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Abstract

Translational validity of mouse models of Alzheimer’s disease (AD) is variable. Because

change in weight is a well-documented precursor of AD, we investigated whether diversity of

human AD risk weight phenotypes was evident in a longitudinally characterized cohort of 1,196

female and male humanized APOE (hAPOE) mice, monitored up to 28 months of age which is

equivalent to 81 human years. Autoregressive Hidden Markov Model (AHMM) incorporating

age, sex, and APOE genotype was employed to identify emergent weight trajectories and phe-

notypes. In the hAPOE-AD mouse cohort, five distinct weight trajectories emerged: three tra-

jectories were associated with a weight loss phenotype (36% of mice, n = 426), one with weight

gain (13% of mice, n = 152), and one trajectory of no change in weight (34% of mice, n = 403).

The AHMM model findings were validated with post-hoc survival analyses, revealing differ-

ences in survival rates across the five identified phenotypes. Further validation was performed

using body composition and plasma β-amyloid data from mice within the identified gain, loss

and stable weight trajectories. Weight gain trajectory was associated with elevated plasma β-

amyloid levels, higher body fat composition, lower survival rates and a greater proportion of

APOE4/4 carriers. In contrast, weight loss was associated with greater proportion of hAPOE3/

4 carriers, better survival rates and was predominantly male. The association between weight

change and AD risk observed in humans was mirrored in the hAPOE-AD mouse model.

Weight trajectories of APOE3/3 mice were equally distributed across weight gain, loss and sta-

bility. Surprisingly, despite genetic uniformity, comparable housing, diet and handling, distinct

weight trajectories and divergence points emerged for subpopulations. These data are consis-

tent with the heterogeneity observed in the human population for change in body weight during

aging and highlight the importance of longitudinal phenotypic characterization of mouse aging

to advance the translational validity of preclinical AD mouse models.

PLOS ONE

PLOS ONE | https://doi.org/10.1371/journal.pone.0314097 January 24, 2025 1 / 20

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Vitali F, Wiegand J-P, Parker-Halstead L,

Tucker A, Diaz Brinton R (2025) Weight trajectories

in aging humanized APOE mice with translational

validity to human Alzheimer’s risk population: A

retrospective analysis. PLoS ONE 20(1): e0314097.

https://doi.org/10.1371/journal.pone.0314097

Editor: Maud Gratuze, Institute of

Neurophysiopathology, FRANCE

Received: August 14, 2024

Accepted: November 6, 2024

Published: January 24, 2025

Peer Review History: PLOS recognizes the

benefits of transparency in the peer review

process; therefore, we enable the publication of

all of the content of peer review and author

responses alongside final, published articles. The

editorial history of this article is available here:

https://doi.org/10.1371/journal.pone.0314097

Copyright: © 2025 Vitali et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All relevant data are

within the manuscript and its Supporting

Information files. Python code along with data are

https://orcid.org/0000-0003-2916-6402
https://doi.org/10.1371/journal.pone.0314097
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0314097&domain=pdf&date_stamp=2025-01-24
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0314097&domain=pdf&date_stamp=2025-01-24
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0314097&domain=pdf&date_stamp=2025-01-24
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0314097&domain=pdf&date_stamp=2025-01-24
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0314097&domain=pdf&date_stamp=2025-01-24
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0314097&domain=pdf&date_stamp=2025-01-24
https://doi.org/10.1371/journal.pone.0314097
https://doi.org/10.1371/journal.pone.0314097
http://creativecommons.org/licenses/by/4.0/


Introduction

Alzheimer’s disease (AD) is a multifactorial and complex brain disease resulting from multipli-

cative combinations of risk factors including sex, age, genetics, lifestyle, or environmental fac-

tors [1]. AD is currently the fifth-leading cause of death among Americans aged 65 or older,

with approximately one in nine individuals in this age group diagnosed with dementia due to

AD [1,2].

Recently, FDA-approved amyloid-targeting monoclonal antibodies show promise in slow-

ing cognitive decline during the early stages of AD [3,4]. However, amyloid-targeting mono-

clonal antibodies do not prevent or reverse the disease and are associated with significant

safety concerns, high costs, and little to no efficacy in women [5]. This underscores the need

for more comprehensive approaches to prevent and treat AD, given its complex etiology.

Although late-onset AD is typically diagnosed at age 65 or older, the pathological changes

and biological mechanisms driving the disease begin 20 years or more prior to AD diagnosis,

during the prodromal/preclinical phase of AD [1]. The preclinical phase of AD is a critical

window for intervention.

A fundamental requirement of preclinical models is the transitional validity to inform fun-

damental mechanistic biology for successful therapeutic development. Validating mouse mod-

els by identifying consistent AD precursors in humans is a possible approach for advancing

translational validity. Robust animal models that accurately mimic the complexity of AD are

essential for selecting the right population for clinical trials [6–8].

A possible strategy for potential reverse translational validity of mouse models is to establish

associations between human observations and their manifestation in animal models [9–11].

Herein, we focused our analysis on the well-documented association between a weight change

and AD risk, as observed in humans [12–21]. Elevated body mass index, weight increase, and

obesity have been linked with a higher risk of AD decades prior to diagnosis [19,20], whereas

weight loss is more proximate to AD diagnosis by 1 to 3 years [16,18,21]. Moreover, these asso-

ciations are influenced by sex, with weight change more strongly associated with increased risk

in women [15]. This highlights the diversity of human-based weight phenotypes, which might

exacerbate AD risk factors, including sex, comorbidities and the major genetic risk factor

APOE genotype [18,22–24].

