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Abstract
Aluminum alloys throughout the last century have experienced extensive development, owing to their unique strength-to-
weight ratio. This led to generating multiple alloy grades. However, large number of grades present challenges when it comes 
to the recycling of aluminum scrap, which is the current and future trend in aluminum alloy production and application. 
Therefore, there is an urgent need to decrease the number of alloying grades while preserving their performance. In this 
study, we designed an optimization loop based on Machine Learning (ML) and material science knowledge for the 292 sets 
of data collected on 42 grades of 6xxx series aluminum alloys, focusing on their mechanical, service, and technological 
properties under T5, T6, and T7 tempering conditions. K-means clustering and principal component analysis algorithms 
were applied to form various clusters of alloys and are further re-clustered into fine sub-clusters. An optimal alloy (OA) for 
each sub-cluster was identified based on optimization criteria. After successive iteration, we were able to reduce 42 grades 
of the 6xxx series into a set of 10 OA’s each performing optimally. This method not only support the capability of machine 
learning in selecting OA’s but also introduce a future direction for recycling practices in the aluminum industry.
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Introduction

Aluminum is the third most common element and the most 
abundant metal (8%) in the earth's crust. The versatility of 
aluminum makes it the most widely used structural metal 
after steel due to its high strength-to-weight ratio, making 
it easy to design and construct lightweight and sturdy-
structures [1].

The mechanical properties of pure aluminum are sig-
nificantly enhanced by the addition of up to 7% of major 
alloying elements, such as manganese, copper, silicon, 
zinc, and magnesium. Furthermore, minor alloying ele-
ments (less than 0.5%) are added to further improve its 
properties. Due to the exceptional combination of prop-
erties, aluminum demand is projected to double by the 
year 2050, leading to the continuous development of new 
aluminum alloys [2]. At the same time the fraction of recy-
cled (scrap) alloys should increase to at least 50% [3–5].

Traditionally, aluminum alloy design relies on trial 
and error, driven by the domain knowledge of materials 
researchers and the current requirements of manufactur-
ers, as well as proprietary considerations. This is done by 
varying alloying element concentrations and processing 
conditions to improve mechanical properties. However, 
this approach is extremely time- and cost-intensive and 
does not cover the vast design space of potential alloys.

Materials scientists, in discovering new alloys, often 
rely on the thermodynamic information presented by phase 
diagrams. However, the relationship between changes in 
single input variables and the target property often can-
not be interpreted by a human. Recently,'ab initio'methods 
have been used to discover alloys, involving structural 
calculations from scratch. However, this approach can-
not be generalized for all alloy design issues due to the 
limitations of the method, a number of assumptions, non-
linearity, and the high dimensionality of alloy property 
variations with composition [6]. In addition, ab  initio 
approaches do not fully harness the information of alloys 
that are already known. The enormous complexity due to 
the interplay of structural, chemical, and microstructural 
degrees of freedom makes the rational design of materials 
with targeted properties rather difficult. Even with a wide 
potential solution space, rapid testing and fabrication will 
not guarantee alloys with the desired properties. There-
fore, there is an urgent need to narrow down the solution 
space [7].

In recent years machine learning (ML) entered in the 
field of material science to address complex materials 
science problems. Due to its low computational cost and 
better prediction performance, ML techniques play impor-
tant role in discovery of new materials, material analysis 
and material design. Several studies have been done to 

develop new alloys with superior characteristics [8]. Li 
et al. explored 7xxx series aluminum alloys using ML-
based composition and process optimization. They iden-
tified a lean composition optimum alloy having superior 
ultimate tensile strength under T6 tempering condition 
compared to other 7xxx series alloys [9]. Xue et al. devel-
oped an ML-model and an adaptive learning strategy for 
high-property shape memory alloys [10]. Raccuglia et al. 
used an ML strategy to model the synthesis laws from 
failed experiments in order to design new materials [11]. 
Devi et al. predicted mechanical properties of aluminum 
alloys with three ML methods including linear regression 
(LR), K-nearest neighbor (KNN), and artificial neural net-
work (ANN) [12].

Similar, ML approaches have been applied composition 
design of piezoelectric materials [13, 14], superconducting 
materials [15], stainless steel [16], and high-entropy alloys 
[17], as well as to structure and property predictions such 
as diffusion [18–20], lattice misfit [21], and fatigue [22, 23].

These studies are largely focused on developing new 
materials with improved properties, rather than optimizing 
the existing alloy grades. Therefore, they often overlook the 
challenge of having a large range of alloy grades, which 
could exacerbate recycling issues in the long run.

