloud computing is used in [50] and [27], while blockchain technology is the focus 
of [46]. The methodologies for modelling also differ. Some studies employ traditional methods of DT and virtual reality (VR) 
[50], while others explore advanced techniques such as complex DT architectures and ML algorithms [25]. Validation meth-
ods are context-dependent. Real-world case studies are preferred in some research [50], while experimental settings and 
simulations are used in others, such as [41]. Our work distinguishes itself by integrating multiple technologies into a unified 
software platform, aiming to establish a comprehensive DT environment for healthcare. This integration allows for robust 
remote monitoring, diagnostics, predictive analytics, and security measures.

Fig. 10  Distribution of prediction errors for important health metrics
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Fig. 11  Autocorrelation and Rolling Average of Prediction Errors for Important Health Metrics

Table 6  Performance 
Comparison of Different 
Models

Model Accuracy (%) F1-score Precision Response time

Our work 98.90 0.98 0.98 6 ms
[60] 95.26 0.95 0.95 94.53s
[61] 96.00 0.78 0.80 N/A
[62] 81.90 0.77 0.82 0.25s
[63] 82.00 0.82 0.82 N/A
[64] 95.09 0.95 0.95 Minimal Delay
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7  Discussion

7.1  Potential impact on healthcare

The integration of IoT devices, cloud computing, and ML models has demonstrated the potential to revolutionise 
patient care. Real-time monitoring systems can significantly improve the early detection of health abnormalities, 
enabling timely medical interventions. This capability is especially critical for conditions that require immediate atten-
tion, such as hypoxia or severe hyperglycemia in diabetic patients. Additionally, remote monitoring and telemedicine 
services can be facilitated, making healthcare more accessible to underserved populations.

7.2  Challenges of the study

A notable challenge in this study arises from the complexity of integrating multiple programming platforms and 
languages to establish a unified digital twin environment. The system relies on a multidisciplinary approach, i.e., the 
Arduino IDE for sensor interfacing, Python for data processing, C# for cloud operations, and JSON formats for data 
transmission. While each platform’s strengths are utilised, the difficulty of achieving compatibility across systems has 
been recognised, along with the increased burden of development and maintenance. Furthermore, robust security 
measures must be ensured across these diverse technologies, especially given the sensitive nature of health data 
in remote monitoring applications. Future iterations may focus on streamlining the integration process, possibly 
by adopting a more uniform development environment or by creating custom middleware to bridge the different 
platforms. Despite measures taken to protect patient data, the growing prevalence of cyber threats continues to 
present a significant concern. Future research should be directed towards expanding the prediction model to include 
genetic markers or lifestyle factors unique to individual patients. Continued refinement of security measures will 
also be necessary to protect against evolving cyber threats. Additionally, further integration with existing healthcare 
systems and long-term validation studies should be pursued.

8  Conclusion

The aim of this study was to address the challenges of real-time healthcare monitoring by developing a comprehen-
sive architecture for digital twins within situationally aware healthcare systems. The key contribution of this work 
is the seamless integration of IoT for real-time data collection, cloud computing for scalable data processing, and 
advanced algorithms for accurate health predictions. This integration was realised through both physical and digi-
tal architectures, encompassing sensing equipment, real-time data synthesis, cloud-based storage, multi-objective 
algorithms, and intuitive dashboard analytics.

High accuracy in predicting critical health indices, e.g., HR, SpO2, BT, and DM, was achieved in real time using 
MXBoost, a hybrid model designed to manage multiple targets and large data volumes. This model, which combines 
the MLP and XGBoost algorithms, led to a 25.6% increase in processing speed, 98.9% procedural robustness, and an 
F1 score of 0.984. Under noisy conditions, a real-time accuracy of 95.45% was recorded.

This study offers an integrated and adaptable approach to healthcare monitoring, setting a new standard for the 
incorporation of digital twins, IoT, and advanced algorithms in healthcare systems. Additionally, autocorrelation and 
rolling analysis were employed to test prediction verification, stochastic fluctuations, and the distribution of predic-
tion errors for key health metrics.

In future, the aspects of healthcare system designs can include the use of quantum computing for increase data 
security. Likewise, federated learning methods may support secure and decentralized management of health data 
across institutions. These advancements are expected to improve privacy protections while also enabling better 
scalability for large-scale systems in real time.
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