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Abstract—Power distribution networks may need to be
switched from one radial configuration to another radial struc-
ture, providing better technical and economic benefits. Or, they
may also need to switch from a radial configuration to a
meshed one and vice-versa due to operational purposes. Thus the
detection of the structure of the grid is important as this detection
will improve the operational efficiency, provide technical benefits,
and optimize economic performance. Accurate detection of the
grid structure is needed for effective load flow analysis, which
becomes increasingly computationally expensive as the network
size increases. To perform a proper load flow analysis, one has to
build the distribution load flow (DLF) matrix from scratch cost
of which is unavoidable with the growing size of the network.
This will considerably increase the computation time when
the system size increases, compromising applicability in online
implementations. In this study we introduce a novel graph-
based model designed to rapidly detect transitions between radial
and weakly meshed systems. By leveraging the characteristic
properties of Sparse Matrix-Vector product (SpMV) operations,
we accelerate power flow calculations without necessitating the
complete reconstruction of the DLF matrix. With this approach
we aim to reduce the computational costs and to improve the
feasibility of near-online implementations.

Index Terms—Graph Laplacian matrix, power distribution
networks, topology detection, weakly meshed distribution sys-
tems.

I. INTRODUCTION

The operation philosophy of electrical power distribution
networks is changing with intelligent control devices. Apart
from the apparent advantages of penetration of renewable
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energy sources (RES), additional operational problems are
occurring due to the fluctuations in voltage magnitudes. Tra-
ditionally, distribution networks were designed to operate in
radial mode. Due to reliability issues, this type of operation is
not the best choice [1]. Thus, with switching operations, when
needed, the systems may operate in a weakly meshed structure
as well. Due to the known fact that especially with the use of
DGs and the new loads such as EVs, the load and generation
structure changes rapidly. Thus, to improve the efficiency one
may need to change the topology of the system at hand and
may need to perform a fast power flow.

The power flow calculations are the basis of the analysis
of distribution grids. According to [2], power flow studies
on distribution networks are grouped as the forward-backward
sweep algorithm, compensation methods, implicit ZBUS Gauss
method, modified Newton-like methods, and miscellaneous
power flow methods. Unlike transmission systems, Newton-
Raphson-based power flow calculation is inappropriate due to
high R/X ratios [3]; Kirchoff voltage (KVL) and current (KCL)
law-based ladder iterative method is preferred [4]. When the
network is reconfigured with a few switching operations, the
ladder iterative network method is not applicable; direct meth-
ods that convert power flow injections to equivalent current
injections are used [5].

Several studies focus on developing methodologies for solv-
ing power flow problems in radial distribution networks. Most
of these methods are based on KVL and KCL. From those [6]
incorporates linear proportional principle after the backward
step to represent the voltage at the substation node in terms of
the specified voltage. The method is validated on three-phase
distribution networks, but weakly-meshed conditions were not
considered. Another one improves the computational time of
the backward-forward sweep algorithm-based load flow by
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using the breadth-first search method to create a modified
incidence matrix [7]; this paper has not considered the weakly
meshed cases as well.

Also, approximate linear models have been proposed for
distribution networks. In [8], the authors propose a linear
approximate solution to the power flow equations for a bal-
anced distribution network using fixed-point interpretation.
A similar approach is used in [9] by extending the idea to
unbalanced distribution networks. In [10], the authors propose
an approximate power flow considering the ZIP model of the
loads and PV nodes. The experiments performed on the IEEE
37-bus distribution network showed low numerical errors.

The studies on developing power flow methodologies for
weakly meshed distribution systems vary. One of the initial
works proposes a method that can solve both radial and weakly
meshed distribution networks [11]. To be able to solve weakly
meshed networks, the method uses breakpoints to create loops
and converts the system to a radial one, then applies Kirchoff
voltage and current laws. In [12], the authors have developed
an iterative load flow methodology suitable for both radial
and weakly meshed systems. The method models the loads as
impedances and solves the system by using the the fact that
the voltages and currents are related to unknowns linearly. The
literature on solving power flow problem using graph theory
based applications is not very rich, a recent study [13] applies
graph theory to solve radial and weakly meshed systems,
another one models the power flow problem as a network-
flow problem and solves by using a maximum-flow algorithm
[14].