Some initiatives have been taken to reduce the solution 
space of aluminum alloys to a few best-performing alloys; 
however, the number of alloys keeps increasing with further 
alloy development [24–26]. The main challenge in recycling 
wrought aluminum alloys is maintaining the correct chemi-
cal composition while minimizing the addition of primary 
aluminum and alloying elements. In mixed scrap, excessive 
concentrations of critical elements (Fe, Cu, Mn, Mg, Zn, Si) 
often necessitate dilution with primary aluminum, making 
careful scrap sorting essential for direct reuse. Understand-
ing compositional tolerance limits is crucial, as impurities 
can accumulate and impact alloy properties, emphasizing 
the need for optimized compositions [27–29].

Additionally, the wide range of current standard alloys 
makes the recycling challenging and needs to be narrowed 
down. Fewer alloy grades make it easier to sort the scrap and 
allow the producers and users to mix different alloys upon 
recycling without the loss of quality. Therefore, there is an 
urgent need to optimize aluminum alloy compositions while 
minimizing the number of alloy grades in use.

In our previous work [30], we attempted to narrow down 
the solution space of the 6xxx series dataset, consisted of 
tensile properties and alloying compositions in the T6 tem-
pering condition, using a combined approach of K-means 
clustering and principal component analysis (PCA). We 
divided the dataset into five clear clusters consisting sim-
ilar properties within them. Furthermore, we used the 
Local Interpretable Model-Agnostic Explanations (LIME) 
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algorithm to explain the clusters and suggested a metallurgi-
cal reasoning behind clustering.

In this study, we expanded our analysis of the 6xxx series 
aluminum alloys by developing a comprehensive design 
framework for optimal alloy selection. We have expanded 
our dataset to include fatigue strength, technological charac-
teristics, corrosion resistance (CR), and anodizing response, 
in addition to the already existing tensile properties. We have 
also expanded the dataset to include the T5 and T7 temper-
ing conditions, whereas previously, all the datasets were in 
the T6 tempering condition. This work not only streamlines 
the alloy selection process but also provides the metallurgi-
cal reasoning behind the clustering and optimal alloy selec-
tion process. The main focus of this work is to develop a 
universal methodology for reducing the number of alloys 
grades through optimal alloy selection, marking a significant 
step forward in aluminum alloy optimization and recycling 
practices. This methodology enables faster identification of 
alloys that not only meet but exceed performance expecta-
tions. While rapid fabrication and testing are valuable, they 
are less effective when the solution space is vast. Narrowing 
this space increases the likelihood of selecting alloys with 
the desired properties.

The 6xxx alloy series was selected as an example, as 
these alloys are widely used (mostly as extrusions) in con-
struction and automotive industries. The developed meth-
odology, however, can be applied to other alloying series as 
well as to an expanded range of process conditions.

Ultimately, this work contributes to a more sustainable 
and efficient future for the aluminum industry by optimiz-
ing alloy selection and minimizing resources spent on trial 
and error. The process of selecting and narrowing down 
optimized alloys directly enhances the recycling efficiency. 
By reducing the number of alloys in circulation while still 
meeting necessary application requirements, we facilitate 
better sorting, minimize contamination, and improve the 

performance of secondary aluminum. This approach aligns 
with sustainable material practices and supports a circular 
economy.

Materials and Methods

Framework

A systematic design framework for optimal alloy selec-
tion within the 6xxx series aluminum alloys is shown in 
Fig. 1. It consists of the following key stages: data collection 
→ combined PCA and K-means clustering → sub-cluster-
ing → optimum alloy selection algorithm. Initially, dataset 
collection was done by collecting chemical compositions, 
mechanical properties, technological and service properties 
at T5, T6, and T7 tempering conditions. Following data col-
lection, clustering was performed. Once clear clusters con-
taining similar range of properties within them were formed 
and supported by metallurgical reasoning, the dataset was 
sub-clustered to get more compact sub-clusters, from which 
an optimum alloy was selected in the next step. An optimal 
alloy selection algorithm was employed to select the alloys 
with optimal properties within each sub-cluster. This frame-
work enabled the design and selection of the most promising 
6xxx series aluminum alloys with the optimal set of proper-
ties which not only met but exceed the required performance 
criteria.

