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Abstract: The working of the Internet of Things (IoT) ecosystem indeed depends exten-
sively on the mechanisms of real-time data collection, sharing, and automatic operation.
Among these fundamentals, wireless sensor networks (WSNs) are important for maintain-
ing a countenance with their many distributed Sensor Nodes (SNs), which can sense and
transmit environmental data wirelessly. Because WSNs possess advantages for remote
data collection, they are severely hampered by constraints imposed by the limited energy
capacity of SNs; hence, energy-efficient routing is a pertinent challenge. Therefore, in the
case of clustering and routing mechanisms, these two play important roles where clustering
is performed to reduce energy consumption and prolong the lifetime of the network, while
routing refers to the actual paths for transmission of data. Addressing the limitations wit-
nessed in the conventional IoT-based routing of data, this proposal presents an FL-oriented
framework that presents a new energy-efficient routing scheme. Such routing is facilitated
by the ADDQL model, which creates smart high-speed routing across changing scenarios
in WSNs. The proposed ADDQL-IRHO model has been compared to other existing state-of-
the-art algorithms according to multiple performance metrics such as energy consumption,
communication delay, temporal complexity, data sum rate, message overhead, and scala-
bility, with extensive experimental evaluation reporting superior performance. This also
substantiates the applicability and competitiveness of the framework in variable-serviced
IoT-oriented WSNs for next-gen intelligent routing solutions.

Keywords: Internet of Things (IoT); wireless sensor network (WSN); smart data routing;
federated learning; deep earning
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1. Introduction
WSNs have developed as a primary technology for sending and garnering data in

distinct application sectors because of the IoT device’s proliferation [1]. Because of the
frequent relocation of SNs and their dynamic nature, the IoT-allows to WSNs encounter
specific complexities concerning data routing. IoT-aided WSNs should route information
across different access points while handling effective transmission and preserving energy
for optimal functionality [2]. The conventional routing approaches may face complexities in
resolving these limitations efficiently, resulting in less network lifespan, enhanced latency,
and the selection of packet suboptimal nodes [3]. Often, the routing of data in IoT-based
WSNs faces multiple complexities. The SN’s frequent relocation presents extra complexities
and demands adaptive routing mechanisms for handling the dynamic network topologies
efficiently. The WSN’s resource-constrained character which contains the constrained com-
puting capabilities and energy availability, demands energy-efficient routing approaches
for enhancing the lifetime of the network [4]. The routing protocol’s scalability is significant
for allocating the huge IoT system’s deployment and a vast amount of data produced [5,6].
The heterogeneous and dynamic nature of IoT-based WSNs demands the routing mecha-
nisms that allocate distinct node types, such as non-mobile as well as mobile models while
handling efficient communication and reducing delay.

In real-time, the IoT-enabled devices can send and garner data, allowing for response
and validation of dynamic conditions in the system [7]. This is developed to be energy-
effective, which is vital for enhancing the SN’s operational lifespan in WSNs [8]. This
efficacy supports optimizing energy usage during the transmission of data as well as
acquisition. The IoT-aided devices can adapt to the dynamic environment, including dis-
tinct network conditions or node relocations, guaranteeing that data acquisition remains
efficient even in varying situations [9]. By automating data acquisition and minimizing
the requirement for manual analysis, IoT devices can minimize the operational expenses
related to data management and monitoring. This includes methods such as transmission
scheduling and path selection to guarantee accurate and effective data transmission among
nodes [10,11]. The experiment of the routing strategy in WSN is highly important for
enhancing the functionality of the network, increasing the lifetime of the network, offering
better data transmission, and helping the applications in real-time [12]. By employing
efficient routing optimization approaches, highly effective, intelligent, and reliable WSN
devices can be obtained [13,14]. The WSN routing optimization plays a significant part in
IoT, as it can enhance the efficiency of the energy utilization, and network functionality,
extend the lifespan of the network, offer better transmission, and help the real-time applica-
tions for diverse sectors. Hence, the routing optimization in WSN is highly important in
enhancing the application as well as the application of animal networking [15].

The conventional routing approaches for IoT-based WSNs often fail to resolve these
problems sufficiently [16]. These models have poor adaptability for relocating the node,
energy efficiency optimization, and also scalability [17–19]. Moreover, including Deep
Reinforcement Learning (DRL) models in routing models for WSNs remains undiscov-
ered [20]. The problem lies in the implementation of a smart data routing mechanism on
the basis of federated DRL that considers distinct attributes related to the routing [21],
and this contains the data sum rate, message overhead, time complexity, energy efficiency,
communication delay, and scalability while managing the optimal network functionality
and also node relocations. Typically, SNs have constrained energy resources [22]. The
conventional routing approaches may not efficiently optimize energy usage, resulting in
minimized network lifespan and premature node failure. To overcome these challenges, an
efficient routing model is implemented in this proposed model.
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The implemented data routing system for IoT-aided WSN contains the contributions
below.

• To perform data routing for IoT-aided WSN utilizing FL and the Q-learning-based ap-
proach. This data routing process allows the optimal path selection for transmitting the
data packets from source to destination without any loss of packets and interruptions.
The data routing process supports minimizing energy usage by choosing the optimal
paths, thus extending the life span of the network. Moreover, this process improves
the efficiency, reliability, and performance of the network by carefully selecting the
best paths for data transmission in IoT-based WSNs.

• To design IRHO for fine tuning the parameters. The IRHO is developed by enhancing
the exploitation stage of the traditional Hippopotamus Optimization Algorithm (HOA)
with the support of an iteration-based random factor. This enhanced exploitation stage
increases algorithm convergence and helps explore suitable solutions for the optimiza-
tion problems. Moreover, by upgrading the conventional HOA, the designed IRHO
mitigates the concern of premature convergence and also avoids high computations.
The IRHO supports DDQL in choosing its parameters optimally during the data rout-
ing and decision-making operations thus helping to enhance the Packet Delivery Ratio
(PDR), and minimize the delay and energy consumption.

• To present a novel FL-based ADDQL for performing the data routing and decision-
making operations in IoT-based WSN. FL enables the distributed SNs in a WSN to
collaborate and learn without transmitting original data to the intermediate server.
The designed ADDQL learns the routing decisions and optimal policies on the basis
of environmental feedback, thus optimizing the network performance. Here, the
DDQL parameters are optimally selected by the IRHO. Thus, the integration of FL and
ADDQL in data routing and decision-making operations in IoT-based WSN leads to
enhanced efficiency, energy savings, adaptability, robustness, privacy, and scalability.
These merits make the approach relatively suitable for dynamic, large-scale, and
privacy-sensitive applications.

The designed data routing strategy for IoT-aided WSN includes the upcoming parts.
Traditional data routing works are elucidated in Section 2, and the implementation of a
novel routing approach for IoT-aided WSNs with FL is detailed in Section 3. The devel-
opment of new IRHO and DDQL for the routing process is demonstrated in Section 4.
The elucidation of developed ADDQL and FL-based routing and decision-making with
multi-objective formulation is given in Section 5. The research validations and the summary
of a designed routing system are provided in Sections 6 and 7.

2. Existing Works
2.1. Related Works

In 2024, Suresh et al. [23] recommended a federated DRL in IoT-enabled WSNs for
routing high-speed data packets. This model employed federated DRL. The suggested
framework was employed for dispersing the learning operation across distinct access
points or nodes. The simulations were carried out to estimate the efficiency of federated
DRL routing. The outcomes illustrated that the model performed more effectively than
conventional techniques.