This paper aims to develop a model for the cases when
the power distribution system changes from a radial one to a
weakly meshed one and vice-versa from an operational point
of view. In the distribution systems, the equations will change
if there is at least one cycle (or loop). When these changes
happen, to perform load flow, one has to build the distribution
load flow (DLF) matrix from scratch. When the system size
increases, this will add additional unavoidable computational
costs.

The developed model integrates graph theory with power
system analysis, which enables efficient detection and han-
dling of grid structure changes. The model addresses the
computational challenges and provides high accuracy with
a scalable structure to larger networks. With eliminating the
need for repetitive DLF matrix reconstructions, the proposed
model represents a robust solution for managing dynamic grid
structures. Compared to the previous papers mentioned above,
the main contributions of this study are summarized as follows.

• A fast novel graph-based approach to detect the switches
from radial to weakly meshed systems (or vice-versa).

• A novel power flow method that reuses the previ-
ous calculation results after transformation to a weakly
meshed network from the radial network (or vice-versa)
utilizing the characteristic properties of Sparse Matrix-
Vector product (SpMV) operations.

The rest of the paper is organized as follows. In the
methodology section, we give the topology detector model, bus

current injections to branch currents (BIBC) and the branch
current to bus voltages (BCBV) matrix-based models, the
construction of mesh-related block matrices, and the proposed
algorithm. Section III details the experimental results. Finally,
we conclude the paper in the Conclusion section.

II. METHODOLOGY

A. Topology Detector Model

We propose a graph-based novel approach based on the
numerical properties of the Graph Laplacian matrix to detect
the topology of the distribution system. One can define a graph
as an ordered pair G = (H,E) where H and E corresponds
to the set of vertices (nodes, points) and edges (links, lines),
respectively. The element-wise definition of Graph Laplacian
is as follows:

Lij =

 deg(hi) if i = j
−1 if i ̸= j and hi adjacent to hj

0 otherwise
(1)

where hi, hj ∈ H , n is the number of the nodes in set H and
deg(hi) corresponds to the connections to or from the related
vertex. Note that i and j should be smaller or equal to n
[15]. The Laplacian matrix is a semi-positive definite matrix
with at least one zero eigenvalue. In other words, the rank
of the Laplacian matrix is at most n − 1. However, if there
is more than one component in the graph, zero eigenvalues
increase. In graph theory, a component of an undirected graph
is a connected subgraph that is not part of a larger connected
subgraph. Moreover, the diagonal elements of a Laplacian
matrix correspond to the degree of each vertex, as can be seen
from its definition. Therefore, the trace of the Laplacian matrix
is equal to the number of connections (twice the number of
edges if it is an undirected graph) in a graph, which can be
written as trace(L) = 2|E|. The number of components in
the graph G equals the n − rank(L) [15]. If the number of
edges in a graph is at least

|E| = n− (n− rank(L)) + 1 = rank(L) + 1 (2)

we can conclude that G contains at least one cycle if |E| is
strictly larger than the rank of the graph Laplacian matrix.
Combining this fact with trace(L) = 2|E|, we can claim that
an indirect graph G is acyclic if and only if the following
equality holds,

1

2
trace(L) = rank(L) (3)

The algorithmic structure of the topology detector is given in
Alg. 1. Note that the computational cost of rank determination
can be high for very large systems. However, randomized
linear algebra routines can be helpful in avoiding the memory
and time complexity of the proposed approach. For example, a
low-cost method based on orthogonal polynomials can be used
for numerical rank estimation of Laplacian [16]. Moreover,
the trace computation can be done without explicit Laplacian
construction via the randomized Hutchinson trace estimator
[17].
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Algorithm 1 Topology Detector
1: Build adjacency matrix for the distribution network
2: Construct the Laplacian matrix,
3: Calculate the rank and the trace of the Laplacian matrix
4: if 1

2 trace(L) = rank(L) then
5: The system is radial.
6: else
7: The system is weakly meshed.
8: end if

B. Exploiting the Block Structure of BIBC and BCBV Matrices

The structure of the BIBC matrix relies on the connections
of the associated graph. Applying the Kirchoff laws to the
connections between the buses will create a well-defined
sparse block structure on BIBC matrices. The goal of the
first part of the study is to exploit this structure to reduce the
computational cost of the overall algorithm. In general, the
direct method for solving the distribution systems starts with
the computation of the distribution load flow (DLF) matrix
as [DLF ] = [BCBV ][BIBC]. The general algorithm of the
direct approach for radial systems proposed by [5] is listed in
Alg. 2. Note that in all all algorithms below, i, represents the
node in the system, and k shows the iteration number.

