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Abstract—In this paper, we consider the impulsive estimation
problem for a specific category of discrete-time complex networks
characterized by Markovian switching topologies. The measure-
ment outputs of the underlying complex networks, transmitted to
the observer over wireless networks, are subject to bit rate con-
straints. To effectively reduce the estimation error and enhance
estimation performance, a mode-dependent impulsive observer is
proposed that employs the impulse mechanism. The application
of stochastic analysis techniques leads to the derivation of a
sufficient condition for ensuring the mean-square boundedness
of the estimation error dynamics. The upper bound of the
error is then analyzed by iteratively exploring the Lyapunov
relation at both impulsive and non-impulsive instants. Moreover,
an optimization algorithm is presented for handling the bit rate
allocation, which is coupled with the design of desired observer
gains using the linear matrix inequality approach. Within this
theoretical framework, the relationship between the mean-square
estimation performance and the bit rate allocation protocol is
further elucidated. Finally, a simulation example is provided
to demonstrate the validity and effectiveness of the proposed
impulsive estimation approach.

Index Terms—Complex networks, state estimation, impulsive
observer, bit rate constraint, Markovian switching topology.

I. INTRODUCTION

Complex networks (CNs) are sophisticated systems consist-
ing of numerous interconnected nodes linked by edges that
represent relationships, interactions, or connections between
nodes. These networks are prevalent in various natural, tech-
nological, and social systems including biological networks,
transport networks, and social networks [1], [30], [34]. The
widespread occurrence of CNs has spurred significant research
into their estimation and control problems [9], [10], [15], [19],
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[36], [46]. Moreover, as CNs find increasingly diverse applica-
tions, additional characteristics such as jumping, uncertainties,
and others are being recognized as crucial aspects to consider
in CN studies.

The interactions among nodes in CNs can change over time
due to various perturbations such as environmental influences,
system failures, and reconfigurations, leading to switching
topologies [13], [28]. Unlike static networks with fixed con-
nections, dynamic networks with switching topologies have
broader practical applications particularly in communication
systems and power grids. Extensive research has been con-
ducted in this area, focusing on control and state estimation
problems [4], [37], [42]. For example, the nonfragile filtering
problem for CNs has been addressed in [38], which em-
ploys Bernoulli distributed random variables to describe the
switching topologies. In [24], the distributed filtering problem
has been considered over sensor networks under Markovian
switching topologies. The concept of semi-Markovian switch-
ing topologies has been expanded in [48] for the distributed
estimation of sensor networks, with dwell time following
an arbitrary probability distribution. Despite these advances,
the exploration of Markovian switching topologies in CNs
continues to be a dynamic and ongoing area of research.

In recent years, the field of impulsive control strategy has
witnessed a significant surge in research, which shows its
importance in the management of nonlinear dynamic sys-
tems [21], [26], [27], [33]. This strategy stands apart from
traditional continuous-time control methods by introducing
control inputs, termed impulse triggering instants, at specific
discrete moments. Most current research in impulsive control
concentrates on analyzing the dynamics of impulsive systems
and developing impulsive controllers, where the core objective
of incorporating the impulse mechanism in controller design
is to optimize the use of network resources and reduce control
costs [14], [35]. Nevertheless, the area of impulsive estimation
has not been as extensively explored. As the dual problem to
impulsive control, impulsive estimation offers a rich avenue
for investigation, which promises to contribute significantly to
the understanding of dynamic systems.

The concept of an impulsive observer is characterized by the
use of an impulsive update strategy and can be divided into
two main categories. The first category includes observers that
update their estimates only when measurements are received
at discrete time-instants over a network [6], [16], [31]. This
approach contrasts with continuously updated observers and is
notable for its significant conservation of network resources.
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The second category encompasses impulsive re-update ob-
servers [29], [45], which enhance the convergence rate of the
observer by incorporating an impulsive strategy into the tradi-
tional observer framework. A key point to note is that all the
mentioned works have been formulated within the continuous-
time framework [22]. In discrete-time systems, the absence
of left-limits and right-limits introduces unique challenges
for impulsive analysis. Up to now, discrete-time impulsive
control methods have been addressed in some prior works
[7], [12], which lay a foundation for further research. Despite
these developments, the integration of impulse mechanisms
into observer development within a discrete-time framework
remains an underexplored area.

The focus of state estimation approaches has historically
been on continuous-time CNs within analog communication
frameworks. However, the rapid progression in digital net-
work technology has catalyzed a shift in communication
mechanisms for control systems [3]. Traditional analog com-
munication methods, once prevalent, are increasingly seen
as insufficient for the evolving demands of modern control
systems. In place of analog methods, digital communication
strategies have risen to prominence. These digital approaches
offer significant benefits over analog methods, including en-
hanced robustness, increased reliability, and improved energy
efficiency [23]. Yet, the realm of research that specifically
addresses the challenges of control and estimation in CNs
utilizing digital communication networks is still somewhat
limited.

Bit rate, which is a key factor in wireless digital net-
works, defines the amount of data that can be transmitted
through these networks within a specific time frame [2], [8],
[25]. A higher bit rate typically allows for more data to
be sent over digital networks per second, thereby enhancing
communication efficiency and response times. Unfortunately,
in practical scenarios, bit rate often faces limitations due
to conditions like wireless channel constraints and limited
bandwidth availability. These restrictions present significant
challenges in ensuring fast and reliable data transmission
in wireless digital networks [44]. Given these challenges,
strategic allocation of bit rates becomes essential to optimize
resource utilization among multiple nodes in a network [5].
Exploring the intricacies of bit rate constraints and allocation
protocols is vital for understanding system dynamics within
the context of wireless digital networks.

The coding-decoding procedure in wireless digital networks
plays a crucial role in facilitating data exchange among devices
[43], [47]. This process involves a series of operations, namely,
sampling, quantization, and coding, that convert the analog
signal into a digital format. Initially, in the sampling and
quantization phases, the analog signal is transformed into
a discrete representation, and this is followed by a coding
process, which maps the discrete representation into specific
code words represented by binary values 0 and 1. This crucial
mapping transforms the original data into a bit sequence for
digital transmission, thereby enabling efficient data transmis-
sion over digital networks [40]. During the decoding phase,
the received digital data is converted back into analog signals.
However, due to the limited bit rates in the network, the

accuracy of this decoding is often compromised, leading to
errors in the coding process. These errors can significantly
affect the overall system performance. Given these challenges,
the need for in-depth research into estimation for CNs under
bit rate constraints becomes evident.

Motivated by the above discussions, the focus of our study
is on addressing the state estimation problem for CNs with
Markovian switching topologies by using an impulsive method
under constrained bit rate conditions. This problem presents
three main challenges: i) the development of a nonfragile im-
pulsive observer, which involves creating an impulsive observ-
er that effectively integrates Markovian switching modes with
impulse triggering instants within a discrete-time framework,
ensuring it remains robust against system variations; ii) the
assurance of stability under bit-rate constraints, where the
challenge is to maintain the stability of the impulsive error
dynamics despite bit-rate limitations, and also to establish a
link between bit-rate allocation and estimation performance;
and iii) the design of impulsive observer gain, where the
goal is to achieve bounded state estimation under the bit-rate
constraints, which demands innovative approaches to balance
gain effectiveness and communication limitations.

In response to the identified challenges, the key contribu-
tions of our study are summarized as follows.

1) The state estimation issue is addressed, for the first
time, for discrete-time CNs featuring Markovian switch-
ing topologies within digital communication networks,
where the bit rate constraints are considered as a reflec-
tion of inherent bandwidth limitations in such networks.

2) A mode-dependent impulsive observer is devised for the
state estimation of CNs, and a sufficient condition is
established to ensure the mean-square boundedness of
the impulsive error dynamics. Furthermore, the upper
bound on the estimation error is meticulously analyzed
by incorporating energy functions between impulsive
and non-impulsive instants.