In 2024, Udayaprasad et al. [24] designed an energy-efficient routing approach for
large IoT models to improve the scalability of the network and load balancing. This model
decreases energy loss with the support of the cluster heads (CHs) in serious conditions that
improve energy balance.



Sensors 2025, 25, 3084 4 of 30

In 2023, Arafat et al. [25] implemented an efficient routing protocol. When estimating
the CH in each cluster, the residual energy and the node connectivity were concentrated.
The routing model was implemented to guarantee the energy-efficient delivery of packets.
The results disclosed that the model highly performed well with the conventional routing
approaches in distinct functionality measures.

In 2023, Samadi et al. [26] presented a routing mechanism that concentrated on han-
dling the varying topology because of the mobile node’s movement to enhance the lifespan
of the network and eliminate energy loss. This mechanism focused on minimizing the con-
trol packet’s overhead. The simulation solutions specified the effectiveness of the designed
method contrasted to other simulated mechanisms.

In 2023, Prabhu et al. [27] developed a smart routing approach on the basis of DRL. It
focused the attributes such as message overhead, sum rate of data, time complexity, and
so on for discovering an optimal path for improved functionality in IoT-allowed WSNs.
The recommended model was more efficient than other conventional approaches that
minimized the node power.

In 2024, Han et al. [28] introduced an enhanced algorithm for discovering the optimal
routing approach. The algorithm simulated the ant’s character in the operation of exploring
food and optimized the attributes. Through research outcomes, it could be discovered
that the introduced approach worked well. These optimization outcomes have positive
implications that can enhance smart city construction.

In 2023, Kumar et al. [29] have developed a hybrid algorithm for energy-effective
routing in WSNs. This approach was employed to discover the applicable CH in a prede-
fined search space and also discovered the suitable path from primary cluster sensors to
CH. The functionality validation illustrated that the suggested approach performed better
concerning the lifespan of the network.

In 2024, Bhimshetty et al. [30] explored an energy-efficient routing approach employing
RL-based WSNs. This model employed RL for discerning the ideal transmission path from
a primary to a sink node. The RL’s training was supported via a reward function that
included the data transmission efficacy and energy outflow. The approach was contrasted
with other routing approaches. The simulation outcomes illustrate the superiority of the
method.

2.2. Research Gaps and Challenges

The data routing strategy utilizing federated learning for IoT-enabled WSN represents
a complicated method designed to optimize the routing of data packets within dynamic
and resource-limited settings [31–33]. By enabling multiple IoT devices to design models
for better utilization of computational resources across devices, reducing the burden on
individual devices and federated learning minimizes the necessity for centralized data
collection. Furthermore, this routing strategy is capable of adapting network conditions
and user needs, resulting in more efficient routing decisions informed by real-time data.
Yet, existing routing models undergo various challenges, which are mentioned in the below
points.

• Conventional routing protocols in WSNs frequently result in high energy consumption
because of regular data transmission and suboptimal routing paths, which ultimately
shortens the network’s lifespan.

• Existing models fail to make effective use of available resources, such as bandwidth
and energy, leading to diminished performance and high latency. As the number
of IoT devices grows, these existing routing protocols find it challenging to sustain
performance and efficiency, resulting in congestion and delays in data transmission.
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• In existing models, the computational requirements of deep learning and the com-
munication overhead associated with federated learning still contribute to increased
energy consumption in resource-constrained sensor nodes.

• Existing routing models require more frequent updates and data exchanges between
devices and the central server, which leads to higher communication costs and energy
consumption.

• In existing models, data across different nodes are non-independent and identically
distributed, which leads to challenges in training a robust global model. Addressing
this issue proposed model requires optimal routing decisions based on energy con-
sumption patterns, leading to more energy-efficient paths and increasing the lifetime
of the network.

The features and limitations of existing IoT-based routing in WSN models are provided
in Table 1.

Table 1. Features and Challenges of Existing IOT-Based Routing In WSN.

Author Methodology Features Challenges

Suresh et al. [23] FDRL
• This method allows

individual nodes to retain
their data effectively.

• Communication delays are
high in this method.

Udayaprasad et al. [24] SDN

• This model allocates the
resources dynamically, which
enhances the security of data
transmission.

• It introduces latency and
performance overhead,
particularly in large-scale
networks.

Arafat et al. [25] DECR

• This method increases the
overall lifetime of a network
by communicating with
nearby CH rather than
transmitting data over long
distances.

• This method enhances the
complexity of the system and
the overhead.

Samadi et al. [26] IERMIoT

• It manages dynamic changes
in network topology, which
provides reliable
communication among the
network.

• As the number of systems in
an IoT network enhances,
maintaining efficient routing
becomes more complex in
this method.

Prabhu et al. [27] DRL

• DRL models enhance their
decision-making accuracy by
optimizing their policies
through comprehensive
training.

• DRL models often require
substantial computational
power.

Han et al. [28] IACA

• By optimizing routing paths
according to energy
consumption, the IACA
model prolongs the lifespan
of sensor nodes and enhances
the overall efficacy of the
network.

• IACA may become stuck in
local optima, resulting in
suboptimal routing
solutions.

Kumar et al. [29] WAOA

• WAOA significantly lowers
energy consumption by
optimizing the choice of
cluster heads and routing
paths

• The computational
requirements of the hybrid
algorithm might affect the
capabilities of certain nodes.

Bhimshetty et al. [30] FCM

• This model enhanced the
overall network performance,
resulting in improved data
delivery rates and minimized
delay.

• As the number of systems
within an IoT network grows,
the complexity of the RL
model may also rise, leading
to scalability issues.
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3. Implementation of Novel Routing Mechanism for IOT-Based WSN
with Federated Learning
3.1. IoT-Enabled WSN Architecture

The IoT-based WSN network [34] is a dynamic, interconnected, and large SN that
combines communication, processing, and sensing. Each SN is an autonomous domain
that garners environmental information with constrained communication, processing, and
power capabilities. The IoT-allowed WSN is a distributed system where the nodes garner,
execute, and send the information to a gateway or edge node. The edge node performs as a
middle node among the network infrastructure, including cloud systems and the internet
and nodes. The SNs are connected through wireless links, generating a topology with
distinct hops. Directly, each node interacts with its nearby nodes, placing within its limits or
may relay the information to a sink node with the help of intermediate nodes. Because of the
environmental factors, power constraints, and node mobility, the IoT-based WSN approach
concentrates on effective data routing and smart decision-making at a network edge. The
goal was to reduce the delay, guarantee data integrity and scalability, and optimize energy
usage for accommodating and enhancing IoT systems and their related volume of data.
Some factors are explained in this architecture to explain the distinct network tasks.

Signal strength: It estimates the strength of a signal obtained among nodes employing
the environmental attributes and the distance of a node. It is formulated in Equation (1).

Rssi = Qj − (Y + 10 m log(e)) (1)

Here, the attribute Rssi indicates the received signal strength indicator, and the term
Qj specifies the transmitted power. The node distance is given as e, and the path loss
exponent is specified as m. Finally, the signal attenuation constant is taken as Y.

