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Abstract— Effective management algorithms have emerged 

to mitigate the adverse effects of high renewable energy systems 

and electric vehicle (EV) penetration on distribution networks. 

This study proposes a rolling horizon optimization-based 

approach to reduce power loss in distribution networks that 

incorporate EVs, battery-based energy storage systems (BESS) 

and photovoltaic (PV) plants. This approach entails an efficient 

charging algorithm for EVs and BESS, formulated as a mixed-

integer linear programming (MILP) model and the power loss 

equation is linearized using a piecewise approach with the 

Special Ordered Sets of Type 2 (SOS2) method.  The algorithm 

accounts for uncertainties related to EV charging and PV 

generation, yielding promising results. Our findings indicate 

that utilizing BESS and effectively managing EV charging 

profiles can be leveraged to reduce the power loss on the PV-

integrated distribution systems. Also, the effects of the location 

of BESS and EV parking lot on the network are analysed 

thoroughly and even a decrease of 7.6% in power loss is 

evidenced due to the relocation of the EV parking lot between 

feeders. 

Keywords— Battery-based energy storage systems, electric 

vehicles parking lot, rolling horizon optimization. 

NOMENCLATURE 

The abbreviations, sets and indices, parameters, and 
variables used in this study are alphabetically listed in Tables 
I-IV.

TABLE I 
ABBREVIATIONS 

BESS Battery-based energy storage systems. 
ESS Energy storage systems. 
EV Electric vehicle. 
PV Photovoltaic. 
SoE State-of-Energy. 

TABLE II 
SETS AND INDICES 

b Set of branches. 
i Set of buses. 
k Set of battery-based energy storage systems. 
l Set of loads. 
m Set of electric vehicles. 
p Set of photovoltaic units. 

t Set of time periods. 

TABLE III 
PARAMETERS 

���,�/�	

/	�
Charging rate of ESS � / EV  on bus �. 

���,�/�	

/	�
Discharging rate of ESS � / EV  on bus �. 

�����/	

 The efficiently large number for grid / BESS. 

������,��� The active power capacity of line  �kW". 
��,#,$�%�� The power demand & on bus i at time t �kW".
)*+�,�	�,��, The desired SoE of EV  on bus  �kWh".
)*+�,�/�	

/	�,���$State-of-energy of energy storage system � / electric vehicle  at initial/arrival time �kWh". 

)*+�,�/�	

/	�,��.The allowable maximum SoE of ESS �  / EV   on bus �kWh". 
)*+�,�/�	

/	�,���The allowable minimum state-of-energy energy storage

system k / electric vehicle m on bus  �kWh". 0�,���� Arrival time of electric vehicle m on bus i. 
0�,����

Departure time of electric vehicle m on bus i. 
1�/�23��/��,

The charging / discharging efficiency of ESS k / EV m. 

40 Time granularity. 56,7 Constant parameters. 

TABLE IV 
VARIABLES 

89 �,$���:,/�#:,
The auxiliary variables �kW".

;<$ The total power loss across the network at time  �kW". 
��,$=�,,#��� The absolute value of the differences between the 

auxiliary variables �kW".
��,�/�,$	

/	�,23�� The charging power of ESS � / EV  on bus � at time > �kW".
��,�,$	

?@A The power discharged by energy storage system � on 

bus i at time >  �kW".
��,$	�,23��BCB The total charging power of EV on bus �  at time >�kW".
��,$D#%E

The power flow on bus � at time  �kW".
��,$����,,�## The power transaction from the grid to the bus � at time �kW".
��,$����,�:F The power transaction from bus �  to the grid at time �kW".
��,$����,#%�� The total power supplied by the grid for power demand 

on bus � at t �kW". 
��,$����,$%$ The total power supplied by the grid to bus � �kW".
��,$�%,, The active power loss on bus � at time  �kW". 
��,$���� The active power flow across branch b at time  �kW". 
��,$����,,H: The approximated value of the square of power flow 

across branch I at time  �kW". 
��,�,$J�  The power generated by photovoltaic unit  p on bus � at time > �kW". L� Corresponding x coordinate of the point M. N� Corresponding y coordinate of the point M. 

)*+�,�/�,$	

/	� State-of-energy of energy storage systems k / electric 
vehicles  on bus � at time  �kWh".