3) The relationship between estimation performance and
bit rate allocation is established, in the context of the
impulsive mechanism, by introducing a collaborative
optimization algorithm designed to efficiently allocate
bit rates while simultaneously fine-tuning the impulsive
observer gains for optimal performance.

The structure of this work is organized as follows. Section II
provides a comprehensive description of the models used
in the study, which includes details on discrete-time CNs
with Markovian switching topologies, the specifics of network
transmission under bit rate constraints, the structure of the
adopted impulsive observer, and an overview of the impulsive
error dynamics. Section III is focused on the analytical aspects
of the study, which covers the analysis of the boundedness
of estimation error, the methodology for designing observer
gains, and a collaborative approach for the co-design of bit rate
allocation and the observer gains. In Section IV, a numerical
example is provided to demonstrate the practical application
and validate the correctness of the theoretical results derived
in the study. This section also includes explanatory notes to
aid in understanding the example. Section V serves as the
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conclusion to this paper.
Notations: Through this article, we define the representation

of some symbols. Symbols Rm, Rm×n, N, and N+ represent
the m-dimensional Euclidean space, the m× n real matrices,
the non-negative integers, and the positive integers, respec-
tively. The symbol ∥ · ∥ refers to the Euclidean norm, and | · |
stands for the absolute value. The expectation of a stochastic
variable is depicted by E·. For a matrix X , its transpose is
denoted by XT , and λ(X) signifies its minimum eigenvalue.
A column vector is expressed by col·. The diagonal matrix is
articulated as diag· · ·. The Kronecker product is represented
by the symbol ⊗, and I denotes the identity matrix with proper
dimensions.

II. PROBLEM FORMULATION AND PRELIMINARIES

A. Complex Networks With Markovian Switching Topologies
Consider a class of CNs with Markovian switching topolo-

gies represented by
xȷ(k) =Aȷxȷ(k − 1) +Bȷf(xȷ(k − 1))

+
N∑
ℓ=1

ω
σ(k−1)
ȷℓ Γxℓ(k − 1) + Sȷυ(k − 1)

yȷ(k) =Cȷxȷ(k) +Mȷυ(k)

(1)

where xȷ(k) ∈ Rnx and yȷ(k) ∈ Rny
(
ȷ ∈ J ,

{1, 2, . . . , N}
)

denote the state and the measurement output
of node ȷ, respectively; Aȷ, Bȷ, Sȷ, Cȷ, and Mȷ are known
matrices with appropriate dimensions; f(xȷ(k)) ∈ Rnx is a
nonlinear function that will be introduced later; the vector
υ(k) ∈ Rnv is the external noise meeting ∥υ(k)∥ ≤ ῡ; the
inner coupling matrix Γ , diag{r1, r2, . . . , rnx} represents
the relationship between each element of state vector and
different nodes, and rς ̸= 0 means that the ς-th element
of the state of node ℓ has an effect on node ȷ; the matrix
W σ(k) ,

(
ω
σ(k)
ȷℓ

)
∈ RN×N indicates the outer coupling

configuration with the mode switching, which satisfies the
following condition:

ωσ(k)
ȷȷ = −

N∑
ℓ=1,ℓ̸=ȷ

ω
σ(k)
ȷℓ , ∀ȷ, ℓ ∈ J .

Here, ωσ(k)
ȷℓ > 0 means that the node ℓ can receive signals from

the node ȷ, otherwise, ωσ(k)
ȷℓ = 0, and σ(k) is a discrete-time

homogeneous Markov chain taking values in a finite set Π ,
{1, 2, . . . , τ}. The transition probability matrix Θ , (θij) ∈
Rτ×τ is given by

P{σ(k) = j|σ(k − 1) = i} = θij , ∀i, j ∈ Π (2)

where θij ≥ 0 and
∑τ

j=1 θij = 1.
The nonlinear function f(xȷ(k)) satisfies the following

assumption.
Assumption 1: The nonlinear function f(·) ∈ Rnx meets the

following condition:(
f(a)− f(b)−ψ1(a− b)

)T
×
(
f(a)− f(b)− ψ2(a− b)

)
≤ 0

where a, b ∈ Rnx are some vectors, and ψ1 ∈ Rnx×nx and
ψ2 ∈ Rnx×nx are known matrices.

B. Transmission Over Bit Rate Constrained Network

The analog signals obtained from the sensors must undergo
conversion into digital signals within the coder, to facilitate the
transmission over digital network. In practice, the bandwidth
of wireless communication network is often limited, which
means that the number of bits allowed to be transmitted at
each time instant is restricted. Allocating the appropriate bit
rate for each node can effectively avoid data collisions during
transmission in the wireless network. We assume that the
total available bit rates of entire network are U (U ∈ N).
Measurement yȷ(k) of each node in the CNs is transmitted
over the bit-rate constrained wireless network, and the bit rate
allocated to each sensor adheres to the following condition
[18]

U ≥
N∑
ȷ=1

Uȷ, Uȷ ∈ N (3)

where Uȷ (ȷ ∈ J ) denotes the bit rate allocated to the node
ȷ, that is, each coder has limited bit rates to encode the data
packet. As a result, the data compression is required, which
can be realized by a uniform quantizer. To be specific, this
quantizer segments the quantization region into a set number
of uniformly spaced intervals. The quantization process in-
volves mapping each input data to its corresponding interval.
The quantization level qȷ (denoting the number of intervals)
of the node ȷ is limited by the allocated bits, which satisfies

qȷ ≤ q̂ȷ =
⌊ny√

2Uȷ
⌋

(4)

where the symbol ⌊·⌋ stands for rounding down function.
Given a scalar δȷ > 0 depicting the upper bound of the

quantization region, one has

|yȷ,κ(k)| ≤ δȷ, ∀κ ∈ {1, 2, . . . , ny} (5)

where yȷ,κ(k) represents the κ-th element of the measurement
yȷ(k).

Choosing a quantization level qȷ for the node ȷ, the
quantization region is uniformly segmented into some sub-
hyperrectangles as follows:

Q(1)
ȷ,κ(δȷ) ,

{
yȷ,κ(k)

∣∣∣− δȷ ≤ yȷ,κ(k) < −δȷ +
2δȷ
qȷ

}
Q(2)

ȷ,κ(δȷ) ,
{
yȷ,κ(k)

∣∣∣− δȷ +
2δȷ
qȷ

≤ yȷ,κ(k) < −δȷ +
4δȷ
qȷ

}
...

Q(qȷ)
ȷ,κ (δȷ) ,

{
yȷ,κ(k)

∣∣∣δȷ − 2δȷ
qȷ

≤ yȷ,κ(k) ≤ δȷ

}
.

A string of integers {dȷ,1, dȷ,2, . . . , dȷ,ny} ∈ {1, 2, . . . , qȷ}
represents the quantization region corresponding to each ele-
ment of the node ȷ. Then, the coder ȷ encodes this string of
integers using binary representation, namely 0 and 1, and out-
puts the binary codeword Ỹȷ(k) , ℵ

(
{dȷ,1, dȷ,2, . . . , dȷ,ny}

)
,

where ℵ(·) denotes the coding function.
The binary codeword Ỹȷ(k) is transmitted over the wireless

communication network to the decoder ȷ by utilizing the same
network transmission protocol according to the coder ȷ. After
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decoding, the central values {sȷ,1, sȷ,2, . . . , sȷ,ny} of the sub-
hyperrectangles are used to approximate the original data,
which is computed by

sȷ,κ = −δȷ +
(2dȷ,κ − 1)δȷ

q̂ȷ
, κ ∈ {1, 2, . . . , ny}. (6)

Based on the above analysis, the quantization error of the
measurement yȷ(k) satisfies∥∥∥yȷ(k)− [sȷ,1 sȷ,2 . . . sȷ,ny

]T∥∥∥
2
≤

√
nyδȷ

q̂ȷ
. (7)

Denoting the decoding output as

y⃗ȷ(k) ,
[
sȷ,1 sȷ,2 . . . sȷ,ny

]T
,

the decoding error is obtained as

ϕȷ(k) , yȷ(k)− y⃗ȷ(k). (8)

Remark 1: In wireless communication networks, bit rate
allocation follows either dynamic or static protocols. Dynamic
protocols adapt bit rates to the fluctuating needs of user
devices, enhancing individual data transmission efficiency.
Static protocols, in contrast, allocate bit rates based on pre-set
criteria, ideal for scenarios with multiple users sharing limited
bandwidth, aiming for equitable data transmission. This study
employs a static bit rate allocation protocol within CNs to
ensure consistent and fair distribution of bandwidth among all
network nodes.