Data Collection and Processing

In this study, we selected commercially available ASTM 
standard 6xxx series wrought aluminum alloys to construct 
database using Encyclopaedia of Aluminum and its Alloys 
[31], ASM Specialty Handbook [2], MakeItFrom website 
[32], and various literature sources. This series of wrought 

Fig. 1  A design framework for 
optimum alloy selection
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aluminum alloys is widely used in automotive and construc-
tion industries, hence need to be highly recyclable. It covers 
data collected on chemical compositions, mechanical prop-
erties, technological and service properties, and processing 
of 6xxx series aluminum alloys at T5, T6, and T7 tempering 
conditions to capture the broader range of properties at vari-
ous stages of artificial aging. The dataset was tabulated into 
a CSV format. All the implementations of ML algorithms 
were done in Anaconda's Jupyter Notebook environment 
[33]. Data visualization and plotting of all graphs were per-
formed with the help of the Matplotlib and Seaborn libraries 
[34, 35]. The above setup allowed running machine learning 
algorithms quite smoothly. Unlike previous studies where 
the database was comprised mostly of numerical features, 
our database contained numerical as well as categorical 
features, i.e., weldability, corrosion resistance, and anodiz-
ing response. These three properties are important for 6xxx 
series alloys that are used in construction and automotive 
industries. At the preprocessing stage, categorical variables 
were converted into numerical representations to enable 
their integration into the modeling process. These variables 
were then concatenated with the already existing numerical 
features (i.e., chemical composition and mechanical proper-
ties), by the use of a joining function.

PCA and K‑Means Clustering

K-means clustering and principal component analysis algo-
rithms were applied in grouping the 6xxx series dataset 
into various clusters containing alloys with similar ranges 
of composition and properties. The unsupervised machine 
learning algorithm, K-means clustering, separates the data-
set into a number of clusters by assigning data points to the 
nearest cluster centroid. On each iteration, data points that 
share similar features get assigned to the same centroid [36].

Principal component analysis is a technique of reducing 
dataset dimensionality to a lower dimensionality space such 
that most of the dataset information is preserved by lesser 
number of principal components, which is determined by the 
PCA variance plot [37].

The combined approach of PCA and K-means clustering 
involved the following steps [38]:

Step 1:  Standardize the dataset—Normalize variable 
scales if they are measured in different values 
scales.

Step 2:  PCA—Use PCA after the dataset standardization 
to reduce the dataset dimensionality and identify 
the number of principal components.

Step 3:  Select principal components—By the amount of 
variation, through a variance plot, determine how 
many principle components to retain.

Step 4:  Dataset Transformation—Apply selected principal 
components to the original dataset.

Step 5:  Decide the number of clusters—Apply an elbow 
method to the transformed dataset.

Step 6:  Perform K-means clustering—Assign each data 
point to the nearest cluster centroid until there was 
no further reassignment of the data points.

Step 7:  Evaluate clustering quality—Assess the cluster-
ing quality using Within-Cluster Sum of Squares 
(WCSS) or silhouette score to determine the opti-
mal number of clusters.

Step 8:  Clustering analysis—This includes analyzing 
the resultant clusters for derivations or insights 
to understand the underlying patterns within the 
dataset.

Step 9:  Sub-clustering analysis of clusters obtained 
from combined approach of PCA and K-means 
clustering.

For details on PCA and K-means clustering, refer to the 
Supplementary Material Text S1.

Optimization of Clusters

Following sub-clustering, a “technique for Order Preference 
by Similarity to Ideal Solution (TOPSIS)” subcategory of 
Multi-Criteria Decision Analysis algorithm (MCDA) was 
employed, which allowed for structured decision-making 
by evaluating multiple property criteria simultaneously to 
predict the optimum alloys with the best combination of 
properties within each sub-cluster.

The TOPSIS approach consisted of the following steps 
(For details see Supplementary Material):

Step 1:  Convert categorical variables to numerical values.

Step 2:  Construct properties matrix.

Step 3:  Normalization of property matrix consisting of all 
the properties of the alloys.
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Step 4:  Determine the ideal-best solution, T*, and ideal-
worst solutions,  T−.

Step 5:  Calculate the distance of each alloys from the 
Ideal-best and Ideal-worst Solutions.

Step 6:  Closeness Coefficient, i.e., TOPSIS score.

Step 7:  Ranking of all alloys based on TOPSIS score  (Ci), 
to identify the optimum alloy.

Step 8:  Optimum alloy prediction by the highest TOPSIS 
score.

