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Abstract—Over-the-air federated learning (OTA-FL)
presents a promising paradigm that improves the efficiency
of local update aggregation by leveraging the superposition
property of wireless multiple access channels (MACs).
However, it faces significant security and privacy concerns
that demand careful consideration. To address these threats
associated with OTA-FL, we develop a secure and private
over-the-air federated learning (SP-OTA-FL) framework,
which can realize the secure and private aggregation for
both OTA-FL with unbiased aggregation (UB-OTA-FL)
and OTA-FL with biased aggregation (B-OTA-FL). In this
framework, a subset of devices participate in training, while
another subset functions as jammers, emitting jamming signals
to enhance the security and privacy of the OTA-FL process.
In particular, we measure the privacy leakage of users’ data
using differential privacy (DP) and introduce an innovative
application of mean squared error security (MSE-security)
to evaluate the security of the OTA-FL system. We conduct
convergence analyses for both convex and non-convex loss
functions. Building on these analytical results, we separately
formulate optimization problems for UB-OTA-FL and B-OTA-
FL to enhance the learning performance of SP-OTA-FL by
strategically optimizing the scheduling of training participants
and jammers. The effectiveness of the proposed schemes is
verified through simulations.

Index Terms—Federated learning (FL), differential privacy
(DP), mean square error security (MSE-security).

I. INTRODUCTION

The ever-growing volume of valuable data generated at
the edge of wireless networks has paved the way for many
artificial intelligence (AI) services catering to end-users by
exploiting deep learning [1]. In various applications like
the Internet of Things (IoT) and unmanned aerial vehicles
(UAVs), data from sensors normally needs to be constantly
collected and processed. The development and refinement
of machine learning (ML) algorithms play a crucial role in
extracting meaningful knowledge, improving system perfor-
mance, and unlocking the full potential of the collected data.
Traditionally, many of these ML algorithms have followed
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a centralized approach, wherein all raw data is transmitted
to and aggregated at a powerful central server for model
training [2]. However, centralized ML approaches become
less practical and desirable due to privacy concerns and
limitations related to latency, bandwidth, and power. This
is particularly evident as the concerns regarding privacy
and the volume of data grow. To address these challenges,
decentralized and privacy-enhancing approaches have gained
significant attention.

Federated learning (FL) [3] is one of the techniques that
enable intelligent edges to train learning models collabora-
tively without uploading their local data to the server. By
training models locally, FL not only makes full use of the
computing power of the edge devices, but also effectively
reduces the power consumption, latency, and privacy expo-
sure due to the transmission of raw data. However, despite
these promising benefits, wireless FL still faces significant
challenges in the form of communication bottlenecks. These
bottlenecks arise when a large number of devices attempt
to upload gradients via a resource-limited wireless multiple
access channel (MAC). This leads to considerable upload
latency as the allocated bandwidth for each participant
decreases with the increasing number of devices involved
[3], [4].

Over-the-air FL(OTA-FL) [5], [6] emerges as a promising
solution for enhancing the wireless aggregation of FL, capi-
talizing on the remarkable communication efficiency of over-
the-air computation (AirComp). OTA-FL allows devices to
upload their local updates simultaneously through a MAC,
where gradients are typically transmitted via analog signals,
enabling the central controller, often a base station (BS), to
directly receive an aggregated gradient through waveform
superposition. In OTA-FL, the assigned bandwidth for each
participant is independent of the number of devices. This
feature ensures high energy and bandwidth efficiency, partic-
ularly when dealing with a large number of devices [5], [7].
However, analog OTA-FL faces privacy and security chal-
lenges arising from the wireless nature of communication
and the decentralized nature of data processing.

Although FL provides basic privacy preservation by avoid-
ing the sharing of raw data, numerous studies [8]–[13]
have demonstrated that privacy concerns still exist due to
attacks targeting exchanged gradients. These concerns refer
to the risks associated with the unintended exposure or
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inference of sensitive information contained in local model
updates or gradients during the aggregation and transmis-
sion processes. For instance, [10] proposed an optimization
algorithm capable of recovering both raw inputs and labels
by attacking gradients. Despite the aggregation of gradients
before reaching the BS in OTA-FL, the possibility of privacy
leakage still exists [14]–[20]. One notable risk arises when
a single participant contributes to a communication round,
allowing attackers to access individual gradients. In this case,
by leveraging well-established techniques [8]–[11], attackers
can infer sensitive properties of the training data, thereby
compromising privacy. In our considered synchronous FL
scenarios, such a case can be caused by some device selec-
tion algorithms [21], [22], where only one device satisfies
the selection criteria due to its outstanding capabilities
such as channel quality, power constraints, or computational
capacity. Such a case may also occur in certain cluster-based
asynchronous FL approaches [23]–[25] where devices within
each cluster update their models or gradients synchronously,
while updates between clusters occur asynchronously 1. In
this context, a device with notably higher computational
power can complete its local training much faster than other
devices. To prevent this fast device from being delayed
by slower devices, it maybe placed in a cluster by itself.
As a result, the device operates independently, participating
alone in the aggregation process. If an attacker identifies
this device as the sole member of its cluster and per-
sistently monitors its communication with the BS, it can
repeatedly observe and analyze the gradients transmitted.
Over time, this enables the attacker to continuously ex-
tract sensitive information from the gradients, ultimately
resulting in significant privacy leakage. Furthermore, even
in a more common and pratical scenario involving “multiple
participants”, where the attacker only has access to the
aggregated global model and not the individual local models
or their sources, [26] have demonstrated that the adversary
is able to extract individual data records from federated
NLP models as well as the device identity. To counter
these privacy risks effectively, one viable strategy is to
employ differential privacy (DP) [27]. It helps safeguard
individual privacy in FL by introducing a controlled amount
of random noise into the local update to randomize the
disclosed statistics, ensuring that the contribution of any
individual data sample to the model remains statistically in-
distinguishable. In [17], artificial Gaussian noise was added
to each gradient before transmitting if channel noise cannot
provide sufficient privacy protection and a static power
allocation scheme was proposed to determine the scale of
the artificial noise. Instead of introducing artificial noise,
the work of [18] proposed a more energy-efficient strategy to
guarantee DP by adjusting the transmit power. The authors of
[19] investigated differentially private FL in both orthogonal

1This example is provided to enhance the motivation for considering
privacy risk issues. While our work focuses on synchronous aggregation
process in this paper, the underlying theoretical insights and framework are
adaptable to asynchronous scenarios, as detailed in Section VII.

multiple access (OMA) and non-orthogonal multiple access
(NOMA) channels and proposed adaptive power allocation
schemes. The aforementioned studies primarily focused on
the scenarios of OTA-FL with unbiased aggregation (UB-
OTA-FL) [6], [28], where gradients are aligned by a constant
coefficient during the aggregation. In this way, the impact
of the fading channel becomes a constant and can be easily
removed by performing an inverse operation of the pre-
processing at the BS. However, this coefficient is limited
by the device with the poorest channel condition due to the
peak transmit power constraint. Consequently, this limitation
can result in a notably poor signal-to-noise ratio (SNR) [17].
The authors in [29] have endeavored to address the limitation
on the coefficient to enhance learning performance. That was
achieved by optimizing participant selection, and carefully
examining the delicate balance between the number of
scheduled devices and the coefficient. Another approach to
address the issue of low SNR is the OTA-FL with biased
aggregation (B-OTA-FL) [30], [31], where gradients are
aggregated using different weights. While this approach
may lead to a biased gradient estimate, it has the potential
to improve the overall SNR. A differentially private B-
OTA-FL (DP-B-OTA-FL) was studied in [31] where the
power allocation of the gradient and the added noise were
optimized. However, it is worth noting that these studies
primarily addressed privacy risks without placing adequate
emphasis on security concerns.

In practical FL scenarios, the broadcast nature of wireless
channels exposes FL to eavesdropping attacks, which is
often the initial step for malicious third parties to launch
security attacks. The adversary can then target various types
of personal information using model inversion attacks [11],
membership attacks [8], attribute inference attacks [32],
or replace the exchanged models with malicious models.
Hence, it is important to bolster the security of FL commu-
nications. In pursuit of this goal, the authors of [33], [34]
adopted a covert communication (CC) technique with which
a friendly jammer transmits jamming signals to prevent
an eavesdropper from detecting the update transmission of
the local model from mobile devices in FL. The work of
[35] utilized power control to improve the security of FL
in the internet of drones (IoD) networks where security
rate was employed to measure the security of wireless
communications. In [36], [37], homomorphic encryption was
employed as an effective measure to secure the process of
FL. However, it should be emphasized that these security
measures in FL predominantly focus on safeguarding and
protecting digitally coded FL from eavesdropping. To the
best of our knowledge, the security of analog OTA-FL over a
wiretap channel has remained largely unexplored, presenting
a significant research gap within this field. Analog signals
are often considered more vulnerable to attacks compared to
digital signals due to a lack of error detection and correction
and challenges in encryption. They can be intercepted easily
through methods like eavesdropping. Eavesdropping on the
aggregated gradients exchanged between the BS and the
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participant not only poses the risk of leaking sensitive data,
but also exposes information about the model structure or
parameters, which could potentially empower attackers to
launch more severe security attacks. Moreover, eavesdrop-
ping also enables attackers to obtain model updates without
contributing, effectively benefiting from improvements at no
cost. Hence, investigating the security of analog transmission
is both highly challenging and of great significance, particu-
larly given the growing prevalence of over-the-air computa-
tion (AirComp), which typically adopts analog transmission,
offering a promising solution for alleviating latency issues
and improving energy efficiency.