C. Observer With Impulsive Dynamical Behavior

To estimate the internal state of system efficiently utilizing
the decoded measurement output, we introduce an impulsive
observer as follows:

x̂ȷ(k) =Aȷx̂ȷ(k − 1) +

N∑
ȷ=1

ω
σ(k−1)
ȷℓ Γx̂ℓ(k − 1)

+Bȷf(x̂ȷ(k − 1)) +
(
Lσ(k−1)
ȷ +∆Lȷ(k − 1)

)
×
(
y⃗ȷ(k − 1)− Cȷx̂ȷ(k − 1)

)
, k ∈ (kϵ−1, kϵ]

x̂+ȷ (kϵ) =x̂ȷ(k) +Kσ(k−1)
ȷ

(
y⃗ȷ(k)− Cȷx̂ȷ(k)

)
, k = kϵ

x̂+ȷ (k0) =x̂ȷ(0)

(9)

where x̂ȷ(k) denotes the state estimate for node ȷ; Lσ(k)
ȷ

and Kσ(k)
ȷ represent the mode-dependent gain matrices to be

designed; and the real matrix ∆Lȷ(k) denotes the observer
gain variation given as follows:

∆Lȷ(k) = DȷQȷ(k)Hȷ (10)

where Dȷ and Hȷ are constant matrices, and Qȷ(k) is the
time-varying uncertain matrix satisfying QT

ȷ (k)Qȷ(k) ≤ I .
The integer sequence {kϵ} represents the impulse triggering

instants with ϵ ∈ N+, which is monotonically increasing, i.e.,
k0 = 0 < k1 < . . . < kϵ < . . . with limϵ→∞ kϵ = ∞. The
observer proposed in (9) distinguishes itself from a classical
observer through the inclusion of an additional update, denoted
as x̂+ȷ (kϵ). This update occurs at specific impulse triggering

instants, labeled as kϵ, at which the observer’s dynamics ex-
perience an abrupt change, and such a change is characteristic
of impulsive dynamical behavior. The term x̂+ȷ (kϵ) is used
to represent the state of the observer immediately after it has
been influenced by an impulse signal, reflecting the immediate
effect of the impulsive update on the observer’s state.

The interval of the impulse sequence determines the fre-
quency of the observer’s impulsive update. Define the interval
between adjacent impulse instants as ~ϵ , kϵ − kϵ−1, which
satisfies the following assumption.

Assumption 2: [7] The interval ~ϵ ∈ N+ between adjacent
impulse triggering instants satisfies

0 < ~ϵ ≤ ~̃, ϵ ∈ N+ (11)

where the integer ~̃ ≥ 1 is a given upper bound.
Remark 2: Reviewing the impulsive observer (9), the cor-

rection terms are(
Lσ(k−1)
ȷ +∆Lȷ(k − 1)

)(
y⃗ȷ(k − 1)− Cȷx̂ȷ(k − 1)

)
,

and
Kσ(k−1)

ȷ

(
y⃗ȷ(k)− Cȷx̂ȷ(k)

)
∇(k − kϵ)

where ∇(k − kϵ) is the Dirac impulse function meeting
∇(k − kϵ) = 1 when k = kϵ, otherwise, ∇(k − kϵ) = 0. For
K

σ(k−1)
ȷ = 0, the observer (9) becomes a classical nonfragile

observer.
Remark 3: Existing research on impulsive observers pre-

dominantly centers around continuous-time systems, with rel-
atively scant attention given to their discrete-time counterparts.
Furthermore, there is a noticeable gap in studies focusing on
impulsive observers with Markovian mode-dependent charac-
teristics. To summarize, the bulk of current research in the
impulsive estimation domain typically revolves around state
estimation in impulsive systems [20] or impulsive estimation
due to discrete measurement outputs in continuous-time sys-
tems [31]. In this work, we take a pioneering step by introduc-
ing a discrete-time impulsive observer that adeptly manages
the interplay between Markovian switching topologies and
impulsive triggering instants. This innovative approach utilizes
the impulse mechanism to actively reduce estimation errors
and enhance overall estimation performance.

D. Impulsive Error Dynamics

Define eȷ(k) , xȷ(k) − x̂ȷ(k) as the estimation error. At
the non-impulsive triggering interval k ∈ (kϵ−1, kϵ] , we have
the following error dynamics:

eȷ(k) =Aȷeȷ(k − 1) +
N∑
ȷ=1

ω
σ(k−1)
ȷℓ Γeℓ(k − 1)

+Bȷf̃(eȷ(k − 1))−
(
Lσ(k−1)
ȷ +∆Lȷ(k − 1)

)
×
(
y⃗ȷ(k − 1)− Cȷx̂ȷ(k − 1)

)
+ Sȷυ(k − 1) (12)

where f̃(eȷ(k)) , f(xȷ(k))−f(x̂ȷ(k)). At the impulsive time
instants, the error dynamics evolves as

e+ȷ (kϵ) =xȷ(kϵ)− x̂+ȷ (kϵ)

=eȷ(kϵ)−Kσ(k−1)
ȷ

(
y⃗ȷ(kϵ)− Cȷx̂ȷ(kϵ)

)
. (13)
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Define the augmented error vector as

e(k) ,
[
eT1 (k) eT2 (k) . . . eTN (k)

]T
.

Combining the decoding error (8) with the estimation error,
the augmented error dynamics is presented by

e(k) =Ae(k − 1) +BF(e(k − 1)) + Sυ(k − 1)

+
(
W σ(k−1) ⊗ Γ

)
e(k − 1)−

(
Lσ(k−1)

+∆L(k − 1)
)(
Ce(k − 1) +Mυ(k − 1)

− Φ(k − 1)
)

=Ω
σ(k−1)
1 e(k − 1) +BF(e(k − 1)) + Ω

σ(k−1)
2

× υ(k − 1) + Ω
σ(k−1)
3 Φ(k − 1), k ∈ (kϵ−1, kϵ], (14)

and

e+(kϵ) =Ω
σ(k−1)
4 e(kϵ)−Kσ(k−1)Mυ(kϵ)

+Kσ(k−1)Φ(kϵ) (15)

where

A , diag{A1, A2, . . . , AN},
B , diag{B1, B2, . . . , BN},
C , diag{C1, C2, . . . , CN},
M , col{M1,M2, . . . ,MN},
S , col{S1, S2, . . . , SN},
D , diag{D1, D2, . . . , DN},
H , diag{H1, H2, . . . , HN},

Kσ(k) , diag{Kσ(k)
1 ,K

σ(k)
2 , . . . ,K

σ(k)
N },

Lσ(k) , diag{Lσ(k)
1 , L

σ(k)
2 , . . . , L

σ(k)
N },

Ω
σ(k)
1 , A+Wσ(k) ⊗ Γ−

(
Lσ(k) +∆L(k)

)
C,

Ω
σ(k)
2 , S −

(
Lσ(k) +∆L(k)

)
M,

Ω
σ(k)
4 , I −Kσ(k)C, ∆L(k) , DQ(k)H,

Ω
σ(k)
3 , Lσ(k) +∆L(k),

Q(k) , diag{Q1(k), Q2(k), . . . , QN (k)},
Φ(k) , col{ϕ1(k), ϕ2(k), . . . , ϕN (k)},

F(e(k)) ,
[
f̃T (e1(k)) f̃T (e2(k)) . . . f̃T (eN (k))

]T
.