In this study, we sought to determine whether an aging population of Model Organism

Development and Evaluation for Late-Onset Alzheimer’s Disease (MODEL-AD) [25] human-

ized APOE (hAPOE) mouse colony mirrored the changes in weight observed in the human

aging population. hAPOE mouse models are established models to study the functional roles

of human APOE genotypes in AD-related processes [26]. The importance of considering the

impact of biological variables such as age, sex and human APOE genotypes on disease pro-

cesses has been well-established for translational validity of mouse models of AD risk [26]. In

this study, we focus on the multivariate nature of aging in the context of sex and APOE geno-

type biology which is relevant to the vast majority of individuals at risk for developing AD and

therefore relevant to development of therapeutics to prevent, delay and treat late onset AD.

Longitudinal observations of weight data spanning from 5 to 28 months of age within an

aged hAPOE mouse colony of 1,196 hAPOE mice (Fig 1) were analyzed to investigate if dis-

tinct weight trajectories exist. The mouse colony was composed of both male and female trans-

genic C57BL/6J mice carrying different hAPOE alleles (hAPOE3/3, hAPOE3/4, or hAPOE4/4)

and thus the influence of sex and APOE genotype could be determined in the weight

trajectories.

To determine the trajectories of weight change across age, we employed an Autoregressive

Hidden Markov Model (AHMM) (Fig 2), a probabilistic approach that effectively handles
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longitudinal data collection at different and not-equally spaced time points, and missing data.

In literature, AHMMs have been applied to speech signal characterization [27], and to early

detection of neonatal sepsis [28], among others [29,30]. We applied an adapted version of

AHMM to identify distinct groups of mice following the same weight trajectories.

The proposed model and the identified trajectories were validated using post-hoc survival

data and analysis of independent measurements of plasma β-amyloid (Aβ) concentration and

EchoMRI observations of body composition. Additionally, we analyzed the distribution of sex

and APOE genotypes across trajectories to assess differences among the identified groups. The

outcomes of these analyses revealed a diversity of weight trajectories consistent with the diver-

sity observed in human population.

Materials and methods

Weight data and preprocessing

Weight data were collected for 2,280 hAPOE3/3, hAPOE3/4 and hAPOE4/4 mice from

November 2nd 2018 to January 28th 2022. Monthly weight of the animals was measured with

a monthly calibrated Ohaus SPX422 with a precision of 0.01g (Ohaus Precision Balance;

Hogentogler & Co. Inc., Columbia, MD). Mice with a monthly weight loss exceeding 20%

were excluded from the study. Weight measurements were collected at varying ages and fre-

quencies, resulting in weight sequences that differ in length and spacing.

Initial preprocessing of weight data involved exclusion of breeders due to their diet change

upon mating (from Teklad 7913 to Teklad Global 2919 breeder diets), which could directly

impact their weight. Additionally, data were pre-processed to exclude collection errors, such as

instances where weight collection date occurred either after the date of death or before the

Fig 1. Model Organism Development and Evaluation for Late-Onset Alzheimer’s Disease (MODEL-AD) humanized APOE (hAPOE) colony. a) an

overview of the mouse colony is presented, displaying the percentages of sex and APOE genotype, along with the variables included in the model and the

frequency of weight measurements. b) illustrates the mean and standard deviation of longitudinal weights of the mice colony. c) shows the mean and standard

deviation of weights by sex, with different colors and line styles representing sexes.

https://doi.org/10.1371/journal.pone.0314097.g001
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date of birth. Weight measurements were included for mice of at least 5 months of age and

those that were weighed for at least 3 time points. The distribution of the weight collection fre-

quency is reported in Fig 1A. This preprocessing analysis resulted in the inclusion of 1,196

mice in the study.

Mice study cohort. Animal studies were performed following National Institutes of

Health guidelines on use of laboratory animals. The protocol (16–170) was approved by the

University of Arizona Institutional Animal Care and Use Committee (IACUC), and this study

is reported in according with ARRIVE guidelines [31,32]. Breeder pairs were obtained from

the Jackson Laboratory: B6(SJL)-APOEtm1.1(APOE*4)Adiuj /J (Stock No: 027894, humanized

APOE4 KI) and B6.Cg-Apoeem2(APOE*)Adiuj /J (Stock No: 029018, humanized APOE3 KI). Ani-

mals were inbred to generate colonies of each line, and cross-bred to generate an APOE3/4 KI.

The colonies were generated and maintained in a health status A facility on 14-h:10-h light:

dark cycle and housed in ventilated cages with corn cob bedding and a single nestlet, provided

with irradiated Envigo NIH-31 diet 7913 and sterile water ad libitum, and a Sheperd Shack1

[33] enrichment house when single-housed. Upon observation of adverse events, University

Animal Care Veterinary Services provided treatment until euthanasia (via cervical dislocation

or carbon dioxide overdose) was deemed necessary. Studies involving interventions beyond

behavioral characterizations were excluded from the analyses due to the multi-purpose use of

this mouse cohort for various experiments and research projects.

Autoregressive hidden Markov models

To identify different heterogeneous aging profiles of the hAPOE mice colony, i.e. trajectories,

we utilized a computational strategy based on a variation of the Hidden Markov Models

(HMM).

HMMs are probabilistic models designed to unveil hidden states that govern sequential pat-

terns and the probability of their occurrence within a set of longitudinal observations. These

models allow the identification of trajectories and phenotypes that more likely occurs and can

describe the longitudinal measurements.

In this study, the observations consist of longitudinal weight data of the mice colony, along

with the related mouse age at data collection, sex and APOE genotype. HMMs assume that

these observations are generated by an unobserved sequence of states H = {H1, H2,. . ..,HN},

referred as hidden states (Fig 2). These states capture latent conditions or patterns that influ-

ence the observed weights at different time points. Hidden states can assume N possible dis-

crete values and N is selected empirically and usually based on the application and the data.