A. Contributions

Inspired by these identified research gaps, this paper in-
troduces a secure and private OTA-FL (SP-OTA-FL) frame-
work. This framework leverages jamming and channel noise
as a dual-purpose countermeasure: firstly, to prevent privacy
leakage at the “honest but curious” BS, and secondly, to
mitigate the security risk associated with eavesdropping
on analog OTA-FL. Notably, our study represents the first
effort in evaluating the security of analog OTA-FL. In this
framework, a subset of devices actively engages in the train-
ing, while another subset serves as jammers, transmitting
jamming signals to enhance the security and privacy of the
OTA-FL process. The device scheduling and transmission
design (i.e, power scaling factor and the post-processing
factor) are separately optimized for two typical scenarios,
i.e., UB-OTA-FL and B-OTA-FL. The main contributions of
the paper are summarized as follows:

• Novel SP-OTA-FL framework. We present an innova-
tive SP-OTA-FL framework, initiating the exploration
of security in analog OTA-FL. This framework offers
dual protection by preventing privacy breaches at the
BS and mitigating the security threat posed by eaves-
dropping. This is achieved by jointly designing the
scheduling of both learning participants and jammers.
Notably, it can enhance security in a more effective
manner by strategically designating devices closer to
potential eavesdroppers as jammers rather than relying
on adding noise or reducing the power of the gradient
transmission, which could result in a more distorted
aggregated gradient at the BS.

• Theoretical analysis of privacy, security, and learn-
ing performance. To evaluate the impact of device
scheduling and transmission design on the privacy and
security of OTA-FL, we perform privacy and security
analyses utilizing DP and mean squared error security
(MSE-security) introduced in [38]. Then, we derive
closed-form expressions for the optimality gap and
the average-squared gradient to demonstrate the con-
vergence for SP-OTA-FL in the cases of convex and
non-convex loss functions, respectively. These results
characterize how the design of the learning participants,
jammers, post-processing factor, and power scaling
factor (in UB-OTA-FL scenario) can affect both the

privacy and security protection, as well as the overall
performance of SP-OTA-FL.

• Optimal design for UB-OTA-FL. We formulate an op-
timization problem with the aim of improving the learn-
ing performance by optimizing the power scaling factor,
the post-processing factor, and the device scheduling
of learning participants and jammers in UB-OTA-FL.
We derive a closed-form solution for the power scaling
factor and establish the relationship between the post-
processing factor and the device scheduling of learning
participants with a given jammer set. This enables us
to effectively find the optimal solution within a limited
search space. A sequential update (SU) algorithm is
developed to address the scheduling of jammers. Fur-
thermore, we introduce a security and privacy-guided
successive jammer removal (SP-SJR) algorithm, which
finds the optimal jammer set with given learning par-
ticipants and transmission design. Building upon the
SP-SJR algorithm, we develop a low-complexity (LC)
scheme to tackle this problem effectively.

• Optimal design for B-OTA-FL. In B-OTA-FL, we
optimize the post-processing factor and device schedul-
ing for learning participants and jammers while trans-
mitting the gradient with the maximum transmission
power. We derive a closed-form solution for the post-
processing factor by initially specifying the learning
participants and jammers. Subsequently, we derive the
optimal solution by employing the SU algorithm and
alternate optimization (AO) techniques. Specifically, we
employ SU algorithm to enumerate potential optimal
jammer sets, and then we employ AO to identify the
optimal learning participants and the post-processing
factor corresponding to the specified jammer sets. Fur-
thermore, we present an efficient LC scheme based on
SP-SJR algorithm to tackle the problem in B-OTA-FL.

II. SYSTEM MODEL AND PRELIMINARIES

In this section, we introduce the proposed SP-OTA-FL
and provide the definitions of DP and MSE-security.

A. SP-OTA-FL framework
In the considered system, there are N edge devices,

denoted by the set N = {1, 2, · · · , N}, collaborating to
train a deep neural network model with the assistance of
a BS. Each device of index n ∈ N is assumed to have a
local dataset Dn which contains Dn pairs of training samples
(u, v) where u is the raw data and v is the corresponding
label. For simplicity, we assume that D1 = · · · = DN

2.
1) General FL: The purpose of an FL task is to obtain

the model parameter that can minimize the loss function.
Mathematically, the goal of the learning can be given as:

min
m

L (m) =
1

N

N∑
n=1

Ln (m), (1)

2The assumption that the local datasets of the devices are equivalent
makes it easier to focus on the core mechanisms of the SP-OTA-FL
framework and the fundamental characteristics of the learning process.
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where m ∈ Rd is the model parameter to be optimized.
More specifically, the objective function of device n is:

Ln (m) =
1

Dn

∑
(u,v)∈Dn

l (m; (u, v)), (2)

where l (m; (u, v)) is an empirical loss function defined by
the learning task, quantifying the loss of m at sample (u, v).

To address problem (1), a typical approach known as
gradient descent (GD) can be applied3. In the context of
FL, the initial step involves the BS selecting a subset of
devices to actively participate in the training round. Taking
round t as an example, the BS broadcasts the latest global
model parameter mt to these scheduled devices. Then, each
participant utilizes the received global model parameter to
initialize its local model parameter i.e., mt

n = mt. Sub-
sequently, each device individually computes the gradient
using its local dataset, executing the process of:

gt
n ≜ ∇Ln

(
mt

n

)
=

1

Dn

∑
(u,v)∈Dn

∇l
(
mt

n; (u, v)
)
. (3)

Then, the scheduled devices simultaneously communicate
their gradients to the BS via a shared MAC 4. The MAC’s
waveform-superposition property allows efficient aggrega-
tion of gradients over the air.

2) Threat model: A potential security concern arises from
the presence of an eavesdropper whose objective is to inter-
cept the transmitted gradients, potentially inferring sensitive
information or disrupting the training process. Following
similar arguments in [39]–[41], we assume that eavesdropper
is an active user but it is un-trusted by the BS, which
indicates that the perfect channel state information (CSI) of
eavesdropper’s channel is available at the BS 5.

Furthermore, the BS primarily acts as a coordinator,
managing the training process and aggregating model up-
dates. However, the BS is considered “honest but curious”,
meaning it may attempt to extract private information from
the received gradients during regular training, which poses
a potential privacy risk. Our goal is to ensure that any
such privacy and security risks, even in edge cases, can be
effectively mitigated by the secure and privacy-enhancing
mechanisms implemented in this work.

6

3) SP-OTA-FL: To mitigate the risks of privacy breaches
and potential wiretap security attacks, SP-OTA-FL strate-
gically selects a subset of devices, denoted as Kt, where
Kt ⊆ N and Kt ̸= ∅, to actively participate as learners

3Stochastic Gradient Descent (SGD) is effective in the SP-OTA-FL
framework as well. However, we are using GD to avoid the randomness that
comes with SGD. This helps us focus more easily on the main processes
of the SP-OTA-FL and renders the mathematical derivations less complex.

4We are using a conventional FL algorithm instead of federated averaging
to simplify our analysis of the core aspects of the SP-OTA-FL framework.
Investigating the impact of multiple local training rounds on security and
privacy enhancement will be addressed in future work.

5In our future work, we plan to further investigate the scenario with
passive mode and imperfect CSI concerning the eavesdropper.

6The one participant cases were intended to illustrate potential privacy
risks under extreme conditions.
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Fig. 1: Jamming-aided SP-OTA-FL.

in the training process. Simultaneously, a portion of the
remaining devices are scheduled as jammers, identified by
J t ⊆ N\Kt. These jammers generate and transmit Gaussian
artificial noise, effectively serving as a jamming signal.

Assume that Pn is the maximum transmission power of
device n and etn ∼ N

(
0, 1

dId
)

denotes the artificial noise
produced by device n when it is scheduled as a jammer.
Then, the signal from device n is given by 7

xt
n =

{√
ηnPn

∥gt
n∥2

gn, n ∈ Kt,√
Pne

t
n, n ∈ J t,

(4)

where ηn ∈ [0, 1] is the power scaling factor, ensuring
E
[
∥xt

n∥
2
2

]
≤ Pn. Assume that ht

n,B ∈ R+ and ht
n,E ∈ R+

are the channel gain coefficients linking device n with
the BS and the eavesdropper, respectively. Based on the
superposition of MAC, the received signals at the BS and
the eavesdropper are respectively given by

yt =
∑
n∈Kt

ht
n,B

√
ηnPn

∥gt
n∥2

gt
n +

∑
n∈J t

ht
n,B

√
Pne

t
n + rtB ,

(5)

zt =
∑
n∈Kt

ht
n,E

√
ηnPn

∥gt
n∥2

gt
n +

∑
n∈J t

ht
n,E

√
Pne

t
n + rtE , (6)

where rtB ∼ N
(
0,

σ2
B

d Id

)
and rtE ∼ N

(
0,

σ2
E

d Id

)
represent the received noise at the BS and eavesdropper,
respectively. To obtain the average gradient, i.e., gt

ave =
1

|Kt|
∑

n∈Kt gt
n, the BS processes the received signal by

gt
esti =

1

|Kt|φt
yt, (7)

7We simplify by not considering power control of jammers; instead, the
total power of the jamming signal is managed through device scheduling.
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where φt is a post-processing factor and |Kt| is for averag-
ing. Given that the desired gradient for the global update is
∇L (mt) = 1

N

∑N
n=1 g

t
n, the introduced error is given by

∆gt
err = gt

esti − gt
ave︸ ︷︷ ︸

∆gt
com

+ gt
ave −∇L

(
mt
)︸ ︷︷ ︸

∆gt
ds

. (8)

This error primarily stems from two sources. The first source
is the distortion induced during communication, while the
second source is the impact of device scheduling. Therefore,
we can minimize the error by optimizing the device schedul-
ing and transmission design, including the design of power
scaling factor ηn, n ∈ Kt and the post-processing factor φ.
Finally, the global update is performed using learning rate
τ by mt+1 = mt − τgt

esti.