O�,$	

 Binary variable for energy storage systems on bus �. 1if 
it is charging mode, otherwise 0. 

O�,$���� Binary variable for the grid interaction. 1 if the power 
transaction flows from the grid, otherwise 0. 

I. INTRODUCTION

A. Motivation and Background

The rising demand for electricity in various areas has led
to a corresponding increase in energy production and 
consumption-related greenhouse gas emissions. To address 
these energy production-related issues, there has been a 
significant surge in the adoption of renewable energy sources. 
While effective in reducing emissions, these renewable 
systems introduce notable challenges to the electricity grid 
due to their intermittent nature and dependence on specific 
locations [1]. Additionally, to mitigate energy consumption-
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related emissions, electric vehicles (EVs) are being 
increasingly employed. However, the rapid integration of EVs 
into networks poses additional challenges by introducing 
uncertainty and increasing peak power demand, particularly 
during limited time charging scenarios. Nevertheless, these 
challenges also present opportunities for mitigating adverse 
effects by utilizing the storage capacity of EVs while they are 
parked. 

In addition to harnessing the storage capacity of EVs, 
Energy Storage Systems (ESSs) play a pivotal role in 
addressing the challenges posed by renewable energy sources 
and the integration of EVs in modern power systems. ESSs 
offer a multifaceted solution by storing excess generated 
energy, thereby acting as a buffer during periods of low 
generation or high demand. This storing capability of ESSs 
and EVs not only helps balance the supply-demand dynamics 
but also significantly contributes to grid stability and 
reliability. Through strategic deployment of ESSs and EVs 
within distribution networks, operators can effectively 
manage energy flow variations, reduce peak power demand 
during hours of high demand, and enhance overall grid 
resilience. 

B. Literature Summary

The significance of ESSs and their diverse applications in
power systems is extensively explored in the literature. The 
study in [3] offers a comprehensive review of ESSs, 
encompassing their types, models, and roles in power systems, 
notably in enhancing grid resiliency and reliability. One of the 
widely explored applications ESSs involves their integration 
into the grid to enhance the reliability and power quality of the 
network. A study by [4] provides an insightful review of grid-
connected ESSs along with real-time industrial case studies to 
illustrate their practical implementation and benefits. 

In recent studies, ESSs have been increasingly deployed to 
support the grid by storing excessive energy and supplying it 
when required, serving various objectives. For instance, in [2], 
ESSs is strategically placed within the power network, and its 
capacity is optimized to minimize power flow fluctuations. 
Another approach is detailed in [5], where a multi-objective 
optimal power flow algorithm is implemented to minimize 
grid power purchase costs, active power losses in the network, 
and voltage deviations, all achieved through second-order 
conic programming. Similarly, [6] employs mixed-integer 
linear programming (MILP) to reduce costs associated with 
power transactions between transmission and distribution 
networks, along with managing voltage deviations. However, 
these methods, as presented in [5,6], assume a scenario where 
Photovoltaics (PV) and ESSs are located on different buses, 
overlooking uncertainties related to PV generation. To address 
this limitation, [7] proposes a three-level stochastic model 
designed to minimize ESSs installation costs and maximize 
PV penetration. The network, and EVs are not considered in 
any of the aforementioned studies [2,5,6,7]. 

Effective charging management of EVs provides 
improving the reliability and resiliency of distribution 
networks by counteracting various problems in the network. It 
is well explained in [8] that in addition to their voltage and 
frequency regulation, their storage can be used to help the grid 
by supplying flexibility to the grid. The study in [9] reviews 
the challenges of the integration of EVs into distribution 
networks and emphases the significance of the proactive role 
of when especially the reliable operation of future distribution 
systems operation is considered. Therefore, in the literature 

many studies provide flexibility solutions to the grid by 
utilizing the storage and ancillary service capacity of EVs. The 
introduction of a distributed-based energy management 
algorithm is detailed in [12], targeting a distribution network 
that incorporates EVs to minimize power generation costs. 
Another study, [13], presents a linear management algorithm 
for an EV aggregator aiming to leverage the storage capacity 
of EVs and utilize their ancillary services to enhance the 
unbalanced distribution network. While these studies propose 
effective solutions to mitigate the challenges posed by 
integrating EVs into distribution networks, they overlook 
power loss in the network and the integration of ESSs. 