Energy consumption: It validates energy utilized by a specific node at the time. It is
formulated in Equation (2).

F = Q × u (2)

Here, the energy and power consumptions are given as F and Q.
Rate of data transmission: It discovers how rapidly data can be sent among the SNs,

and it is expressed in Equation (3).

S = C log2

(
1 +

ξ

M0

)
(3)

Here, the noise power and the data transmission rate are given as Mo and S. Then, the
“signal-to-interference-plus-noise-ratio” and the available bandwidth are given as ξ and C.

Routing metric: It allows the routing decisions of the network on the basis of link
reliability R and the cost D with its weighting attributes α and β utilizing the formulation
in Equation (4).

SN = αD + βR (4)

Constraint: A constraint of energy F forces an energy usage limit of a node to ensure
the longevity of a network on the basis of a node’s maximum energy Fmax. The constraint of
bandwidth limits the available bandwidth for high-speed transmission of packets utilizing
its maximum rate Smax and rate of data transmission S. The constraint of node capacity
limits the processing and storage abilities E of a specific node and assigns a maximum
allowed ability Emax. The entire constraints are formulated in Equation (5).

F ≤ Fmax; S ≤ Smax; E ≤ Emax (5)
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Other constraints related to routing are on the basis of optimal path selection for
available high-speed data transmission. This contains hop constraints and link quality,
where the former guarantees the reliability of the optimal link R ≥ Rmin is attained while a
path is handled. The latter handles while sending data through hops I ≤ Imax by providing
the allowable hops Imax in a path. The architectural diagram of IoT-aided WSNs is provided
in Figure 1.
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3.2. Contributions of FL in IoT-Based WSN

The IoT-aided WSN utilizes interconnected sensors for gathering data from the physi-
cal environment and sending it wirelessly. It allows data-driven decision-making as well as
automation via the IoT. Nowadays, the concept of FL has been suggested for constructing
smart and privacy-improved IoT-aided WSN systems [35]. FL is a machine learning ap-
proach where distinct systems, such as IoT sensors, train a model collaboratively without
sharing their original data. The integration of FL in IoT-based WSNs allows collabora-
tive and decentralized training without data sharing. It enhances privacy and minimizes
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expenses. FL secures sensitive data as they are never shared from the sensors to an in-
termediate server, rectifying a primary concern in the applications of IoT. In the system,
the models are locally trained on the edge systems, thus minimizing the dependence on
the intermediate server and enhancing the robustness [36]. Moreover, FL can manage
distributed, large SNs efficiently. Additionally, FL can enhance the WSN’s scalability by
distributing the computational load across distinct SNs. The following advantages are
obtained from FL in the IoT-enabled WSN.

• Privacy preservation: FL enables the IoT systems to train the techniques collaboratively
without data sharing, which is significant for the applications of privacy sensitivity.

• Data heterogeneity: FL allows the model’s training on distributed and diverse data
sources, resulting in highly accurate and robust approaches.

• Reduced bandwidth consumption: By only sending the model updates instead of
original data, FL conserves bandwidth and reduces the network traffic, which is
relatively significant in the resource-constrained WSN domains.

• Flexibility and scalability: FC can scale to accommodate a huge amount of IoT systems
and adapt to varying network conditions, making it effective for distinct applications
of WSN.

• Continuous learning: IoT systems can learn and enhance their approaches on the
basis of new data continuously, thus enabling the overall network to adapt to varying
conditions and environments.

• Enhanced Model Performance: By employing data from a large range of systems, FL
can result in highly generalizable and accurate approaches.

The proposed model is innovative in that it is all-accommodating, flexible, and pre-
serves privacy while solving the energy-efficient routing problem in dynamic, resource-
constrained wireless sensor networks integrated with other IoT resources through the
Internet. The novel approaches, as opposed to the other usual centralized routing or static
clustering algorithms that tend to have a narrow capability in adaptability, suffer from high
energy depletion, and are difficult to scale, provide a dual-intelligence-based solution com-
bining the distributed learning ability of Federated Learning (FL) with the decision-making
force of Adaptive Double Deep Q-Learning (ADDQL). Then, such integration solves the
very problem of training routing models in a decentralized manner at every sensor node,
therefore ensuring null raw data exchange and protecting privacy and communication
costs; these enormous and very highly related subjects are still under-explored concerning
real-life IoT applications.

This is another key innovation of the aeration routing policies, which is tied to the design of
an ADDQL model endowed with a context-aware and reinforcement-learning-based mechanism,
which keeps evolving via continuous interaction with the dynamic WSN environment. Ongoing
localized decisions regarding routing for the IoT-based sensor networks, based on the real-time
energy status, data traffic, and quality of links for each node, offer solutions to what should be
called its own dynamic and heterogeneous characteristics of routing in IoT-based sensor networks
today. Another area that has been characterized is hyperparameter tuning of the ADDQL model
by the iteration-based random factor of Hippopotamus Optimization (IRHO), indicated now
to strengthen the novelty even further. The IRHO is used in the framework of this study to
maintain a balanced exploration-exploitation technique through the training process in optimizing
convergence speed and route identification accuracy, especially in energy-conserving and dense
WSNs. This metaheuristic optimization addition is original in its biological inspiration but also
in the unique position it holds in distributed routing-an area where classical optimizers have
difficulty in maintaining scalability and timing adaptability in real time.

The most notable aspect of novelty is a real-time dynamic clustering mechanism
that forms groups of sensor nodes in clusters: weak clusters and strong clusters. The
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intelligent distribution of load is put in place so that no node is overloaded, thereby
reducing the overall lifetime of the network. This then leads to dynamic clustering based on
the operational condition of the nodes, unlike static or probabilistic clustering types. This
measures up to improved energy balancing and fault tolerance. In essence, the intelligent
routing mechanism is proposed for a relook at intelligent decision-making, along with
energy optimization and data privacy functionalities working together in a joint regime: this
particularly targets the area of IoT-based WSN applications. By employing the obvious and
final combination of FL, RL, and nature-inspired optimization techniques, the current work
confines its effort to imaginatively introduce the concept of a new multi-level architecture,
which may turn out to be a leap ahead from the state-of-the-art in WSN routing by being
an intelligent and efficient solution outmatching the present benchmark solutions, both
through theoretical proofs and empirical observations. This novelty aspect carries a strong
significance for this work, as it addresses the future of IoT systems, which are having an
enormous increase in demand for secure autonomous energy-conscious communication.

The motivation behind the present research is to address the age-old problems that
have been energy-efficient and scalable routing in WSNs that fall under the IoT paradigm.
As IoT networks turn into huge decentralized systems with billions of interconnected sensor
nodes, timely and privacy-preserving data transfer only continues to be more complicated.
The conventional routing algorithms would hardly work owing to static settings, central-
ized decisions, or sheer heuristics: the fundamental dynamic behavior of WSNs would
be locked out by such factors detrimental to performance, namely, node mobility, varying
traffic patterns, and uneven energy depletion. They are equally oblivious, in one way or
the other, regarding some critical modern-day necessities such as data privacy, adaptive
learning, and a system-wide scale-out. Empowering individual sensor nodes to make
intelligent routing decisions autonomously, safeguard their data privacy, and dynamically
adapt to network changes without the use of centralized controllers is the thread running
through this paper. Furthermore, the routing in WSNs is an NP-hard problem and thus
makes a strong case for designing novel intelligent and distributed mechanisms that would
find a tradeoff amongst network parameters of energy consumption, communication delay,
overhead in message passing, and throughput for long-term sustainability.

