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Abstract

This study contributes new empirical evidence on the interconnectedness of crude oil,
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while S&P500 and FTSE100 play a key role in volatility spillovers. Asian futures markets
are strongly influenced by changes in the US and UK oil and stock futures markets. Finally,
using different permutations of Cholesky orderings (Klobner and Wagner, 2013), provides
additional support that the spillover index for both return, and volatility is overestimated
when the generalized forecast error decompositions are employed.
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1 Introduction

Spillover effects play an essential role in the financial world and have seen
growing attention recently because of the global financial crisis (GFC) and the
development of new econometric techniques (Diebold and Yilmaz, 2012, 2014).
The US economy and its financial markets are the leading ones globally, while
their fluctuations raise substantial concerns among market participants, poli-
cymakers, and researchers (Fung et al., 2001). Moreover, the Global Financial
Crisis (GFC), that originated from the US, had a critical influence on many
other markets and countries, and highlights the importance of investigating the
dynamics and interconnectedness of futures markets domestically and abroad
(Kang et al., 2017, Xiang et al., 2019).1 Thus, the aim of this paper is to
examine the interconnectedness among US futures markets during crisis/non-
crisis periods and whether fluctuations in these markets have an impact on the
European and Asian (futures) markets.2 Given the increased uncertainty over
the period from 2001 to 2018 in the US economy and internationally, some
essential questions are yet to be answered.

Transmission of information across global markets has been a key research
area. A range of studies try to find whether financial markets have short
(simultaneous or feedback) and long-term (cointegrated) relationships using
VAR models either for returns or different volatility proxies (Eun and Shim,
1989; Ng, 2000; Bekaert and Harvey, 1997; Wen et al., 2019). Alternatively,
a number of researchers used different types of multivariate GARCH models
to investigate the volatility spillovers among future and spot markets (Tse,
1999; Rittler, 2012). Their results show that there are spillover effects from
futures to spot markets. Gannon (2005) found that the US contributes high
spillover effects to Hong Kong’s stock index futures market. Li (2007), using a
multivariate GARCH model, find evidence of unidirectional (although weak)
volatility spillovers from the stock exchange in Hong Kong to those in mainland
China (Shanghai and Shenzhen).3 Therefore, existing research on return and

1For example, the S&P500 stock index declined 57% from its peak in October 2007 to its trough in
March 2009. More, the real Gross Domestic Product (GDP) decreased 4.3% from its peak in 2007 to its
trough in 2009.

2Futures markets in US, Europe, and Asia have witnessed a high increase since the growth of world
trade and globalization of the futures market. For example, Chinese futures exchanges such as the Shanghai
Futures Exchange, Zhengzhou Commodity Exchange, the Dalian Commodity Exchange, and China Financial
Futures Exchange are now classified as leading derivatives markets. Thus, it is essential to study the linkages
of Chinese futures markets with other major international futures markets (Fung et al., 2013).

3The implication of low level of linkages is that the expected returns of investment in Chinese mainland
stock exchanges would be determined by the country’s exposure to firm-specific and country-specific risk
factors. Another implication of the weak integration is that overseas investors will benefit from the reduction
of diversifiable risk, and thus total portfolio risk, by adding the mainland Chinese stocks to their investment
portfolio.
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volatility spillovers consider whether a shock in one market can impact another
domestic market or a foreign one, but only occasionally are both investigated at
the same time. Put differently, existing studies do not examine the dynamic
spillover effects for both return and volatility systems, while connectedness
is not often examined across both domestic US futures markets and futures
markets in Europe (UK) and Asia (Japan, China).

This study utilizes Diebold and Yilmaz’s approach to investigate the inter-
connectedness between US stock index (S&P500), crude oil (WTI), Natural
gas, precious metal (Gold, Silver), foreign currency (D-index) and bond (T-
notes, T-bonds) futures markets. Further, the study explores spillover effects
from US futures markets to UK (FTSE100, Brent oil) and Asian (NIKKEI225
stock index, Shanghai SE stock index) futures markets. Daily data from 2001
to 2018 is used to estimate return and volatility VAR models, while the 10-day
ahead forecast error variance decompositions are of Cholesky (orthogonal) and
generalized type (Pesaran and Shin, 1998).4 Finally, the dynamic properties
of the interconnectedness among futures markets is examined by utilizing a
rolling window estimation and a sub-sample one based on the times of the
global financial crisis. Overall, results show a significant relationship among
US futures markets, both at return and volatility level, especially during crisis
periods. More, Asian futures markets are strongly influenced by changes in
US and UK stock and oil futures markets. Results also imply that US fu-
tures markets become substantially more interconnected during crisis periods
(responding to same fundamental changes), while increased spillover effects
to Asian markets demonstrate that their news-watchers and investors have a
close eye to US and European financial markets.5

Finally, dividing the sample into three sub-samples provides more informa-
tion on the dynamics of interconnectedness. For example, the crude oil market
becomes more influential (towards others) during the crisis period, while gold
turns from being a net giver, in the pre and postcrisis periods, into a net re-
ceiver, during the crisis. Analysis also shows that WTI and Brent contribute
notably to other markets and play crucial roles in the return system, while
in the volatility system, both US and UK indices show important spillover
effects. Finally, using different permutations of Cholesky orderings (see Klob-

4Further, the spillover index is estimated by using Klobner and Wagner’s (2013) divide and conquer
strategy and large numbers of randomly chosen Cholesky orderings. The authors find that randomly choosing
small number of orderings severely underestimates the true range of the spillover index, while using the
generalized spillover index (does not depend on the ordering of variables) produces large values for the same
index (see also Diebold and Yilmaz, 2012).

5Bailey and Chan (1993) provide evidence that the spread between commodity spot and futures prices
(the basis) reflects the macroeconomic risks common to all asset markets. Yang et al. (2021) examine the
volatility connectedness of commodity futures markets and show that commodity volatility spillovers can
be explained by economic factors related to broad economic conditions.
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ner and Wagner, 2013), provides additional support that the spillover index
for both returns and volatility are generally overestimated when the general-
ized forecast error decompositions are used. Importantly, using Klobner and
Wagner’s approach on choosing Cholesky orderings, it is shown that shocks
in the crude oil and precious metal futures returns affect the S&P500 index
futures (Pineiro-Chousa et al. 2018), while a shock in S&P500 futures returns
contributes to changes in US currency and bond (T-notes, T-bonds) future
returns (Yoon et al. 2019). More, a shock in S&P500 futures volatility caused
changes in the volatility of crude oil, precious metals, and currency markets
(Husain et al. 2019), whereas a shock in crude oil market futures volatility
does not exert any change in the volatility of major index futures markets such
as S&P500 and FTSE100 (Soucek and Todorova, 2013).

The rest of this paper is structured as follows. Section two presents the lit-
erature and empirical findings of earlier works in futures markets such as US,
Europe, and Asia. Econometric methodology is presented in section three,
while section four describes the data and its summary statistics. Section five
reports and discusses the empirical results. Section six presents robustness
checks to the main empirical findings. Concluding comments and further re-
search are put forward in section seven.