The following lemma and definition are introduced to facil-
itate the subsequent analysis.

Lemma 1: [39] For given real matrices R1 = RT
1 , R2

and R3, and Q(k) with QT (k)Q(k) ≤ I . The following
relationship

R1 +R3Q(k)R2 +RT
2 Q

T (k)RT
3 < 0

holds if and only if there exists a scalar γ > 0 such that

R1 + γRT
2 R2 +

1

γ
R3R

T
3 < 0.

Definition 1: [41] The augmented error dynamics is said to
be exponentially mean-square bounded if there exist constants
|a| < 1, b > 0 and c > 0 such that the following inequality
holds:

E{∥e(k)∥2} ≤ akb+ c (16)

where c is an asymptotic upper bound of the error E{∥e(k)∥2}.
The main objective of this work is to develop an impulsive

observer for the complex networks in the context of digital
communication networks such that the impulsive error dynam-
ics is ultimately bounded subject to the exponential stability
analysis methods.

III. MAIN RESULT

A. Boundedness Analysis

In the following theorem, a sufficient condition is given to
analyze the exponential boundedness in the mean-square sense
of the augmented error dynamics.

For facilitating the analysis, we denote

P̃(i) ,
τ∑

j=1

θijP(j), P(i) , diag
{
P

(i)
1 , P

(i)
2 , . . . , P

(i)
N

}
,

Λ1 , γ1Ψ
T
1 Ψ2, Λ2 , −γ1

ΨT
1 +ΨT

2

2
,

Ψ1 , I ⊗ ψ1, Ψ2 , I ⊗ ψ2.

Theorem 1: Consider the CN (1) and the impulsive observer
(9) with the known positive integers Uȷ, the given scalars
ρ1 > 0, 0 < ρ2 < 1, ~̃ ≥ 1, and the observer gain matrices
L
(i)
ȷ and K

(i)
ȷ (ȷ ∈ J ). Then, the estimation error dynamics

is exponentially mean-square bounded if there exist positive
scalars γι > 0 (ι ∈ {1, 2, . . . , 5}), and positive definite
matrices P (i)

ȷ (ȷ ∈ J ) such that the following inequalities
hold for all i ∈ Π:

−ρ1P(i) − Λ1 −Λ2 0 0
(
Ω

(i)
1

)T
∗ −γ1I 0 0 BT

∗ ∗ −γ2I 0
(
Ω

(i)
2

)T
∗ ∗ ∗ −γ3I

(
Ω

(i)
3

)T
∗ ∗ ∗ ∗ −P̃−1

(i)


< 0

(17)


−ρ2P̃(i) 0 0

(
Ω

(i)
4

)T
∗ −γ4I 0 −MT

(
K(i)

)T
∗ ∗ −γ5I

(
K(i)

)T
∗ ∗ ∗ −P̃−1

(i)

 < 0 (18)

0 < ρ~̃1ρ2 < 1. (19)

Proof: Choose the following Lyapunov-like function for
the stability analysis:

V(k) = eT (k)Pσ(k)e(k). (20)

Denote σ(k) , j, σ(k − 1) , i, and define an augmented
vector as

ζ(k) ,
[
eT (k) FT (e(k)) υT (k) ΦT (k)

]T
.

Then, the error dynamics is analyzed in the following two
steps.
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Step 1: For the intervals (kϵ−1, kϵ] (ϵ ∈ N+) without
impulse effect, the mathematical expectation of the difference
equation is given as

∆V(k) ,E{V(k)|V(k − 1)} − ρ1V(k − 1)

=ζT (k − 1)Ξζ(k − 1) + γ2υ
T (k − 1)

× υT (k − 1) + γ3Φ
T (k − 1)ΦT (k − 1) (21)

where

Ξ ,


Ξ11 Ξ12 Ξ13 Ξ14

∗ Ξ22 Ξ23 Ξ24

∗ ∗ Ξ33 Ξ34

∗ ∗ ∗ Ξ44

 ,
Ξ11 ,

(
Ω

(i)
1

)T P̃(i)Ω
(i)
1 − ρ1P(i),

Ξ12 ,
(
Ω

(i)
1

)T P̃(i)B, Ξ13 ,
(
Ω

(i)
1

)T P̃(i)Ω
(i)
2 ,

Ξ14 ,
(
Ω

(i)
1

)T P̃(i)

(
L(i) +∆L(k − 1)

)
,

Ξ22 ,BT P̃(i)B, Ξ23 , BT P̃(i)Ω
(i)
2 ,

Ξ24 ,BT P̃(i)

(
L(i) +∆L(k − 1)

)
,

Ξ33 ,
(
Ω

(i)
2

)T P̃(i)Ω
(i)
2 − γ2I,

Ξ34 ,
(
Ω

(i)
2

)T P̃(i)

(
L(i) +∆L(k − 1)

)
,

Ξ44 ,
(
L(i) +∆L(k − 1)

)T P̃(i)

×
(
L(i) +∆L(k − 1)

)
− γ3I.

From Assumption 1, we know that the nonlinearity f(·)
fulfills(

F(e(k))−Ψ1e(k)
)T (F(e(k))− e(k)Ψ2

)
≤ 0, (22)

which can be further expressed as[
e(k)

F(e(k))

]T [
γ1Ψ

T
1 Ψ2 −γ1 ΨT

1 +ΨT
2

2

∗ γ1I

][
e(k)

F(e(k))

]
≤ 0

(23)

for any scalar γ1 > 0.
Combining (21) with (23), one has

∆V(k) =ζT (k − 1)Ξ̃ζ(k − 1) + γ2υ
T (k − 1)

× υT (k − 1) + γ3Φ
T (k − 1)ΦT (k − 1) (24)

where

Ξ̃ ,


Ξ11 − Λ1 Ξ12 − Λ2 Ξ13 Ξ14

∗ Ξ22 − γ1I Ξ23 Ξ24

∗ ∗ Ξ33 Ξ34

∗ ∗ ∗ Ξ44

 .
Applying the Schur Complement Lemma [17] to the above

formula, one has Ξ̃ < 0 based on the condition (17) in
Theorem 1. Then, we derive that

∆V(k) <γ2υT (k − 1)υT (k − 1) + γ3Φ
T (k − 1)ΦT (k − 1).

(25)

Taking the mathematical expectation of (25), and recalling
the decoding error (8) and the definition of the external noise,
the following relation is obtained:

E{V(k)} <ρ1E{V(k − 1)}+ µ1 (26)

where

µ1 , γ2ῡ
2 + γ3

N∑
ȷ=1

nyδ
2
ȷ⌊ny

√
2Uȷ
⌋2 .

Step 2: At the impulse triggering instants k = kϵ (ϵ ∈ N+),
a prominent impulsive jump with the form (15) occurs in the
error dynamics e+(kϵ). Denoting

∆V+(kϵ) , E{V+(kϵ)|V(kϵ)} − ρ2V(kϵ),

ζ̂(k) ,
[
eT (k) υT (k) ΦT (k)

]T
,

one obtains

∆V+(kϵ) =ζ̂
T (kϵ)

Ξ̂11 Ξ̂12 Ξ̂13

∗ Ξ̂22 Ξ̂23

∗ ∗ Ξ̂33

 ζ̂(kϵ)
+ γ4υ

T (kϵ)υ
T (kϵ) + γ5Φ

T (kϵ)Φ
T (kϵ) (27)

where

Ξ̂11 ,
(
Ω

(i)
4

)T P̃(i)Ω
(i)
4 − ρ2P̃(i),

Ξ̂12 ,−
(
Ω

(i)
4

)T P̃(i)K
(i)M,

Ξ̂13 ,
(
Ω

(i)
4

)T P̃(i)K
(i),

Ξ̂22 ,MT
(
K(i)

)T P̃(i)K
(i)M − γ4I,

Ξ̂23 ,−MT
(
K(i)

)T P̃(i)K
(i),

Ξ̂33 ,
(
K(i)

)T P̃(i)K
(i) − γ5I.