This work integrates Federated Learning (FL) into the RL-based decision-making
framework and is perfected with a whole novel iteration-based random factor of the Hip-
popotamus Optimization (IRHO) parameter-tuning technique. With this kind of approach,
sensors can be made to operate in a completely disbursed, privacy-preserving routing
mechanism whereby each sensor node independently trains its model using local data and
shares only model updates. Whereas previous models rely either on centralized learning
models or static heuristics, this approach ensures none of the sensitive environmental
data leaves the local node, which is a major leap for privacy-preserving machine learning
in WSNs. Embedded within this framework is an Adaptive Double Deep Q-Learning
(ADDQL) model, which ensures that nodes are contextually sensitive and can adapt their
routing with conditions such as energy depletion of the node, quality of a link, and conges-
tion in traffic data. The provision of hyperparameter adjustment through IRHO offers a
totally different optimization level such that models learned under each node converge
much better and accurately when compared with conventional techniques such as Particle
Swarm Optimization or Genetic Algorithms. The model also provides a new, entirely
different clustering function that classifies nodes into weak and strong ones to facilitate
intelligent load balancing and pairing of clusters, thereby making data dissemination even
more efficient and improving energy utilization. So, in fact, this is a marriage of FL and
RL with nature-inspired optimization techniques that make it revolutionary with regard to
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routing in IoTs-based WSNs, making the solution robustly flexible, scalable, and powerful
in countering uncertainties in the topology of the network.

This research has numerous contributions to the field of intelligent IoT routing. First
of all, a privacy-preserving decentralized routing architecture is being introduced that
uses Federated Learning, making it quite apt for large-scale IoT systems where privacy
preservation and data independence are critical issues. Second, the introduction of the
ADDQL model presents an algorithm for Deep Reinforcement Learning, allowing continu-
ous learning and adapting to ever-changing WSN conditions such that routing decisions
change with the network state in order to be energy-efficient, low-latency, and overhead in
messages. Third, an optimizer called IRHO is proposed and appended to calibrate the learn-
ing parameters of ADDQL for further convergence and robustness in the decision-making
process. Fourth, the clustering technique presented here operates in near real-time while
factoring in the energy status of nodes and is thus load-balanced and ensures continuous
operation of the network. Finally, the proposed model has also been subjected to extensive
simulations and evaluations against contemporary state-of-the-art models to find it potent
in its performance on different metrics comprising energy consumption, communication
delay, data sum rate, and scalability. This altogether gives a completely intelligent stance to
the routing mechanism proposed for the next-generation IoT-WSNs, solving burning issues
on the same and marking critical routes for further research on distributed yet secure IoT
communications.

3.3. Detailed View of Proposed Routing Strategy

The IoT has attained much attention because of its large range of applications includ-
ing healthcare, smart industry, smart city, transportation, and so on. Often, the IoT links the
systems with smart sensing, processing, and communication capabilities. Nevertheless, the
IoT is still in the implementation phase concerning its applicability for security-based ap-
plications. The IoT-aided WSNs have obtained much attention because of their commercial
applications in various sectors. The utilization of swarm intelligence is also largely utilized
in IoT, where the amount of intelligent sensing systems are installed in wide regions. The
IoT supports handling communication across systems for larger-level transmission. The
energy efficiency-aided routing techniques play a significant part. It includes some sensing
systems connected to perform a common operation based on the targeted objective. The
applications of IoT-aided WSN must offer energy-efficient routing approaches for seamless
data transmission because of the limited memory, storage, energy, and computational
capabilities of WSN. However, conventional data routing approaches in IoT-based WSNs
face some problems, including scalability problems, varying network environments, high
energy usage, and so on. The SNs mostly operate on battery nodes, making energy effi-
ciency a serious concern for the longevity of the network. Moreover, the traditional routing
models themselves consume specific energy. In addition, the SNs may be deployed or
moved in dynamic environments, demanding routing models to adapt to the changing
environments. Therefore, this designed framework presents an efficient data routing ap-
proach in IoT-aided WSNs. Figure 2 showcases the designed data routing mechanism with
the help of FL-based ADDQL in IoT-based WSN.

The suggested approach is inspired to enhance the functionality of IoT-based WSNs by
designing a smart data routing mechanism on the basis of FL-aided ADDQL. By employing
the abilities of DDQL, the objective is to minimize the complexities of energy efficiency,
scalability, relocations, and the network dynamicity related to high-speed packets. The
developed framework includes FL for distributing the learning operation across distinct
nodes, allowing localized decision-making and improving the routing mechanism’s adapt-
ability. The primary novelty of this work includes combining the federated learning and
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DDQL models into the model of a smart data routing approach for IoT-based WSNs. The
developed model also focuses on the massage overhead, scalability, energy efficiency, com-
munication delay, data sum rate, and time complexity while developing a smart routing.
The developed FL-based ADDQL model supports attaining efficient load balancing and
improves the network functionality by utilizing double cluster pairing. The developed
work presents an FL-aided approach named ADDQL for providing smart routing for high-
speed data packets in an IoT-aided WSN. The hyper-parameters in DDQL are optimized
utilizing the IRHO, which improves routing efficiency. The primary contribution of this
developed model is its effective strategy in focusing on distinct routing factors to an IoT-
based WSN routing, improved adaptability to relocations of a node, enhanced scalability,
energy efficacy, and the utilization of FL-based ADDQL for distributed decision-making
operations in the routing task. Moreover, in the developed framework, the data load is
divided into cluster pairs with a weak and strong SN. This division allows processing the
load balancing in an ideal IoT-based WSN. Last, the designed framework is utilized to
process the learning operation over distinct nodes, and it allows for attaining localized
decision-making solutions. The performance validations of this model are performed for
this framework over existing approaches. The outcomes portray that the implemented
system is effective and provides seamless data transmission.
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4. Development of a New Iteration-Based Random Factor of HO and
Double Deep Q Learning for Routing Process
4.1. Developed IRHO

The IRHO is implemented newly in this developed framework.
Purpose: The developed work employs DDQL for performing a smart data routing

strategy in IoT-aided WSNs. For obtaining the ideal network performance, the DDQL
parameters are optimized during a routing operation. The IRHO is implemented for fine-
tuning the developed DDQL’s hyper-parameters. By properly fine-tuning these DDQL
parameters, such as back size, number of episodes, and number of steps, data routing
becomes energy efficient and also obtains more throughput and PDR. In addition, the delay
in the data routing process is relatively minimized.

Reason for choosing HOA: The designed IRHO draws from the inspiration of tradi-
tional HOA. The HOA [26] mainly considers the behavior of hippopotamuses. The HOA
is a trinary phase approach. By balancing exploitation and exploration, the conventional
HOA supports the search operation. The HOA provides relatively effective solutions and
helps resolve complex engineering design complexities. There are numerous optimization
algorithms invented in the past years for rectifying the challenges of optimization problems.
However, a very limited number of algorithms provide satisfactory solutions, and these
algorithms also encounter the primary issues of local optima and premature convergence.
The conventional HOA properly escapes from these limitations and supports achieving
optimal outcomes. Hence, the conventional HOA is taken for this work.