B. Differential Privacy and MSE-Security

DP [27] provides a formal and mathematically rigorous
framework for safeguarding the sensitive information of
individuals contained within datasets. It ensures that the con-
tribution of any individual data sample to the model remains
statistically indistinguishable by injecting controllable noise
and randomness into the disclosed message. The definition
of (ϵ, ζ)-DP is given as follows.

Definition 1. (ϵ, ζ)-DP [27]: A randomized mechanism O
guarantees (ϵ, ζ)-DP if for two adjacent datasets D,D′

differing in one sample, and measurable output space Q
of O, it satisfies Pr [O (D) ∈ Q] ⩽ eϵPr [O (D′) ∈ Q] + ζ.

The Gaussian DP mechanism which guarantees privacy
by adding artificial Gaussian noise is introduced as follows.

Definition 2. Gaussian mechanism [27]: Gaussian mecha-
nism O alters the output of another algorithm L : D →
Q by adding Gaussian noise, i.e., O (D) = L (D) +
N
(
0, σ2Id

)
. It guarantees (ϵ, ζ)-DP with ϵ = κ∆S

σ where

κ =

√
2 ln

(
1.25
ζ

)
and ∆S ≜ max

D,D′
∥L (D)− L (D′)∥2

stands for the sensitivity of the algorithm L signifying the
extent to which the algorithm’s output varies when a single
data sample is altered.

In [38], MSE-security was proposed to assess the security
of analog messages. In this context, MSE-security involves
the deliberate introduction of noise, acting as jamming, to
degrade the SNR at the eavesdropper. This degradation in
SNR serves to thwart the eavesdropper’s ability to obtain a
low-noise estimate of the obtained message. The details of
MSE-security are introduced as follows.

Definition 3. (E , γ)-MSE-security [38]: A uniform dis-
tributed mechanism E : G → Y , where Y is a measureable
and bounded output space, guarantees (E , γ)-MSE-security
if under a uniform distribution of E

(
{gt

n}n∈Kt

)
, for any

eavesdropper’s estimator e : Z → Y , there is a real number
γ ⩾ 0 satisfying E

[(
e (zt)− E

(
{gt

n}n∈Kt

))2]
⩾ γ.

In statistical terms, a scheme guarantees (E , γ)-MSE-
security means that all the estimators that the eavesdropper
can apply have MSE at least γ.

III. THEORETICAL ANALYSIS

In this section, we present theoretical insights into the
impact of device scheduling and power control on the
learning process of SP-OTA-FL. We specifically quantify
privacy leakage using DP and evaluate security levels with
MES-security 8. Additionally, we conduct a comprehensive
convergence analysis of SP-OTA-FL, considering both con-
vex and non-convex machine learning models.

A. Privacy analysis

Even though the gradients are already aggregated before
reaching the BS, there remains a potential for privacy
leakage in OTA-FL. Privacy can be compromised in specific
circumstances where only the gradient from a particular
device is changed, while the gradients from other devices
remain fixed, as adopted in the privacy analyses of [17],
[19]. This creates optimal conditions for malicious attackers
to intercept information, representing a worst-case scenario.
By evaluating the maximum potential privacy leakage in
OTA-FL under these conditions, we ensure that the proposed
privacy-enhancing mechanisms are robust even in the most
challenging scenarios. We utilize the Gaussian mechanism
to quantify the privacy leakage concerning the alteration
of a single data point in the dataset of each device in the
following.

Let us consider device a as an example. Suppose that we
have two adjacent datasets, denoted as Da and D′

a, where
only one different sample exists between them. Correspond-
ingly, we have two gradients: gt

a based on Da and (gt
a)

′

based on D′

a. The received signals at the BS corresponding
to datasets Da and D′

a are respectively given by (5) and(
yt
)′

=
∑

n∈Kt,n̸=a

ht
n,B

√
ηnPn

∥gt
n∥2

gt
n +

ht
a,B

√
ηaPa∥∥(gt

a)
′∥∥

2

(
gt
a

)′
+
∑
n∈J t

ht
n,B

√
Pne

t
n + rtB , (9)

which only differ in the gradient from device a. Following
the definition of sensitivity in Definition 2, we have ∆St

a ≜

max
Da,D′

a

∥∥∥yt − (yt)
′
∥∥∥
2

and then we have the following results.

Lemma 1. The sensitivity of SP-OTA-FL to the alterations
in a single data within the dataset of device n is given by
∆St

n ≤ 2ht
n,B

√
ηnPn, and each learner n achieves (ϵtn, ζ)-

DP in round t when the following condition is satisfied,

ϵtn =
2κ

√
dht

n,B

√
ηnPn√∑

n∈J t

(
ht
n,B

)2
Pn + σ2

B

. (10)

8The distribution of local data and the frequency of the aggregation do
not impact the analyses of privacy and security in this work. Therefore,
privacy and security protection proposed in this work are applicable to the
systems considering federated averaging and Non-IID datasets.
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Proof: Please refer to Appendix A. ■
Lemma 1 provides a significant revelation: devices that

have better channel quality are more vulnerable to privacy
disclosure. This vulnerability arises from the fact that con-
cealing information within noise becomes more challeng-
ing when dealing with gradients of larger amplitude. To
counteract the risk of privacy leakage within the system,
two effective strategies emerge. One option is to enhance
the strength of noise by optimizing the jammer set J .
Alternatively, one can reduce the power of gradients by
adjusting the power scaling factor ηn.

B. Security analysis

In this subsection, we delve into the security analysis of
SP-OTA-FL. Let us consider a scenario where the eaves-
dropper’s goal is to reconstruct an averaged estimation of
the gradients, denoted as gt

ave. This estimation holds the
potential for further security attacks.

Lemma 2. Assume that the elements of gt
n are dis-

tributed uniformly in [a, b]. The aggregation mechanism
Et : (gt

n)n∈Kt → zt ∈ Z guarteens
(
Et, (ϖt)

2
Ξ
(
b−a
ϖt

))
-

MSE-security in training round t. Specifically, Ξ (t) =∫ t

0

∫ +∞
−∞

(
v + α(−v)−α(t−v)

β(t−v)−β(−v) − u
)2

· 1
tα (u− v) dvdu where

α (·) and β (·) denote the probability density function and
the cumulative distribution function of the standard normal
distribution, and

ϖt =
1√

d |Kt| γt

√∑
n∈J t

(
ht
n,E

)2
Pn + σ2

E , (11)

where γt = max
n∈Kt

{
ht
n,B

√
ηnPn

∥gt
n∥2

}
.

Proof: Please refer to Appendix B. ■
According to Definition 3,

(
Et, (ϖt)

2
Ξ
(
b−a
ϖt

))
-MSE-

security ensures that the gradient estimates derived from zt

have a MSE of at least (ϖt)
2
Ξ
(
b−a
ϖt

)
. It has been validated

that (ϖt)
2
Ξ
(
b−a
ϖt

)
increases with ϖt in [38]. Therefore, a

higher value of ϖt is associated with an increased level
of system security, thus designating ϖt as the security
coefficient, an indicator of the system’s security level. (11)
proves that one way to secure the FL process is to increase
the aggregated noise at the evasdropper or design a smaller
γt by device scheduling and power control.

C. Convergence analysis

We here present convergence analysis in the cases of con-
vex and non-convex loss functions. Our subsequent conver-
gence analyses of SP-OTA-FL rely on several assumptions
on the loss function and gradients as follows, which are
widely adopted for distributed optimization [19], [42]–[44].

Assumption 1. The expected squared norm of the gradients
is bounded by E [∥gt

n∥2] ⩽ G, which can be gauranteened
by gradient clipping [45], [46].

Assumption 2. Ln (·) is θ-smooth, i.e., Ln (ι
′)−Ln (ι) ⩽

(ι′ − ι)
T ∇Ln (ι) +

θ
2 ∥ι

′ − ι∥22 .

According to the properties of linear functions and (1),
we can conclude that L (·) is also θ-smooth. Then, we have
the following result.

Lemma 3. An upper bound of the expected loss function
after training round t is given by

E
[
L
(
mt+1

)]
≤ E

[
L
(
mt
)]

− τ

2
E
[∥∥∇L

(
mt
)∥∥2

2

]
+ τΛ

(
{ηn}n∈Kt , φ

t,Kt,J t
)
, (12)

where Λ
(
{ηn}n∈Kt , φt,Kt,J t

)
= E

[
∥∆gt

com∥22
]

+

E
[
∥∆gt

ds∥
2

2

]
denotes the impact of the transmission design

and device scheduling. Specifically, the communication MSE
E
[
∥∆gt

com∥22
]

is bounded by

E
[∥∥∆gt

com

∥∥2
2

]
≤ 1

|Kt|
∑
n∈Kt

(
ht
n,B

√
ηnPn

φt
−
∥∥gt

n

∥∥
2

)2

+
1

(|Kt|φt)
2

(∑
n∈J t

(
ht
n,B

)2
Pn + σ2

B

)
, (13)

and the device scheduling MSE is bounded by

E
[∥∥∆gt

ds

∥∥2
2

]
≤ 4

(
1− |Kt|

N

)2

G2. (14)

Proof: Please refer to Appendix C. ■
With Lemma 3, we establish an upper bound on the

loss function L (·) concerning the communication MSE
and the device selection MSE. The communication MSE
in (13) consists of two terms. The first term character-
izes the error stemming from the over-the-air aggrega-
tion, while the second term characterizes the error in-
troduced by the jamming signal and channel noise. Let-
ting Λ = maxt∈T

{
Λ
(
{ηn}n∈Kt , φt,Kt,J t

)}
and Γ =

E
[
L
(
m0
)
− L (m∗)

]
, we present the convergence analysis

results in the following.
1) Convex setting: We begin by considering the most

benign setting, wherein the loss function L (·) is assumed
to be strongly convex. We formalize a strong convexity
assumption as below.