For this study, N was set to 10 and named alphabetically as A, B, C, D, E, F, G, H, I, and J.

HMMs assume that the transitions between hidden states follow a stochastic process of a

Markov chain (Fig 2) and these transitions are represented by the transition probability matrix

A = [ai,j]. Each element ai,j of the matrix denotes the probability of transitioning from the hid-

den state i to the hidden state j at time t, given the hidden state was i at time t-1. These proba-

bilities can be considered to unveil different temporal patterns corresponding to different

trajectories and can be represented with a diagram (Fig 2) for a better interpretation of the

transition patterns existing between the different hidden states (trajectories).

In this study, we applied an Autoregressive Hidden Markov Model (AHMM) that, unlike

standard HMMs where the current observation is independent from all the other observations,

is also autoregressive introducing direct stochastic dependencies in the sequential data. In the

case of AHMM, each observation (mouse) corresponds to an autoregressive time series Xt =

{X1, X2,. . .,Xk} with k components (weight measurements) where observations from prior time

points inform predictions at the next time step. This allows to account for the dependency
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between longitudinal weight measurements and aging. Moreover, AHMM can be used in for

time series of different lengths with missing data points or not equally spaced in time—an

advantage of AHMMs over standard HMMs. Note that the model does not impute missing

data or generate new data.

Observations in AHMM can be either continuous or discrete. In this study, hAPOE mice

data included longitudinal weight measurements, along with age, sex, and APOE genotype.

Fig 2. Autoregressive Hidden Markov Model (AHMM) structure and output. The schema illustrates the AHMM

structure, highlighting the hidden states (H) learned by the model based on the real data observations, including age,

weight, sex, and APOE genotype of our aging humanized APOE mouse colony. To account for the observed sex-

dependent weight differences, where male mice weight more than female (Fig 1C), an interaction term was introduced

between the variables sex and weight (dashed arrow). Based on these data, AHMM learns the transition probabilities

between the hidden states enabling the identification of main weight trajectories. Relevant weight trajectories are

selected by grouping together mice ending in same hidden states, allowing the study of the identified subgroups.

https://doi.org/10.1371/journal.pone.0314097.g002
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Therefore, we adapted the AHMM to a mix of continuous (age and weights) and discrete (sex

and genotype) variables.

Furthermore, the AHMM structure was adjusted to account for observed sex-based weight

differences, as male mice weights on average are higher than female weights (Fig 1C). To

account for this sex-weight dependency, an interaction term was introduced between the vari-

able sex and the variable weight to account for their dependence (Fig 2). This adjustment aims

to improve the model’s convergence and accounts for the biological relation between sex and

weight.

Weight trajectory identification based on AHMM

The proposed AHMM learns from real weigh data, uncovering temporal patterns within longi-

tudinal weight data based on the transition probability matrix A. In this study, as we are con-

sidering 10 possible hidden states, the resulting A matrix is a 10 by 10 matrix (Fig 3A) where

each matrix element corresponds to the probability of transitioning between one state to

another. Matrix A enables the identification of starting, intermediate, and ending states. Start-

ing states are characterized by low incoming probabilities, while intermediate states exhibit

non-zero in and out probabilities. Ending states are identified with high probabilities on the

diagonal P(A(ai,j)).
In our approach, mice that end in the same hidden state are considered to follow a unique

weight trajectory and are grouped accordingly. Specifically, relevant weight trajectories are

identified by grouping mice that end in the same hidden state and with a probability greater

than 0.3 (P(A(ai,j)))>0.3).

AHMM was implemented using the Matlab Bayes Net Toolbox (BNT) adopted to work

with both categorical (sex and genotype) and continuous observations (age and weight). In

Fig 3. AHMM transition probability matrix and diagram. a) The matrix A illustrates transition probabilities

between the possible 10 hidden states, with key ending hidden states (B,C,F,I,J) highlighted in red. Every hidden state

is included as a row and as a column, and each cell in the matrix refers to the probability of transitioning from its row’s

state to its column’s state. Numerical values of matrix A are provided in S2 Table. Key ending state are defined by a

probability of arriving and staying in that state greater than 0.3 (P(A(ai,j)))>0.3). Mice ending in the same hidden

states are part of a trajectory and are therefore grouped together. b) Diagram of the Markov Chain related to the

transition matrix A. Nodes correspond to hidden states, and edges illustrate the transitions between them (changes of

states). Nodes with black circles indicate the five most probable ending states. Arrow thickness indicates transition

probabilities, with thicker arrows associated with higher probabilities of transitioning from or remaining in a hidden

state. The diagram depicts starting, intermediate, and ending states, where starting states have more exiting arrows,

and ending states are identified by loop arrows. In detail, key ending states (B,C,I,F, and J) are characterized by thicker

loops, indicating higher probabilities of staying in those states when reached.

https://doi.org/10.1371/journal.pone.0314097.g003
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this study, we used the EM algorithm [34] to infer the parameters of AHMMs from data of our

cohort. To ensure stability of the results, we repeated the EM algorithm 10 times and the

AHMM with the largest resulting likelihood value was selected as the main model. Each run

lasted 1,500 iterations to ensure convergence. Inference was performed on the resulting mod-

els using the junction tree algorithm [35].

Weight trajectory validation

Weight trajectories identified by the AHMM were validated using post-hoc survival analysis

and independent measurements of plasma β-amyloid (Aβ) concentration and EchoMRI obser-

vations of body composition.