2 Literature review

Total volume of exchange-traded derivatives worldwide surpassed 62 billion
contracts by 2021 (29.28 billion Futures contracts, 33.31 billion Options con-
tracts). Exchanges in the Asia-Pacific region had the largest trading volume
(30.55 billion contracts) followed by North America (15.38 billion contracts),
Latin America (8.89 billion contracts) and Europe (5.45 billion contracts).6

More, studies in the past demonstrated that stock index futures markets trans-
mitted information more efficiently (Bohl et al., 2011) and more expeditiously
(Koutmos and Tucker, 1996; Pizzi et al., 1998; Tse, 1999; Brooks et al., 2001;
Chou and Chung, 2006) than spot markets. The interconnectedness of US, UK,
and Asian markets, through the estimation and forecasting of their return and
volatility spillovers, plays an essential role in asset valuation, portfolio diver-
sification, and hedging.7 Yang et al. (2021) examine volatility connectedness

6In terms of assets traded, equity-related derivatives accounted largely for the increase in trading activity
in 2021 with futures and options in this category reaching 41.6 billion contracts. Trading of interest rate
futures and options peaked at 4.58 billion contracts in 2021. In the commodity sector, trading of agricultural
and metal futures and options increased importantly in 2021, but trading of energy futures and options fell
on the same year (FIA 2022).

7Engle et al. (1990) find that volatility spillovers of foreign exchange markets are of meteor shower
type as opposed to the heat wave type. The heat wave hypothesis is consistent with a view that major
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in commodity futures markets and show that commodity volatility spillovers
can be explained by economic factors related to broad economic conditions.
Bailey and Chan (1993) provide evidence that the spread among commodity
spot and futures prices (the basis) reflects macroeconomic risks common to
all asset markets. The basis of commodities is correlated with the stock index
dividend yield and corporate bond quality spread. Further tests showed that
these associations are largely due to the presence of risk premiums, rather
than spot price forecasts, in the basis.8 Koijen et al. (2018) show that carry
((St − Ft)/Ft) predicts returns cross-sectionally and in time series for a host
of different asset classes, including global equities, global bonds, commodi-
ties, US Treasuries, credit, and options. Carry is better explained by models
with varying risk premia, in which carry strategies are commonly exposed to
global recession, liquidity, and volatility risks. Finally, Henderson et al. (2015)
and Shokin and Xiong (2015) show that non-information-based financial in-
vestments and informational frictions have important impacts on commodity
prices and demand.9 The literature on futures markets has concentrated on
examining the relationship between crude oil and financial markets as well as
modelling their volatilities (Arouri et al., 2011; Malik and Ewing, 2009; Khal-
faoui et al., 2015; Tsuji, 2018). Nevertheless, many studies investigated the
volatility spillover among energy markets and carbon (Ji et al., 2018; Batten
et al., 2019) and other petroleum markets (Magkonis and Tsouknidis, 2017).
In what follows, we review the literature on the interrelationship between oil,
commodities, and financial markets.

sources of disturbances are changes in country-specific fundamentals, and that one large shock increases the
conditional volatility only in the country of origin. On the other hand, the meteor shower hypothesis implies
that a shock increases volatility in geographically distant markets or outside the country. Put differently,
conditional volatility will increase for all markets, not just for the market domestic to the shock.

8There are two popular theories of futures prices: the cost-of-carry hypothesis and the risk premium
hypothesis (see Chow et al., 2000, for a review). The cost-of-carry hypothesis explains the difference between
the spot (S) and futures price (F) as being due to the interest (R) foregone in storing the commodity, ware-
housing costs (W) and a convenience yield (C) from holding the inventory. The Risk Premium hypothesis
sees a futures price as the forecast of the future spot price and an expected risk premium. When the level of
inventory is sufficiently high, storage costs and convenience yields are exceptionally low relative to the spot
price, and it is predicted that futures prices are below the expected spot price Ft+k|t < Et(St+k) (nor-
mal backwardation). On the other hand, when stocks of the commodity are extremely low, the marginal
convenience yield may exceed the marginal storage costs, and it is predicted that futures price is above
the expected spot price, Ft+k|t > Et(St+k) (normal contango). Although the Cost-of-Carry hypothesis is
based on a no-arbitrage condition, it is often argued that the presence of speculators in the marketplace
ensures that futures prices approximately equal the expected futures spot price. A large deviation between
the futures price and the expected spot price would create attractive speculative opportunities. Due to
market frictions which result in a ‘no-arbitrage band’ around Et(St+k), the futures price, Ft+k|t, is only
approximately equal to the expected future spot price.

9Additionally, Hamilton and Wu (2014) provide empirical evidence which is consistent with the claim
that index-fund investing has become more important relative to commercial hedging in determining the
structure of crude oil futures risk premia over time.
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2.1 Crude oil and commodities

Nick and Thoenes (2014) examine the dynamic relationship between natu-
ral gas and other commodities using a structural VAR model. Their results
indicate that natural gas, in the short term, was influenced by abnormal tem-
perature and supply shocks. In the long term, the natural gas price developed
and seemed to be close to coal and crude oil prices; this implies that there was
a high performance of cross-commodity impacts. Soytas et al. (2009) employ
a multivariate model to evaluate the relationship between crude oil, gold, sil-
ver, and several macroeconomic variables. Their results show that there was
no proof of a causal relationship, either among silver and crude oil prices or
between gold and oil prices. Liu and Chen (2013) investigate the link between
UK natural gas, EUA future prices, Brent crude oil, and European coal by
employing the FIEC-HYGARCH model. They find volatility spillover effects
from the carbon market to natural gas and coal markets. Nevertheless, the
carbon market was affected by natural gas and crude oil markets. Zhang and
Wang (2014) studied return and volatility spillovers among Chinese and global
petroleum markets (WTI and Brent). They document that world oil markets,
through both return and volatility spillovers during the global financial crisis
(GFC), strongly influenced the Chinese oil market.10 Gong et al. (2021) using
a TVP-VAR-SV model and the spillover method of Diebold and Yilmaz (2009,
2012, 2014) find that US crude oil and heating oil futures markets are main
net transmitters of volatility risk information while gasoline and natural gas
futures markets are net receivers.

2.2 Crude oil, commodities and financial markets

On crude oil markets, precious metals, and stock market indices, the number
of studies investigating their volatility spillover and interconnection is limited.
Junttila et al. (2018) investigate the link between both gold and crude oil fu-
tures and stock markets. Their findings show that while there was a negative
correlation throughout financial meltdown days, gold, and oil offer diversifica-
tion benefits. Oztek and Ocal (2017) model time-varying correlations between
commodities and stock markets using both smooth and double smooth transi-
tion conditional correlation models. Their results suggest that investing across
commodity and stock market gains more than just investing in the stock mar-

10Zhang et al. (2019) recently examined seven major regionally crude oil prices and provided evidence
that they are dynamically connected. Further, high connectedness in both return and volatility shows
that the findings support Adelman’s claim that crude oil globally is ’one great pool’. Also, Batten et al.
(2015) investigate the interconnectedness of four primary precious metals (i.e., silver, gold, platinum, and
palladium) and find that the trend in spillover effects was changed by geopolitical and economic events
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ket alone. Zhang (2017) studies the connectedness among different global
stocks and crude oil markets. Results show that oil volatility made partial
contributions to the stock markets worldwide. Recently, Xu et al. (2019) eval-
uated the asymmetric risk spillovers among crude oil and stock markets in US
and China. They find that there exists an asymmetric spillover effect between
the oil market and stock markets and that bad volatility spillover dominates
good volatility spillovers across the sampling period.11

Husain et al. (2019) study the spillover effect among crude oil prices, stock
index, and precious metal prices in the context of the US economy. Their
results demonstrate that palladium, gold, platinum, and silver are net con-
tributors of volatility spillover whereas crude oil, titanium, steel, and silver
are net receivers of volatility spillover. Moreover, Mensi et al. (2013) exam-
ined the correlation and transmission of volatility across WTI, Brent, wheat,
beverage spot prices, gold, and S&P500 stock index returns. They find signifi-
cant volatility spillover effects between the crude oil market and the US or the
European stock markets, respectively. Alotaibi and Mishra (2015) investigate
return spillover effects from Saudi Arabia and US to the Gulf Cooperation
Council (GCC), namely Qatar, Oman, Bahrain, Kuwait, and United Arab
Emirates stock markets. They document important return spillover effects
from US and Saudi Arabia to (GCC) stock markets.12