Novelty: The developed system considers the HOA for optimization tasks. Unfortu-
nately, the HOA also has an issue. In the exploitation stage, the HOA leverages a random
factor while updating the positions. The random integer is normally chosen between
0 and 1 in the conventional HOA. Most times the conventional HOA takes more time to
complete the iteration because of its random integer. This much time utilization may have
an impact on the designed data routing process. Therefore, properly handling this issue
is necessary. Hence, the IRHO is developed. The IRHO presents a new random factor
which is derived on the basis of an iteration integer. This random factor efficiently handles
the position-updating process during exploitation. By properly performing the position
updating, with the support of this iteration-based random factor, the algorithm becomes
powerful and increases the performance of the overall operation. Equation (6) gives the
expression of an iteration-based random factor.

Ri = −I × 0.02
Mi

(6)

Here, the current and the maximum iterations are specified as I and Mi. In addition,
the designed new random factor is indicated as Ri. By utilizing this random integer, the
exploitation phase’s positions are updated and are expressed in Equation (7).

KHippo
b : kHippo

bs = kbs + Ri.
(

lllocal
s + τ1.

(
uulocal

s − lllocal
s

))
(7)

Here, the new bth hippopotamus’s position is given as kHippo
bs for sth decision variable.

The old bth hippopotamus’s position is given as kbs for sth decision variable. The lower as
well as upper regions of the sth search space are provided as lllocal

s and uulocal
s . Moreover,

τ1 is a random attribute that is chosen arbitrarily from different scenarios. The modified
arbitrary integer is given as Ri, which is expressed in Equation (6).

Hence, the IRHO is introduced by modifying the exploitation phase of existing HOA
with the assistance of a new iteration-based random factor, which helps to improve the
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performance rate and enhance the parameter tuning in the data routing process. Figure 3
displays the flowchart of the designed IRHO.
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4.2. Double Deep Q Learning

DDQL [37] is an efficient approach that is highly utilized in IoT-based WSN applica-
tions. The concept of double Q learning is developed for minimizing overestimation by
dividing the max process in a target into action validation and action selection. Though not
entirely decomposed, the target model present in a DQN model offers a natural member
for a next value function without the need to present extra models. By incorporating DQN
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and double Q learning, DDQL is presented. Its update operation is similar to the DQN but
exchanges the target ZDQN with ZDDQN as given in Equations (8) and (9).

ZDQN = Su + γ max
Bu+1

R(Tu+1, Bu+1; θ) (8)

ZDDQN = Su + γR
(

Tu+1, argmax
Bu+1

R(Tu+1, Bu+1; θ); θ

)
(9)

Here, in comparison to the double Q learning, the second network’s weight θ− is
exchanged with the target network’s weight θ for the estimation of the present greedy
policy. The attribute t ∈ T indicates the limited state region and the variable Q indicates
the evolution behavior. The definite response region is indicated as b ∈ B that works for
an actor. The reward behavior is taken as S, and the rebate aspect is defined by γ, where
γ → [0, 1] for a defined reward.

The upgrade to the target network remains unchanged from DQN and remains an
online network’s periodic replica. This DDQL is maybe the minimal variation to DQN
towards the double Q learning. The objective is to obtain the majority of the advantage of
double Q learning while keeping the remaining DQN model intact for a better comparison
and with less computational overhead.

5. Elucidation of Developed Adaptive Double Deep Q-Learning and
FL-Based Routing and Decision Making with Multi-Objective
Formulation
5.1. Introduced ADDQL with FL for Routing and Decision Making

The developed FL-based ADDQL approach is developed for a high-speed routing
process in the IoT-based WSN. This process concentrates on utilizing the developed FL-
based ADDQL for optimizing the routing decisions. This approach integrates the local
decision-making at separate SNs with global coordination for obtaining adaptive and
effective routing mechanisms. The developed work mainly utilizes the DDQL approach
for routing as well as decision-making. In conventional deep Q learning, the Q-values
overestimation can happen because the same neural network is being utilized for both
action evaluation and action selection. DDQL mitigates this problem by employing two
networks: one for choosing actions and another for estimating them. This supports obtain-
ing highly stable and accurate decisions in WSNs, where accurate data routing is crucial.
Moreover, the WSNs are relatively dynamic environments with dynamic topologies and
changing traffic patterns. DDQL can adapt to these variations by learning and tuning the
routing methods continuously. This is specifically significant in IoT networks, where the
environment can quickly vary because of node failures, variable data traffic, and topology
changes. However, DDQL demands parameter tuning. Without optimization of DDQL,
the agent may take an excessive amount of time to learn the optimal policies or can fail
to converge to a better solution within a specific time. To rectify these issues, the DDQL
parameters are optimally selected with the support of a newly designed IRHO. The IRHO
is specially developed for rectifying optimization problems such as parameter optimization.
This algorithm introduces an iteration-aided random integer for improving the exploitation
phase thus helping to achieve the optimal solutions in a less amount of time. Thus, ADDQL
is designed.

In the majority of IoT-aided environments, sensitive data are produced at nodes,
and sharing original data with a central server may raise privacy concerns. In addition,
centralized learning techniques can be impractical in large networks, where large amounts
of data and a large number of systems make it complex for an intermediate server to handle
the entire computations. Therefore, FL is combined with ADDQL. FL-based ADDQL
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is a powerful strategy for data routing and decision-making in IoT-based WSNs. FL
provides a decentralized way of training the models by enabling distinct systems to train
collaboratively in a global approach without data sharing. This is highly helpful for IoT-
aided WSNs, where energy efficiency, communication overhead, and data privacy are
significant factors. Thus, FL-based ADDQL is designed. The primary components of
suggested FL-based ADDQL are provided below.

Local decision-making: The routing decisions are made by an individual agent at each
IoT node on the basis of local data and policies learned via ADDQL. Initially, each node in
the network monitors its local environment continuously. On the basis of the current state,
the agent selects an action. ADDQL chooses an action utilizing the online network. Given
the present state, the online network estimates the Q-values for entire actions and chooses
the action with the greatest Q-value. Once the action is chosen, the node interacts with its
environment, resulting in a new state. This interaction also leads to a reward that shows the
action state’s success. The primary aspect of ADDQL is learning from the rewards obtained
after taking the actions. Equation (10) supports Q-value estimation.

Q(r, c) = Q(r, c) + α ×
(
x + γ max Q

(
r′, c′

)
− Q(r, c)

)
(10)

Here, the term Q(r, c) indicates the Q-value for a pair of state actions (r, c). The
learning rate is considered as a and the reward attained from an action in a state is taken
as x. The maximum Q-value for the subsequent state is taken as max Q(r′, c′), which is
estimated utilizing the target network. The discount factor is specified as γ .

Global coordination: At each node, the local decision is coordinated via the FL model.
The improved nodes perform as intermediate coordinators, gathering data from individual
SNs and supporting the coordination and training operation. They collect the Q-values
and the local policies from involving nodes for upgrading the global routing policy. For the
policy aggregation, the global coordination is specified in Equation (11).

θh = θh + β∇θm (11)

Here, the local policy parameters are specified as θm, and the global policy parameters
are taken as θh. The local policy gradients and the aggregation parameter are provided as
∇θm and β.