This method ensured an optimum alloy is selected for 
each sub-cluster having a superior combination of properties 
covering the broader range of properties of already existing 
alloys within the same sub-cluster, which contributed toward 
reducing the number of alloys [39, 40].

Results and Discussion

Data Collection

An accuracy of machine learning prediction depends on the 
availability of a high-quality dataset. We gathered 292 sets 
of data on 42 wrought 6xxx series aluminum alloys (see 
Supplementary Material). Data collection involves a number 
of quantitative and qualitative properties in a number of tem-
pering as described above. These tempering conditions, i.e., 
T5, T6, T7, represent stages of artificial aging [41]. Every 
stage of artificial aging gives the alloys a unique set of prop-
erties. Note that here in this work we only considered artifi-
cial aging as this is the main temper to achieve high strength, 
used in structural applications. Since, 6xxx series alloys are 
primarily heat-treatable, our study focused on heat-treated 
conditions rather than work-hardened (H-states) or annealed 
(O-condition) alloys. This aligns with industrial practices. 
The methodology can be expanded to other process states 
and alloying systems but this goes beyond the scope of this 
work that is focused on the methodology development.

The numerical columns in the dataset represented chemi-
cal compositions spanning the following intervals: 0.35 ≤ Si 
≤ 1.35, 0.075 ≤ Fe ≤ 0.5, 0.1 ≤ Cu ≤ 0.95, 0.03 ≤ Mn ≤ 0.75, 
and 0.35 ≤ Mg ≤ 1.4. The tensile properties depended on the 
tempering conditions employed. For instance, for T6 tem-
pering the properties ranges were as follows: 160 ≤ Yield 
strength ≤ 430, 205 ≤ Ultimate tensile strength ≤ 483, 3 ≤ 
Elongation at fracture ≤ 15, 13.14 ≤ Modulus of toughness1 

[42] ≤ 49.5, and 62 ≤ High cycle fatigue strength ≤ 180. It 
can be noted that we standardized the chemical composi-
tion data to ensure consistency and facilitate the clustering 
algorithm by:

• Averaging the main alloying elements (Mg, Si) to repre-
sent typical content.

• Taking the maximum values for alloying elements that 
enhance properties (Cu, Mn).

• Using half of the maximum allowable value for impurity 
elements (Fe) to balance their influence. Also, this pre-
processing step helps control impurity levels in recycled 
alloys.

To facilitate easy processing in ML algorithms, the rat-
ings of categorical columns, i.e., corrosion resistance, 
weldability, and anodizing response, were transformed 
into numerical values as Poor = 0, Fair = 1, Good = 2, and 
Excellent = 3. The range of total solute content (Mg + Si 
+ Cu) was between 1 and 3 wt%, suggesting that a larger 
solute content was associated with a greater precipitation 
of strengthening precipitates. Furthermore, the ratio of Mg 
to Si varied from 0.34 to 1.71. This ratio was important 
because it impacted the kinetics of precipitation hardening 
in the alloy, which in turn affected the mechanical proper-
ties [43].

Combined PCA and K‑Means Clustering

A combined approach of PCA and K-means clustering was 
employed to examine the similarities present in the 6xxx 
series aluminum alloy dataset and organize them into clus-
ters consisting similar compositions and properties.

We applied standard scaling to the entire dataset after 
concatenating converted categorical features with the 
numerical features (i.e., compositions, yield strength, modu-
lus of toughness, fatigue strength) using a joining function. 
Standard scaling eliminated the disparities between absolute 
values (see Table 1) by dataset transformation into a more 
consistent scale (see Table S1) and assigning a standard 
deviation of 1 and a mean of 0 to all alloy attributes. If we 
had not standardized the data, properties with larger numeri-
cal ranges, such as yield strength, would have disproportion-
ately influenced the clustering process. This could result in 
the clustering being dominated by such properties, making it 
difficult to interpret how compositions and other properties 
are related. To clearly visualize the dataset and minimize its 
dimensionality, we employed a PCA variance plot as shown 
in Fig. 2 (a) between the cumulative explained variance (i.e., 
total variance explained by each component) and the number 
of principal components. Conventionally 80% of the dataset 
information should be retained but at last the choice is ours 
which number of parameters we need to clearly visualize 1 Modulus of toughness = 0.5 × (UTS + YS) × EI
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the clusters [37, 44], therefore we selected four principal 
components, as indicated in the curve. Consequently, we 
reduced the dataset dimensionality from 12 features (12 D 
space) to 4 components for easier cluster visualization in a 
2D or 3D space.