2.3 Financial crisis connectedness

Several studies that look at the spillover effects also examine their influence
during crisis and non-crisis periods. Bampinas and Panagiotidis (2016) show
that flights-to-alternative assets, from stocks to oil, are a common feature dur-
ing three crisis periods (Mexican crisis, Asian crisis, dot.com bubble) except
the recent global financial crisis.13 The dynamic spillover connecting precious
metals (gold, platinum, silver, and palladium) and stock markets (Asia, Japan,
Europe, and the USA) was examined by Mensi et al. (2017a, 2017b). Their
findings reported that commodities were receivers of spillover from stock mar-
kets during the European sovereign debt crisis and the Global Financial Crisis
(GFC). Yoon et al. (2019) applied Diebold and Yilmaz’s approach to study

11Bad volatility is volatility associated with negative innovations to quantities such as output and returns.
In contrast, good volatility is volatility that is associated with positive shocks to these variables.

12Lean and Teng (2013) test integration between two developed countries, US and Japan, and two
emerging markets, China and India, into the Malaysian stock market. They find that there is high integration
between Malaysian and Chinese markets and between Malaysian and Indian markets. However, the volatility
spillover effects disappear among the US and Malaysian markets in the short term.

13More, the view that stock and oil markets behave like ‘a market of one’ after the financialization of
commodities is further supported by the presence of contagion between US stock markets and all benchmark
oil markets.
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the return spillovers from (Japan, Korea, Hong Kong, US, and China) stock
markets to commodities (gold future, WTI crude oil), the US dollar index, and
the 10-year US Treasury bond. They found that, during the GFC, spillovers
among commodity and financial markets were intensive.

Moreover, the US stock market was an essential contributor to return and
volatility spillovers across international stock markets, especially during the
financial crisis. For example, Cheung et al. (2010) show that the US market
contributes significantly to the UK, Hong Kong, Australia, Japan, and China.
Kenourgios and Padhi (2012) assess the spillover effects of bond and equity in
nine emerging and two developed countries. Their findings show substantial
contagion during the Asian financial crisis, the Global financial crisis, and the
Russian crisis. Gjika and Horvath (2013) evaluate the stock market comove-
ments between the euro area and three Central European countries (Poland,
Czech Republic, and Hungary). They find that correlations among stock mar-
kets in Central Europe and between Central Europe and the euro area are
strong. Yilmaz (2010) studies spillover effects in both return and volatility
systems across ten East Asian countries. Results show that return and volatil-
ity systems have varied impacts during crisis and non-crisis times. Bianconi
et al. (2013) find an increase in dynamic conditional correlations, after the
Lehman Brothers event in September 2008, among bond returns, stock re-
turns, and US financial stress. Zhang and Broadstock (2020) find a dramatic
change in the connectedness of global commodity prices following the global
financial crisis. They show that co-dependence in price-changes among seven
major commodity classes goes from a pre-crisis average of 14.82% to a strik-
ingly larger average of 47.87% in the period following the crisis, which endured
until lately. Of particular interest is the empirical behavior of the food com-
modity price index where its contribution to the system dynamics rises from
less than 20%, in the period up to 2008, to more than 80%, thereafter.

3 Econometric methodology

To address questions empirically, this paper utilizes the recently developed
approach by Diebold and Yilmaz (2009, 2012 and 2014). This method al-
lows to examine the interconnectedness among major futures markets in the
US and their dynamic spillovers to futures markets in the UK, China, and
Japan. Estimation is based on a Vector Auto-Regressive (VAR) model and
the generalized forecast error variance decomposition (GFEVD) that can be
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extracted.14 The VAR model, as outlined in Diebold and Yilmaz (2009, 2012,
and 2014), is expressed here as follows:

At =
P∑
i=1

ΨiAt−i + εt, (1)

Where At is an N×1 vector of endogenous variables,Ψi are N×N autoregressive
coefficient matrices, and εt ∼ (0,

∑
) is a vector of error terms with independent

and identically distributed process. The moving average representation of the
VAR(p) process is given by:

At =
∞∑
i=1

Ziεt−i, (2)

Where Zi = 0 ∼ i < 0, the N×N coefficient matrices Zi are recursively defined
as Zi =

∑P
k=1 Zi−k with Z0 being the N×N identity matrix. We can estimate

the generalized version of H-step-ahead forecast-error variance decomposition
as follows:

cgij(H) =
σ−1
jj

∑H−1
h=0 (e

′
iZh

∑
ej)

2∑H−1
h=0 (e

′
iZh

∑
Z

′
hej)

, (3)

Where the term σjj is a vector of standard deviations of the error term for the
j th equation and ith is an N×1 vector, which has 1 as the ith equation element
and zero as the other components. And the term σ is a non-orthogonalised
covariance matrix of error corresponding to the vector autoregressive system.
In the connectedness table,CH

i ←j indicates pairwise directional spillover from
the market j to another market i as follows:

CH
i ←j = cgij(H), (4)

The directional connectedness from all other markets to the market i can be
calculated as follows:

CH
i ←. =

N∑
i,j=1j 6=i

cgij(H), (5)

In contrast, the directional connectedness to other markets from j is calculated
as:

CH
. ←i=

N∑
i,j=1j 6=i

cgij(H), (6)

14In line with Koop et al. (1996) and Pesaran and Shin (1998), we use generalized forecast error variance
decompositions, which, unlike the traditional approach, do not require orthogonalization of shocks and are
invariant to the ordering of the variables in the VAR.
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The net directional connectedness can be expressed as:

CH
i = CH

. ←i −CH
i ←., (7)

Finally, total connectedness (system-wide connectedness) is computed as

CH =
1

N

N∑
i,j=1j 6=i

cgij(H), (8)

Moreover, in the volatility VAR model, we use the logarithm of variances to
ensure that all variance forecasts are strictly positive (Callot et al. 2017). Dy-
namic connectedness measures are obtained using rolling-sample estimation of
the VAR model, based on a fixed window of 200 observations. Rolling-window
estimation of the VAR model has the advantages of clarity and coherence
among several time-varying parameter mechanisms, though it has the limita-
tion of discarding some observations and slightly increasing the persistence of
the connectedness index (Koop and Korobilis, 2018). To build the network
topology of connectedness between future markets, we follow Diebold and Yil-
maz (2014) and interpret the pairwise connectedness table as the adjacency
matrix of a weighted directed network. Diebold and Yilmaz (2014) merged
VAR variance decompositions with network topology theory, and showed that
variance decompositions of VARs form weighted directed networks, character-
ize connectedness in those networks, and in turn characterize connectedness
in the VAR.