Rewards: The rewards in the designed FL-based ADDQL are developed for incen-
tivizing reliable and energy efficient routing decisions. The rewards are determined on
the basis of measures, including PDR, energy consumption, transmission delay, and other
performance measures. Equation (12) provides the reward estimation.

x = α1F +
α2

δ
+ α3E (12)

Here, the transmission delay is given as δ, and the energy consumption is taken as F.
The PDR is specified as E and the weighting factors are indicated as α1, α2, and α3.

By continuously upgrading the local policies and correlating them via the FL model,
the developed system tunes the decisions of routing in the IoT-based WSNs. It allows
effective and adaptive routing mechanisms that decrease latency, enhance energy efficiency,
and improve network functionality.

Intra-cluster routing: In the developed FL-based ADDQL, the phase of intra-cluster
routing concentrates on effective routing within separate clusters. It includes packet
forwarding, next hop selection, routing decision, CH selection, and cluster formation.

(i) Cluster formation: In this process, the nodes are categorized into clusters for
supporting localized coordination and routing. This operation utilizing K-means clustering
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is on the basis of distinct criteria, including node capabilities, energy level or proximity.
The validation of the distance between the center and the node is specified in Equation (13).

d(y, p) =
√(

vy − vp
)2

+
(
ry − rp

)2 (13)

Here, yth node coordinates are specified as
(
vy, rv

)
, and the variable

(
vp, rp

)
specifies

the coordinates of the cluster center (p). Hence, the SN is allocated to a cluster with a
nearby cluster center.

(ii) Selection of CH: Within each cluster, the CH is chosen to perform as the intermediate
coordinating node. The selection operation can focus on attributes such as communication
range, residual energy, or other measures for recognizing the highly applicable node as
a CH. One technique is to select the node with the greatest residual energy as a CH. The
selection of CH is on the basis of residual energy as formulated in Equation (14).

CH = arg max(Fc) (14)

Here, cth residual energy is specified as Fc.
(iii) Routing decision: In this operation, each non-CH node within a cluster utilizes

the coordinated FL-based ADDQL approach for making the routing decisions on the basis
of learned policies and local observations. The parameters of local policy validate θm

the available action’s Q-values, assisting the decision-making operation of routing. The
selection of routing action on the basis of θm is formulated in Equation (15).

Bj = arg max
(
Q
(
rj, c; θm

))
(15)

Here, the variable Q
(
rj, c; θm

)
indicates the Q-value of c in on rj the basis of θm. The

variable Bj indicates the routing action for j.
(iv) Next hop selection: After estimating the routing decisions, each node chooses

the subsequent hop on the basis of learned policies and existing nearby nodes within its
transmission, such as residual energy, link quality, or the Q-values related to the subsequent
hop choices as formulated in Equation (16).

Nhj = arg max
(
Q
(
rj, c; θm

))
(16)

(v) Packet forwarding: Once the subsequent hop is chosen, a node sends the packet
to a selected neighbor, allowing it to move the cluster to its destination. The operation of
packet forwarding continuously starts until the packet meets the sink or CH, based on a
network framework and it is formulated in Equation (17).

Forward
(

packet, Nhj
)

(17)

This specifies sending a packet to a chosen subsequent hop Nhj for then routing in a cluster.
Inter-cluster routing: This stage concentrates on effective routing decisions and data

transmission among distinct clusters in IoT-aided WSNs. This state includes packet for-
warding, inter-cluster communication, and path selection.

(i) Inter-cluster communication: It allows the replacement of data and information
among CHs or specific nodes specifying each cluster. It supports the cooperation and
coordination for effective routing decisions and transmission of inter-cluster data. The path
selection is expressed in Equation (18).

W = arg max(Q(r, c; θh)) (18)
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Here, c′s Q-value in r on the basis of θh is indicated as Q(r, c; θh). The path with the
greatest Q-value is chosen as an ideal path for the communication of inter-cluster.

The stages, such as route selection, packet forwarding, and a next hop selection, are
the same as in intra-cluster routing.

(ii) Inter-cluster data transmission: The packet forwarding is performed until it meets
the final cluster, where it is obtained by a specific node or destination CH. The inter-cluster
data transmission operation allows interaction among distinct clusters in a WSN. The
developed FL-based ADDQL approach utilizes decision-making and coordinated learning
operations for optimizing the inter-cluster routing operation. By utilizing the FL model, the
Q-values and the local policies involving SNs are gathered and coordinated for enhancing
the total routing functionality and resource usage in the communication of the inter-cluster.
Figure 4 shows data routing and decision-making operations in the IoT-aided WSN utilizing
developed FL-based ADDQL.
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developed FL-based ADDQL.

5.2. Multi-Objective Formulation

The designed ADDQL utilizes the IRHO for fine tuning the parameters of DDQL. The
fine-tuning of DDQL’s parameters, including the number of steps, number of episodes, and
batch size is important for improving the overall network functionality and also making
an effective decision-making process. The objective function of this operation is shown in
Equation (19).

Ob = arg min
{Ns ,Ne ,Bz}

[
1

Tp
+

1
Pdr

+ Ec + De
]

(19)
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Here, the optimized number of steps in DDQL is considered as Ns and is chosen
among [1000–10000]. The optimized number of episodes in DDQL is considered as Ne and
is chosen among [10000–100000]. The optimized batch size in DDQL is considered as Bz

and is chosen among [4–128]. In this process, the throughput and PDR are maximized, and
also the energy consumption and the latency are minimized.

Throughput: It defines the rate at which data are successfully transmitted via the
network. It is expressed in Equation (20).

Tp =
Tpack

Ttime
(20)

Here, the successfully transmitted total number of packets and the overall time utilized
for delivering the packets are indicated as Tpack and Ttime.

PDR: It is the ratio of the packet’s number Tdeli delivered successfully to a destination
to an overall packet number Tpase transmitted by the source node. It is formulated in
Equation (21).

Pdr =
Tdeli
Tpase

(21)

Energy consumption: It defines the overall amount of energy utilized by SNs during
the transmission of data, reception, and other tasks. It is expressed in Equation (22).

Ec = Et + Er + Ei (22)

Here, the transmission energy, reception energy, and the idle energy are given as
Et, Er, and Ei.

Delay: It defines the time it utilizes for a packet to transmit from a source to destination
nodes. It is formulated in Equation (23).

De = Dt + Dp + Dq + Dr (23)

Here, the “transmission delay, propagation delay, queuing delay, and processing delay”
are indicated as Dt, Dp, Dq, and Dr.

Thus, the IRHO helps to fine tune the parameters of DDQL and helps to achieve
optimal performance in IoT-enabled WSN. Figure 5 displays the solution encoding diagram
for parameter tuning.

The advanced additive double deep Q-learning with iteration-based random objective
hippopotamus optimization (ADDQL-IRHO) approach is based on core design strategies
for addressing the challenges of IoT-based WSN environments. First, the amalgamation of
Federated Learning into ADDQL provides intelligent decentralized learning among sensor
nodes, thus cutting off the excessive communication that would have been incurred by
having a central data collection process. This design allows optimized intelligent decisions
to be made in deciding a real-time route based on learned experiences and localized
observations rather than having to go for the centralized collection of data. Such autonomy,
as opposed to centralized methods for routing, enhances dynamic adaptability to changing
topologies and variable data loads.