We employed an elbow plot on the low-dimensional 
feature dataset, as illustrated in Fig. 2 (b) as WCSS vs the 
number of clusters [36]. The point on the x-axis at which 
there was a kink in the elbow curve represented the number 
of clusters present in the dataset. As shown in the curve the 
kink occurred between points 4 and 5. After employing both 
values of the number of clusters, we found 5 well-defined 
clusters corresponding to point 5.

Figure 3 illustrates five well-defined clusters at T6 temper.

Table 1  Composition and 
property variability across 
clusters

Group  0 (Medium) 1 (High) 2 (Lowest) 3 (Highest) 4 (Low) 

Si , wt% 0.55–0.6 0.9–1.35 0.35–0.58 0.8–1.35 0.7–1.25 
Fe , wt% 0.35–0.4 0.2–0.5 0.08–0.18 0.1–0.25 0.2–0.25 
Cu , wt% 0.2–0.28 0.1–0.6 0.1–0.25 0.85–0.95 0.1–0.2 
Mn , wt% 0.1–0.27 0.7–0.95 0.03–0.1 2 0.5–0.8 5 0.1–0.6
Mg , wt% 0.85–1 0.7–0.95 0.35–0.68 0.9–1.4 0.5–0.8
Yield strength, MPa  240–296 270–352 160–214 350–430 195–270 
Modulus of toughness 

(MOT) , MPa%
25–35 14–36 15–23 35–49 20–31  

Fatigue  strength 90–110 95–100 62–88 110–180 88–110 
Corrosion Good Good–Excellent Good–Excellent Fair-Good Good 
Weldability Excellent Good Excellent Poor-Good Excellent 
Anodizing Fair-Excellent Good Good Fair-Good Good 
Mg:Si 1.667  < 1 1.33–1.68 1–1.667  < 1 
Cu content medium high low High low 
Excess Si Stoichiometry Large excess Slight excess Excess Large excess 
Mg + Si + Cu, wt% 1.9 (medium) 2.3 (high) 1.3 (lowest) 3.4 (high) 1.8 (low) 

Fig. 2  A PCA variance plot to detect the number of principal compo-
nents (a) and an elbow plot to find the optimal number of clusters (b)

Fig. 3  Clustering results for T6
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Similar clustering patterns were observed at T7 and T5 
tempering conditions, as shown in Fig. S-1 (a) & (b) (refer to 
Supplementary Material), with similar alloy grades present 
within them. Same colors specify similar clusters.

Clustering results remained same at various process-
ing conditions, i.e., rolling, forging, and extrusion of 6xxx 
series aluminum alloys (the results are not shown here for 
brevity), which further supported our clustering findings 
that remained unchanged even if processing and tempering 
conditions varied. We have discussed a detailed explanation 
of the T6 tempering condition in our previous paper [30], 
because it is the most commonly used condition in 6xxx 
series aluminum alloys. The current clustering results were 
quite similar but more clearly defined as they include a wider 
range of properties. For further analysis, we extracted this 
information (i.e., clusters numbered from 0 to 4) into a CSV 
file and manually examined whether the algorithm correctly 
grouped the alloys before further processing. The results 
confirmed that the algorithm successfully categorized alloys 
with similar properties and composition ranges into the same 
clusters. Table 1 illustrates the range of chemical composi-
tions and properties values found in each cluster.

For example, Cluster 2 consists of alloys that possess the 
lowest range of tensile properties, due to low amount of sol-
ute content, i.e., Mg + Si + Cu while it showed excellent cor-
rosion resistance and weldability. On the other hand, Cluster 
3 comprised alloys containing higher range of tensile proper-
ties but showed medium corrosion resistance and weldabil-
ity. It is well-established that, in general, as the strength of 
these alloys increases, corrosion resistance and weldability 
tend to decrease, and vice versa as can be seen in Table 1. 
This inverse relationship is a key characteristic of the 6xxx 
alloys, making it crucial to evaluate these properties together 
to get a comprehensive view of how the alloys perform.

Sub‑clustering

After obtaining five well-defined clusters comprising alloys 
of similar properties and compositions, we further refined 
these clusters by implementing same combined approach 
of PCA and K-means clustering algorithm as we performed 
in Section"Combined PCA and K-Means Clustering". This 
refinement was performed to create finer and more compact 
sub-clusters containing a closer range of properties, so that 
in next step optimum alloys could be selected.