Integrating ESSs alongside EVs in distribution networks 
not only enhances network flexibility but also mitigates 
challenges associated with EV integration. In [10], a real-time 
optimal energy management algorithm is introduced to 
integrate EVs and stationary ESS in a PV-integrated 
distribution network. The study demonstrates that employing 
stationary ESS enables the network to operate even during 
network faults, showcasing the benefits of this combined 
approach. Similarly, [11] presents a multi-objective mixed-
integer nonlinear programming model for mobile ESS and 
EVs in distribution networks. This model focuses on 
minimizing operational costs and voltage limit violations, and 
maximizing PV generation output. However, these studies 
overlook power loss considerations in distribution networks. 
Another study introduces an efficient cost-minimization 
oriented distributed algorithm for distribution networks with 
shared ESS and EV charging stations. While this model 
includes comprehensive elements like ESS and EV charging 
stations, it fails to integrate renewable energy sources and 
does not address uncertainties. A study explores the use of 
battery-based ESS (BESS) and fast EV charging stations with 
PVs in the energy market to reduce peak power caused by fast 
EV charger integration [15]. While ESS implementation 
successfully reduces peak power and associated grid 
connection tariffs, power loss and uncertainty remain 
unaddressed in this study.  

C. Content and Contributions

This study introduces an efficient energy management
algorithm that incorporates BESSs and manages EVs charging 
to minimize active power loss on PV-penetrated distribution 
networks. The proposed algorithm is formulated as a MILP 
problem through the linearization of power losses using the 
Special Ordered Sets of Type 2 (SOS2) approach. 
Uncertainties regarding the arrival/departure times of EVs and 
PV-based power generation are addressed through rolling 
horizon optimization. The contributions of this proposed 
concept are twofold: 

• Although the aforementioned studies provided seminal
contributions to the existing knowledge on the use of
grid connected distributed generation, EV and ESS
technologies, none of them have provided a
comprehensive analysis combining all these
technologies together with a multiple uncertainty aware
decision-making approach.

• Active management of demand-side flexibility through
EVs, coupled with the fluctuating production profile of
PV, and augmented flexibility from BESSs, is
implemented in a loss minimization-oriented approach
for distribution networks. This approach takes into
account various types of loads to ensure efficient
operation and management.
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D. Paper Organization

The paper is structured into four main sections. Section II
outlines the methodology employed for this study, while 
Section III provides a detailed analysis of the test data and 
results. Subsequently, in Section IV, the key findings and 
conclusions of the study are presented and summarized. 

II. METHODOLOGY

The proposed study is implemented on a modified IEEE 
33-Bus test system, as depicted in Fig. 1. This system is 
enriched with the integration of BESS alongside PV units, 
battery-based EVs, and various consumer types such as 
residential, commercial, and industrial consumers. 

A. Objective Function

The objective of this study is to minimize the total power
loss in the distribution network while considering energy 
transactions involving BESSs and PV systems with the grid, 
as outlined in equation (1). 

�PQ0<R = T ;<$
$

, ∀> (1) 

B. Power Balance and BESS Model

The power source and demand balance equation is
represented by equation (2). The load power demand and 
charging demand of the ESS can be met by power generated 
by the PV system, discharged energy from the ESSs, or 
sourced from the grid when demand exceeds the capacity of 
distributed generation sources.     

∑ ��,�,$J�  +� ∑ ��,�,$	

?@A +� ��,$X#%E + ��,$����,#%�� =
∑ ��,#,$�%��  +# ∑ ��,�,$	

,23���,, ,  ∀ �, �, &, M, > (2) 

The simultaneous charging and discharging of BESSs are 
regulated by equations (3) and (4), respectively. The 
maximum charging and discharging rates of BESS are 
stipulated in equations (5) and (6), respectively. The initial 
state-of-energy (SoE) of BESS is denoted by equation (7), 
while the maximum and minimum SoE levels are defined in 
equations (8) and (9), respectively. The minimum required 
energy for storage systems is set at 25% of their maximum 
capacity [17]. Equation (10) signifies that the SoE of BESSs 
increases during charging and decreases during discharging. 