Survival analysis. Survival analyses were performed considering the time from date of

birth to death or to date of last weight measurement. Kaplan-Meier survival curve were com-

puted R package survival [36]. Log-rank test and related p-value were computed to test

between-group significance using survdiff R function [36]. Since our mouse cohort is used for

a variety of experiments and research projects, we excluded from survival analysis mice that

were sacrificed for experiments or other specific reasons.

Plasma Aβ
Post-hoc analysis of plasma Aβ levels was conducted on plasma samples of mice resulting in

distinct weight trajectories. Plasma samples to be included for Aβ analysis had to meet the fol-

lowing criteria: 1) collected between 12 to 14 months of age (when plasma Aβ is reliably detect-

able), and 2) balanced for sex and APOE genotype.

Animals were anesthetized using isoflurane and the diaphragm was severed. Whole blood

was collected through cardiac puncture, deposited in Vacutainer tubes containing 3.6mg

EDTA and placed on ice. Blood samples were then spun at 2,700 rpm for 7 min at 4˚C to sepa-

rate the whole blood into its components. 100μL aliquots of plasma were taken and stored at

-80˚C. Animals were subsequently perfused using ice-cold sterile PBS and tissues were col-

lected. Collected tissues were immediately flash-frozen in liquid nitrogen before being stored

at -80˚C.

Plasma samples for Meso Scale Discovery (MSD) use were selected by availability and tra-

jectory from the available tissue bank. For plasma Aβ peptide concentration readings, the

Mesoscale Discovery V-PLEX Plus Aβ Peptide Panel (4G8) Kit was used (a highly sensitive

sandwich immunoassay), which allowed for rapid measurement of levels of the target protein

in small samples. Plasma samples were pulled from -80˚C and allowed to thaw on ice. Samples

were then diluted 1:4 using manufacturer supplied diluent. Calibrator and control solutions

were prepared as per the manufacturer’s instructions. Plates were blocked for 1 hour with 750

rpm shaking, washed, and detection antibody, controls, samples, and calibrators were added

before shaking for an additional 2 hours. Plates were washed and immediately read via MESO

QuickPlex SQ 120MM and analyzed using MSD DISCOVERY WORKBENCH analysis

software.

EchoMRI

Post-hoc analysis of EchoMRI was conducted on mice belonging to the resulting weight trajec-

tories that were alive and not used for other experiments. Furthermore, data included for this

analysis had to be collected from the same mice whose plasma Aβ levels were available.

EchoMRI (EchoMRI™ 3-in-1; Echo Medical System, Houston, TX) allows for the awake

and unanesthetized measurement of body fat and lean mass. Equipment calibration occurred

daily with a canola oil system test sample (COSTS). Animals were placed into specimen
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holders, movement limited by a cylindrical insert, and placed into the antenna. A total of 9

acquisition scans were acquired and averaged per animal. The adipose index (percent body

fat) was calculated using: [Fat mass / (Fat mass + Lean mass + Free water)] * 100.

Supplementary validation using cross-sectional data

Supplementary validation of the trajectories identified by the AHMM was conducted using

available Cross-Sectional (CS) data from mice included in the trajectories. The CS data con-

sisted of single data points per mouse and comprised measurements of fasting blood glucose,

CatWalk™ XT, EchoMRI™, and Novel Object Recognition (NOR). These data were not uni-

formly available across all mice and collected at various ages (S1 Fig) from different mice

within the hAPOE colony. Due to these limitations, we adopted an alternative validation

approach. For each mouse, we utilized sex, APOE genotype, weight measurement, and age at

which the CS data was collected as inputs for the trained AHMM, allowing to subsequently

infer hidden state for that time point. To assess statistical differences, we compared the distri-

butions of the CS data based on the inferred hidden state (S2 File). CS data were collected fol-

lowing the procedures presented in S1 File, and the adopted validation methodology is

described in S2 File.

Results

Weight trajectories derived from longitudinal data

The study cohort included 1,196 mice carrying hAPOE alleles, specifically hAPOE3/3,

hAPOE3/4, or hAPOE4/4. The majority of mice were consistently weighed more than 3 or 4

times totaling 11,245 datapoints. In detail, 814 (83%) mice were weighed more than 5 times,

and 494 (50%) were weighed more than 10 times (Fig 1A) over their lifespan. The cohort was

balanced for sex, with 45% female and 55% male mice, and the APOE genotype distribution

was 30% hAPOE3, 28% hAPOE3/4, and 42% hAPOE4/4 (Fig 1A). The weight data collected

along with sex and APOE genotype information are reported in S1 Table.

Longitudinal weight data of hAPOE mice along with their age, sex, APOE genotype were

used as input variables the AHMM (Fig 2) which identified the hidden states and their transi-

tion between them governing the input observations. 10 possible hidden states (A, B, C, D, E,

F, G, H, I, and J) were considered in the AHMM (Fig 2) and mice ending in the same hidden

state are considered part of a trajectory and are therefore grouped together. The AHMM tran-

sition matrix A resulting from this study is presented in Fig 3A, while the related transition

diagram in Fig 3B.

Five most probable ending hidden states (P(A(ai,j)))>0.3) were identified based on the

AHMM transition probability matrix A (Fig 3A) that corresponded to the states B, C, I, F and

J (red squares in Fig 3A and loop arrows in Fig 3B). These five states correspond to stable end-

ing states, while the remaining states (A,D,E,G, and H) did not result as ending stable states,

corresponding to starting or intermediate states.