4 Data and summary statistics

The dataset of this paper consists of daily futures prices for stock market in-
dices (S&P500, FTSE100, Shanghai SE, NIKKEI225), precious metals (Gold,
Silver), crude oil and natural gas markets (West Texas Intermediate, Brent,
and Natural gas) and the US bond (10-year Treasury notes, 30-year Treasury
bonds) and currency markets (Dollar index). WTI and Brent are the primary
benchmark prices in the crude oil market and have been employed extensively.
Moreover, Natural gas is included as it is priced by indexing to oil prices.
The four main stock index futures markets, chosen due to their high volume
of trade and growth, are S&P500, FTSE100, NIKKEI225, and SSEC. Gold
and silver futures are also employed in the study to capture the role of pre-
cious metals as an alternative investment. The 10-year Treasury note futures,
and the 30-year Treasury bond are essential in capturing movements in the
money market and investors’ expectations about future changes in interest
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rates. Finally, Dollar-index futures is added to the VAR model owing to its
close relationship with interest rates, stock, and gold prices.15 Data runs from
02/01/2001 to 31/12/2018, which gives a total of 4417 daily observations. All
data has been obtained from Bloomberg and Datastream. Returns of each
variable are estimated by computing the log difference of the price level. For
volatility, we employ Parkinson’s High-Low volatility (HLV) estimator and the
logarithm of variances to ensure that all variance forecasts are strictly positive
(Callot et al., 2017). In particular, the time series entering the VAR equation
is the log transformation of the Parkinson estimator. The purpose of using
this proxy is that it uses crucial information that can enhance the accuracy of
volatility estimator. Furthermore, the HLV estimator can deal with instability
to trading hours, which implies that it is more efficient than the more intuitive
close-to-close volatility estimator (Parkinson, 1980).

Parkinson’s High-Low volatility (HLV) estimator can be calculated as fol-
lows:

V ol =

√
100 ∗ (

1

4 ∗ ln(2)
) ∗ ln(

h

l
)2 (9)

where h and l are the highest and lowest prices on a given trading day.
Figures 1 and 2 show return and volatility patterns across different future

markets in the US, UK, and Asia. Both figures show an important spike for all
series during the global financial crisis. Also, most of the variables fluctuated
in the second half of 2014 due to the drop in crude oil prices. Descriptive
statistics for returns are reported in panel A of Table 1. Results show that the
mean return across the whole sample is mostly positive. For example, Gold
has the highest mean return, 0.04%, while Natural gas has the lowest mean
return, -0.02%. Moreover, the highest daily price movement is observed in
Natural gas, 32.44%, and the lowest price is obtained in Silver, -20.64%. The
standard deviation is the highest for Natural gas, followed by WTI and Brent.
Money market futures (10-year T-notes, 30-year T-bonds) and currency futures
show the lowest return standard deviation. Overall, return distributions are
characterized as fat tailed (excess kurtosis) and slightly skewed to the left
(negative skewness).

Panel B of Table 1 presents the High-Low volatility statistics. S&P500,
FTSE100, and NIKKEI225 index futures show similar levels of High-Low
volatility with the Shanghai SE market documenting the highest one (0.06
vs. 0.08) among the index futures markets. Silver futures volatility (0.11) is
almost two times higher than gold futures volatility (0.06). The two crude oil

15Tse and Zhao (2012) provide evidence of sizeable volatility spillover from stock returns to carry-trade
returns, but not vice versa. The two markets are also more correlated in periods of high volatility.
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futures markets, WTI and Brent, experience similar levels of High-Low volatil-
ity (0.13,0.12), while Natural gas futures show the highest volatility among all
futures markets examined (0.18). Finally, money market and currency fu-
tures, as in the case of return standard deviation (see panel A), show the
lowest High-Low volatility.
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Figure 1: Plots of the Return Series.
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Figure 2: Plots of the Volatility Series.
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Table 1: Descriptive Statistics.

Brent WTI Natural gas Silver Gold S&P500 FTSE100 NIKKEI225 Shanghai D-index T-notes 10 T-bonds 30

Panel A: Returns
Mean 0.02 0.01 -0.02 0.03 0.04 0.01 0.00 0.01 0.01 0.00 0.00 0.01

Median 0.08 0.07 -0.10 0.08 0.05 0.07 0.06 0.04 0.05 0.00 0.02 0.03
Maximum 21.18 22.36 32.44 13.18 10.25 11.77 13.77 10.73 18.03 3.66 15.81 8.26
Minimum -13.67 -17.46 -19.90 -20.64 -9.51 -10.40 -10.90 -11.27 -16.32 -3.87 -15.39 -3.88
Std. Dev. 2.19 2.39 3.41 1.95 1.12 1.23 1.39 1.50 1.66 0.52 0.52 0.67
Skewness -0.10 -0.10 0.54 -1.35 -0.32 -0.10 -0.10 -0.31 -0.30 0.06 0.36 0.07
Kurtosis 7.95 9.05 9.23 15.59 8.86 13.61 14.61 7.28 12.47 5.63 374.38 9.92

Jarque-Bera 4513.8*** 6743.6*** 7358.1*** 30503.8*** 6381.4*** 20724.6*** 24788.5*** 3446.8*** 16553.7*** 1271.3*** 25378567*** 8825.843***

Panel B: Volatility
Mean 0.12 0.13 0.18 0.11 0.06 0.06 0.06 0.06 0.08 0.03 0.02 0.04

Median 0.10 0.11 0.16 0.09 0.05 0.05 0.05 0.05 0.06 0.03 0.02 0.03
Maximum 0.62 0.95 1.35 1.12 0.49 0.54 0.49 0.57 0.44 0.23 0.16 0.29
Minimum 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.00 0.00 0.00
Std. Dev. 0.07 0.08 0.10 0.07 0.04 0.05 0.05 0.04 0.05 0.02 0.01 0.02
Skewness 1.94 2.35 2.48 3.04 2.74 3.09 3.08 3.60 2.18 2.15 2.19 1.98
Kurtosis 8.78 13.11 17.51 23.21 17.83 18.79 18.50 28.80 10.03 14.33 12.98 14.82

Jarque-Bera 8911.616*** 22880.41*** 43290.92*** 81979.55*** 46036.18*** 52896.94*** 51205.95*** 132079*** 12614.77*** 27020.22*** 21869.32*** 28611.92***
Note:*** significant at the 1% level.
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5 Empirical results

5.1 Connectedness in returns

5.1.1 Static results

The connectedness matrix for returns is given in Table 2.16 The matrix pro-
vides how each pair of variables is connected, while off-diagonal elements ex-
plain whether a variable is a giver or receiver to other variables. Aggregating
all row elements, except diagonal ones, allows to figure out how a variable is
affected by all other variables (contributions from others) in the VAR system.
Similarly, aggregating all column elements, except diagonal ones, tells how a
variable contributes (contributions to others) to all other variables in the VAR
model. The last row presents the net effect where positive values imply that
they are contributors and the negative ones that they are receivers. Finally,
the total spillover index appears in the lower right corner of the spillover ta-
ble. For example, the total spillover index (or static connectedness) in the
variables is 34.20%, indicating that, on average 34.20% of the return forecast
error variance comes from spillovers among US financial futures markets and
spillovers from European (UK) and Asian (China, Japan) futures markets.

Looking at directional spillovers (last row of table 2), five out of twelve
markets are net givers, namely, WTI, Brent, S&P500, FTSE100, and Silver.
The seven remaining markets (Natural gas, Gold, NIKKEI225, Shanghai SE,
D-index, T-notes, T-bonds) are net receivers. For example, the S&P500 index
futures return is the highest net giver, 17.43%, while the silver futures return
is the lowest one, 6.24%. On the contrary, Nikkei225 and Shanghai SE index
futures returns are the highest net receivers, -27.50% and -7.30%, respectively.
In total, a range of directional spillovers across variables is observed, which
is quite informative about the general dynamics across all futures markets in
the VAR model. Having different contributors and receivers provides valuable
information about the interconnectedness of futures markets and the risks
involved.