Utilizing the Schur Complement Lemma to (18) in Theo-
rem 1 leads to

∆V+(kϵ) < γ4υ
T (kϵ)υ

T (kϵ) + γ5Φ
T (kϵ)Φ

T (kϵ), (28)

which implies

E{V+(kϵ)} <ρ2E{V(kϵ)}+ µ2 (29)

where

µ2 , γ4ῡ
2 + γ5

N∑
ȷ=1

nyδ
2
ȷ⌊ny

√
2Uȷ
⌋2 .

In view of inequalities (26) and (29), the energy function can
now be derived through a series of iterations over an arbitrary
interval (kϵ−1, kϵ] (ϵ ∈ N+), and the following relations can
be readily established:

E{V(k)} <ρk1E{V(0)}+
k−1∑
ı=0

ρı1µ1, k ∈ (k0, k1],

E{V+(k1)} <ρk1
1 ρ2E{V(0)}+ ρ2

k1−1∑
ı=0

ρı1µ1 + µ2,

E{V(k)} <ρk1ρ2E{V(0)}+
k−k1−1∑

ı=0

ρı1µ1 + ρk−k1
1 µ2

+ ρ2

k−1∑
ı=k−k1

ρı1µ1, k ∈ (k1, k2],

E{V+(k2)} <ρk2
1 ρ

2
2E{V(0)}+ ρ2

k2−k1−1∑
ı=0

ρı1µ1
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+ ρ22

k2−1∑
ı=k2−k1

ρı1µ1 + ρk2−k1
1 ρ2µ2 + µ2,

E{V(k)} <ρk1ρ22E{V(0)}+ ρ2

k−k1−1∑
ı=k−k2

ρı1µ1

+ ρ22

k−1∑
ı=k−k1

ρı1µ1 + ρk−k1
1 ρ2µ2

+ ρk−k2
1 µ2 +

k−k2−1∑
ı=0

ρı1µ1, k ∈ (k2, k3],

and so on.
Over the interval (kϵ−1, kϵ], we utilize mathematical induc-

tion (a method of logical deduction) to calculate that

E{V(k)} <ρk1ρϵ−1
2 E{V(0)}+

k−kϵ−1−1∑
ı=0

ρı1µ1

+ ρ2

k−kϵ−2−1∑
ı=k−kϵ−1

ρı1µ1 + . . .+ ρϵ−1
2

k−1∑
ı=k−k1

ρı1µ1

+ ρϵ−2
2 ρk−k1

1 µ2 + ρϵ−3
2 ρk−k2

1 µ2 + . . .

+ ρ02ρ
k−kϵ−1

1 µ2, k ∈ (kϵ−1, kϵ]. (30)

Furthermore, the coefficient ρ1 in non-impulse instants is
classified into the following two cases:{

Case I : ρ1 ≥ 1, 0 < ρ2 < 1,

Case II : 0 < ρ1 < 1, 0 < ρ2 < 1
(31)

according to which the Lyapunov-like function is analyzed
separately.

For Case I, we derive from Assumption 2 that

k − kϵ−1 <~̃
k − kϵ−2 <2~̃

...

k − k0 <ϵ~̃.

(32)

The above amplification operation facilitates the analysis of
(30), which gives rise to

E{V(k)}

<ρϵ~̃1 ρ
ϵ−1
2 E{V(0)}+

~̃−1∑
ı=0

ρı1µ1

+ ρ2

2~̃−1∑
ı=~̃

ρı1µ1 + . . .+ ρϵ−1
2

ϵ~̃−1∑
ı=(ϵ−1)~̃

ρı1µ1

+
(
ρϵ−2
2 ρ

(ϵ−1)~̃
1 + ρϵ−3

2 ρ
(ϵ−2)~̃
1 + . . .+ ρ02ρ

~̃
1

)
µ2

=ρϵ~̃1 ρ
ϵ−1
2 E{V(0)}+

~̃−1∑
ı=0

ρı1µ1

+ ρ~̃1ρ2

~̃−1∑
ı=0

ρı1µ1 + . . .+ ρ
(ϵ−1)~̃
1 ρϵ−1

2

~̃−1∑
ı=0

ρı1µ1

+
(
ρϵ−2
2 ρ

(ϵ−1)~̃
1 + ρϵ−3

2 ρ
(ϵ−2)~̃
1 + . . .+ ρ02ρ

~̃
1

)
µ2

=ρϵ~̃1 ρ
ϵ−1
2 E{V(0)}+

(
1 + ρ~̃1ρ2 + (ρ~̃1ρ2)

2 + . . .

+
(
ρ~̃1ρ2

)ϵ−1
) ~̃−1∑

ı=0

ρı1µ1 + ρ1µ2

((
ρ~̃1ρ2

)ϵ−2

+
(
ρ~̃1ρ2

)ϵ−3

+ . . .+ ρ~̃1ρ2 + 1

)
+ ρ~̃1µ2 − ρ1µ2. (33)

According to the condition (19) and the Taylor expansion
formula, we further have

E{V(k)} <ρ1
(
ρ~̃1ρ2

)ϵ−1

E{V(0)}+

(
1

1− ρ~̃1ρ2
− 1

)
ρ1µ2

+ ρ~̃1µ2 +
1

1− ρ~̃1ρ2

~̃−1∑
ı=0

ρı1µ1, (34)

which implies

E
{
∥e(k)∥2

}
<

ρ1

(
ρ~̃1ρ2

)ϵ−1

mini∈Π λ
(
P(i)

)E{V(0)}
+

(
1

1−ρ~̃
1ρ2

− 1
)
ρ1µ2 + ρ~̃1µ2 +

1

1−ρ~̃
1ρ2

∑~̃−1
ı=0 ρ

ı
1µ1

mini∈Π λ
(
P(i)

) .

(35)

Furthermore, the following inequality

E
{
∥e(k)∥2

}
<

(
1

1−ρ~̃
1ρ2

− 1
)
ρ1µ2 + ρ~̃1µ2 +

1

1−ρ~̃
1ρ2

∑~̃−1
ı=0 ρ

ı
1µ1

mini∈Π λ
(
P(i)

)
,B1 (36)

holds as k tends to infinity (i.e. ϵ→ ∞).
In Case II, since 0 < ρ1 < 1, the following relations are

satisfied: 

k − kϵ−1 >0

k − kϵ−2 >~̃
...

k − k0 >(ϵ− 1)~̃.

(37)

Similar to what we have derived in Case I, we obtain

E{V(k)}

<ρ
(ϵ−1)~̃
1 ρϵ−1

2 E{V(0)}+ ρ2

~̃−1∑
ı=0

ρı1µ1 + ρ22

2~̃−1∑
ı=~̃

ρı1µ1

+ . . .+ ρϵ−1
2

(ϵ−1)~̃−1∑
ı=(ϵ−2)~̃

ρı1µ1 +
(
ρϵ−2
2 ρ

(ϵ−2)~̃
1

+ ρϵ−3
2 ρ

(ϵ−3)~̃
1 + . . .+ ρ2ρ

~̃
1 + 1

)
µ2

=
(
ρ~̃1ρ2

)ϵ−1

E{V(0)}+ ρ2

ϵ−2∑
ı=0

(
ρ~̃1ρ2

)ı ~̃−1∑
ı=0

ρı1µ1
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+

ϵ−2∑
ı=0

(
ρ~̃1ρ2

)ı
µ2. (38)

Combining (19) with (38), it follows from the fact of

E
{
∥e(k)∥2

}
<

(
ρ~̃1ρ2

)ϵ−1

mini∈Π λ
(
P(i)

)E{V(0)}
+

 µ2

1− ρ~̃1ρ2
+

ρ2

1− ρ~̃1ρ2

~̃−1∑
ı=0

ρı1µ1

/min
i∈Π

λ
(
P(i)

)
(39)

that the following relationship

E
{
∥e(k)∥2

}
<

 µ2

1− ρ~̃1ρ2
+

ρ2

1− ρ~̃1ρ2

~̃−1∑
ı=0

ρı1µ1

/min
i∈Π

λ
(
P(i)

)
,B2 (40)

is true when time k tends to infinity.
Based on Definition 1, the error dynamics is determined to

be exponentially mean-square bounded. Referring to formulas
(36) and (40), it can be inferred that B2 < B1, which indicates
that a lower convergence coefficient ρ1 during the non-impulse
interval results in a quicker convergence rate of the error
dynamics e(k) and, consequently, a reduced error upper bound
(EUB). Thus, the proof is concluded.