Mice were grouped according to the five stable ending states and the percent of weight dif-

ference for the mice following the same trajectory was computed between 12 months of age to

the end of each trajectory. These resulted in -18%, -15%, 46%, -20%, and 5%, for the trajecto-

ries B, C, I, F and J, respectively, where negative values correspond to losing weight, while posi-

tive values to gaining weight (Fig 4J). Note that, not all the mice can be classified in one of the

stable end trajectories, 17% (215) of mice in our colony did not have a stable end state and

were not further explored. These mice correspond to outliers or mice assigned to intermediate

or initial unstable states (S2 Fig).
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Based on these results, among the five trajectories, the three trajectories B, C, and I exhib-

ited weight loss trajectories for 426 (36%) mice (Fig 4E–4G). Trajectory F was composed of

overall heavier mice and associated to weight increase in 152 (13%) mice (Fig 4H). Group J

exhibited less than a 5% weight change (Fig 4J) consisting of 403 (34%) mice that exhibited a

stable weight with no gain or loss (Fig 4I). Distributions of sex and APOE genotype for the

identified trajectories are reported in Fig 4B–4D, and the relative trajectories by sex and APOE

genotype are reported in S3 Fig.

The distribution of APOE genotypes were significantly different across the weight trajecto-

ries (chi-square test, p-value<0.05). Trajectory F exhibited the highest percent of APOE4/4

carriers (54%) exhibiting a significant difference in the frequency of E4 carriers compared to

non-E4 carriers (chi-square test, p-value<0.05). In contrast, trajectory C was characterized by

a higher proportion of males (60%) and APOE3/4 genotype (42%).

While sex did not vary significantly across all different trajectories (chi-square test, p-

value>0.05), pairwise comparison across trajectories sex distribution revealed a significant dif-

ference between C and J (chi-square test, p-value<0.05).

Key weight trajectory validation with survival analysis, Aβ and EchoMRI

data

To validate the model and evaluate the identified trajectories, post-hoc survival analyses were

conducted to assess differences in the survival rates across five identified phenotypes (Fig 5).

After excluding mice that were sacrificed for experimental purposes or other reasons,

Fig 4. Key weight trajectories in hAPOE mouse colony. Panel a) The five most probable weight trajectories (labeled according to their hidden ending states)

were derived using Autoregressive Hidden Markov Model (AHMM). The legend includes the number of mice within each trajectory. Panels b-c) Distribution

of sex and APOE genotype within each identified weight trajectory. Panel d) Percent of mice by sex and genotype for each trajectory. Panels e-i) Visualization

of each weight trajectory with separately fitted y-axes to enhance the clarity of the trend for each trajectory. The trajectories were obtained by plotting the mean

and standard deviation for each age point meeting the minimum requirement of 3 mice per age. Panel j) presents the percent difference of weights for each

trajectory from 12 months of age to the end of each trajectory. We selected 12 months to calculate weight percent differences as mice are in a growth phase until

about 12 months (Figs 1B and 4A) and mice of 10–12 months are considered middle age [37].

https://doi.org/10.1371/journal.pone.0314097.g004
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naturalistic survival data was available for 272 mice. The statistics on sex and APOE genotype

distributions of these mice are reported in S4 Fig.

Survival data analyses revealed a significant difference in overall survival based on the tra-

jectory group (Fig 4, log-rank p-value = 4e-09). Mice in trajectory F exhibited the poorest sur-

vival curves, followed by mice in trajectory I, B, J, and C (Fig 5).

Further, to evaluate whether the AHMM model could effectively identify distinct groups of

mice based on longitudinal weight data and if the identified trajectories were also concurrently

exhibiting distinctly different plasma Aβ levels, plasma samples were selected for a total of 49

mice ensuring balanced representation of various sexes, APOE genotypes, and weight change

(S4C and S4D Fig). To mitigate the potential influence of age on plasma Aβ concentration,

plasma samples from mice aged 12 to 14 were included in the analysis. For the C trajectory,

n = 18 with 7 females and 11 males at an average age of 14 months (Standard Deviation (SD) =

1.36). For the F trajectory, n = 14 with 5 females and 11 males at an average age of 14.95

months (SD = 1.57). For the J trajectory, n = 17 with 9 females and 8 males at an average age of

13.34 months (SD = 1.15).

Statistical analysis indicated significant differences in the average levels of Aβ40 and Aβ42

in plasma between the weight gain phenotype and both the weight loss and stable phenotypes

(t-test, pvalue = 3.63e-03 for Aβ40 and p-value = 2.25e-04 for Aβ42), as well as between the

gaining phenotype and the stable phenotype (t-test, p-value = 5.12e-05 for Aβ40 and p-

value = 9.54e-07 for Aβ42) (Fig 6A and 6B). Significant differences by sex were also found in

trajectory C and F for average Aβ42 levels (t-test, p-value = 3.37e-02 for state C and p-

value = 2.00e-02 for state F) (Fig 6C and 6D). Analysis of differences across genotypes were

Fig 5. Survival curves across weight phenotypes. Survival curves associated with each of the five weight trajectories

identified (B, C, I, F, and J). Significant difference in overall survival was found (log-rank p-value = 4e-09). For each

state, median survival is pointed out with dash line corresponding to a survival probability of 0.5.

https://doi.org/10.1371/journal.pone.0314097.g005
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not powered enough and the distribution of plasma Aβ40 and Aβ42 concentrations by APOE

genotypes are reported in S5 Fig.

EchoMRI™ data were available for 32 mice of the 49 included in the plasma Aβ analysis,

with 7 belonging to the losing phenotype, 11 to the gaining phenotype, and 14 to the stable

phenotype. The statistics on sex and APOE genotype distributions of these mice are reported

in S4E and S4F Fig, respectively.

Statistical analysis of EchoMRI™ data across the weight trajectories indicated significant dif-

ferences in body composition between the gaining and the losing phenotypes (t-test, fat per-

centage p-value = 4.44e-05 and lean percentage p-value = 2.65e-05) as well as between the

gaining and the stable phenotypes (t-test, fat percentage p-value = 4.81e-07 and lean percent-

age p-value = 2.70e-07) (Fig 6E and 6F).