Algorithm 2 Direct Approach
1: Build the BIBC and BCBV matrices
2: Form the [DLF ] = [BCBV ][BIBC].
3: k = 0
4: while |V k+1 − V k| > τ do
5: Iki = (Pi+jQi

Vi
)∗

6: ∆V k+1 = DLF × Ik

7: V k+1 = V k +∆V k+1

8: k=k+1
9: end while

The most important advantage of the Alg. 2 arises from its
direct approach to obtaining the voltages without solving a
linear equation system at each iteration. On the other hand,
there are still some possibilities to improve the computational
efficiency of this algorithm. For instance, the block sparsity
structure of the BIBC and BCBV matrices will get lost
during the computation, and preserving that sparsity structure
will enhance the speed of the calculation. The first step of the
proposed algorithm will focus on this problem.

The radial structure of the distribution system will form
an acyclic graph by its definition. It can also be considered
that whole branch endpoints should be connected to the first
bus of the physical system once we assume that the system
is fully connected. This fact can also be observed from the
number of zero eigenvalues in the Laplacian graph, which
equals one. By using this observation, one can easily apply one
of the well-known shortest-path algorithms (such as Dijkstra
Algorithm [18]) to determine the branch connection scheme of
the given distribution system. In Fig. 1, the determined branch

tree structures are shown via the Dijkstra algorithm for the 33-
bus distribution system.

Fig. 1. Application of Dijkstra algorithm to the 33-bus radial distribution
system topology. Note that the red color in the graph corresponds to the
algorithm’s selection path for each branch.

Once the whole trees in the radial network are determined,
one can easily decompose the BIBC (and BCBV) matrices
into diagonal blocks. Note that in Fig. 2, there is also an upper
diagonal block which shows the mutual effect of the common
edges of each tree. Step 6 of the Alg. 2 can be rewritten as
∆V k+1 = BCBV × y where y = BIBC × Ik. The vector
y will have r blocks where r corresponds to the number of
trees in the radial system and can be computed as follows:

y1
y2
...
yr

 =


BIBC1 BIBC0

BIBC2

. . .
BIBCr



I1node
I2node

...
Irnode

 (4)

Here, BIBC0 represents the mutual injection of the common
edges and BIBCp where p = 1, . . . , r corresponds to the
independent injection of the edges for r trees that appear in the
radial system. By using this block decomposition, the whole
computations can be realized independently as,

y1 = BIBC1I
1
node +BIBC0Înode

yp = BIBCpI
p
node i = 2, . . . , r (5)

where Înode = [I2node I3node . . . Irnode]
T . The graphical

illustration of equation 5 for the 33-bus system is depicted in
Fig. 2. For this radial system, r = 4 and the trees found by
Dijkstra’s algorithm are shown in Fig. 1.

Fig. 2. Illustration of the sparse decomposition of the BIBC matrix of radial
33-bus distribution network

Then, for obtaining the ∆V k+1, one should perform the
second sparse matrix-vector product operation as ∆V k+1 =
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BCBV × y. The algorithm of the modified direct approach is
listed in Alg. 3.

Algorithm 3 Direct Approach with Block SpMVs
1: Build the BIBC and BCBV matrices
2: Run Dijkstra Algorithm to obtain the block structure
3: k = 0
4: while |V k+1 − V k| > τ do
5: Iki = (Pi+jQi

Vk
)∗

6: Apply Eq. 5 to obtain y
7: ∆V k+1 = BCBV × y
8: V k+1 = V 0 +∆V k+1

9: end while

C. Construction of Mesh-Related Block Matrices

The existence of a loop in meshed (or weakly meshed)
systems creates extra blocks in the matrix structure given in
Eq. 4. However, the inner block structure will remain the
same. Due to this fact, we focused on creating the loop-
related blocks only and involving those blocks to reduce
the computational burden of the overall meshed distribution
system simulation. We will reuse the radial system results in
the proposed approach and update the solution with only a
few new sparse matrix-vector products. Note that for the power
flow calculations in the radial system, the numerical updates of
the voltages using the direct approach are defined as follows:

∆v = [DLFradial]Inode (6)

where [DLFradial] = [BCBV ][BIBC]. On the other hand, for
the weakly meshed systems, the update will be transformed
into a block matrix format where B, C, and D can be formed
by the loops in the meshed system.[

∆v
0

]
=

[
DLFradial B

C D

] [
Inode
Iloop

]
(7)

By applying the basic substitution in equation (7), it can be
rewritten as ∆v = (DLFradial −BD−1C)Inode. Moreover, we
can derive that ∆v = DLFradialInode − BD−1CInode. Note
that the second part refers only to the loops in the meshed
system. Our proposed mechanism is based on detecting the
existence and location of a cycle in a distribution system. In
this way, the recalculation of the DLF matrix can be easily
avoided by forming only loop-related block matrices in Eq.
7. Although the Alg. 1 gives the current information related
to the system connection state either in radial or meshed,
the main issue for constructing the loop-related matrices is
to figure out the locations of the new loop automatically.
The Laplacians of the current and next connection graphs
can be used for this purpose. The diagonal elements of the
Laplacian matrix show the degree of each vertex. Assume
that the L1 and L2 represent the Laplacians of the radial
and meshed systems, respectively. |diag(L1)−diag(L2)| > 0
gives the node numbers of the newly connected meshes. Once
the connection nodes are determined, the rest of the procedure
will calculate the current directions of each edge in the loop

Fig. 3. A new topology for the meshed structure between nodes 12 and 22
at the 33-bus system. Here, the green and red colors correspond to the new
connections in the graph after the applied operation.

to determine the negative coefficients for the required edges.
In Fig.3, the loop is colored according to its directions for the
33-bus distribution system. Note that the green lines represent
the negative directions in the current after establishing a new
connection between nodes 12 and 22. To obtain the mesh-
related blocks in BIBC and BCBV matrices, one can rewrite
the equation 7 as follows,[

∆v
0

]
=

[
A1 B1

C1 D1

] [
A2 B2

C2 D2

] [
Inode
Iloop

]
(8)

where A1 and A2 are the BCBV and BIBC matrices of
the radial system. Moreover, B1, B2 ∈ Cn×l, C1, C2 ∈ Cl×n,
D1, D2 ∈ Cl×l where l and n represents the number of the
loops and vertices respectively. To compute the voltage updates
in a meshed system effectively, Eq. 8 can be rewritten as,[

∆V k+1

0

]
=

[
A1A2 +B1C2 A1B2 +B1D2

C1A2 +D1C2 D1D2

] [
Iknode
Ikloop

]
(9)

If the Eq. 7 is reconsidered, and one writes the blocks w.r.t.
those notation,

DLFradial = A1A2 +B1C2

B = A1B2 +B1D2

C = C1A2 +D1C2

D = D1D2 (10)

can be obtained. Note that, B1 and C2 should be zero vectors
to keep the upper and lower triangular forms of the meshed
system BIBC and BCBV matrices. Hence, the overall voltage
updates can be rewritten as,

∆V k+1 = (A1A2 − [A1B2(D1D2)
−1C1A2])I

k
node (11)

Since the (A1A2)Inode is already calculated in radial system
computations, after the switch from the radial to the meshed
system, the voltage updates can be calculated very efficiently
by applying only a few sparse-matrix vector products. Note
that B2 and C1 will be formed according to the newly
constructed loop by implementing the Kirchhoff laws, D1 and
D2 will be a l × l matrix of related impedance and ones,
respectively.
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D. Proposed Algorithm

The proposed algorithm has three main building blocks.
During the execution of the simulation, firstly, the Alg. 1 will
be executed to detect any instant switches from the radial to
the meshed (or vice-versa) system. If the system is in radial
mode, the Alg. 2 will be used to obtain the simulation results.
However, if the Alg. 1 detects any change in the system state,
the loop-related block matrices will be created, and the voltage
updates will be computed via the Eq. 11. The numerical
experiments show that the proposed mechanism has lesser
computational time in most cases w.r.t. regular direct method
and Newton-Raphson-based approaches. The overall approach
is illustrated in Fig. 4.

Fig. 4. Flowchart of the overall approach

On the other hand, the change in the computational order of
the matrix-vector products in the proposed procedure produces
slightly different results with an acceptable error rate mostly
below 1%. The overall algorithm is listed in Alg. 4. Note
that, the convergence criterion is selected equal to the default
τ = 10−8 value of MatPower.