Remark 4: The theoretical advantages of an impulsive
observer over a traditional one can be analyzed by comparing
their respective observer structures and energy functions. In the
absence of an impulse mechanism, the observer (9) is modified
to:

x̂ȷ(k) =Aȷx̂ȷ(k − 1) +

N∑
ȷ=1

ω
σ(k−1)
ȷℓ Γx̂ℓ(k − 1)

+Bȷf(x̂ȷ(k − 1)) +
(
Lσ(k−1)
ȷ +∆Lȷ(k − 1)

)
×
(
y⃗ȷ(k − 1)− Cȷx̂ȷ(k − 1)

)
.

The corresponding energy function, shown as (26), is deduced
to be:

E{V(k)} <ρ1E{V(k − 1)}+ µ1 < · · ·

<ρk1E{V(0)}+
k−1∑
ı=0

ρı1µ1.

Comparing this to the impulsive approach (30), it is evident
that the coefficient ρk1ρ

ϵ−1
2 of energy function (30) is less than

ρk1 in the non-impulsive case, which means that the former
case converges faster. For visual clarity, Fig. 1 conceptually
illustrates the decay of the energy function E{V(k)} for both
scenarios, showing the efficiency of the impulsive mechanism
in enhancing convergence.

Remark 5: Based on the forms B1 and B2 of the estimation
error bound, we can conclude that the EUB is influenced
by various factors including bounded noise, coding-decoding
parameters δȷ, bit rate Uȷ, maximum impulse interval ~̃,

without impulse

with impulse

Fig. 1. Energy function with and without impulse mechanism.

and convergence coefficients ρ1 and ρ2. When all system
parameters, δȷ and ~̃ are fixed, the EUB is directly associated
with the bit rate Uȷ of each node. Specifically, an increase in Uȷ

leads to a higher maximum quantization level q̂ȷ, resulting in
lower decoding errors and a consequent decrease in the EUB.
This relationship underscores the critical role of bit rate in
reducing estimation errors in digital communication networks.

B. Impulsive Observer Gain Design

Having analyzed the boundedness of the error dynamics,
the next step would be to focus on the design of impulsive
observer gains by taking into account the specified bit rate
allocation.

Theorem 2: Consider the CN (1) and the impulsive observer
(9) with known positive integers Uȷ and let the scalars ρ1 >
0, 0 < ρ2 < 1, ~̃ ≥ 1 be given. Then, the estimation error
dynamics is exponentially mean-square bounded if there exist
positive scalars α1, α2, α3, γι > 0 (ι ∈ {1, 2, . . . , 5}), positive
definite non-singular matrices P (i)

ȷ (ȷ ∈ J ), and observer gain
matrices L(i)

ȷ , K(i)
ȷ (ȷ ∈ J ) such that the following inequalities

and (19) hold for all i ∈ Π:
Ω̂

(i)
1 Ω̂

(i)
2 0

∗ −P̃T
(i) Ω̂

(i)
3

∗ ∗ Ω̂4

 < 0 (41)


−ρ2P̃(i) 0 0 P̃T

(i) − CT
(
K(i)

)T
∗ −γ4I 0 −MT

(
K(i)

)T
∗ ∗ −γ5I

(
K(i)

)T
∗ ∗ ∗ −P̃T

(i)

 < 0 (42)

where

Ω̂
(i)
1 ,


Ω̂

(i)
11 −Λ2 0 0

∗ −γ1I 0 0

∗ ∗ Ω̂33 0

∗ ∗ ∗ Ω̂44

 ,
Ω̂

(i)
2 ,

[
Ω̂

(i)
15 P̃(i)B P̃(i)S − L(i)M L(i)

]T
,

Ω̂
(i)
11 ,− ρ1P(i) − Λ1 + α1C

THTHC,
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Ω̂33 ,− γ2I + α2M
THTHM,

Ω̂44 ,− γ3I + α2H
TH,

Ω̂
(i)
15 ,P̃(i)A+ P̃(i)(W

(i) ⊗ Γ)− L(i)C,

Ω̂
(i)
3 ,

[
P̃(i)D P̃(i)D P̃(i)D

]
,

Ω̂4 ,diag{−α1I,−α2I,−α3I}.

Moreover, the impulsive observer gains are given by

L(i) = P̃−1
(i) L

(i), K(i) = P̃−1
(i) K

(i), i ∈ Π. (43)

Proof: Utilizing Lemma 1, we know that the condition
(17) holds if and only if the following is true:

−ρ1P(i) − Λ1 −Λ2 0 0 O(i)
1

∗ −γ1I 0 0 BT

∗ ∗ −γ2I 0 O(i)
2

∗ ∗ ∗ −γ3I LT

∗ ∗ ∗ ∗ −P̃−1
(i)


+α1

[
−HC 0 0 0 0

]T [−HC 0 0 0 0
]

+α2

[
0 0 −HM 0 0

]T [
0 0 −HM 0 0

]
+α3

[
0 0 0 H 0

]T [
0 0 0 H 0

]
+

(
1

α1
+

1

α2
+

1

α3

)[
0 0 0 0 DT

]T
×
[
0 0 0 0 DT

]
< 0, ∀i ∈ Π (44)

where

O(i)
1 ,AT + (W (i) ⊗ Γ)T − CT

(
L(i)

)T
,

O(i)
2 ,ST −MT

(
L(i)

)T
.

Applying the Schur Complement Lemma to the above
inequality, we obtain

Ω̂
(i)
1 O(i)

3 0

∗ −P̃−1
(i) O4

∗ ∗ Ω̂4

 < 0 (45)

where

Oi
3 ,

[(
O(i)

1

)T
B

(
O(i)

2

)T
L(i)

]T
,

O4 ,
[
D D D

]
.

Define

I1 , diag{I, I, I, I, P̃(i), I, I},
I2 , diag{I, I, I, P̃(i)}.

By pre-multiplying the matrix in (45) with I1 and post-
multiplying it with IT

1 , we can conclude that the condition
(41) holds. Similarly, (42) is established utilizing the operation
of I2. The proof is now complete.

C. Co-design of Bit Rate Allocation Strategy and Observer

The allocation of specific bit rates to each node in CNs
plays a critical role in determining the observer gains, as
detailed in Theorem 2. Equations (36) and (40) make it clear
that under fixed system parameters and quantization regions,
the bit rate Uȷ significantly influences the upper bound of
the error dynamics and, subsequently, the overall estimation
performance. The main focus of this section is to further
reduce the upper bound of the error dynamics, which is
pursued by formulating an optimization problem that involves
co-designing the bit rate allocation strategy along with the
observer gains.

Based on Theorem 2, in the following corollary, we take
the worst case (i.e., Case I) for optimization where (36) is
satisfied.

Corollary 1: When the assigned bit rate Uȷ is a variable
(to be designed), the optimization for the upper bound of the
error dynamics is transformed into the following minimization
problem:

min
G1µ2 + G2µ1

mini∈Π λ
(
P(i)

)
s.t. (3), (19), (41), (42), 0 ≤ Uȷ ≤ U, ∀i ∈ Π (46)

where

G1 ,
(

1

1− ρ~̃1ρ2
− 1

)
ρ1 + ρ~̃1

G2 , 1

1− ρ~̃1ρ2

~̃−1∑
ı=0

ρı1.