Supplementary validation results on cross-sectional data

Supplementary validation of the trajectories identified by the AHMM conducted using addi-

tional Cross-Sectional (CS) data: (i) 132 fasting blood glucose, (ii) 131 CatWalk™ XT, (iii) 298

EchoMRI™, and (iv) 133 Novel Object Recognition (NOR) observations (S3 Table).

The distributions of all four CS datasets exhibited significant differences across the hidden

states inferred by the AHMM at the time of CS data collection (S6 Fig). Note that for this anal-

ysis differently from the one presented in Fig 6, CS data were not uniformly collected across all

mice and collected at the various months of age (S1 Fig, S3 Table). For this reason, these results

are presented in the supplementary material to support the validation of the AHMM (S6 and

S7 Figs, S3 Table).

Discussion

The prodromal phase of AD can occur 10–20 years prior to AD diagnosis [38]. Identification

of biological indicators associated with the prodromal phase of AD is critical for prevention or

treatment in the early stages of AD, to identify patients at higher risk and delay the onset and

progression of the disease. Weight changes have been observed in humans prior to AD diagno-

sis, suggesting their potential as preclinical markers of AD [13,16,39]. Determining weight

changes that occur in AD mouse models, such as the humanized APOE transgenic mouse

model, could provide valuable insights and potential therapeutic targets [40–46].

In late onset Alzheimer’s, the greatest non-modifiable risk factors are age, chromosomal

sex, and APOE4 genotype. These major drivers are incorporated into our hAPOE mouse

model colony establishing it as a valid model for studying the functional roles of human APOE

genotypes in AD-related processes. Due to the homogeneity of dietary and environmental con-

ditions, it is often assumed that mice age uniformly. However, this study revealed a hidden

complexity of biological aging through longitudinal measurements of weight based on age,

APOE genotype, and chromosomal sex. By utilizing these variables, we uncovered the distinct

dynamics of aging, which are critical for the translational validity of AD mouse models. As in

the human population, outcomes of this study demonstrate that there are distinct trajectories

of resilience and trajectories of vulnerability.

Results reported herein are based on a comprehensive analysis of longitudinal weights from

a colony of 1,196 aging hAPOE mice exposed to the same diet, totaling 11,245 datapoints

Fig 6. Distributions of plasma Aβ concentrations and EchoMRI data across weight loss, gain, and stable trajectories.

Panel a-b show respectively average level of plasma Aβ40 and Aβ42 concentrations. Panel c-d shows average level of plasma

Aβ40 and Aβ42 concentrations by sex. Panel e-f shows the distribution of EchoMRI body compositions. *: 1.00e-02< p-

value< = 5.00e-02; **: 1.00e-03< p-value< = 1.00e-02; ***: 1.00e-04< p-value< = 1.00e-03; ****: p-value< = 1.00e-04.

https://doi.org/10.1371/journal.pone.0314097.g006
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collected from November 2nd, 2018, to January 28th, 2022. The application of the advanced

AHMM algorithm enabled the identification of five weight trajectories, encompassing patterns

akin to those observed in human studies, including weight gain, loss, and stability. Specifically,

trajectories B, C, and I (36% of mice) were associated with weight loss, trajectory F (13% of

mice) exhibited weight gain, and trajectory J (34% of mice) represented a stable state with no

significant weight changes. These trajectories, undetectable through simple averaging (Fig 1B

and 1C), underscore the importance of longitudinal, colony-wide assessments in revealing het-

erogeneity resembling human phenotypes.

Notably, weight gain trajectory F represented a unique subset of heavier mice with lower

survival curves and significantly higher plasma Aβ concentrations when compared to the

weight loss and stable trajectories. The data indicated that trajectory F was unique in that these

mice exhibited a 45.7% increase in body weight starting at midlife (12 months) for both

females and males and was more prevalent in APOE4 carriers although not exclusive to

APOE4 carriers. Further, trajectory F mice had significantly greater body fat composition

when compared to trajectories of weight loss or weight stability. Translationally trajectory F is

consistent with a recent study reporting that adiposity is associated with cognitive decline [20].

Collectively, these data indicate an association between weight gain, APOE4 carrier status, Aβ
generation, and earlier death [16,47,48]. Obesity and diabetes are known risk factors for AD in

humans, and this subgroup of mice may resemble a subpopulation prone to these conditions

[47,49–51].

Among the three weight loss trajectories (B, C, I), trajectory B was characterized by a sharp

drop in weight at 23 months of age, occurring later in life in comparison to trajectories C and

I. Trajectories C and I exhibited earlier weight loss at 15 months of age, roughly equivalent to

the human age of 50 years, which aligns with prodromal weight decline prior to AD diagnosis

[12,21,39]. Although these two trajectories appear similar, trajectory C started with lower body

weight and was associated with better survival curves compared to trajectory I which was char-

acterized by mice that were initially heavier and who exhibited lower survival rates indicating

a potentially worse prognosis for heavier mice.

The weight trajectory J captured a subgroup of mice with stable weights and had greater

survival relative to trajectories B, F, and I which could represent a resilient human population

or with a better AD prognosis.

The distribution of APOE genotypes across all weight trajectories was significantly differ-

ent. Specifically, trajectory F exhibited the highest percent of hAPOE4/4 carriers (54%). Trajec-

tory C, among the others, had a higher proportion of hAPOE3/4 carriers (42%). Furthermore,

trajectory C exhibited a sex difference with 60% of the mice being male. Interestingly, stable

trajectory J was consistent across APOE genotype.