First, we applied PCA to reduce the dataset dimension-
ality, enabling better visualization of the sub-clusters. 
Then, we used K-means clustering to identify number of 
sub-clusters within each cluster. Both the clustering results 
and our domain understanding confirmed the presence of 
two clear sub-clusters per cluster also called hyper-param-
eter tuning where we tune the parameters, i.e., number 
of clusters and number of components. This combined 

approach of PCA and K-means clustering resulted in 10 
clear sub-clusters, each containing a compact range of 
properties and compositions as seen in Fig. 4 for Cluster 
0 and in Fig. S-2 (refer to Supplementary Material) for 
other clusters. This step ensured that we did not lose a sig-
nificant amount of information while selecting the optimal 
alloys from the sub-clusters [45, 46].

Let us consider Cluster 0, which was sub-divided into 
two sub-clusters, i.e., Sub-cluster 0 and Sub-cluster 1. 
Sub-cluster 0 exhibit a higher range of tensile properties, 
moderate corrosion resistance, poor anodizing response, 
while Sub-cluster 1 consists of a moderate range of tensile 
properties but excellent corrosion resistance and weldabil-
ity. This trend was seen across all sub-clusters, suggesting 
the alloys were grouped with a finer range of properties.

The next step involved optimization of these sub-clus-
ters to identify representative alloys with the best combi-
nation of properties.

Optimum Alloy Selection

After obtaining sub-clusters containing a narrower range 
of properties, next step was to optimize them selecting the 
best combination of properties alloys by using TOPSIS 
algorithm. TOPSIS is a powerful method of multi-crite-
ria decision-making, intuitively ranking the alloys with 
respect to their distance from the ideal solution and effi-
ciently balancing the trade-offs among conflicting criteria.

Consider for example Sub-cluster 0 of Cluster 0, which 
involves four alloys with different ranges of properties 
listed in Table S1.

Step 1:  Converting categorical ratings to numerical values: 
Ratings of corrosion resistance, weldability, and 
anodizing response were converted to numerical 

Fig. 4  Sub-clustering analysis of Cluster 0
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values, i.e., Excellent = 3, Good = 2, Fair = 1, and 
poor = 0.

Step 2:  Construction of a property matrix: A property 
matrix was created for all alloy properties of Sub-
cluster 0 of Cluster 0 as follows (see Table S1 for 
clarity):

Step 3:  Normalization of the property matrix: All prop-
erties were converted to normalized values (i.e., 
shown in Table S1 in parenthesis) by using Eq. S3 
(see Supplementary Material).

Step 4:  Determine ideal-best and ideal-worst solutions fol-
lowing an algorithm described in Supplementary 
Materials (Calculation S1).

Step 5:  Distance of each alloy from ideal-best and ideal-
worst solutions (refer to Calculation S2 for 
details):

The ideal-best solution for alloys were as follows:
D

∗

A
= 0.915, D∗

B
 = 0.2896, D∗

C
 = 0.0717, and D∗

D
= 0.

The distance for each alloy from the ideal-worst solution:

Step 6:  Rank the alloys: Ranking the four alloys in Sub-
cluster 0 of Cluster 0 based on the TOPSIS score 
(refer to calculation S3 for details): Alloy D:  CD = 
1 (best choice), Alloy C:  CC ≈0.9260, Alloy B:  CB 
≈ ≈0.6903, and Alloy A:  CA ≈0.0441.

Based on the TOPSIS method calculated above, Alloy 
D (Table S1) is the best choice alloy, indicating it offers 
a balanced performance across all properties compared to 
other alloys as shown in Fig. S-3 (refer to Supplementary 
Material) where we also employed other MCDM methods 
(i.e., AHP, VIKOR [39]) for comparison, each time Alloy 
D gets the best score.

The other optimum alloys chosen for the remaining sub-
clusters followed the same logic. The optimum alloys cho-
sen following the optimization of each sub-cluster and the 
parent cluster are shown in Table 2. Through optimization, 

270 270 240 270

25.5 29.5 25 31.9

110 110 102.7 110

2 2 2 2

2 3 3 3

0 2 3 3

D
−

A
= 0.098, D

−

B
, D

−

C
=, 0.095, andD−

D
= 0.916

the chosen alloys were guaranteed to match the specified 
criteria with a wide range of properties and applications. 
By narrowing down the solution space, we ensure that only 
the most effective and efficient alloys are selected, leading 
to cost savings, improved product performance and simpli-
fied sorting of scrap in the aluminum industry. Addition-
ally, in most clusters the optimum alloys selected coincide 
with commercial grade alloys offering better combination 
of properties for similar applications as shown in Table 2.