Within this framework, the observer gains are derived by
L(i) = P̃−1

(i) L
(i), K(i) = P̃−1

(i) K
(i), i ∈ Π.

Proof: The proof is similar to Theorem 2 and is omitted
here for space saving.

Addressing the non-convex nature of the minimization prob-
lem presented in (46), which poses significant challenges in
terms of solvability, requires an innovative approach. To tackle
this issue, a co-design method is proposed that integrates the
particle swarm optimization (PSO) algorithm with the linear
matrix inequality (LMI) technique.

The minimization problem (46) involves constraints 0 ≤
Uȷ ≤ U and (3). To effectively handle these constraints
within the optimization process, a transformation of (46) is
undertaken by introducing a penalty function:

min
G1µ2 + G2µ1

mini∈Π λ
(
P(i)

) + fF(Ũ)

s.t. (19), (41), (42), ∀i ∈ Π (47)

where F(Ũ) , max
{
0,
∑N

ȷ=1 Uȷ − U
}

is the exterior penalty

function with Ũ , [U1, U2, . . . , UN ], and f is a constant called
penalty coefficient. The fitness function of PSO algorithm is
the upper bound of the error dynamics, which is defined as

F(Ũ) , G1µ2 + G2µ1

mini∈Π λ
(
P(i)

) + fF(Ũ).

The observer design framework, as depicted in Fig. 2,
illustrates the integration of the PSO algorithm with the LMI
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technique based on the specified objective function. This
algorithm is tailored to address the minimization problem by
taking into account the constraints and nonlinearity inherent in
the problem. In the PSO algorithm, a swarm of particles, each
representing a potential solution, navigates through the search
space. The position and velocity of each particle characterize
these potential solutions. The algorithm operates by iteratively
adjusting the positions of the particles. This adjustment is
based not only on each particle’s own experience but also on
insights gleaned from the best-performing particles in the pop-
ulation. Through this process, the PSO algorithm efficiently
searches for the optimal solution to the minimization problem,
leveraging both individual and collective intelligence within
the swarm.

We denote Xo , [Xo,1,Xo,2, . . . ,Xo,N ] and Vo ,
[Vo,1,Vo,2, . . . ,Vo,N ] (o ∈ {1, 2, . . .N}) as the position and
velocity of the o-th particle, respectively. N is the number of
particles in the search space, and the maximum number of
iterations is represented by I. The updates of particle velocity
and position obey the following equations:

Vo(ϱ+ 1) =wVo(ϱ) + c1ξ1
(
Po(ϱ)−Xo(ϱ)

)
+ c2ξ2

(
Pg(ϱ)−Xo(ϱ)

)
, (48)

Xo(ϱ+ 1) =Xo(ϱ) +Vo(ϱ) (49)

where ϱ ∈ {1, 2, . . . , I} indicates the iteration number; w
stands for the inertia weight; the acceleration constants c1 and
c2 denote the self-learning factor and the group learning factor,
respectively; ξ1 and ξ2 are two stochastic integers distributed
in the interval [1, 2]. To prevent the particle’s search position
from exceeding the limited interval leading to an unproductive
blind search, well-defined boundaries are established for both
position and velocity. These boundaries, denoted as XT (upper
bound), XL (lower bound) for position, as well as VT (upper
bound), VL (lower bound) for velocity, serve to confine the
particle’s movement within a controlled and purposeful range.

In Fig. 2, we first initialize parameters N, I,w, c1, c2, the
initial position Xo and the initial velocity Vo of each particle.
Then, compute the fitness function F(Xo) if LMIs (41) and
(42) have feasible solution, otherwise, set F(Xo) = ∞.
Next, update the velocity and position of the particle swarm
according to formulas (48) and (49), and correct it based
on the boundary constraints. Using the updated positions of
the particles, we obtain the fitness function F(newXo) if
F(newXo) < F(Xo) and there are feasible solutions for
(41) and (42), and record the corresponding position Po.
Subsequently, search for the historical minimum fitness and
the corresponding position Pg in this iteration, and re-update
position and velocity of the particle swarm until the iteration
is terminated. Finally, the observer gains L(i) and K(i) are
obtained by solving (41) and (42) under the optimal bit rate
allocation protocol (i.e. position Pg).

Through the PSO-based co-design method for observers, we
achieve the optimal allocation strategy. This enables a thor-
ough analysis of how varying bit rates impact the estimation
performance of CNs.

Remark 6: Thus far, the impulsive estimation problem has
been explored for discrete-time CNs with Markovian switch-

Start

Initialize particle swarm parameters

Compute the fitness function  for 

each particle by solving LMIs (41) and (42) 

Update the velocity and

position of the particle swarm 

Update the fitness function for each particle 

by solving LMIs (41) and (42), and record 

updated particle’s position 

Search for particle swarm history minimum

fitness and corresponding position 

If the end 

condition is met

No

End

Yes

Fig. 2. Flowchart of the collaborative PSO algorithm.

ing topologies within the context of digital communication
networks. A significant focus has been placed on developing
a model that takes into account the constraints posed by
limited bit rates, reflecting the challenges of restricted trans-
mission environments in digital networks. A key achievement
of this study is the establishment of a sufficient condition,
as presented in Theorem 1, which ensures the mean-square
boundedness of the impulsive error dynamics. Furthermore,
Theorem 2 has addressed the determination of impulsive
observer gains under a given bit rate allocation. Moreover, to
enhance the estimation performance by minimizing the upper
bound of errors, Corollary 1 has attained a co-design of bit-rate
allocation strategy and optimal observer gains.

Remark 7: In contrast to existing research on state es-
timation for CNs [11], [32], this paper introduces several
key innovations: 1) the discrete-time CNs with Markovian
switching topologies is first addressed in the context of digital
communication networks, where the constrained bit rate of the
wireless network is considered as a crucial factor; 2) within
the established theoretical framework, a mode-dependent non-
fragile impulsive observer is designed. The upper bound of
the impulsive error dynamics is derived through a rigorous
analysis of the Lyapunov-like function on the impulse-jump
points; and 3) through the utilization of a PSO algorithm, we
focus on minimizing the objective function that encompasses
the upper bound of error dynamics. The co-design approach
involving observer gains and bit-rate allocation protocol is
proposed to enhance the estimation performance.

IV. ILLUSTRATIVE EXAMPLE

In this section, a simulation example is presented to demon-
strate the effectiveness of the impulsive observer under con-
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strained bit rates.
We consider the CNs composed of ȷ = 4 nodes with three

jumping topologies (i.e., Π = {1, 2, 3}). The system model
parameters are given as follows:

A1 =

[
0.55 0.13

0.15 0.51

]
, A2 =

[
0.6 0.2

0.1 0.45

]
,

A3 =

[
0.4 0.15

0.2 0.62

]
, A4 =

[
0.5 0.1

0.13 0.35

]
,

B1 =

[
0.3 0.3

0.2 0.2

]
, B2 =

[
0.2 0.1

0.3 0.25

]
,

B3 =

[
0.15 0.2

0.15 0.25

]
, B4 =

[
0.23 0.12

0.2 0.35

]
,

C1 =

[
0.3 0

0 0.8

]
, C2 =

[
0.5 0

0 0.6

]
,

C3 =

[
0.8 0

0 1

]
, C4 =

[
0.6 0.2

0 1

]
,

D1 = diag{1, 0.5}, D2 = diag{0.6, 0.7},
D3 = diag{0.5, 0.6}, D4 = diag{0.4, 0.6},
H1 = diag{0.3, 0.4}, H2 = diag{0.5, 0.2},
H3 = diag{0.6, 0.3}, H4 = diag{0.5, 0.5},

Q1(k) = diag{0.4, 0.5| cos(k)|},
Q2(k) = diag{0.2, 0.3| cos(k)|},
Q3(k) = diag{0.4| sin(k)|, 0.5},
Q4(k) = diag{0.6, 0.4| sin(k)|}.