The use of this nice factor of IRHO has led to tuning important parameters of the
ADDQL model for faster convergence and higher preciseness in routing. This algorithm
is based on the intelligent behavior of hippopotamuses in dynamic environments. There-
fore, it simulates the well-explored-exploit balance in the learning model. Consequently,
ADDQL-IRHO can identify the best routing paths using less energy and more yield and
quickly under high traffic or mobility conditions. Furthermore, the dynamic clustering of
nodes into weak and strong pairs in the model provides a better load-balancing scheme
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that minimizes the stress level on energy-constrained nodes and will last the lifetime of the
entire network.
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Apart from these aforementioned factors, the strength imparted to the model against
scalability and the growing density of networks is one of the other major distinguishing
performance factors. Where old architectures die with ever-increasing latency and message
collision with growing numbers of nodes, the new approach, which is based on FL, survives
and thrives through efficient, consolidated routing alone across all nodes. This has also
been further confirmed with experiments that show that the proposed method outperforms
existing algorithms on various criteria, such as reduced temporal complexity, minimized
message overhead, and a considerably improved data sum rate. These bright spots point to
the ability of the proposed method as potentially scalable, energy aware, and intelligent for
modern applications in the IoT-based wireless sensor networks.
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6. Results and Discussion
6.1. Simulation Setup

An effective data routing mechanism in IoT-aided WSN was executed by the MATLAB
2020a platform. The designed system leveraged the IRHO, which utilized “10 populations,
100 maximum iterations, and 3 chromosome lengths”. The traditional algorithms as well as
methods such as Gazelle Optimization Algorithm (GOA) [38], Arithmetic Optimization
Algorithm (AOA) [39], Yellow Saddle Goatfish Algorithm (YSGA) [40], HOA [26], FDRL [1],
SDN [2], DRL [5], and DDQL [38] were utilized for examining the designed framework’s
performance. The developed work utilized state values such as 15, 30, 45, 60, and 75 for
validation. The state defines the present condition or situation of the environment that the
agent is in.

6.2. Performance Measures

The following measures are utilized for examining the efficacy of the designed data
routing strategy.

The measures such as throughput, PDR, energy consumption, and delay are explained
in Section 5.2.

Message overhead: It defines the number of extra control messages required to deliver
data packets successfully, contrasted to the number of original measures being transmitted.

Sum rate: It defines the overall achievable data rate of entire links in a network, which
is estimated by adding an individual link’s data rate.

Time complexity: It estimates the efficacy of a routing approach by validating how the
runtime varies as the input data size increases.

Accuracy: It defines how closely the optimal path matches the original path for timely
data transmission.

6.3. Convergence Analysis

Figure 6 showcases the designed IRHO-ADDQL’s convergence estimation over ex-
isting algorithms. For a distinct number of nodes, the designed IRHO’s functionality in
ADDQL-aided data routing and decision-making operations is estimated. At the 20th
iteration in a 50th node value, the designed IRHO-ADDQL’s cost function is decreased to
50% of GOA-ADDQL, 45% of AOA-ADDQL, 46% of YSGA-ADDQL, and 47% of HOA-
ADDQL, respectively. The decreased cost function rates in all node values portray that the
implemented IRHO provides optimal and promising solutions for the ADDQL model than
the conventional algorithms. In addition, the enhanced convergence rate of IRHO-ADDQL
ensures that the algorithm can choose optimal solutions quickly, even in complex scenarios.

Convergence analysis was conducted based on different node abundances, i.e., 50, 100,
150, and 200, thus illustrating how well and efficiently the proposed method minimizes
the cost function with different performing iterations across mixed scales of wireless sensor
networks (WSNs). During some instance-in-point, for example, in the 20th iteration for a
50-node network, about a 50% reduction in the cost function is shown by the IRHO-ADDQL
model in comparison to GOA-ADDQL, 45 % compared to AOA-ADDQL, 46% against YSGA-
ADDQL, and 47% against HOA-ADDQL. These reductions show that IRHO is vastly superior
in directing the ADDQL framework to energy-efficient and optimal routing solutions in the
early stages of convergence, which is significant in dynamic IoT settings because of the scarcity
of computational and energy resources and an emphasis on fast decisions.

The cost function in this context incorporates a composite performance index con-
sisting of energy consumption, routing delay, node load balancing, and communication
overhead, and a lower cost means the routing decisions are better optimized in these key
attributes. The algorithmic inner working of the IRHO algorithm introduces adaptive
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randomness that responds to the feedback given by the iteration in order to diversify the
search space during the initial learning phases and focus the search near the optimal area
during the later stages, thus balancing exploration and exploitation well. A departure from
traditional optimizers, which tend to become trapped in local minima in high-dimensional
dynamic optimization problems, IRHO is designed for steady and aggressive descent over
the cost function. It also exhibits stable convergence across different network scenarios, as
opposed to working under definite circumstances alone, thus providing upward support
for its scalability and applicability in deploying both small-scale and large-scale scenarios
of IoT-based WSN.
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6.4. Statistical Analysis

Table 2 illustrates the statistical examination of implemented IRHO-ADDQL over
other algorithms. This examination leverages the statistical factors for analyzing IRHO’s
functionalities in the designed ADDQL. Here also, distinct node values are selected and
showcase that the designed IRHO-ADDQL shows stable and reliable performance in all
number of node values. At the best factor in the 100th node value, the designed IRHO-
ADDQL’s performance is increased by 33% of GOA-ADDQL, 32% of AOA-ADDQL, 30%
of YSGA-ADDQL, and 26% of HOA-ADDQL, respectively. Therefore, it is guaranteed
that the IRHO is relatively effective in fine-tuning DDQL parameters and also helps in
enhancing the network throughput and PDR rates more highly than the other conventional
algorithms. So, the data routing process in the IoT-enabled WSN becomes efficient.
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Table 2. Statistical Examination of Implemented IRHO-ADDQL over Traditional Algorithms Using
Different Node Values.

Terms GOA-ADDQL [30] AOA-ADDQL [31] YSGA-ADDQL [32] HOA-ADDQL [26] IRHO-ADDQL

Number of nodes:50
Best 1.367221717 1.327008471 1.315670531 1.386346225 1.011547396
Worst 2.831332739 3.980690416 1.626239545 1.413434657 3.05679448
Mean 1.525548043 1.556621933 1.377247497 1.399890441 1.138022068
Median 1.367369675 1.327008471 1.365544027 1.399890441 1.031302392
Standard deviation 0.301230716 0.547754415 0.066549634 0.013544216 0.343626462
Number of nodes:100
Best 1.332472208 1.326900929 1.309793984 1.263856025 1.005139131
Worst 3.693216301 2.827998823 2.15336773 1.308682711 1.848050982
Mean 1.493420211 1.443468693 1.431838731 1.298085009 1.077143893
Median 1.36076299 1.326900929 1.309793984 1.308682711 1.005139131
Standard deviation 0.362508366 0.309654231 0.271264286 0.018859319 0.228424785
Number of nodes:150
Best 1.431118549 1.37264242 1.400124174 1.28150209 1.119324721
Worst 2.53964408 2.211246869 3.855050805 2.658863984 1.840534949
Mean 1.596759987 1.6173011 1.552274902 1.472464296 1.175925251
Median 1.431118549 1.583170264 1.400124174 1.366782707 1.135191288
Standard deviation 0.321650977 0.171043547 0.38560915 0.39866155 0.167977677
Number of nodes:250
Best 1.270923584 1.279334609 1.274006028 1.258950045 1.032041414
Worst 3.520591482 3.625904359 2.436391899 1.517943624 1.057422979
Mean 1.580626418 1.597013528 1.498258271 1.351401436 1.039655884
Median 1.270923584 1.579958457 1.30830824 1.258950045 1.032041414
Standard deviation 0.49503774 0.454303056 0.358325157 0.11414003 0.011631294