Assumption 3. Ln (·) is ρ-strongly convex, i.e., Ln (ι
′) −

Ln (ι) ⩾ (ι′ − ι)
T ∇Ln (ι) +

ρ
2 ∥ι

′ − ι∥22 .

The convergence theorem of the SP-OTA-FL with a
strongly convex objective function is given as follows.

Theorem 1. Assume that m∗ is the optimal model and τ ≤
1
θ . The optimality gap E

[
L
(
mT

)
− L (m∗)

]
is bounded by

E
[
L
(
mT

)
− L (m∗)

]
≤ (1− ρτ)

T
Γ +

1− (1− ρτ)
T

ρ
Λ.

(15)

Proof: Please refer to Appendix D. ■
The optimality gap represented on the right-hand side

of (15) can be decomposed into two distinct components.
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The first term pertains to the initial gap Γ, which gradually
diminishes towards 0 as the parameter T tends towards
infinity since 1 − ρτ ≤ 1. The second term illustrates the
impact of aggregation error on the learning process. As T
approaches infinity, the second term converges to Λ

ρ . This
means that to enhance learning accuracy, it is necessary to
minimize Λ.

2) Non-convex setting: Given that various useful machine
learning models are characterized by non-convex objective
functions, we next investigate the convergence properties
of SP-OTA-FL in the non-convex setting. Different from
the convex case where the convergence rate is typically
quantified using the expected optimality gap, in the case of
non-convex loss function L (·), the algorithm converging to
a global minimum cannot generally be guaranteed. A rea-
sonable substitute is to adopt the average expected squared
gradient norm as the convergence indicator, which is widely
used in convergence analysis for non-convex loss functions
[47]–[50].

Theorem 2. The average expected squared gradient norm
after T training rounds is bounded as follows:

1

T

T−1∑
t=0

E
[∥∥∇L

(
mt
)∥∥2

2

]
≤ 2Γ

τT
+ 2Λ. (16)

Proof: Please refer to Appendix E. ■
Similar to the result in the convex case, the upper

bound is determined by the initial optimality gap Γ and
Λ. Hence, in both convex and non-convex settings, the
minimization of Λ is crucial for improving convergence
performance. This minimization is equivalent to minimizing
Λ
(
{ηn}n∈Kt , φt,Kt,J t

)
in each training round t.

To demonstrate the applicability of the proposed SP-
OTA-FL utilizing federated averaging (FedAvg) across non-
independent and identically distributed (Non-IID) datasets,
we also provide the convergence behavior of the convex loss
function of FedAvg on Non-IID datasets below. We define
the optimal solution as

m∗ = argmin
m

L (m), (17)

and the optimal solution for device n as

m∗
n = argmin

m
Ln (m). (18)

We use the term

Ω = L (m∗)− 1

N

N∑
n=1

Ln (m
∗
n), (19)

for quantifying the degree of Non-IID as in [51], [52]. If
the data are IID, then the value of Ω approaches zero as
the number of samples increases. Conversely, if the data
are Non-IID, Ω is nonzero, and its magnitude reflects the
heterogeneity of the data distribution.

Then, we have the following results.

Lemma 4. Given the number of the local training rounds
in FedAvg is E, an upper bound of the gap between the

model communication round t, i.e., mt+1, and the optimal
model m∗ can be given by

E
[∥∥mt+1 −m∗∥∥2

2

]
≤ αE

[∥∥mt −m∗∥∥2
2

]
+ β, (20)

where

α = 2 (1− ρτ (E − τ (E − 1))) , (21)

and

β = 4τ (E − 1)Ω + 2τ2 (E − 1)G2 + 4τ2Λ

+ τ2 (1 + ρ (1− τ))
E (E − 1) (2E − 1)

3
G2. (22)

Proof: The proof follows a similar process as in [52] and
is omitted here. ■

Following the θ-smothness in Assumption 2, we can
derive the optimality gap as follows:

E
[
L
(
mT

)
− L (m∗)

]
≤ θ

2
E
[∥∥mT −m∗∥∥2

2

]
≤θ

2

(
αT
∥∥m0 −m∗∥∥2

2
+

1− αT

1− α
Λ

)
. (23)

From Lemma 4 and equation (23), it can be observed that
even though the local training round E of FedAvg and the
degree of Non-IID Ω influence the optimality gap, they
are independent of the term Λ, which relates to device
scheduling and transmission design. Under the conditions
that (1) ρ ≤ 1

2 while E ≥ max
{
1, 2+

√
∆2

2ρ

}
or 1 ≤ E ≤

2−
√
∆2

2ρ or (2) ρ ≥ 1
2 where ∆1 = ρ2E2 − 2ρ (E − 1)

and ∆2 = 4 − 8ρ, α ≤ 1 holds, therefore, the first term
will approach zero as T goes infinity. Consistent with the
basic scenario involving one local training round algorithm
and IID datasets, the learning performance can be improved
by minimizing Λ

(
{ηn}n∈Kt , φt,Kt,J t

)
. Therefore, the

following optimal designs are also applicable to the FedAvg
algorithm and Non-IID scenarios.

Motivated by the above analytical insights, in the
following sections, we formulate optimization problems
to strike a balance between the enhanced privacy and
security and the compromised accuracy by minimizing
Λ
(
{ηn}n∈Kt , φt,Kt,J t

)
. We will explore two primary

OTA-FL scenarios: SP-OTA-FL with unbiased aggregation
(UB-SP-OTA-FL) and SP-OTA-FL with biased aggregation
(B-SP-OTA-FL). The privacy budget of device n and the
security requirement for implementing SP-OTA-FL are re-
spectively denoted by (ϵn, ζ) and ϖ, and index t will be
omitted for brevity. Detailed explanations of the optimal de-
signs for UB-SP-OTA-FL and B-SP-OTA-FL are presented
in Section IV and Section V, respectively.

IV. OPTIMIZATION FOR UB-SP-OTA-FL

In this section, we formulate an optimization problem
with the goal of enhancing the learning performance of
SP-OTA-FL through the optimization of the learner K and
jammer J , as well as the design of two critical factors:
the power scaling factor ηn, n ∈ K and the post-processing
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factor φ, where 0 ≤ ηn ≤ 1, as outlined in II-B. For ease
of presentation, we define σtot

B,J =
∑

n∈J h2
n,BPn + σ2

B

and σtot
E,J =

∑
n∈J h2

n,EPn + σ2
E . Then, the optimization

problem can be expressed as follows:

P1. min
{ηn}n∈K,φ,K,J

{
Λ
(
{ηn}n∈K , φ,K,J

)}
(24)

s.t. 0 ≤ ηn ≤ 1, n ∈ K, (24a)
K ̸= ∅,K ⊆ N ,J ⊆ N/K, (24b)

2κ
√
dhn,B

√
ηnPn√

σtot
B,J

⩽ ϵn, n ∈ K, (24c)

1√
d |K| γ

√
σtot
B,J ⩾ ϖ. (24d)

The constraint (24a) establishes a constraint on the peak
transmit power. The constraint (24b) implies that a device
cannot serve as a learner and jammer concurrently and at
least one device should be selected as a learner to participate
in the training. The privacy of each learner is guaranteed
in the constraint (24c) while (24d) denotes the security
constraint of the system. To tackle the optimization problem
presented in (24), let us simplify it first. By observing the
objective function, the optimal η∗n, n ∈ K can be determined
by the following lemma.

Lemma 5. Given any K and φ, the optimal solution of
η∗n, n ∈ K to problem P1 is given by

η∗n =
φ2 ∥gn∥22
h2
n,BPn

, n ∈ K. (25)

Proof: This result follows by setting the first term of (24)
as zero, i.e., hn,B

√
ηnPn

φ − ∥gn∥2 = 0. ■
With the aid of Lemma 5, the received signal at the BS

in (5) can be simplified as

y = φ
∑
n∈K

gn +
∑
n∈J

hn,B

√
Pnen + rB , (26)

which is referred to as UB-OTA-FL and adopted in [17],
[19]. In this UB-OTA-FL scenario, we refer to φ as the
alignment coefficient. Consequently, the privacy leakage in
(10) and the MSE-security in (11) can be re-expressed as

ϵn =
2κ

√
dφ ∥gn∥2√
σtot
B,J

and ϖ =
1√

d |K|φ

√
σtot
E,J . (27)

By converting the constraint (24a) as 0 ≤ φ ≤ hn,B

√
Pn

∥gn∥2
, n ∈

K and defining Ω (φ,K,J ) =
σtot
B,J

(|K|φ)2
+ 4

(
1− |K|

N

)2
G2,

the optimization problem in UB-SP-OTA-FL is established
as follows:

P2. min
φ,K,J

{Ω (φ,K,J )} (28)

s.t. K ̸= ∅,K ⊆ N ,J ⊆ N/K, (28a)

0 ≤ φ ≤ hn,B

√
Pn

∥gn∥2
, n ∈ K, (28b)

4dκ2φ2 ≤ ϵ2n

∥gn∥22
σtot
B,J , n ∈ K, (28c)

dϖ2 |K|2 φ2 ≤ σtot
E,J . (28d)

In the following, we first present an algorithm to decouple
the optimization variables and address the challenging non-
convex optimization problem P2. Our approach commences
by offering a closed-form solution for the optimal φ∗ and
K∗ under a given set J in Section IV-A. Subsequently, we
introduce an algorithm called SU for obtaining optimal J
in Section IV-B.