Algorithm 4 Proposed Algorithm
1: Build the BIBC and BCBV matrices
2: Execute Alg. 3 to obtain voltages
3: if (any switch detected by Alg. 1) then
4: Form B2, C1, D1, and D2

5: while |V k+1 − V k| > τ do
6: Iki = (Pi+jQi

Vk
)∗

7: Apply Eq. 5 to obtain y
8: ∆V̂ k+1 = BCBV × y
9: ∆V k+1 = ∆V̂ k+1 − [A1B2(D1D2)

−1C1A2]
10: V k+1 = V k +∆V k+1

11: end while
12: end if

III. EXPERIMENTAL RESULTS

A. Detection of Mesh Structure

We performed several simulations to test the Alg. 1. Table
I shows the ranks and traces of the different test systems with
different topologies. As shown in the last column, detection
based on the Graph Laplacian’s numerical properties yields
the correct system topology in all test cases.

TABLE I
EXPERIMENTAL RESULTS FOR THE ALG. 1

System Connection
Type rank(L) trace(L) Result

7-bus [19] meshed 6 14 meshed
7-bus [19] radial 6 12 radial
33-bus [20] radial 32 64 radial
33-bus [20] meshed 32 66 meshed
33-bus [20] meshed 32 68 meshed
33-bus [20] meshed 32 72 meshed

B. Weakly Meshed System Simulation Results

To demonstrate the time efficiency of the Alg.4, several
simulations are realized with 33-bus and 69-bus distribution
systems. In the numerical experiments, we used five meshed
system and execute each experiment 100 times to have a
more reliable measurement for the CPU times. All simulations
are realized in an 8-core M1 chip with 16 GB of memory.
Matlab is used for the coding, and for the Newton-Raphson
simulation, MatPower [21] is used.

Fig. 5. Simulation results for the 33-bus system.

Fig. 6. Simulation results for the 69-bus system.

In Figs. 5 and 6, we compared the simulation results for
the meshed 33-bus [20] and 69-bus [22] system with new
connections between the buses 26-69 and 8-21, respectively.
Besides the graphical illustration of the results, in Table II,
the error and the average CPU times are listed for whole
scenarios. The error term is simply the 2-norm of the differ-
ence between the amplitudes of the computed voltages and is
defined as err = ||abs(VP )−abs(VNR)||2 where VP and VNR

correspond to the amplitude of the voltages computed by the
proposed approach and Newton-Raphson method respectively.
Similarly, timeP and timeNR correspond to the mean value of
100 executions of the proposed approach and Newton-Raphson
method. As seen from the table, the proposed approach has a
clear advantage in computational time with an acceptable error
for the Newton-Raphson approach. A more detailed analysis of
the computational time of the algorithm for different scenarios
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is depicted in Figs. 7 and 8 where the statistical execution
results of the CPU times including the mean CPU times and
the outliers are represented for several cases.

Fig. 7. Timing comparison of Newton-Raphson and proposed method for the
33-bus system. Note that these results show 100 executions for each approach.

Fig. 8. Timing comparison of Newton-Raphson and proposed method for the
69-bus system. Note that these results show 100 executions for each approach.

TABLE II
EXPERIMENTAL RESULTS FOR THE ALG. 4

System Meshed
Buses err(%) timeP (ms) timeNR(ms)

33-bus 8-21 0.99 3.8 7.8
9-15 1.33 3.7 6.8
12-22 0.96 3.3 7.0
18-33 0.03 3.2 6.7
25-29 1.07 3.0 6.8

69-bus 21-65 0.89 6.3 10.0
25-32 1.29 5.3 9.1
26-69 0.10 5.8 9.9
35-43 0.01 5.0 9.3
40-52 1.66 4.9 9.5

IV. CONCLUSION
This paper proposed a novel graph-based approach to detect

radial or weakly meshed systems and a power flow method
for radial and weakly meshed distribution networks based on
reusing the results after transformation to a weakly meshed
network from the radial network (or vice-versa) utilizing
the characteristic properties of Sparse Matrix-Vector product
(SpMV) operations. Simulation results were performed for
several distribution networks with radial and weakly meshed
cases. From the numerical results, we observe that the pro-
posed method not only gives good numerical accuracy but also
provides better computational time. We plan to extend this
study and apply the proposed method to larger test systems
inclıuding multiple the ones with multiple-ring topologies in
the future.
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