Let three jump topologies and inner coupling matrix be

W (1) =


−0.4 0.2 0 0.2

0.3 −0.6 0.1 0.2

0.2 0 −0.3 0.1

0.2 0.1 0.1 −0.4

 ,

W (2) =


−0.6 0.2 0.2 0.2

0 −0.3 0.2 0.1

0.1 0.2 −0.4 0.1

0.3 0 0.2 −0.5

 ,

W (3) =


−0.5 0.1 0.3 0.1

0.2 −0.4 0.1 0.1

0.2 0.1 −0.5 0.2

0.3 0 0.3 −0.6

 ,

Γ =

[
0.19 0.1

0.4 0.2

]
.

The nonlinear function f(·) is of the following form:

f(a) = 0.38
(
|a+ 1| − |a− 1|

)
.

The external noise is set as υ(k) = 0.3 cos(k), and the
corresponding coefficient matrices are given by

M1 =
[
0.12 0.1

]T
, M2 =

[
0.1 0.12

]T
,

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20 25 30 35 40 45 50

Fig. 3. The impulsive triggering signals.

M3 =
[
0.11 0.03

]T
, M4 =

[
0.2 0.15

]T
,

S1 =
[
0.23 0.31

]T
, S2 =

[
0.25 0.23

]T
,

S3 =
[
0.2 0.2

]T
, S4 =

[
0.22 0.2

]T
.

Assuming that the maximum impulse triggering interval is
~̃ = 3. The impulsive signals are shown in Fig. 3. The initial
state and corresponding estimate are provided as

x1(0) =
[
0.4 0.2

]T
, x2(0) = −

[
0.2 0.2

]T
,

x3(0) =
[
0.1 0.3

]T
, x4(0) = −

[
0.2 0.3

]T
,

x̂1(0) =
[
0.1 0.3

]T
, x̂2(0) =

[
0.3 0.2

]T
,

x̂3(0) =
[
0.4 0.1

]T
, x̂4(0) =

[
0.2 0.3

]T
.

Based on the aforementioned parameter settings, the estima-
tion performance of CNs is analyzed under impulse strategy
and various bit rate allocation protocols.

Scenario 1: Firstly, we employ an average allocation strate-
gy (AAS) to compute the gains of the impulsive observer. This
strategy ensures that each node in the network is assigned
with identical bit rates, thereby guaranteeing an equitable
distribution of network resources. Based on Theorem 2, as-
sume that ρ1 = 1.01, ρ2 = 0.5, and the available bit
rates of the entire wireless network are U = 60. We have
U1 = U2 = U3 = U4 = ⌊U/4⌋ = 15 bps by AAS.
The parameters δȷ of the quantization region are chosen as
δ1 = 0.5, δ2 = 1, δ3 = 1.5, δ4 = 0.2.

Due to the introduction of a Markovian switching topology,
the error system exhibits stochastic behavior. We conduct-
ed t́ = 100 repeated simulation experiments and obtain
the average variables of the state, estimation, and error as
x̄ȷ(k) ,

∑t́
t=1 x

(t)
ȷ (k)/t́, x̃ȷ(k) ,

∑t́
t=1 x̂

(t)
ȷ (k)/t́ and

ēȷ(k) ,
∑t́

t=1 e
(t)
ȷ (k)/t́, respectively. x(t)ȷ (k), x̂(t)ȷ (k) and

e
(t)
ȷ (k) represent, respectively, the t-th simulation of xȷ(k),
x̂ȷ(k) and eȷ(k). Then, we plot the trajectories of state and
corresponding estimate for the four nodes in Figs. 4-5.

To validate the advantages of the proposed impulsive ob-
server in this work, we use ēn(k) to characterize the es-
timation error without impulse signal. Define S(∥ē(k)∥) ,∑k

k̂=1 ∥ē(k̂)∥ and S(∥ēn(k)∥) ,
∑k

k̂=1 ∥ēn(k̂)∥ for visually
illustrating the magnitude of estimation errors in both pulsing
and non-pulsing scenarios. As depicted in Fig. 6, the sum of
error norm S(∥ē(k)∥) with the impulsive observer tends to be
lower than that with the traditional observer.
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Fig. 4. Node state and estimation in the first dimension.
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Fig. 5. Node state and estimation in the second dimension.
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Fig. 6. Sum of error norm with and without impulsive signal.

TABLE I
EFFECT OF DIFFERENT MAXIMUM IMPULSE INTERVAL ON THE EUB

Maximum interval ~̃ 2 3 5 7

Upper bound
√
B1 2.0424 2.3865 2.9860 3.5128

TABLE II
EFFECT OF DIFFERENT PROTOCOLS ON THE EUB

U (bps) Protocol
Bit rate allocation

EUB
U1, U2, U3, U4 (bps)

60
AAS 15, 15, 15 15 2.3883
PSO 14, 17, 18, 11 2.3865 (↓ 0.075%)

50
AAS 12, 12, 12, 12 2.413
PSO 11, 14, 16, 9 2.3947 (↓0.758%)

40
AAS 10, 10, 10, 10 2.4957
PSO 10, 11, 12, 7 2.4373 (↓ 2.34%)

30
AAS 7, 7, 7, 7 3.2041
PSO 7, 9, 10, 4 2.6588 (↓ 17.019%)

20
AAS 5, 5, 5, 5 5.2774
PSO 4, 6, 7, 3 3.8800 (↓ 26.479%)

Because impulse mechanism plays a role in promoting
the convergence of the observer, denser impulse signals lead
to faster convergence of the error dynamics. Therefore, the
maximum interval ~̃ of impulse triggering instants affects
the estimation performance. Table I illustrates the relationship
between the interval ~̃ and the EUB

√
B1.

Scenario 2: In some specific application scenarios, adopting
an AAS might not be the most optimal approach, because
certain nodes may necessitate higher transmission speeds for
carrying out more complex tasks compared to others. In
such scenarios, to enhance the performance of the CNs, it
is advisable to use the EUB as a metric and employ the PSO
algorithm to dynamically adjust the bit rate allocation strategy.
The superiority of the PSO-based bit rate allocation strategy
over the AAS becomes evident through the following analysis.

Set the quantization-related parameters to be δ1 = 0.5,
δ2 = 1, δ3 = 1.5 and δ4 = 0.2. We consider a range
of available bit rates: 60, 50, 40, 30, and 20 bps. Both
the AAS and PSO algorithm are employed to assess the
estimation performance, and the results are summarized in
Table II. It is evident from Table II that the PSO algorithm not
only maximizes the utilization of network resources but also
optimizes bit rate allocation based on the specific demands of
each node, thereby enhancing the estimation performance for
the CNs. Furthermore, it can be inferred that with increasing
available bit rates U , the EUB gradually diminishes. This
phenomenon arises from the fact that a higher number of bit
rates leads to an enhanced uniform quantization resolution,
subsequently reducing coding-decoding errors.

V. CONCLUSION

In this study, we have addressed the impulsive estimation
problem within discrete-time CNs operating under the con-
straints of bit rates. A class of CNs characterized by Markovian
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switching topologies has been considered. The data trans-
mission between nodes and the observer has been conducted
through a digital network with limited bandwidth described
by bit rate limitations. We have developed a mode-dependent
nonfragile observer that leverages the power of the impulse
mechanism, providing the observer with robustness and rapid
convergence capabilities. Within this established framework,
we have derived a sufficient condition for the mean-square
boundedness of the error dynamics. Through the utilization of
the LMI technique, the mode-dependent impulsive observer
gains have been designed. Subsequently, the PSO algorithm
has been employed to facilitate the collaborative design of the
impulsive observer gains and the bit rate allocation strategy.
Finally, the effectiveness of the proposed impulse mechanism
has been demonstrated through a simulation example, and a
detailed analysis of the connection between estimation perfor-
mance and constrained bit rates has been conducted. Future
work will be concerned with an extension of state estimation
for the impulsive system under the limited bit rate constraint.
The estimator becomes passive as a result of the impulsive
dynamical behavior of the systems, which may provide a
different perspective on the estimation performance.
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