A. Closed-form Solution for Optimal φ∗ and K∗ Given J
Given J , P2 can be simplified as

P3. min
φ,K

{Ω (φ,K,J )} (29)

s.t. K ̸= ∅,K ⊆ RJ , (29a)
(28b), (28c), (28d), (29b)

where RJ = N/J . Then, the optimal value of φ can be
transformed into a function of K according to the following
lemma.

Lemma 6. For any given K and J , the optimal solution
of φ to problem P3 is given by

φ∗ = f (K) ≜ min {φcc, φpr, φse} , (30)

where φcc = minn∈K

{
hn,B

√
Pn

∥gn∥2

}
, φse =

1√
dϖ|K|

√
σtot
E,J , and φpr = 1

2κ

√
σtot
B,J
d minn∈K

{
ϵn

∥gn∥2

}
.

Proof: Following (28b), (28c), (28d), we have 0 ≤ φ ≤
φcc, 0 ≤ φ ≤ φpr, and 0 ≤ φ ≤ φse, respectively. To
achieve the minimal value of the objective function with
given K and J , the largest φ within the feasible region is
required, leading to φ∗ = min {φcc, φpr, φse}. ■

Remark 1. It can be seen from Lemma 6 that there is a
tradeoff between the alignment coefficient φ and the number
of scheduled devices |K|. Specifically, a larger |K| may lead
to a smaller φ. For example, if |K| = N , that means all the
devices are involved in the training and φcc, φpr, and φse,
achieve the minimal values, respectively, which will lead to
the minimal φ. On the contrary, φ can achieve its largest
value by scheduling the device with the largest hn,B

√
Pn

∥gn∥2
or

the largest ϵn
∥gn∥2

when |K| = 1.

Building upon Lemma 6, P3 can be simplified as

P4. min
K

{
σtot
B,J

(|K| f (K))
2 + 4

(
1− |K|

N

)2

G2

}
(31)

s.t. (29a). (31a)

By observing (31), we can see that the largest f (K) is
required to minimize the objective function for a fixed |K|.
Taking |K| = i, 1 ≤ i ≤ |RJ | , i ∈ Z , where Z is the set of
integers, as an example, the largest f (K) satisfying |K| = i
can be achieved by finding the i devices that yield the largest
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min {φcc, φpr, φse} according to (30). It is equivalent to
achieve the largest min {φcc, φpr} since φse is fixed when
|K| = i. By sorting the devices in descending order of

φn
ccpr = minn∈K

{
hn,B

√
Pn

∥gn∥2
, 1
2κ

√
σtot
B,J
d

ϵn
∥gn∥2

}
, the K that

achieves the largest f (K) is given by the following lemma.
For ease of presentation, we introduce a mechanism denoted
as S (N ; q), which organizes the elements in the set N in
descending order according to the parameter q.

Lemma 7. For any |K| = i, 1 ≤ i ≤ |RJ | , i ∈ Z , the
largest f (K), denoted as f (K∗

i ), is achieved when

K∗
i = {sccpr [n] |n < i} , (32)

where sccpr = S
(
RJ ;φn

ccpr

)
.

Proof: As the elements in sccpr are sorted in descending
order of φn

ccpr, the first i elements will contribute to the
largest min {φcc, φpr, φse}, i.e., the largest f (K), in the
case that |K| = i. ■

Based on Lemma 7, the optimal solution K∗ to problem
P3 and P4 is given by Ki∗ where

i∗ = arg min
1≤i≤|RJ |

{Ω (f (K∗
i ) ,K∗

i ,J )} . (33)

Consequently, the optimal φ∗ for problem P3 can be ob-
tained using Lemma 6.

B. SU Algorithm for Optimal J
The optimal J can be derived by exhaustively considering

all possible sets of jammers. For each set of jammers, the
optimal solutions for φ and K outlined in Section IV-A
can be implemented. However, this exhaustive enumeration
introduces a computational complexity on the order of

(
N
c

)
when c devices are designated as jammers. Moreover, this
complexity escalates with the increase in the parameter N .
Thus, obtaining the optimal solution for J becomes consid-
erably challenging with a large value of N . To mitigate the
high enumeration complexity, we develop an SU algorithm
inspired by [53] to obtain J . In the SU algorithm, we
systematically consider different jammer quantities. For each
specific jammer count, we generate an initial jammer set
and proceed to iteratively optimize an individual jammer
while keeping the others fixed. For ease of presentation, we
introduce the notation J ls denoting the corresponding list
of the set J . Then, the overall procedure based on the SU
algorithm for solving P2 is summarized in Algorithm 1.

Given that we derive φc and Kc using Lemma 6 and
Lemma 7 with a computational complexity of O(N), the
overall complexity of the SU algorithm is O(N4). While
the SU algorithm reduces the enumeration complexity, it
remains substantial, especially with larger values of N .

C. SP-SJR-based LC Solution for UB-SP-OTA-FL

By examining constraints (28c) and (28d) in P2, we
see that there are three ways to guarantee the privacy and
security: (1) decrease φ; (2) reduce K; or (3) increase the

Algorithm 1 SU-based Solution for Solving P2

Input: Given {(ϵn, ζ)}Nn=1 and ϖ. Initialize Ωmin = +∞.
Output: K∗, J ∗ and φ∗.

1: for c ∈ [0, N − 1] do
2: Initialize Jc and let Rc = N/Jc.
3: for id ∈ [0, c− 1] do
4: for j ∈ Rc ∪ J ls

c [id] do
5: Let J ls

c [id] = j and compute φc and Kc

using Lemma 6 and Lemma 7.
6: if Ω (φc,Kc,Jc) < Ωmin then
7: Let φ∗ = φc,K∗ = Kc,J ∗ = Jc, and

Ωmin = Ω(φc,Kc,Jc).
8: end if
9: end for

10: Let Jc = J ∗.
11: end for
12: end for

power of jamming. Inspired by this, we propose an LC
solution for addressing P2.

We begin by enumerating the potential number of sched-
uled learners and obtain the corresponding optimal K and φ
without considering privacy and security constraints. Then,
we design the optimal set of jammers that guarantees privacy
and security under the obtained K and φ. Specifically, for
given K and φ, we have the following results:

Proposition 1. For given K and φ, no jammers are required
when the privacy of each participant and the security of the
system satisfy the following conditions:

max
n∈K

{
∥gn∥2
ϵn

}
≤ σB

2
√
dκφ

and ϖ ≤ σE√
d |K|φ

. (34)

Conversely, no set of jammers is qualified to guarantee
privacy and security when

min
n∈K

{
∥gn∥2
ϵn

}
>

1

2κφ

√
σtot
B,RK

d
and ϖ >

1

|K|φ

√
σtot
E,RK

d
,

(35)

where RK = N/K.

Proof: Based on 4dκ2φ2 ∥gn∥2
2

ϵ2n
≤ σ2

B , n ∈ K and
dϖ2 |K|2 φ2 ≤ σ2

E , we establish the validity of (34).
Similarly, when we set 4dκ2φ2 ∥gn∥2

2

ϵ2n
≥ σtot

B,RK
, n ∈ K and

dϖ2 |K|2 φ2 ≥ σtot
E,RK

, we conclude the proof of (35). ■
In the scenario described by (35), where privacy and

security cannot be guaranteed by the remaining devices, we
schedule all the remaining devices as jammers, and then
update φ using Lemma 7. From Proposition 1, we can
also see that in the case that σB

2
√
dκφ

<
{

∥gn∥2

ϵn

}
n∈K

<

1
2κφ

√
σtot
B,RK
d and σE√

d|K|φ < ϖ < 1
|K|φ

√
σtot
E,RK
d , some

of the remaining devices are required to be scheduled as
jammers. To find the optimal jammer set that satisfies privacy
and security constraints, we propose an SP-SJR algorithm.
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Algorithm 2 The procedure of the SP-SJR algorithm

Input: Given K, φ.
Output: J .

1: Let J = RK and compute σpr and σse.
2: repeat

3: j =

{
n with the largest hn,B , σpr > σse,
n with the largest hn,E , σpr <= σse.

4: Let J = J / {j}, σpr = σpr − h2
j,BPj and σse =

σse − h2
j,EPj .

5: until σpr <= 0 and σse <= 0 or J = ∅.

Algorithm 3 SP-SJR-based LC scheme for solving P2.

Input: Given {(ϵn, ζ)}Nn=1 and ϖ.
Output: K∗, J ∗ and φ∗.

1: for i ∈ [1, · · · , N ] do
2: Let K∗

i = {sN [n] |n < i}, Ri = N/K∗
i and φ∗

i =

minn∈K∗
i

{
hn,B

√
Pn

∥gn∥2

}
.

3: if minn∈K

{
∥gn∥2

ϵn

}
> 1

2κφ

√
σtot
B,RK
d and ϖ >

1
|K|φ

√
σtot
E,RK
d , then

4: Let J ∗
i = Ri and update φ∗

i using Lemma 7.
5: else
6: Obtain J ∗

i by applying Algorithm 2.
7: end if
8: end for
9: K∗ = K∗

i , J ∗ = J ∗
i and φ∗ = φ∗

i where i =
argmin1≤i≤N {Ω (K∗

i ,J ∗
i , φ

∗
i )}.

With SP-SJR, we first set all the remaining devices as
jammers, i.e., J = RK and calculate the powers of the
jamming signals needed for enhancing privacy and security,
respectively, denoted as σpr and σse. Then, we remove
one jammer at a time accroding to privacy and securiy
requirements until the privacy and security constraints are no
longer met. Following this, we obtain an optimal jammer set
satisfying privacy and security. The procedure of the SP-SJR
algorithm to find the optimal jammer set is summarized in
Algorithm 2, where σpr = 4dκ2φ2 maxn∈K

{
∥gn∥2

2

ϵ2n

}
− σ2

B

and σse = dϖ2 |K|2 φ2 − σ2
E .