Trajectory I was predominately characterized by hAPOE4/4 males (25% of mice in trajec-

tory I) and hAPOE3/3 females (19% of mice in trajectory I). The weight loss patterns observed

in trajectories C and I were consistent across both female and male mice. Weight loss was

more evident for hAPOE3/4 and hAPOE4/4 carriers in trajectory C and for hAPOE3/3 and

hAPOE4/4 carriers in trajectory I. The heterogeneity in weight loss observed in trajectories C

and I aligns with the weight heterogeneity in human AD patients [52] and was characterized

by lower initial weight and progressive weight decline. Surprisingly, trajectory C, despite

exhibiting weight loss, was associated with longer survival, primarily driven by hAPOE3/4

mice.

Validation of AHMM trajectories was conducted utilizing independent survival, plasma Aβ
and EchoMRI mouse data that were not included for generation of the AHMM model. These

data confirmed differences in the identified trajectories. In detail, post-hoc survival analysis

revealed statistically significant differences in overall survival across the five identified
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trajectories. Trajectory F and I had the poorest survival rates, a higher proportion of hAPOE4/

4 genotypes, and overall heavier mice. In contrast, trajectory C, associated with weight loss,

exhibited better survival rates and a higher proportion of mice with hAPOE3/4 genotype and

males. Trajectory J (stable weight) and B (another weight loss trajectory) had intermediate sur-

vival curves. These survival patterns confirm distinct weight dynamics and heterogeneous

aging profiles. Plasma Aβ levels revealed that weight gain trajectory F had the highest plasma

Aβ levels and was also associated with a higher proportion of hAPOE4/4 carriers. Trajectories

C and J also had detectable plasma Aβ which were essentially equal in magnitude and signifi-

cantly lower than trajectory F.

Collectively, longitudinal analysis of weight in an aging cohort of both female and male

mice across different APOE genotypes revealed five weight trajectories consistent with the

diversity of weight change in the human population during aging [13,16,39]. In addition, sup-

plementary analysis of cross-sectional data including fasting blood glucose, CatWalk,

EchoMRI, and NOR measurements confirmed statistically significant differences across sub-

groups of mice with distinct weight trajectories identified by the AHMM. The importance of

these additional analyses is that regardless the different ages of collection of these data, the

AHMM is able to infer trajectories to observations of mice with specific age, sex and APOE

genotype that are also associated with significant differences in physiological outcomes like

blood glucose levels and on system levels outcomes like cognition or motor function.

Our findings of different aging phenotypes associated with weight changes mirrored those

reported for humans. Ukraintseva et al. [53] reported weight loss in women who developed

AD as early as their forties, long before clinical diagnosis and it is consistent with the perimen-

opause transition in women as a key biological process that can unmask later life AD (3). The

Ukraintseva et al. findings align with reports of inexplicable weight loss that can precede AD

by decades and indicated that biological aging in APOE4 carriers reflect an underlying, pro-

longed prodromal phase of AD [53]. This human trajectory of weight loss resembles trajecto-

ries I and C in our mouse colony. Furthermore, Ukraintseva et al. reported that association

between AD and lower weight could not be explained solely by the effects of APOE4 [53],

which is consistent with our findings of different weight trajectories of APOE4 mice.

Similarly, Holmes et al. [54] observed that APOE4 carriers were associated with lower sur-

vival rates and tended to reach peak weight at younger ages, followed by a steeper decline at

later ages, a pattern consistent with mouse weight trajectories C and I.

In another study, Bell et al. [55] underlined the challenge of examining underlying mecha-

nisms that explain the association between body mass index (BMI) and brain health to advance

knowledge of AD. Bell et al. observed that higher late-life BMI was associated with a lower risk

of incident dementia, however BMI is not protective in the presence of rapid weight loss [55].

Our findings in trajectory I, characterized by heavier mice with a rapid weight loss support

this human weight phenotype. On the other hand, Bell et al. also highlighted that higher mid-

life BMI is associated with increased AD risk which could be driven “by a long-standing bur-

den of vascular and metabolic risk factors” [55]. Our findings within trajectory F support this

pattern as trajectory F is characterized by sustained weight gain and overall heavier body

weights throughout aging. Interestingly, trajectory F also displayed the poorest survival out-

comes and a preponderance of APOE4 mice in our colony. This pattern parallels Bell et al.’s

findings in human populations, where higher mid-life BMI correlates with increased AD risk

and poorer health outcomes [55].

Overall, applying AHMM revealed complexity of aging within a mouse colony exposed to

the same dietary and environmental conditions that would have otherwise remain hidden.

Furthermore, this study demonstrated that the hAPOE mouse model successfully replicates

the natural variability in weight change across aging mirrors human trajectories of weight
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gain, loss, and stability. Importantly, these distinct trajectories were uniquely identified

through the application of the AHMM model to our longitudinal data. One strength of this

data was the extensive weight data collected longitudinally for 1,196 mice. A shortcoming of

this dataset arises from the lack of survival and cross-sectional data for all the mice in the

cohort. Ideally, to determine differences across trajectories at end hidden states, survival and

CS data should have been collected for all the mice cohort and at the end of their life. However,

our cohort is an aging cohort and are sacrificed for experiments and research. Thus, it was not

possible to collect new cross-sectional data for most of the mice due to their lifespan and the

planning for additional experiments is not possible. Furthermore, future studies will aim to

expand the analysis to a larger colony, allowing for more comprehensive phenotyping of

weight trajectories, with stratification based on intermediate states, in addition to their final

trajectories. Future studies will extend this analysis to our currently aging colony of APP-A-

POE mouse models, which incorporate the APP mutation associated with AD development

and pathology. This will address the limitation of current hAPOE mouse models, which pri-

marily represent AD risk. Furthermore, APOE2 mice were not included in our colony, the

AHMM model provides a strategy to determine the aging trajectories in existing mouse colo-

nies from different laboratories. Future directions will focus on investigating whether APOE2

genotype alters the aging trajectories or whether APOE2 mice exhibits the same variability in

aging trajectories comparable to those we detected for APOE3/3, APOE3/4 and APOE4/4

mice.