��,�,$	

,23��≤�	

. O�,$	

,        ∀ �, �, >  (3) 

��,�,$	

,��,≤ �	

. Z1 − O�,$	

],  ∀ �, �, >  (4) 

��,�,$	

,23��≤ ���,�	

,    ∀ �, �, > (5) 

��,�,$	

,��,≤ ���,�	

 ,  ∀ �, �, >   (6) 

)*+�,�,$	

 = )*+�,�	

,���$ ,  �9  > = 1, ∀ �, �  (7) 

)*+�,�,$	

 ≥ )*+�,�	

,��� ,   ∀ �, �, >       (8) 

)*+�,�,$	

 ≤ )*+�,�	

,��. ,  ∀ �, �, >  (9) 

)*+�,�,$	

 = )*+�,�,$_6	

 + `��,�,$	

,23�� . 1�23�� . 40 −
J@,a,Bbcc,?@A.de

fa?@A g ,  �9  > > 1, ∀ �, �
(10) 

Fig. 1 Proposed modified IEEE 33-bus test system. 

C. DSO Model

When there is excess power from distributed generation
covering load power demand and network power loss, it is 
sold to the grid. Conversely, if the generated power falls short, 
the deficit is supplied by the grid. This balance is depicted in 
(11). Equations (12) and (13) prevent simultaneous selling and 
buying operations. The complexity is reduced by linearizing 
the quadratic power loss equation using SOS2, resulting in an 
optimization model as a MILP. The total power loss is 
calculated as shown in (14), while (15) describes the line 
power capacity. The positive auxiliary variables in (16) and 
(17) represent absolute value functions within the model.
These equations define the net power flow on the lines at timet  [16].

��,$����,,�## = ∑ ��,#,$�%��# + ��,$�%,,+��,$����,�:F ,        ∀ �, > (11)

��,$����,,�## = ����� . O�,$���� ,        ∀ �, >
(12) 

��,$����,�:F = ����� . Z1 − O�,$����],        ∀ �, >
(13) 

��,$�%,, = ∑ ;<�,$� ,        ∀ �, >
(14) 

-������,��� ≤ ��,$���� ≤ ������,���,        ∀ I, >
(15) 

��,$����=89 �,$�#:, − 89 �,$���:,,        ∀ I, >
(16) 

��,$=�,,#���
=89 �,$�#:, + 89 �,$���:, ,        ∀ I, >

(17) 

The power loss equation is linearized using the SOS2 
approach. This method transforms a nonlinear function into a 
piecewise linear function by creating independent variables 
known as weighting functions, which are used to compute the 
approximate value of the nonlinear function [16]. In (18), the 
set of independent variables is shown, where zAP represents 
the associated parameter to calculate the approximated value 
of power flow. Multiplying the system parameters and SOS2 
variables, as shown in (19) and (20) respectively, calculates 
the power flowing through the lines and its square. The power 
loss on the lines is then computed in (21) using the calculated 
power flow variables and parameters determined through 
linearization. 

∑ ij�$,�,�%��$,�%��$, = 1,        ∀ I, M*�P>k, >
(18) 

��,$���� = ∑ ZLM. ij�$,�,�%��$,]�%��$, ,     ∀ I, M*�P>k, >
(19) 

��,$����,,H:
= ∑ ZNM. ij�$,�,�%��$,]�%��$, ,     ∀ I, M*�P>k, > (20)
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;<$ = ∑ Q56�  . ��,$=�,,#��� . 40 + 57. ��,$����,,H:. 40R,

∀ I, > (21)

D. EV Model

The charging rate of each EV is limited by its capacity, as
shown in (22), and the total charging power used for EVs is 
described in (23). The initial SoE for each EV upon arrival at 
the parking area is set equal to their initial values, as indicated 
in (24). Equation (25) ensures that SoE for each EV equals 
their desired level upon departure. When EVs are not in the 
parking area, their SoE and charging power demand are 
assumed to be zero, as described in (26) and (27). Equation 
(28) outlines the minimum and maximum SoE values for each
EV during their time at the parking area. Charging during
EV’s are located in the parking area operations of EVs while
they are located in the parking area are detailed in (29).