Pairwise connections shed light on how one variable or market affects the
other. For instance, spillover effects from WTI to Brent, and the opposite, are
the highest on each other (34.32% vs 34.46%). In other words, US and UK
crude oil markets have major spillover effects on each other and, thus, provide
support for the ‘one great pool hypothesis.’17 The lowest spillover effect of

16The matrix of generalized forecasting error variance decomposition is based on a twelve variable VAR
model for both the return and volatility series and considers a 10-day ahead forecast. The Bayesian infor-
mation criterion (BIC) is used to check the order of the VAR models.

17One great pool hypothesis claims that markets from the same field influencing each other (Adel-
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WTI and Brent are on T-bonds, 0.04%, and 0.08%, respectively. Moreover,
FTSE100 index future returns have a high contribution to S&P500 futures re-
turns, 22.67%, and low towards T-bonds ones, 0.11%. Further, S&P500 is con-
sidered as the highest contributor for both FTSE100, 22.78%, and NIKKEI225,
16.48%. Overall, S&P500 and FTSE100 index futures returns are set to be
net contributors to all other markets.

A few interesting pairwise connections also arise in the case where the
futures market is a net receiver. For example, Gold is an important contributor
to Silver, 27.86%, and the D-index, 10.84%, despite being a net receiver overall.
It also affects T-notes, 1.83%, but only casually affects T-bonds, 0.01%.18 The
Natural gas market is also a net receiver with both the US and UK crude
oil (futures) markets being the main contributors to its return forecast error
fluctuations. Furthermore, Asian stock markets (NIKKEI225, Shanghai SE)
are notably influenced by S&P500 and FTSE100, while they have a very small
contribution to all other markets. This is consistent with the fact that US and
UK markets are still the major contributors to Asian stock markets (Zhang,
2017). As regards money market futures, T-notes (futures) returns are strongly
influenced by S&P500, 4.79%, and FTSE100, 3.39%, index futures, with WTI,
1.99%, and Gold, 1.83%, showing some smaller impact.19 Regarding T-bonds
futures returns, they do not appear to affect or be affected by returns of other
futures markets in US and Asia.

Lastly, D-index futures returns have substantial spillover effects on Gold
and Silver, but these two markets exert even higher influence on D-index fu-
tures returns. Considering that US holds the largest Gold reserves worldwide
and trade in Gold and Silver mostly happens in dollars, then any fluctuation
in the dollar index is likely to influence Gold prices and the opposite (Capie
et al. 2005).20 Overall, results show that spillover effects are mostly evident
between US and UK markets and rarely from Asian to US futures markets.

man,1984).
18Similarly, the contribution from Silver to Gold is the highest, 30.24%. Further, Silver has a substantial

contribution to the D-index by 10.16% and a smaller one to the remaining markets
19This is consistent with Indriawan et al. (2019) who find that increased price discovery in the bond

futures is related to returns and net order flows of the US stock market.
20Further, investors would buy gold in fear of currency devaluation, high inflation, and a declining stock

market phase.

14



Table 2: Connectedness Matrix for Return Series.

Brent WTI N-gas Silver Gold S&P FTSE NIKKEI Shanghai D-index T-notes T-bonds From

Brent 46.53 34.46 2.31 4.00 2.17 2.64 4.50 0.29 0.51 2.03 0.55 0.01 53.47
WTI 34.31 46.39 2.55 3.90 2.13 2.51 4.32 0.29 0.37 2.11 1.09 0.03 53.61
N-gas 4.50 5.01 88.17 0.61 0.42 0.17 0.29 0.10 0.01 0.64 0.02 0.06 11.83
Silver 4.15 4.08 0.33 48.20 27.86 1.60 3.87 1.40 0.40 8.01 0.08 0.01 51.80
Gold 2.45 2.42 0.25 30.24 52.30 0.19 0.76 0.80 0.10 9.28 1.19 0.03 47.70
S&P 3.25 3.28 0.08 1.74 0.03 62.32 22.67 1.49 0.47 0.92 3.66 0.07 37.68
FTSE 5.03 4.86 0.21 4.09 0.72 22.78 50.96 2.16 0.77 6.07 2.19 0.17 49.04
NIKKEI 1.44 1.37 0.08 2.10 0.94 16.48 11.34 61.27 1.42 2.48 1.02 0.05 38.73
Shanghai 1.25 0.92 0.02 1.06 0.20 2.43 2.93 2.07 88.08 0.66 0.37 0.02 11.92
D-index 2.66 2.81 0.45 10.16 10.84 1.39 7.07 2.52 0.17 61.02 0.88 0.04 38.98
T-notes 1.02 1.99 0.03 0.14 1.83 4.79 3.39 0.08 0.35 1.28 85.07 0.03 14.93
T-bonds 0.04 0.08 0.15 0.01 0.01 0.13 0.11 0.03 0.04 0.02 0.16 99.22 0.78
To Others 60.10 61.28 6.45 58.04 47.16 55.10 61.26 11.23 4.62 33.51 11.21 0.50
Net 6.63 7.67−5.38 6.24−0.54 17.43 12.22 −27.50 −7.30 −5.47 −3.71 −0.28 34.20

Note: ”To Others” is the aggregation of each column except diagonal elements.”From” is the aggregation of each row
except diagonal elements. The total connectedness is 34.20% and in bold. Net row reports the difference between ”To
Others” and ”From” for each variable. All values are in percentage. A VAR lag length of 1 is chosen by using the (BIC).

5.1.2 Rolling-window results

As a result of the Global Financial Crisis (GFC), Europe’s Sovereign Debt
Crisis (ESDC), and conflict in the Middle East, markets and prices across the
world have fluctuated substantially. Figure 3 presents the total spillover index
after the estimation of a 200-day rolling window. Findings show that total
connectedness ranges from 29% to slightly above 55%, while it is clear that
most peaks occur during the crises. Figure 3 also indicates that total con-
nectedness across all futures markets, during both crises, is between 45% and
55%. This implies that US futures markets become notably more intercon-
nected during crisis periods (responding to same fundamental changes), while
the increased spillover effects to Asian markets show that their news-watchers
and investors have a close eye to US and European financial markets. Further,
Figure 4 provides more information about how one market contributes to all
other markets. Results provide substantial evidence of connectedness in most
markets during crises, especially in WTI, Brent, S&P500, FTSE100, Gold, and
Silver, implying that US and UK markets have the lead in contributing to all
other futures markets. For example, US and UK stock index futures markets
are increasingly influential towards other markets during the Global Financial
Crisis and Europe’s Sovereign Debt Crisis. Their effect decreases as the crisis
repercussions wear out, and it slightly increases again when the bull market
phase takes over after the crisis. On the contrary, Asian markets show that
they have marginal contribution to US and UK futures markets.
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Figure 3: Overall Spillover (Return System).

Figure 4: Rolling-window Contribution to All Others (Return System).