While we have reduced the alloys within clusters to a 
few top-performing options, the clusters will always remain 
available to meet any unique demands in properties, process-
ing, or economics.

Metallurgical Understanding of Clustering

The clustering by ML methods will only be reliable if it had 
some metallurgical/physical background. The general metal-
lurgical reasoning behind clusters obtained by the combined 
approach of PCA and K-means clustering, as well as the 
rationale behind optimal alloy selection is discussed here. 
According to the well-known sequence of precipitation upon 
aging in Al–Mg-Si alloys, the precipitation in ternary 6xxx 
series alloys proceeds as follows: supersaturated solid solu-
tion (SSS) → GP zones → β″ → β′ → β [43, 57]. β″ is the 
main hardening phase in 6xxx series aluminum alloys. An 
addition of Cu to Al–Mg-Si alloys introduces the possibil-
ity of forming a quaternary phase, Q, with some metastable 
variations, changing the kinetics and phase composition of 
precipitates as has been summarized in our previous paper 
[30] and briefly outlined below for some ranges of alloying 
elements (with hardening phases in bold) [57]:

At a lower Cu concentration: SSS—GP zones—β′′ (a 
modification with Cu)—Si—numerous variations of β′ 
(with Cu) including β′C—Mg2Si and Si.

At a higher Cu concentration: SSS—GP zones—β″ 
(modifications with Cu)—θ′ or/and Q′—Si—numer-
ous variations of β′ (with Cu) including β′C, Q′ and θ′—Q 
(AlMgSiCu),  Mg2Si,  Al2Cu and Si.

These precipitation paths may also occur at intermediate 
copper concentrations during artificial aging. Also, Table S2 
(Supplementary Material) shows the role of each alloying 
element in the precipitation hardening and the effects on 
mechanical and functional properties.

Based on this general understanding of the metallurgy of 
6xxx series alloys, we can suggest the following metallurgi-
cal reasons behind grouping the alloys into different clusters. 
An example for Cluster 0 is given below, other clusters are 
listed in Supplementary Material (Text S2).

Cluster 0 (Medium strength alloys): Composition range 
(wt%): Si: (0.55–0.6), Fe: (0.35–0.4 ), Cu: (0.2–0.28), Mn: 
(0.1–0.27), Mg: (0.85–1) determines formation of the fol-
lowing phases: medium amount of β΄΄, Q΄, β΄.
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At an average Cu content of 0.275% and with a small 
excess of Si as Mg:Si ~ 1.67 (1.73 is the stoichiometry in 
 Mg2Si) the main hardening phase is β΄΄ may be assisted at 
later stages with the Q΄ phases [57, 58]. Corrosion resist-
ance is rated as good to excellent, primarily attributable to 
the relatively high Mg:Si ratio, which influences the type, 
size, and distribution of grain boundary precipitates (GBPs), 
essential for combating the intergranular corrosion (IGC) 
resistance [59, 60]. Weldability is excellent due to the low 
presence of liquation cracking-causing elements, i.e., Cu and 
the moderate formation of  Mg2Si phases [61]. Anodizing 
response is excellent due to moderate amount of constitu-
ent Si and  Mg2Si particles, resulting in softer surfaces and 
increased surface gloss [62].

Similar metallurgical reasoning applies to other clus-
ters. Table 2 provides concise descriptions of the wider 
range of properties and applications covered by optimal 

alloys selected by optimization algorithm. This approach 
serves as a pre-screening tool to suggest alloys with the 
balanced combination of properties and a theoretical 
metallurgical reasoning behind its selection process. It is 
important that each of the optimum alloys has an analogue 
among the standard alloy grades, which helps to validate 
the selection as the standard alloys and their properties are 
well documented. A comparison is performed in Table 3 
for the optimum alloys selected for Cluster 0, contrasting 
the reported property values from the MatWeb website 
[63] with predicted values from our database using the 
optimization algorithm. Note that the MatWeb database 
was not used in building our database and, therefore, can 
be considered as an independent source of data. This com-
parison reveals minimal disparity between the two data 
sources. Here, Alloy A is ASTM 6061, and Alloy B is 
ASTM 6040.