��,�,$	�,23��
≤ ���,�	� ,  ∀ �, , >  (22) 

��,$	�,23��BCB=∑ ��,�,$	�,23��� ,  ∀ �, , > (23) 

)*+�,�,$	� = )*+�,�	�,���$
 ,  if  > = 1,  ∀ �, �, >  (24) 

)*+�,�,$	� = )*+�,�	�,��,
 ,  �9 > = 0�,���� ,  ∀ �,   (25) 

)*+�,�,$	� =0 ,  0�,���� m > m 0�,���� ,  ∀ �,   (26) 

��,�,$	�,23�� = 0,  0�,���� m > m 0�,���� ,  ∀ �,  (27) 

)*+�,�	�,��� ≤ )*+�,�,$	� ≤ )*+�,�	�,��. ,
 0�,���� ≤ > ≤ 0�,����   , ∀ �,  (28) 

)*+�,�,$	� =)*+�,�,$_6	� + Z��,�,$	�,23�� . 18ℎpq. 40]
0�,���� m > ≤ 0�,����

 , ∀ �,  (29) 

III. TEST AND RESULTS

An optimal energy management strategy is introduced for 
a distribution network equipped with distributed generation 
systems, incorporating multiple BESSs and EVs. This strategy 
aims to minimize total energy loss within the network, and a 
real-time energy management algorithm is provided to 
consider uncertainties in PV generation and the 
arrival/departure times of EVs. The optimization problem 
employed in this study is modeled using MILP. The 
effectiveness of the proposed algorithm is evaluated using the 
General Algebraic Modelling System (GAMS) programming 
language, version 24.1.3, with an optimization horizon set at 
a time granularity of 15 minutes on the IEEE 33-bus system.  

A. Input Data

In this study, a modified IEEE 33-bus test system is
utilized, featuring domestic loads at each bus, an EV parking 
lot and different PV units along with BESSs. The location of 
BESSs, the EV parking lot, and PV units are changed to 
analyse the impact of distributed generation sources on the 
network, creating worst and best-case scenarios by placing the 
EV parking lot, BESS, and PV units at both the beginning and 
end of the feeder. The total power demands of loads on the 
network for a day is illustrated in Fig. 2, while Fig. 3 illustrates 
the comparison between actual and expected power 
generation at 07:00 and 14:00, highlighting significant  

Fig. 2. Total power demand of 33-bus system. 

Fig. 3. Power generation of the PV systems in different executions. 

Fig. 4. The expected and actual of arrival times of EVs by illustrating their 
level of uncertainty. (Red bars indicate the extent of delays at arrival times.) 

deviations in estimated energy production based on real-time 
data compared to actual production throughout the day. Real-
time data is used for optimization within the current horizon, 
with estimated power generation employed for subsequent 
periods. Fig. 4 provides a visual analysis contrasting the 
expected versus the actual timings concerning the arrival and 
departure time of EVs within the designated parking zone. 
This figure incorporates scenarios involving EVs that either 
failed to arrive as anticipated or did so at unexpected times. 
The discrepancy between the actual and forecasted arrival 
times is depicted through error bars, which quantify the 
uncertainty inherent in the expectation. Instances where these 
error bars project above the expected timeline indicate that 
the EVs arrived later than initially predicted, with the length 
of each bar representing the magnitude of this delay. Upon 
closer examination, it was found that roughly 13% of the 130 

evaluated EVs experienced delays. 

B. Simulation and Results

The proposed model was analyzed under three distinct
operating scenarios to evaluate the influence of EVs, PVs, and 
BESSs locations on the distribution network. The scenarios 
considered are detailed as follows: 
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Fig. 5. Modified IEEE 33-Bus test feeder system for the Base-Case.  

Fig. 6. Modified IEEE 33-Bus test feeder system for the Case-1.  

Fig. 7. Modified IEEE 33-Bus Test Feeder System for the Case-2. 

• Base-Case: The operational periods for BESS, EVs, and
PV units are set, with the BESSs and PV units positioned
at Bus-18 and the EV parking lot is positioned at Bus-33.
This configuration is depicted in Fig. 5.

• Case-1: The EV parking lot location is shifted from Bus-
33 to Bus-2, while the rest of the system remains
unchanged as illustrated in Fig. 6.

• Case-2: The BESS and PV systems location is shifted
from Bus-18 to Bus-2, while the rest of the system remains
unchanged as shown in Fig. 7.