5.1.3 Sub-sample analysis

In this section, the full sample is divided into three sub-samples to examine
the net directional connectedness during crisis and non-crisis periods. Three
sub-samples are considered. The first period (precrisis) covers the years from
2001 to 2006, while the second one (during crisis) extends from 2007 to 2012.
The third period (post-crisis) includes all years from 2013 to 2018. A few
interesting results emerge from the sub-sample analysis presented in Table 3.
First, futures markets are more interlinked during the crisis period compared
to the pre- and postcrisis ones. In particular, the total spillover index reaches
42.70% compared to 28.90% and 33.32%, pre- and post-crisis, respectively.
Second, S&P500, WTI, and Brent are the only markets that have positive
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net contributions (net givers) over the three sub-samples. In particular, the
crude oil market becomes more influential during the crisis period. Third,
although FTSE100, T-bonds, and Silver are ranked as net receivers in the
pre-crisis period, their impact on other markets increased to become net givers
(contributors) during and after the crisis period. For example, the net influence
of the FTSE100 on other markets jumps from -2.22%, in the pre-crisis period,
to 23.51% during the crisis period and falls back to 6.28% in the after crisis
one. Fourth, Gold is a net giver in the pre- and post-crisis periods, but its
contributions surprisingly fall to be a net receiver during crisis. Choudhry et
al. (2015) find that gold may not perform well as a safe haven during the
financial crisis period owing to the bidirectional interdependence among gold
returns, stock returns and stock market volatility.21 Finally, D-index, Natural
gas, T-notes, Shanghai, and NIKKEI225 are net receivers throughout the three
periods examined. All these markets are becoming increasingly sensitive to the
changing (futures) returns of all other markets during the crisis period. Hence,
financial and economic crises intensify total spillovers across future markets.
Overall, findings confirm that US and UK futures markets are extensively
interlinked, especially during crisis times.

Table 3: Net Contribution of A Futures Market to All Other Futures Markets.

Pre-crisis During crisis Post-crisis

Brent 3.28 13.25 7.86
WTI 3.85 13.31 9.04
N-gas −6.58 −7.94 −1.61
Silver −1.19 9.90 4.23
Gold 7.67 −8.26 5.61
S&P 16.63 20.14 19.13
FTSE −2.22 23.51 6.28
NIKKEI −15.52 −38.61 −32.46
Shanghai −1.50 −13.77 −9.03
D-index −0.06 −4.56 −5.67
T-notes −3.23 −7.09 −3.39
T-bonds −1.13 0.09 0.02
NET Directional Connectedness 28.90 42.70 33.32

Note: Each columns report Net Directional Connectedness from one market to all other markets during three different
sub-samples, while the last row shows the overall Net Directional Connectedness (or total spillover index) for the whole
system. Pre-crisis period spans from 2001 to 2007, during crisis period spans from 2008 to 2012, and post-crisis period
spans from 2013 to 2018.

21Authors also find that gold may be used as a hedge against stock market returns and volatility in
stable financial conditions.
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5.2 Connectedness in volatility

5.2.1 Static results

Volatility connectedness results are reported in Table 4. Analysis is also based
on a twelve variable VAR model and 10-day ahead forecast error variance
decompositions of the generalized type. As can be seen in Table 4, total
connectedness is 38.72%, which is slightly higher than the return series. Put
differently, 38.72% of the volatility forecast error variance is explained by the
interconnectedness between various US financial futures markets and spillovers
from/to European (UK) and Asian (China, Japan) futures markets. Further
analysis shows that there is a difference between the return and volatility
series, which means that each market’s contribution to others varies when the
return or volatility series is utilized. It is evident from Table 4 that volatility
contributions ranged from 3.90% (from Natural gas to others) to 81.49% (from
S&P500 to others) while return contributions ranged from 0.5% (from T-bonds
to other) to 61.28% (from WTI to other).

A striking result emerging from empirical findings is that eight out of twelve
markets are net receivers, namely, Brent, WTI, Natural gas, NIKKEI225,
Shanghai, Silver, D-index, and T-notes, whereas the remaining markets are
net contributors. Furthermore, it is observed that specific futures markets
shift from being net givers to being net receivers compared to the return sys-
tem. For example, WTI, Brent, and silver futures returns are net contributors
to other markets, but their volatilities are strongly influenced by those of
other futures markets (net receivers). Gold and T-bonds change from being
net receivers to being net givers when return and volatility systems are con-
sidered, respectively. Additionally, S&P500 and FTSE100 contribute strongly
to each other, as well as to other markets. Findings show that S&P500 has
spillover effects on the D-index 6.21%, which is also consistent with the ‘heat
waves’ hypothesis.22 The ‘meteor showers’ hypothesis is further supported by
the spillover effects from S&P500 to FTSE100.23 Finally, parallels are also
found in the results. For instance, S&P500 (NIKKEI225) is the most note-
worthy contributor (receiver) to (from) other futures markets in both return
and volatility series.

22Heat waves hypothesis means that there is a connection between two markets inside a country (Engle
et al. 1988).

23Meteor showers hypothesis means that there is a connection between two similar markets in two
different countries (Engle et al. 1988).
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Table 4: Connectedness Matrix for Volatility Series.

Brent WTI N-gas Silver Gold S&P FTSE NIKKEI Shanghai D-index T-notes T-bonds From

Brent 46.81 33.24 1.13 1.70 2.04 3.92 4.05 1.55 1.36 1.79 1.29 1.12 53.19
WTI 32.04 45.72 1.45 1.64 1.86 5.16 4.39 1.08 1.23 2.10 1.82 1.52 54.28
N-gas 1.60 2.36 94.29 0.18 0.17 0.29 0.28 0.18 0.12 0.10 0.20 0.23 5.71
Silver 1.74 1.48 0.11 54.10 26.11 3.97 3.78 0.46 0.96 4.73 2.27 0.30 45.90
Gold 2.15 1.72 0.17 24.52 46.98 5.99 7.04 1.40 0.83 5.56 3.24 0.39 53.02
S&P 2.21 2.41 0.18 2.03 3.30 46.64 27.81 3.55 0.86 2.71 6.47 1.84 53.36
FTSE 2.53 2.10 0.21 2.04 3.97 28.34 47.58 3.04 0.78 2.42 5.39 1.61 52.42
NIKKEI 1.90 1.17 0.04 1.87 4.52 12.87 10.38 62.68 0.81 0.99 1.93 0.85 37.32
Shanghai 1.44 1.38 0.01 2.10 1.47 1.69 1.19 0.54 88.90 0.63 0.55 0.10 11.10
D-index 3.41 3.28 0.17 6.17 8.04 6.21 5.33 0.48 0.65 56.62 7.77 1.88 43.38
T-notes 2.25 2.61 0.24 2.33 3.98 11.75 10.54 1.07 0.93 7.04 55.06 2.20 44.94
T-bonds 1.13 1.25 0.19 0.09 0.04 1.32 1.75 0.06 0.79 2.08 1.28 90.03 9.97
To Others 52.40 53.02 3.90 44.65 55.50 81.49 76.53 13.41 9.31 30.15 32.20 12.04
Net −0.79−1.27−1.82 −1.25 2.48 28.13 24.11 −23.91 −1.79 −13.23 −12.74 2.06 38.72

Note: ”To Others” is the aggregation of each column except diagonal elements.”From” is the aggregation of each row
except diagonal elements. The total connectedness is 38.72% and in bold. Net row reports the difference between ”To
Others” and ”From” for each variable. All values are in percentage. A VAR lag length of 3 is chosen by using the (BIC).