The optimal solution to Problem P2 can be obtained by
searching these enumerated potential solutions. The overall
procedure of the LC solution for solving P2 is presented
in Algorithm 3 where sN = S

(
N ;

hn,B

√
Pn

∥gn∥2

)
. Given that

the SP-SJR algorithm has a computational complexity of
O(N), the proposed LC solution operates at a complexity
of O

(
N2
)
, which can efficiently address Problem P2.

V. OPTIMIZATION FOR B-SP-OTA-FL

In this section, we investigate the optimization problem
in B-OTA-FL systems [30], [31] where the gradients do
not need to be aligned. Then, the overall SNR will not be
limited by the alignment coefficient. We consider that all the

gradients are transmitted with maximum transmission power,
i.e., ηn = 1. Then, the minimization problem is given as

P6. min
φ,K,J

{
Λ
(
{1}n∈K , φ,K,J

)}
(36)

s.t. K ̸= ∅,K ⊆ N ,J ⊆ N/K, (36a)

2κ
√
dhn,B

√
Pn

ϵn
≤
√

σtot
B,J , n ∈ K, (36b)

dϖ2 |K|2 γ2 ≤ σtot
E,J . (36c)

We first employ the alternating optimization (AO) algorithm
to obtain the optimal φ and K for given J .

A. SU-based AO (AOSU) Algorithm

The optimal J can be obtained by applying the SU
algorithm proposed in IV-B9. Then, the optimal solutions for
φ and K can be obtained by AO with given J . Specifically,
the details for obtaining the optimal optimal φ and K in each
iteration in AO are elaborated as follows.

1) Optimal φ∗: By giving K and J , P6 can be decom-
posed as follows:

P7. min
φ

{
Λ
(
{1}n∈K , φ,K,J

)}
. (37)

The optimal solution to problem P7 is given as follows.

Lemma 8. With any given K and J , the optimal solution
for φ∗ to problem P7 is given by

φ∗ =
|K|
∑

n∈K h2
n,BPn + σtot

B,J

|K|
∑

n∈Khn,B

√
Pn ∥gn∥2

. (38)

Proof: By introducing φ̂ = 1
φ , problem P7 is recast as

the following convex quadratic problem:

P8. min
φ̂

{
1

|K|
∑
n∈K

(
hn,B

√
Pnφ̂− ∥gn∥2

)2
+

σtot
B,J

|K|2
φ̂2

}
.

By setting the first derivative of the objective function in
problem P8 to zero, we can obtain the optimal solution to
problem P8, and accordingly get the optimal solution to
problem P7 with φ∗ = 1

φ̂∗ . ■
2) Optimal K: With given J and φ, P6 can be re-

expressed as

P9. min
K

{
Λ
(
{1}n∈K , φ,K,J

)}
(39)

s.t. (36a) , (36b) , (36c) . (39a)

By defining RJ = N/J and introducing kn ∈ {0, 1} , n ∈
RJ to indicate whether or not device n ∈ RJ is scheduled
as a learner, the optimization can be re-expressed as

P10. min
{kn}n∈RJ

 1∑
n∈RJ

kn

∑
n∈RJ

knA
2
n

9Considering the complexity of the SU algorithm, we will introduce
an alternative solution with low complexity in the next subsection. The
effectiveness of this alternative solution will be demonstrated through a
comparison with the SU algorithm.
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+
B(∑

n∈RJ
kn
)2 + 4

(
1−

∑
n∈RJ

kn

N

)2
G2

}
(40)

s.t. kn ∈ {0, 1} , n ∈ RJ , (40a)

4dκ2
h2
n,BPn

ϵ2n
kn ≤ σtot

B,J , n ∈ RJ , (40b)

dϖ2
knh

2
n,BPn

∥gn∥22

( ∑
n∈RJ

kn
)2 ≤ σtot

E,J , n ∈ RJ , (40c)

where An =
hn,B

√
Pn

φ − ∥gn∥2 and B =
σtot
B,J
φ2 . Next, we

can decompose P10 into a set of |RJ | optimization sub-
problems. This decomposition is achieved by introducing
a crucial constraint: for each i within the range 1 ≤ i ≤
|RJ |, we add the constraint

∑
n∈RJ

kn = i to the i-th sub-
problem. Specifically, the i-th, 1 ≤ i ≤ |RJ | sub-problem
can be given by

P10 (i) . min
{ki

n}n∈RJ

1

i

∑
n∈RJ

kinA
2
n +

B

i2
+ 4
(
1− i

N

)2
G2


(41)

s.t. kin ∈ {0, 1} , n ∈ RJ , (41a)

4dκ2
h2
n,BPn

ϵ2n
kin ≤ σtot

B,J , n ∈ RJ , (41b)

dϖ2
h2
n,BPn

∥gn∥22
kin ≤

σtot
E,J

i2
, n ∈ RJ , (41c)∑

n∈RJ

kin = i. (41d)

By relaxing constraint (41a) as 0 ≤ kin ≤ 1, n ∈ RJ ,
P10 (i) can be transformed to a convex problem and can
be solved by convex optimization tools. Upon solving the
set of |RJ | convex problems, we acquire |RJ | optimal
solutions for the corresponding sub-problems, denoted as
K∗

i where 1 ≤ i ≤ |RJ |. Clearly, the optimal solution
for the original problem P10 is hidden in these solu-
tions. By defining Θ

({
kin
}
n∈RJ

)
= 1

i

∑
n∈RJ

kinA
2
n +

B
i2 + 4

(
1− i

N

)2
G2, we obtain the optimal solution to

problem P10 by {k∗n}n∈RJ
=
{
kin
}
n∈RJ

where i =

argmin1≤i≤|RJ |

{
Θ
({

kin
}
n∈RJ

)}
.

B. SP-SJR-based LC Solution for B-SP-OTA-FL

In this subsection, we introduce an approach of reduced
complexity to address problem P6 by systematically ex-
ploring all potential values for the size of K. For a given
size of K, we can first jointly design K and J with the
consideration of privacy and security. Then, based on the K
and J , the optimal φ can be obtained by applying Lemma
8. The optimal solution can be obtained by searching the
enumerated potential solutions. Specifically, we consider the
size of K from 1 to N . For each value, we schedule the
|K| devices that result in the least stringent privacy and
security constraints. Subsequently, if the remaining devices
can meet the privacy and security requirements, we derive

Algorithm 4 SP-SJR-based LC scheme for solving P6.

Input: Given {(ϵn, ζ)}Nn=1 and ϖ.
Output: K∗, J ∗, φ∗.

1: for i in {1, · · · , N} do
2: Let K∗

i = {sprseN [n] |n ≥ N − i+ 1}, Ri = N/K∗
i ,

Ji = Ri, and w = sprseN [N − i+ 1].
3: if Constraints (36b) and (36c) can be satisfied then
4: Obtain J ∗

i by employing Algorithm 2 where
σpr = prw − σ2

B and σse = sew − σ2
B .

5: Obtain φ∗
i using Lemma 8.

6: end if
7: end for
8: Obtain K∗,J ∗, φ∗ = K∗

i ,J ∗
i , φ

∗
i where i =

argmin1≤i≤N

{
Λ
(
{1}n∈K∗

i
, φ∗

i ,K∗
i ,J ∗

i

)}
.

the optimal jammer set by applying the SP-SJR algorithm.
Finally, the optimal solution can be obtained by exhaus-
tively searching through all possible solution cases. Let
Pr = [pr1, · · · prn, · · · prN ] and Se = [se1, · · · sen, · · · seN ]

where prn = 4dκ2 h2
n,BPn

ϵ2n
and sen = dϖ2 h2

n,BPn

∥gn∥2
2

. Then,
we define Prse = [prse1, · · · , prsen, · · · prseN ] where
prsen = max {prn, sen}. The details of the proposed LC
solution are summarized in Algorithm 4 where sprseN =
S (N ; prsen).

Considering that the SP-SJR algorithm has a computa-
tional complexity of O(N), the proposed LC solution, with
a complexity of O(N2), provides an efficient method for
solving Problem P6.

VI. SIMULATION RESULTS

This section presents simulation results to assess the
impact of privacy and security on the learning process and
to compare the performance of the proposed jamming-aided
SP-OTA-FL schemes with state-of-the-art approaches that do
not incorporate jamming.

A. Simulation Setting

We evaluate our proposed scheme by training a
convolutional neural network (CNN) on the popular
MNIST dataset used for handwritten digit classification. In
particular, CNN consists of two 5 × 5 convolution layers
with the rectified linear unit (ReLU) activation. The two
convolution layers have 10 and 20 channels respectively,
and each layer has 2 × 2 max pooling, a fully connected
layer with 50 units and ReLU activation, and a log-softmax
output layer, in which case d = 21840. The learning rate
is set as η = 0.1. We set σ2

B and σ2
E both to 1, and each

device’s maximum transmission power is limited to 30dBm.

B. Evaluation of jamming-aided UB-SP-OTA-FL

In this section, we present simulation results to show how
privacy and security constraints affect the learning process of
UB-OTA-FL and validate the performance of the proposed
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Fig. 2: The optimal value of the objective function and the
alignment coefficient φ under varying privacy budgets ϵ.

schemes by comparing it with the two schemes: no jamming-
aided (NoJ) scheme [29] and the power scaling (PS) scheme
[18]. Notably, both the NoJ and PS schemes operate with-
out jammers, relying on the reduction of the alignment
coefficient to ensure privacy and security. Specifically, the
alignment coefficient and the device scheduling are jointly
optimized in NoJ while only the alignment coefficient is
optimized in PS.