The total charging and discharging power, and SoE of
BESSs located at Bus-18 in the base case are displayed in Fig. 
8. It can be seen that the storage system is charged during the
peak PV production hours and discharged during the evening
when consumption is higher. Fig. 9 shows the energy
transactions of BESSs for Case 1 where the charge and
discharge times and quantities vary with the intensity of
consumption. The PV systems supply energy to meet nearby
demand, with excess energy stored in BESSs. Meanwhile,
EVs are charged from the grid, all with the goal of minimizing
power loss as defined by the objective function. In Case 2,
with PV units and BESS positioned at Bus-2, a comparison of
BESS SoE to the Base-Case reveals increased discharge
between 6 pm and 10 pm due to higher load demand near its
new location, depicted in Fig. 10. Since moving BESS from
Bus-18 to Bus-2, BESS can serve more buses’ power demand
when power loss is considered. Compared to the base case, it
is noted that there is 7.76% an increase in the amount of
charging around afternoon and a total 12.48% increase in the
amount of discharging in the evening hours in Case 2.

Fig. 11 details the charging cycle and SoE of an EV 
throughout a day within the utilized model, showing that the 

Fig. 8. Total charging/discharging power and State-of-Energy level of 
BESS for Base-Case. 

Fig. 9. Total charging/discharging power and State-of-Energy level of 
BESS for Case-1. 

Fig. 10. Total charging/discharging power and State-of-Energy level of 
BESS for Case-2.  

Fig. 11. Charging and State-of-Energy profile of an EV. 

EV reaches its desired SoE before departure. Fig. 12 provides 
a comparative analysis of power flow on Bus-2 between the 
Base-Case and Case-2, where the BESS is relocated to the 
beginning of the feeder. When all available power sources, 
including the grid and BESS, are situated at the beginning of 
the feeder and BESS charging/discharging dynamics are 
considered, relocating the BESS from the end of the feeder to 
its beginning leads to increased power flow on Bus-2 
compared to the Base-Case. Specifically, the BESS 
undergoes charging from 11.00 am to 4.00 pm to coincide 
with peak PV generation and discharging from 7.00 pm to 
5.00 am, aligning with network peak demand hours. This 
strategic BESS operation leads to a significant 10.31% 
reduction in grid power supply at 4.00 am, a period 
experiencing one of the peak demands at around 3500 kW, 
with BESS covering 24.30% of the total demand during this 
critical timeframe. 

The variation in total power loss across case studies is 
evaluated, with the base case serving as the reference point. In 
Case-1, total power loss decreased by 7.61% compared to the 
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(a) 

 (b) 

Fig. 12.  (a) Power balance for Base-Case at Bus 2, (b) Power balance for 
Case-2 at Bus 2. 

base case due to the location of EV parking lot at the beginning 
of the feeder, resulting in decreased power loss as it is closer 
to the power source. When comparing Case-2 to the base case, 
there is a 22.61% increase in power loss. This is due to the 
positioning of BESSs and PVs near the grid, which 
concentrates all power sources at the beginning of the feeder, 
resulting in higher power losses. 

IV. CONCLUSION

The rising energy demand has led to increased adoption of 
green energy solutions in both energy generation and 
consumption. However, this trend has also heightened the 
complexity of distribution networks, necessitating effective 
energy management algorithms. This study introduces a 
rolling horizon optimization-based energy management 
algorithm aimed at minimizing power loss in distribution 
networks that incorporate EVs, BESSs and PV plants. The 
algorithm considers uncertainties and the impact of EVs and 
BESSs penetration in the network, analysing different 
scenarios to understand their effects.  

This study analyses the impact of the EV parking lot and 
BESSs' location along the feeder, revealing that relocating the 
EV parking lot from the end of the feeder to its beginning 
reduces power loss by 7.61%. Similarly, relocating BESSs 
along with PVs from the end of the feeder to its beginning 
results in a 22.61% increase in power loss. Thus, as seen from 
the mentioned comparative analyses, a comprehensive 
overlook combining grid connected distributed generation, 
EV and ESS technologies together with a multiple uncertainty 
aware decision-making approach was provided. These 
findings underscore the critical impact of effectively 
managing BESS charging/discharging and the demand of EVs 
response on network power loss, highlighting the necessity of 
considering these factors in network optimization strategies. 
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