Table 2  Properties and applications of optimum alloys in each cluster

Clusters Optimum alloys (their standard analogues) and their properties Applications

Cluster 0 6061, Sub-cluster 0 Low strength, modulus of toughness, and good CR, 
weldability, anodizing

Truck frames, Rail coaches, Military, commercial 
bridges,

Ships, Towers, Aerospace, Rivets, Motorboats, Boiler 
making [47]

6040, Sub-cluster 1 Good strength, modulus of toughness, and excellent 
CR, weldability, fair anodizing

Automotive, small engine parts, sports products [48]

Cluster 1 6012, Sub-cluster 0 Moderate strength, toughness, weldability, anodizing 
and excellent CR

Manufacturing parts which require easy machining and 
are suitable for anodization. [49]

6070, Sub-cluster 1 High strength, modulus of toughness, weldability, 
moderate CR, anodizing

Pipelines and heavy duty welded structures [50]

Cluster 2 6063, Sub-cluster 0 Low strength, toughness, excellent CR, weldability 
and anodizing response

Transportation, architectural and, industrial applica-
tions [51]

6463, Sub-cluster 1 Moderate strength, modulus of toughness, and excel-
lent CR, weldability, anodizing response

Manufacturing extruded architectural and trim sections 
[52]

Cluster 3 6033, Sub-cluster 0 High strength, modulus of toughness, and good CR, 
weldability, anodizing

Recreational, medical and after-market automotive 
parts used in fly reels, oxygen regulators and small 
gas-powered engines [53]

6011 A, Sub-cluster 1 High strength, modulus of toughness, moderate CR, 
weldability, anodizing

Automobile vehicles [54]

Cluster 4 6081, Sub-cluster 0 High strength, moderate modulus of toughness, good 
CR, weldability, and anodizing

Structural components, such as frames for bicycles, 
motorcycles, and automobiles [55]

6009, Sub-cluster 1 Low strength, modulus of toughness, good strength, 
good CR, weldability and anodizing response

Components of car body, such as door panels, roofs, 
front and rear bumpers, side skirts, and wheel arches 
[56]

Table 3  Comparison of 
predicted vs measured 
properties of optimum alloys for 
cluster 0

Property Alloy A (predicted) Alloy A (reported) Alloy B (predicted) Alloy B (reported)

Yield strength 276 276 296 296
Elongation 12 17 15 15
Fatigue strength 96.5 96.5 119 119
Corrosion resistance Good Good Excellent Excellent
Weldability Excellent Excellent Excellent Excellent
Anodizing Excellent Excellent Good Good
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In this work we developed an ML-based methodology 
and identified the optimal alloys for each sub-cluster of the 
6xxx alloying series, effectively reducing the number of 
alloys while keeping the level of properties; and successfully 
found the metallurgical reasoning behind clustering process.

In future we will focus on recycling issues within sub-
clusters by determining the mixing ratios of the alloys allow-
ing the preservation of the optimum properties.

Conclusion

In this study, we developed a methodology of reducing the 
number of standard alloys while retaining the level of prop-
erties within each sub-cluster of the alloying series. This 
methodology was demonstrated for the 6xxx series of alu-
minum alloys (Al–Mg-Si–(Cu) under T5, T6, and T7 tem-
pering conditions using PCA and K-means clustering and 
optimization algorithm. From an initial set of 42 alloys, we 
identified 10 optimum alloys, all of which have analogues 
in the existing commercial alloys. These selected alloys not 
only maintain desirable mechanical and functional proper-
ties but also improve recyclability due to the lesser require-
ments for scrap sorting.

The clustering approach effectively categorized alloys, 
ensuring that widely used commercial alloys were 
included in each cluster. Notably, 6061, 6081, and 6063 
alloys corresponded to low, medium, and high property 
clusters, respectively.
A key limitation of the current methodology is that gen-
eralizing 42 alloys into 10 optimized ones may not fully 
account for niche applications with unique property 
requirements. However, the clustering process groups 
alloys with similar overall properties, ensuring that a 
broad range of applications is covered. In specialized 
cases, the full range of alloys remains available for tai-
lored needs. Additionally, experimental validation is still 
required to confirm our findings, though well-established 
reference data supported our optimization approach. This 
provides a framework for improved alloy classification, 
reducing compositional variability, and enhancing sus-
tainability in recycling when applied to well-sorted mate-
rials.
Future research will focus on refining recycling strategies 
within sub-clusters by determining the optimal mixing 
ratios of alloys while maintaining desirable properties.

This methodology provides a sustainable approach to 
alloy selection and enhances efficiency in the aluminum 
industry, facilitating both performance improvement and 
material recyclability.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s40831- 025- 01112-4.
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