In Fig. 2, we depict the alignment coefficient φ and
the objective function value in P2 concerning the privacy
budget ϵ, with different worst channel conditions hmin. To
highlight the impact of privacy, we maintain ϖ at a value
of 0.012. Firstly, the proposed LC and SU algorithm consis-
tently achieve nearly identical performance and outperform
the benchmarks. Generally, the alignment coefficient φ is
constrained by the channel condition, privacy and security
constraint as shown in (30). In the scenario where ϵ = 10,
these schemes achieve the same performance where the
alignment coefficient is constrained by the strict privacy
requirement. It is readily understandable that all the devices
in NoJ and PS are scheduled to participate in the training
process to achieve a better learning performance when φ is
limited to a small value for satisfying the stringent privacy
constraint. Regarding the proposed jamming-aided schemes,
it is possible to increase the alignment coefficient φ by
involving certain devices as jammers, resulting in a reduced
number of active learners. However, this increase in φ has a
limited contribution to decrease the objective function when
weighed against the reduction in the number of participants.
Consequently, the proposed jamming-aided schemes yield
comparable results to those achieved by the NoJ and PS
strategies. In the cases of ϵ ≥ 20, the alignment coefficient
φ in PS is limited by the worst channel condition as the
alignment coefficient and objective function do not show any
improvement with the increased privacy budgets. While it is
possible to enhance the alignment coefficient with decreased
privacy requirements and involving fewer participants, a
tradeoff exists between achieving an improved alignment
coefficient φ and having a reduced number of participants
to attain the optimal value of the objective function. Con-
sequently, when ϵ ≥ 30, both the alignment coefficient
and the objective function in NoJ do not demonstrate any
improvement, even with a larger privacy budget. Considering
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Fig. 3: The optimal value of the objective function and the
alignment coefficient φ under varying MSE-security levels.
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Fig. 4: The learning performance with different schemes.

the two proposed jamming-aided schemes, the advantages
of enhancing alignment through the incorporation of jam-
ming techniques outweighed the drawback of having fewer
learners. As a result, performance can be further enhanced
by increasing the privacy budget when φ ≤ 70. However,
in scenarios where φ ≥ 70, the outcomes are constrained
by security requirements, which implies that no additional
improvement can be achieved through an increased privacy
budget.

Fig. 3 illustrates the alignment coefficient φ and the objec-
tive function value in P2 with different security requirements
where the privacy budget is set to ϵ = 80. The two proposed
jamming-aided schemes consistently outperform the bench-
marks, with significant performance superiority observed
when the security requirement is stringent. It is worth noting
that in pursuit of stringent security objectives, a substantial
reduction in the alignment coefficient φ within NoJ and PS
scenarios can have a noteworthy adverse impact on the utility
of the aggregated gradient at the BS. In contrast, the utility
of the aggregated gradient at the BS may not experience
such a substantial decline when security requirements are
met through the strategic design of jammers, emphasizing
their impact on eavesdroppers rather than on the BS. This
underscores the extra effectiveness of the proposed jamming
framework when addressing strict security constraints.

In Fig. 4, we present a comparison of learning accuracy
between the proposed schemes and the NoJ scheme. For
this analysis, we exclude the consideration of PS, as it often
yields identical outcomes to NoJ in the majority of privacy
and security constraint cases. In the context of UB-OTA-
FL scenarios, the proposed schemes ensure the fulfillment
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Fig. 5: The optimal value of the objective function under
varying privacy and security requirements.

of privacy and security requirements through a combined
optimization of reducing the alignment coefficient φ and
adjusting the scheduling of jammers. However, in scenarios
without jammers, privacy and security are achieved primar-
ily by reducing the alignment coefficient φ. Consequently,
our two proposed jamming-aided schemes demonstrate a
marginal decrease in accuracy as privacy and security re-
quirements intensify, while the NoJ scenario experiences
a substantial drop in accuracy under the same conditions,
aligning with the findings in Fig. 3.

C. Evaluation of jamming-aided B-SP-OTA-FL

We evaluate the performance of the jamming-aided
schemes by comparing it with exhaustive search-based al-
ternative optimization (AOEM) and the NoJ scheme.

In Fig. 5, we plot the value of the objective function in B-
OTA-FL with varying privacy budgets and security require-
ments in Fig. 5(a) and Fig. 5(b), respectively. In Fig. 5(a), the
security coefficient is set to ϖ = 0.01 and the privacy budget
is set to ϵ = 100 in Fig. 5(b). In Fig. 5(a) and Fig. 5(b), the
proposed AOSU scheme achieves nearly identical results as
AOES, which demonstrates the effectiveness of the proposed
SU scheme. In B-OTA-FL scenarios, privacy and security
in the NoJ scheme are maintained by scheduling eligible
devices that take advantage of channel noise for protection.
In contrast, the jamming-aided schemes ensure privacy and
security by orchestrating the joint scheduling of learners
and jammers. Both of the proposed schemes outperform
the NoJ scheme, with the performance gap being especially
pronounced in Fig. 5(b) when the security requirements are
stringent. This enhanced performance can be attributed to
the inclusion of jamming techniques. Just as in the case of
UB-SP-OTA-FL, the reduced participation of devices can
directly impact the contribution of the gradient at the BS,
while jamming can be strategically designed to introduce
more distortion to eavesdroppers, enhancing the security of
the system.

Fig. 6 depicts the learning accuracy for both the proposed
jamming-aided schemes and the NoJ scheme. In Fig. 6(a),
we set the privacy budget and security requirement to
ϵ = 30 and ϖ = 0.01, while in Fig. 6(b), these values
are set to ϵ = 100 and ϖ = 0.1. Fig. 6(a) illustrates
scenarios with more stringent privacy constraints, while Fig.
6(b) describes scenarios with stricter security constraints.
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Fig. 6: The learning performance with different schemes.

In both scenarios, our jamming-aided schemes consistently
outperform the non-jamming approach, demonstrating the
effectiveness of our proposed schemes. Specifically, in Fig.
6(a), the proposed schemes outperform NoJ schemes because
they can schedule more devices to participate in the training
process by leveraging jamming as a privacy protection
measure. In contrast, NoJ schemes only schedule devices
whose privacy can be protected by the channel noise, thereby
compromising the learning performance, especially in cases
where only a very limited number of devices meet the pri-
vacy requirement. This superiority of our proposed jamming-
aided approach is particularly pronounced in scenarios with
heightened security requirements as in Fig. 6 (b). This
is attributed to our strategic jamming design. Specifically,
NoJ approaches ensure security by scheduling the devices
with poor channel conditions, as demonstrated in security
analysis. However, this action inevitably degrades the gra-
dient quality at both the BS and the eavesdropper. As the
security requirement increases, the gradient quality will be
significantly compromised. In contrast, our jamming-aided
approach strategically schedules devices close to potential
eavesdroppers as jammers. This effectively degrades gradient
quality at the eavesdropper while causing less distortion to
the gradient at the BS, thereby being particularly effective
for strict security constraint.

VII. EXTENSION TO ASYNCHRONOUS FL SCENARIOS

In asynchronous FL, devices update and transmit their
local gradients at varying times due to differences in com-
putational capabilities, communication latency, or energy
constraints. There are mainly two types of asynchronous FL
in terms of the number of the devices participating during
one aggregation:

• Traditional asynchronous FL algorithms, where only
one device updates its gradients to the server in each
aggregation round;

• Semi-asynchronous FL algorithms, where devices are
grouped into clusters to perform synchronous aggre-
gation within each cluster, while clusters themselves
operate asynchronously.

A. Case 1: Traditional Asynchronous FL
For traditional asynchronous FL algorithms, consider the

t-th aggregation round, where only one device a is ac-
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tively involved in transmitting its gradients to the server.
When the gradient is computed on Da, the signal received
at the BS can be expressed as: yt =

ht
a,B

√
ηaPa

∥gt
a∥2

gt
a +∑

n∈J t ht
n,B

√
Pne

t
n + rtB . Now, assume there is a data

sample changed in the dataset Da, resulting in a modified
dataset D′

a and corresponding gradients (gt
a)

′. Consequently,
the signal received at the BS in this case becomes: (yt)

′
=

ht
a,B

√
ηaPa

∥(gt
a)

′∥
2

(gt
a)

′
+
∑

n∈J t ht
n,B

√
Pne

t
n + rtB . Then, the

sentivitiy of the propsoed algorithms is given by ∆St
a = yt−

(yt)
′
= ht

a,B

√
ηaPa

∣∣∣∣ gt
a

∥gt
a∥2

− (gt
a)

′

∥(gt
a)

′∥
2

∣∣∣∣ ≤ 2ht
a,B

√
ηaPa.

This result demonstrates that the privacy analysis for tra-
ditional asynchronous FL represents a specific case of the
analysis presented in Section III-A.

B. Case 2: Semi-Asynchronous FL

In semi-asynchronous FL algorithms, devices within each
cluster aggregate their gradients synchronously, while clus-
ters communicate asynchronously. Since the aggregation
process within each cluster is still synchronous, it is directly
compatible with the proposed SP-OTA-FL framework and
its theoretical analyses.

VIII. CONCLUSION

In this paper, we have introduced a novel framework
called SP-OTA-FL, aimed at strengthening privacy and se-
curity of OTA-FL by allocating certain devices as jam-
mers. Leveraging theoretical insights from privacy, security
and convergence analyses, we have devised optimization
problems to delve into the optimal design for SP-OTA-
FL in two common scenarios: UB-OTA-FL and B-OTA-FL.
We have also developed efficient schemes to tackle these
problems. Compared to schemes that do not take jamming
into account, the proposed jamming-aided SP-OTA-FL can
significantly improve security. This improvement is achieved
by strategically designating devices located closer to poten-
tial eavesdroppers as jammers, as opposed to reducing the
power of the gradient, which might lead to a more distorted
aggregated gradient at the BS.