Our findings show that a contributing factor to the variability in the translational validity of

preclinical mouse analyses is the assumption that all mice will age similarly. Our data indicate

that, despite standardized vivarium maintenance practices, mice age differently exhibiting

weight gain, loss, and stability consistent with the heterogeneity of changes in human weight

across aging. The heterogeneity in aging mouse weight trajectories is consistent with the asso-

ciation of both weight gain and loss and increased risk for AD diagnosis [16,18–21,56]. Thus,

the conventional assumption of homogeneity of a mice colony is not supported by the hetero-

geneous profiles that emerged from a fundamental indicator of aging, change in body weight.

In conclusion, analyses reported herein identified gain, loss, and stable weight trajectories

during aging of an hAPOE mouse colony. Comprehensive characterization of weight change

phenotypes of an aging hAPOE mouse colony has the potential to increase translational valid-

ity to human AD. These insights hold the potential to contribute to the development of more

effective interventions for AD, ultimately bringing us closer to the goal of effectively prevent-

ing and treating this devastating disease.

Supporting information

S1 Table. Weight, age, sex, and APOE genotype of the mouse colony.

(XLSX)

S2 Table. Transition Probability Matrix with values.

(XLSX)

S3 Table. Cross-sectional data of the mice colony.

(XLSX)

S1 Fig. Distributions of age and weights at the time of collection of each cross-sectional

data. a) shows distribution of age for blood glucose, CatWalk, EchoMRI, and Novel Object

Recognition (NOR), while b shows the distribution of mice weights in grams at the time of

cross-sectional data collection. These distributions highlight the variability in age and weights

of mice for which physiological and behavioral data were available. Cross-sectional data
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available for a small subset of mice: (i) 132 fasting blood glucose, (ii) 131 CatWalk™ XT, (iii)

298 EchoMRI™, and (iv) 133 NOR observations. Cross-sectional data are reported in S3 Table.

(TIF)

S2 Fig. Weights over time for the mice assigned to the less probable and not stable states.

Lines are colored according to the last not stable hidden state (A, D, E, G, or H) associated to

the mouse assigned by the Autoregressive Hidden Markov Model (AHMM).

(TIF)

S3 Fig. Key weight trajectories in hAPOE mouse colony by sex and APOE genotype. a)

shows the 5 key weight trajectories (B, C, I, F and J) derived using Autoregressive Hidden Mar-

kov Model (AHMM) split by sex. b) shows the AHMM identified trajectories by APOE geno-

type. Legends report the number of mice belonging to each curve (subgroup).

(TIF)

S4 Fig. Survival, Aβ plasma, and EchoMRI Data overview. Percent of sex and APOE geno-

type distributions of survival data (panels a and b), Aβ plasma data (panels c and d), and

EchoMRI™data (panels e and f). Panel a, c, and e show survival, Aβ plasma, and EchoMRI™
based on sex. Panels b, d, and f e show survival, Aβ plasma, and EchoMRI™ based on genotype.

N indicates the number of mice in each dataset.

(TIF)

S5 Fig. Distributions of Aβ concentration by APOE genotype across weight loss, gain, and

stable trajectories. Panels a and b show average levels of Aβ40 and Aβ42 concentrations,

respectively. Bars featuring only the outline color represent groups with fewer than 3 samples.

(TIF)

S6 Fig. AHMM estimated hidden states are associated with differences in cross-sectional

physiological and behavioral outcomes. a) shows distribution of age for blood glucose, Cat-

Walk, EchoMRI, and Novel Object Recognition (NOR), while b shows the distribution of mice

weights in grams at the time of cross-sectional data collection. These distributions highlight

the variability in age and weights of mice for which physiological and behavioral data were

available. Panels a) to d) show blood glucose, CatWalk, EchoMRI, and NOR across AHMM-

inferred hidden states. Statistical differences between data distributions across the estimated

trajectories are highlighted with an asterisk. P-value annotation legend: *: 1.00e-02 < p-value

< = 5.00e-02; **: 1.00e-03< p-value < = 1.00e-02; ***: 1.00e-04 < p-value < = 1.00e-03; ****:
p-value < = 1.00e-04. The AHMM learned transition probabilities from the longitudinal

weight data was utilized to estimate the hidden state (potential trajectory group) by including

the same variables used as input (age, sex, APOE genotype, and weight) for the cross-sectional

data. Using the AHMM probabilities, each CS measurement was associated with one of the 10

possible hidden states. Glucose blood concentration, EchoMRI, CatWalk, and NOR values

were subsequently grouped according to the inferred hidden ending state. To determine if sig-

nificant differences existed between hidden states, we conducted t-tests on the data distribu-

tions.

(TIF)

S7 Fig. Age and weight boxplots of Cross-Sectional (CS) data for the inferred hidden states.

Panel a-j show for each inferred hidden state distribution of the age at the data collection,

weight at the data collection, and distribution of the data respectively for EchoMRI, CatWalk,

Glucose, and NOR. In the boxplots, straight lines denote that mice in the respective trajectories

share the same age, while dots represent outliers.

(TIF)
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S1 File. Cross-Sectional data collection method.
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S2 File. Autoregressive Hidden Markov Models trajectory validation.
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