6.5. Reward Analysis

The developed IRHO-ADDQL’s reward analysis is performed in Figures 7 and 8 over
conventional algorithms and the methods utilizing distinct state values. The developed
model includes DDQL, which is a reward-penalty-aided approach. By varying state values,
reward evaluation is performed for this designed IRHO-ADDQL. At the 10th episode value
in the 60th state, the suggested IRHO-ADDQL’s reward is enhanced by 10.46% of FDRL,
5.1% of SDN, 9.97% of DRL, and 8.75% of DDQL, respectively. The experimental validations
portray that the implemented IRHO-ADDQL network achieves relatively higher rewards
than the conventional approaches and ensures seamless data transmission in the IoT-based
WSN. In addition, by obtaining high rewards, the developed IRHO-ADDQL provides
accurate decisions in the routing process.

The comparative analysis of reward of the proposed IRHO-ADDQL model from many
of the traditional and state-of-the-art reinforcement learning-based methods, namely FDRL
(Federated Deep Reinforcement Learning), SDN (Software Defined Networking-based
RL), DRL (Deep Reinforcement Learning), and DDQL (Double Deep Q-Learning), under
different state conditions with specific state values of 15, 30, 45, 60, and 75 are presented in
Figure 7. This research specifically is very critical in judging how effectively the framework
of IRHO-ADDQL ends up learning the optimal routing policies maximizing the cumulative
reward over multiple episodes and, thus, for routing in WSNs based on IoTs, means much
cleverer or smarter decisions associated with improving energy efficiency, latency, and
reliability in packet delivery. The reward system of this framework follows the dynamic
reward-penalty structure: positive routing (such as low-latency or low-energy paths) is
rewarded; poor performance (such as route loops or high energy-consuming paths) is
penalized. Quite interestingly, at an important benchmark, the 10th episode, at the 60th
state, in the case of IRHO-ADDQL, it outperformed all other methods, i.e., FDRL by 10.46%,
SDN by 5.1%, DRL by 9.97%, and even DDQL itself by 8.75%.
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This difference in performance levels reflects how the iteration-based random factor
Hippopotamus Optimization method has been brought into the standard DDQL framework,
as the optimizer efficiently manages to equip action-value updates and policy selections in
an intelligent yet decentralized way. Improving the reward at all state values indicates that
the model is well-protected and very flexible with respect to continuously and dynamically
changing environments because conditions and states frequently differ in WSNs. High
reward acquisition not only indicates that the model predicts the most efficient routes
under fluctuating conditions of network dynamics but also ensures fast convergence of the
learning process into optimal policies with better generalization over unseen states. So,
the IRHO-ADDQL emerges even superior to being on a numerical scale as it succeeds in
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showing consistently high-quality decision-making processes that significantly enhance
the standard of real-time, distributed routing in IoT-based WSN frameworks.
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6.6. Penalty Analysis

The implemented IRHO-ADDQL’s penalty analysis is shown in Figures 9 and 10
over traditional heuristic approaches and the methods utilizing distinct state values. This
experiment also considers the distinct state values for analyzing the rewards of the sug-
gested IRHO-ADDQL. At the 15th episode in the 75th state, the designed IRHO-ADDQL’s
penalty is minimized by 58.75% of GOA-ADDQL, 59.37% of AOA-ADDQL, 59.12% of
YSGA-ADDQL, and 56.25% of HOA-ADDQL, respectively. The minimized penalty values
of the developed IRHO-ADDQL ensure that the routing and decision-making operations
in the IoT-enabled WSN become more accurate and robust than the other techniques.



Sensors 2025, 25, 3084 25 of 30

Moreover, the minimized penalty values guarantee the IoT-based WSN network becomes
reliable and optimal for transmitting data packets seamlessly and rapidly.
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6.7. Performance Analysis

Figure 11 showcases the performance investigation of the designed IRHO-ADDQL-
aided data routing mechanism in IoT-based WSNs. The designed approach utilizes FL
and ADDQL for performing the routing and decision-making operations. When the node
value is 200, the designed IRHO-ADDQL’s throughput is enhanced by 4.7% of GOA-
ADDQL, 5.88% of AOA-ADDQL, 5.64% of YSGA-ADDQL, and 5.41% of HOA-ADDQL,
respectively. This examination also showcases that the suggested IRHO-ADDQL provides
lower delays, message overhead, time complexity, and energy consumption than the
traditional algorithms. On the other hand, the designed IRHO-ADDQL achieves a higher
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PDR and sum rate than the existing algorithms. Therefore, the designed IRHO-ADDQL is
a highly promising approach for data routing than the other algorithms in IoT-based WSN.
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Sensors 2025, 25, 3084 28 of 30

6.8. Training Accuracy Analysis

Figure 12 illustrates the training accuracy validation utilizing epoch values. In this
investigation, the loss and accuracy of the training process are analyzed. When the epoch
value increases, the designed IRHO-ADDQL’s training accuracy is enhanced, while the
designed IRHO-ADDQL’s training loss is reduced drastically. Hence, it is proved that the
suggested IRHO-ADDQL approach in the data routing process is highly efficient and provides
optimal performance for the IoT-based WSN applications than the conventional approaches.
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7. Conclusions
This research study has presented an intelligent data routing system for IoT-based

WSNs based on FL-aided ADDQL. This work primarily focused on issues such as lim-
ited energy efficiency, scalability, node relocations, network dynamicity, and so on. This
work introduced an FL-aided approach named ADDQL for providing optimal routing for
the data packets in IoT-based WSNs. Here, the IRHO was supported for optimizing the
hyper-parameters of DDQL, which improved the routing efficiency. The developed system
provided better routing and distributed decision-making solutions in varying scenarios.
In the designed approach, the instant data load is partitioned into cluster pairs with weak
as well as strong SNs. ADDQL was utilized for performing the learning task over distinct
nodes, and it enabled the attainment of localized decision-making solutions. The perfor-
mance has been investigated for this approach over traditional works. The PDR of the
developed IRHO-ADDQL increased by 5.74% of GOA-ADDQL, 3.44% of AOA-ADDQL,
4.59% of YSGA-ADDQL, and 4.02% of HOA-ADDQL, respectively, at the 200th node value.
The experiment ensured that the designed smart data routing system for IoT-based WSN
minimized the delay, time, and message overhead and maximized the throughput and
PDR. Thus, the developed framework provided an effective mechanism for routing in IoT-
based WSN and enhanced the scalability and energy efficiency. However, the developed
framework was not applied in real-time IoT-based WSN applications, which possess com-
plexities for routing approaches. In future work, the developed framework will be applied
to real-time applications to showcase its effectiveness. Moreover, the developed system
will be extended by incorporating robust security protocols and encryption approaches for
protecting sensitive data during transmission.
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