APPENDIX A
PROOF OF LEMMA 1

We use index a instead of n to avoid confusion between
the specific index of device n and the notation n in the
summation. Based on the definition of sensitivity, one has

∆St
a = ht

a,B

√
ηaPa

∣∣∣∣∣ gt
a

∥gt
a∥2

− (gt
a)

′∥∥(gt
a)

′∥∥
2

∣∣∣∣∣ ≤ 2ht
a,B

√
ηaPa,

(42)
where the last inequality stems from Triangular Inequality.
The variance of the aggregated noise at the BS is given by∑

n∈J t (ht
n,B)

2
Pn+σ2

B

d . By replacing a with n, one completes
the proof of Lemma 1.

APPENDIX B
PROOF OF LEMMA 2

Firstly, since the elements in gt
n are uniformly distributed

in [a, b], the gt
ave follows the same distribution in [a, b].

For analysis, we define Ẽt : (gt
n)n∈Kt → z̃t ∈ Z̃ where

z̃t =
∑

n∈Kt γtgt
n + rtE,Tot. Assume that the variance of

z̃t is σ. Following Lemma 3 and Lemma 4 in [28], the
minimum MSE estimator e (z̃t) for estimating gt

ave from the
observations z̃t satisfies E

[
(gt

ave − e (z̃t))
2
]
= σΞ

(
b−a√

σ

)
.

The lowest-variance unbiased estimator is given by

e
(
z̃t
)
= gt

ave +
1

|Kt| γt
rtE,Tot, (43)

with the variance (ϖt)
2

=
∑

n∈J t (ht
n,E)

2
Pn+σ2

E

d(|Kt|γt)2
. In re-

ality, the minimal value of ϖt is achieved when γt =

max
n∈Kt

{
ht
n,B

√
ηnPn

∥gt
n∥2

}
due to the peak transmit power con-

straint. It thus follows from (43) and Definition 2 that Ẽt

guarantees
(
Ẽt, (ϖt)

2
Ξ
(
b−a
ϖt

))
. On the other hand, one has

E
[
∥e (z̃t)− gt

ave∥
2
]
= 1

(|K|tγt)
2E
[∥∥rtE,Tot

∥∥2] . Similarly,

we also have

E
[∥∥e (zt

)
− gt

ave

∥∥2] (a)
=

1(
|K|t γt

)2E [∥∥rtE,Tot

∥∥2]

+
1

|Kt|2
E

∥∥∥∥∥∑
n∈Kt

(ht
n,E

√
ηnPn

γt
− 1
)
gt
n

∥∥∥∥∥
2
 , (44)

where (a) comes from E
[
rtE,Tot

]
= 0. Obviously,

E
[
∥e (z̃t)− gt

ave∥
2
]

is smaller than E
[
∥e (zt)− gt

ave∥
2
]
,

therefore, e (z̃t) is a closer estimate of gt
ave. Then,

e (zt) has a larger variance and can achieve at least(
Ẽt, (ϖt)

2
Ξ
(
b−a
ϖt

))
-MSE-security. Alternatively, from the

communication point of view, one can also get that z̃t could
have a better recovery of gradient than zt because of a
higher SNR as γt = max

n∈Kt

{
ht
n,B

√
ηnPn

∥gt
n∥2

}
. Therefore, if z̃t

can guarantee at least
(
Ẽt, (ϖt)

2
Ξ
(
b−a
ϖt

))
-MSE-security,

then so can zt. Then, we complete the proof of Lemma 2.

APPENDIX C
PROOF OF LEMMA 3

We first derive the upper bound of the expected loss
function E

[
L
(
mt+1

)]
as follows:

E
[
L
(
mt+1

)]
≤E

[
L
(
mt
)]

+ E
[〈
∇L

(
mt
)
,mt+1 −mt

〉]
+

θ

2
E
[∥∥mt+1 −mt

∥∥2
2

]
≤E

[
L
(
mt
)]

− τE
[〈
∇L

(
mt
)
,∇L

(
mt
)〉]

− τE
[〈
∇L

(
mt
)
,∆gt

err

〉]
+

τ2θ

2
E
[∥∥∇L

(
mt
)
+∆gt

err

∥∥2
2

]
=E

[
L
(
mt
)]

− τE
[∥∥∇L

(
mt
)∥∥2

2

]
+

τ2θ

2

∥∥∇L
(
mt
)∥∥2

2
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+
τ2θ

2
E
[∥∥∆gt

err

∥∥2
2

]
− τ (1− τθ)E

[〈
∇L

(
mt
)
,∆gt

err

〉]
(a)

≤E
[
L
(
mt
)]

− τ

2
E
[∥∥∇L

(
mt
)∥∥2

2

]
+

τ

2
E
[∥∥∆gt

err

∥∥2
2

]
(b)

≤E
[
L
(
mt
)]

− τ

2
E
[∥∥∇L

(
mt
)∥∥2

2

]
+ τE

[∥∥∆gt
com

∥∥2
2

]
+ τE

[∥∥∆gt
ds

∥∥2
2

]
, (45)

where (a) stems from that

− E
[〈
∇L

(
mt
)
,∆gt

err

〉]
≤
E
[
∥∇L (mt)∥22

]
2

+
E
[
∥∆gt

err∥
2
2

]
2

, (46)

and (b) is from

E
[∥∥∆gt

err

∥∥2
2

]
≤ 2E

[∥∥∆gt
com

∥∥2
2

]
+ 2E

[∥∥∆gt
ds

∥∥2
2

]
. (47)

By applying the fact that E [etn] = E [rtB ] = 0, the
communication MSE is bounded by

E
[ ∥∥∆gt

com

∥∥2
2

]
≤E
[ ∥∥∥∥∥ 1

|Kt|
∑
n∈Kt

(ht
n,B

√
ηnPn

φt ∥gt
n∥2

− 1
)
gt
n

∥∥∥∥∥
2

2

]
+ E

[ ∥∥∥∥∥ 1

|Kt|φt

( ∑
n∈J t

ht
n,B

√
Pne

t
n + rtB

)∥∥∥∥∥
2

2

]
(a)

≤ 1

|Kt|
∑
n∈Kt

(ht
n,B

√
ηnPn

φt ∥gt
n∥2

− 1
)2E [∥∥gt

n

∥∥2
2

]
+

1

(|Kt|φt)
2

( ∑
n∈J t

(
ht
n,B

)2
PnE

[∥∥etn∥∥22]+ E
[∥∥rtB∥∥22] )

≤ 1

|Kt|
∑
n∈Kt

(ht
n,B

√
ηnPn

φt
−
∥∥gt

n

∥∥
2

)2
+

1(
|Kt|φt

)2 ( ∑
n∈J t

(
ht
n,B

)2
Pn + σ2

B

)
, (48)

where (a) comes from Jensen’s inequality. The bound of the
device scheduling MSE is bounded by

E
[∥∥∆gt

ds

∥∥2
2

]
(a)

≤
(( 1

|Kt|
− 1

N

) ∑
n∈Kt

∥∥gt
n

∥∥
2
+

1

N

∑
n∈N/Kt

∥∥gt
n

∥∥
2

)2
(b)

≤4
(
1− |Kt|

N

)2
G2, (49)

where (a) comes from that ∥a+ b∥22 ≤ (∥a∥2 + ∥b∥2)
2 and

(b) is from the Assumption 1.

APPENDIX D
PROOF OF THEOREM 1

Under Assumption 3, we could derive a useful result, i.e.,
∥∇L (ι)∥22 ⩾ 2ρ [L (ι)− L (ι∗)] . Then, we have

E
[
L
(
mt+1

)]
− E [L (m∗)]

≤E
[
L
(
mt
)]

− E [L (m∗)]− τ

2
E
[∥∥∇L

(
mt
)∥∥2

2

]
+ τE

[∥∥∆gt
com

∥∥2
2

]
+ τE

[∥∥∆gt
ds

∥∥2
2

]
≤ (1− ρτ)

(
E
[
L
(
mt
)]

− E [L (m∗)]
)
+ τE

[∥∥∆gt
com

∥∥2
2

]
+ τE

[∥∥∆gt
ds

∥∥2
2

]
≤ (1− ρτ)

t+1 (E [L (m0
)]

− E [L (m∗)]
)

+ τΛ
t∑

i=0

(1− ρτ)
i

≤ (1− ρτ)
t+1 E

[
L
(
m0
)
− L (m∗)

]
+

1− (1− ρτ)
t+1

ρ
max
t∈T

{
Λ
(
{ηn}n∈Kt , φ

t,Kt,J t
)}

.

(50)

By replacing t+ 1 as T , we finish the proof of Theorem 1.

APPENDIX E
PROOF OF THEOREM 2

Accroding to Lemma 3, we have

E
[∥∥∇L

(
mt
)∥∥2

2

]
≤

2
[
E [L (mt)]− E

[
L
(
mt+1

)])
τ

+ τΛ.

(51)

By summing t from 0 to T , we complete the proof of
Theorem 2 as follows:

1

T

T∑
t=0

E
[∥∥∇L

(
mt
)∥∥2

2

]
(52)

≤
2E
[
L
(
m0
)
− L

(
mT

)]
τT

+ 2Λ

(a)

≤
2E
[
L
(
m0
)
− L (m∗)

]
τT

+ 2Λ, (53)

where (a) comes from the fact that L (m∗) ≤ L
(
mT

)
.
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