5.2.2 Rolling-window results

Rolling-window results show the time-varying connectedness among futures
market volatilities. Figure 5 demonstrates the total spillover index and volatil-
ity connectedness dynamics of all future markets in this study. The overall
spillover of the volatility system shows similarities to the return system. In
particular, US, UK, and Asian futures markets are closely connected, especially
during the Global Financial Crisis (GFC) and the European Sovereign Debt
Crisis (ESDC). This can be seen from the range of total connectedness, which
takes values from almost 35% to slightly above 55%. Connectedness gains
an increasing trend on the most recent years of the sample. Overall, future
markets have high uncertainties that feed into other markets in a time-varying
style, especially during crisis times.24

The dynamic contribution of a futures market volatility to all others is plot-
ted in Figure 6. This figure illustrates that WTI, Brent, S&P500, FTSE100,
Gold, and Silver contribute highly to all others, whereas the remaining markets
make a small contribution to all other futures markets. These results provide
further support for the interconnectedness of crude oil, stock, and precious
metal futures markets (Junttila et al., 2018; Mensi et al., 2017a, 2017b). The
currency (D-index) and the bond market (T-notes) also show time-varying
contributions to other markets, although to a lower degree. Like the overall
spillover findings, individual futures market contributions towards other mar-

24These results are consistent with Xiao et al. (2019) who find that connectedness always increases in
times of turmoil and that almost two-thirds of the volatility uncertainty for commodity futures are due to
the connectedness of shocks across futures markets.
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kets also show an increasing pattern during the two crisis periods (GFC and
ESDC).

Figure 5: Overall Spillover (Volatility System).

Figure 6: Rolling-window Contribution to All Others (Volatility System).

5.2.3 Sub-sample analysis

Sub-samples analysis is used again for the volatility VAR system to provide
more information about the net directional connectedness across different peri-
ods. Results are reported in Table 5. First, by far the net directional connect-
edness of all markets is much higher during crisis periods compared to other
times. Second, results show that FTSE100 is surprisingly the only market
that significantly contributes to all other future markets throughout the three
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sub-samples. Third, WTI and Brent are contributors to the pre- and post-
crisis times; however, they lose their influence during crisis. Fourth, S&P500
is a net receiver in the pre-crisis by -1.70%, but this figure increases consid-
erably to a little above 44% during the crisis, which implies that it converts
from a net receiver to the highest contributor in the system during the same
time. Antonakakis et al. (2016) mentioned that during the GFC period, US
markets (S&P500) lead other markets as the net spillover of S&P500 volatility
towards other markets is positive. As regards T-bonds futures volatility, it
exerts little spillover contribution during the first two sub-samples; neverthe-
less, it becomes a net receiver in the last sub-sample. Finally, findings show
that six out of twelve markets are net receivers across all three sub-samples,
namely, silver, Natural gas, NIKKEI225, Shanghai, D-index, and T-notes. In
particular, their net directional connectedness grows during the crisis, which
means that the overall response to the Global Financial Crisis is important.
In other words, futures markets respond likewise to the announcement of bad
news either because they depend on the same fundamentals or simply because
international investors closely monitor the performance of the US economy
and financial markets.

Table 5: Net Contribution of A Futures Market to All Other Futures Markets.

Pre-crisis During crisis Post-crisis

Brent 2.04 −2.40 12.02
WTI 1.24 −4.33 14.67
N-gas −2.34 −5.00 −4.09
Silver −0.22 −3.39 −6.91
Gold 5.76 −1.52 3.92
S&P −1.70 44.39 18.25
FTSE 12.43 28.38 7.97
NIKKEI −8.65 −24.50 −20.36
Shanghai −0.78 −9.96 −4.23
D-index −3.38 −17.92 −10.54
T-notes −4.79 −9.69 −6.20
T-bonds 0.39 5.96 −4.51
NET Directional Connectedness 24.11 49.25 42.89

Note: Each columns report Net Directional Connectedness from one market to all other markets during three different
sub-samples, while the last row shows the overall Net Directional Connectedness (or total spillover index) for the whole
system. Pre-crisis period spans from 2001 to 2007, during crisis period spans from 2008 to 2012 and post-crisis period
spans from 2013 to 2018.

5.3 Pairwise net connectedness for return and volatility
series

Figures 7 and 8 below illustrate the pairwise relationship networks between all
markets in both systems (return and volatility); hence, essential information
is demonstrated. Figures have three colors which explain the strength of the
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relationship among markets. Blue represents the lowest rank in the system.
Red and Green nodes represent the highest and intermediate ranks, respec-
tively. For returns (Figure 7), WTI has the highest place in the system, and
this information implies that WTI plays an essential role in influencing all
markets. Four markets, namely FTSE100, Gold, T-bonds, and T-notes, are
placed at the intermediate level, and highlight that price dynamics provide
further information about other markets and prices. At the bottom of the
network is Asian markets which hardly provide any information to others.

Figure 7: Pairwise Net Connectedness (Return System).

For volatility (Figure 8), S&P500 is the highest ranked, and it is a net
contributor to all others. This also means that S&P500 is the most effective
market in the volatility system. FTSE100, Brent, and T-bonds also contribute
highly at volatility level. Gold, Silver, WTI, and Shanghai index futures pro-
vide less information and show contributions at an intermediate level in the
volatility VAR model. Furthermore, the lowest-ranked markets are the Asian
ones, with NIKKEI225 ranked at the bottom. Finally, results show that Asian
markets contribute weakly to US and UK markets; however, these results do
not alter the fact that US futures markets take the lead in contributing to all
other markets.
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Figure 8: Pairwise Net Connectedness (Volatility System).

6 Robustness check

6.1 Different VAR lag order

To make sure that findings are robust, this study examines the sensitivity of
return and volatility system’s total spillover index to the VAR lag length. VAR
orders of 3, 4 and 5 in the return system are employed, and the results (max,
min, median) reported in Figure 9 show that there is no meaningful difference
across the different VAR lag lengths, particularly during crisis periods. For
example, the min-max range of total spillover in the pre-crisis period is just
above 14%, while the min-max range during and after the crisis is about 10%.
In the volatility system, VAR orders of 5 up to 8 are used, and Figure 10 shows
similar findings. For instance, the min-max range in the pre-crisis period is
around 9%, while the min-max range during and after the crisis is about 7%.
Both figures indicate that result sensitivity to VAR orders during crisis is
less compared to pre- and post-crisis periods. This is due to the fact that,
during the crisis, it is the most recent news that matter and move prices
eventually. Therefore, the total spillover plot is not sensitive to the VAR lag
order, especially during crisis periods.

23



Figure 9: The Sensitivity of the Return System To VAR Lag.

Figure 10: The Sensitivity of the Volatility System To VAR Lag.

6.2 Garman-Klass volatility estimator

Recall that volatility results are based on Parkinson’s High-Low volatility
(HLV) estimator. As mentioned earlier, this estimator provides valuable in-
formation and higher accuracy than close to close volatility estimators. To
check for result sensitivity to the choice of volatility estimator, the spillover
index is estimated using the Garman and Klass (1980) volatility proxy. This
is a range-based volatility estimator which utilizes not only the High(H), and
Low(L) prices but also the Open(O), and Close(C) ones. The Garman-Klass
volatility proxy is more efficient compared to other estimators that utilize
closing prices alone. Garman- Klass’s volatility model can be estimated as
follows:

V ol =
√

(0.5 ∗ (ln(h)− ln(l))2 − ((2 ∗ ln(2)− 1) ∗ (ln(c)− ln(o))2) (10)

A comparison between Garman-Klass and Parkinson estimators shows that
there is no meaningful difference in terms of spillover effects. For example, total
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contribution of S&P500 volatility to all other futures markets uncertainties is
81.49% using the Parkinson proxy compared to 83.6% using the Garman-Klass
one. Also, the total spillover index is 38.72% using the Parkinson volatility
proxy compared to 39.3% using the Garman-Klass one. Overall, findings re-
main qualitatively unchanged on the choice of range-based volatility estimator,
Parkinson or Garman-Klass. Detailed results are not presented; nevertheless,
are available from the authors upon request.

6.3 Different permutations of Cholesky orderings

Klobner and Wagner (2013) calculate the spillover index using a new divide
and conquer strategy that swiftly calculates the spillover index’s maximum
and minimum over all possible Cholesky orderings.25 They find that randomly
choosing a small number of orderings severely underestimates the true range
of the spillover index, while using the generalized spillover index (does not de-
pend on variable ordering) produces large values for the same index (see also
Diebold and Yilmaz, 2012). For this reason, the spillover index is estimated
by using Klobner and Wagner’s divide and conquer strategy as well as specific
numbers of randomly chosen (Cholesky) orderings (ten thousand, one million
and ten million permutations). Results from Table 6 are compared with those
of Tables 2 and 4 and confirm that the spillover index, for both returns and
volatility, is overestimated when the generalized forecast error decompositions
are employed. For returns, the generalized spillover index is 34.20%, while, un-
der the different permutations of Cholesky orderings, the spillover on average
is 23.23% with a maximum value of 24.28%.

Similarly, for volatility, the generalized spillover index is 38.72%, but the
randomly chosen Cholesky orderings produce a spillover index of 30.20% (the
maximum value is 30.96%). In the final part of this section, Table 7 reports
the Cholesky variable ordering of the VAR model that generates the max-
imum spillover index value. For futures returns, the variable ordering that
produces the maximum spillover index is Nikkei225, FTSE100, Brent, WTI,
Silver, Gold, S&P500, Dollar index, T-notes, Natural gas, Shanghai, and T-
bonds.

Also recall that, with Cholesky decomposition, a shock on the first variable
will affect (contribute to) all other variables in the VAR model, while a shock
on the last variable will affect only itself. According to the return variable
ordering, a shock in the crude oil and precious metal futures returns affects
the S&P500 index futures (Pineiro-Chousa et al. 2018), while a shock in the

25Authors also calculate the spillover index exploring a specific number of randomly chosen Cholesky
orderings under a static and a rolling window setting.
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S&P500 futures returns will contribute mainly to changes in the US currency
and bond (T-notes, T-bonds) future returns (Yoon et al. 2019). Moreover, the
Shanghai SE futures returns appear to be affected by shocks to all major US
futures markets. Finally, the variable ordering for the volatility VAR model
that generates the maximum spillover is T-bonds, S&P500, FTSE100, WTI,
Brent, T-notes, Gold, Silver, Shanghai, Dollar index, Nikkei225 and Natural
gas. Here, a shock in the S&P500 futures volatility will contribute to changes
in the volatility of the crude oil, precious metal, and currency markets (Husain
et al. 2019), while a shock in the crude oil market futures volatility does not
contribute to changes in the volatility of major index futures markets such as
S&P500 and FTSE100 (Soucek and Todorova, 2013). Interestingly, a shock
in the volatility of government bond futures (T-bond, T-notes) will have an
impact on more futures markets than a shock in its return will do.

Table 6: Total Spillover Index Under Different Cholesky Orderings.

Divide and Conquer 10000 1000000 10000000

Panel A: Return

Average 23.23 23.24 23.23 23.23

Maximum 24.28 24.22 24.28 24.28

Panel B: Volatility

Average 30.20 30.20 30.20 30.20

Maximum 30.96 30.93 30.94 30.95

Note: Each column reports the total spillover index under the divide and conquer strategy (see Klobner and Wagner,
2012) and 10,000, 1,000,000, and 10,000,000 randomly chosen permutations of Cholesky orderings. The results reported
show the average and maximum value of the total spillover index.
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Table 7: Maximum Permutations of Cholesky Orderings.

Panel A: Return

Divide and Conquer 8 7 1 2 4 5 6 10 11 3 9 12

10000 8 4 5 7 2 6 10 11 12 9 3 1

1000000 8 4 5 7 1 9 2 6 12 3 10 11

10000000 8 7 1 2 4 5 6 10 11 12 3 9

Panel B: Volatility

Divide and Conquer 12 6 7 2 1 11 5 4 9 10 8 3

10000 12 6 2 7 11 1 5 4 8 10 9 3

1000000 12 6 7 11 2 1 9 5 10 4 3 8

10000000 12 6 7 2 1 5 4 8 9 11 10 3

Note: The variable ordering reported is the one that produces the maximum total spillover index under different
numbers of randomly chosen Cholesky orderings. The number of different permutations used are 10,000, 1,000,000 and
10,000,000. For details on choosing Cholesky ordering using the divide and conquer strategy, please see Klobner and
Wagner (2013). The ordering of our variables in the dataset is Brent (1), WTI (2), N-gas (3), Silver (4), Gold (5),
S&P500 (6), FTSE100 (7), NIKKEI225 (8), Shanghai SE (9), D-index (10), T-notes (11), T-bonds (12).

7 Conclusion

This study examines the dyamic spillover effects within US futures markets
and explores further linkages with European (UK), and Asian (Japan, China)
futures markets. We apply Diebold and Yilmaz’s approach (2009, 2012, 2014)
to daily futures market returns and realized volatility proxies for the period of
January 2001 until December 2018. Empirical results highlight a significant
link among US futures markets at both return and volatility levels, especially
during crisis periods. Importantly, findings show that Asian futures markets
are strongly affected by changes in the US and UK stock and crude oil futures
markets. US futures markets become notably more interconnected during crisis
periods as investors in various futures markets respond similarly to changes in
economic fundamentals, while increased spillover effects to Asian markets show
that their news-watchers and investors have a close eye to US and European
financial markets.26

26Bailey and Chan (1993) provide evidence that the spread between commodity spot and futures prices
(the basis) reflects macroeconomic risks common to all asset markets. Yang et al. (2021) examine the
volatility connectedness of commodity futures markets and show that commodity volatility spillovers are
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Dividing the sample into three sub-samples shows the changing character
of interconnectedness and its high sensitivity to time-specific events such as
the Global Financial Crisis (and the European Sovereign Debt Crisis). For ex-
ample, the crude oil market becomes more influential (towards others) during
the crisis period, while Gold changes from being a net giver, in the pre- and
postcrisis periods, to a net receiver during the crisis. Hence, investors in futures
markets will change their hedging strategies to manage their portfolios away
from risk. Analysis also shows that WTI and Brent contribute particularly to
other markets and play a crucial role on the return (VAR) system, while on
the volatility model, both US and UK stock indices have considerable spillover
effects. Robustness analysis proves that results are not sensitive to the choice
of VAR lag order or volatility proxy (Parkinson, Garman-Klass). Critically,
using deferent permutations of Cholesky orderings, according to Klobner and
Wagner (2012), confirm that the spillover index for both returns and volatility
is overestimated when the generalized forecast error decompositions are used.
For instance, the generalized spillover index (in returns) is 34.20%, while under
the different permutations of Cholesky orderings, the spillover on average is
23.23% with a maximum value of 24.28%. More, using Klobner and Wagner’s
approach on choosing Cholesky orderings, we show that shocks in crude oil and
precious metal futures returns affect S&P500 index futures (Pineiro-Chousa
et al. 2018), while a shock in S&P500 futures returns contributes mainly to
changes in US currency and bond (T-notes, T-bonds) future returns (Yoon et
al. 2019). Further, a shock in the S&P500 futures volatility contributes to
changes in the volatility of crude oil, precious metal, and currency markets
(Husain et al. 2019), whereas a shock in the crude oil market futures volatility
does not contribute to changes in the volatility of major index futures mar-
kets such as S&P500 and FTSE100 (Soucek and Todorova, 2013). Finally,
the network of return and volatility systems illustrates graphically the con-
tributor or receiver of information, as well as the information networks across
future markets in US, UK, and Asia. This provides policymakers with valuable
information to propose a plan for managing systemic risk in future markets.
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