Journal of Sustainable Metallurgy (2025) 11:2323-2334
https://doi.org/10.1007/540831-025-01112-4

RESEARCH ARTICLE q

Check for
updates

Facilitating Recycling of 6xxx Series Aluminum Alloys by Machine
Learning-Based Optimization

Tanu Tiwari'© - Chamini Mendis' - Dmitry Eskin'

Received: 13 November 2024 / Accepted: 23 April 2025 / Published online: 12 May 2025
© The Author(s) 2025

Abstract

Aluminum alloys throughout the last century have experienced extensive development, owing to their unique strength-to-
weight ratio. This led to generating multiple alloy grades. However, large number of grades present challenges when it comes
to the recycling of aluminum scrap, which is the current and future trend in aluminum alloy production and application.
Therefore, there is an urgent need to decrease the number of alloying grades while preserving their performance. In this
study, we designed an optimization loop based on Machine Learning (ML) and material science knowledge for the 292 sets
of data collected on 42 grades of 6xxx series aluminum alloys, focusing on their mechanical, service, and technological
properties under TS, T6, and T7 tempering conditions. K-means clustering and principal component analysis algorithms
were applied to form various clusters of alloys and are further re-clustered into fine sub-clusters. An optimal alloy (OA) for
each sub-cluster was identified based on optimization criteria. After successive iteration, we were able to reduce 42 grades
of the 6xxx series into a set of 10 OA’s each performing optimally. This method not only support the capability of machine
learning in selecting OA’s but also introduce a future direction for recycling practices in the aluminum industry.
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Introduction

Aluminum is the third most common element and the most
abundant metal (8%) in the earth's crust. The versatility of
aluminum makes it the most widely used structural metal
after steel due to its high strength-to-weight ratio, making
it easy to design and construct lightweight and sturdy-
structures [1].

The mechanical properties of pure aluminum are sig-
nificantly enhanced by the addition of up to 7% of major
alloying elements, such as manganese, copper, silicon,
zinc, and magnesium. Furthermore, minor alloying ele-
ments (less than 0.5%) are added to further improve its
properties. Due to the exceptional combination of prop-
erties, aluminum demand is projected to double by the
year 2050, leading to the continuous development of new
aluminum alloys [2]. At the same time the fraction of recy-
cled (scrap) alloys should increase to at least 50% [3-5].

Traditionally, aluminum alloy design relies on trial
and error, driven by the domain knowledge of materials
researchers and the current requirements of manufactur-
ers, as well as proprietary considerations. This is done by
varying alloying element concentrations and processing
conditions to improve mechanical properties. However,
this approach is extremely time- and cost-intensive and
does not cover the vast design space of potential alloys.

Materials scientists, in discovering new alloys, often
rely on the thermodynamic information presented by phase
diagrams. However, the relationship between changes in
single input variables and the target property often can-
not be interpreted by a human. Recently,'ab initio'methods
have been used to discover alloys, involving structural
calculations from scratch. However, this approach can-
not be generalized for all alloy design issues due to the
limitations of the method, a number of assumptions, non-
linearity, and the high dimensionality of alloy property
variations with composition [6]. In addition, ab initio
approaches do not fully harness the information of alloys
that are already known. The enormous complexity due to
the interplay of structural, chemical, and microstructural
degrees of freedom makes the rational design of materials
with targeted properties rather difficult. Even with a wide
potential solution space, rapid testing and fabrication will
not guarantee alloys with the desired properties. There-
fore, there is an urgent need to narrow down the solution
space [7].

In recent years machine learning (ML) entered in the
field of material science to address complex materials
science problems. Due to its low computational cost and
better prediction performance, ML techniques play impor-
tant role in discovery of new materials, material analysis
and material design. Several studies have been done to
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develop new alloys with superior characteristics [8]. Li
et al. explored 7xxx series aluminum alloys using ML-
based composition and process optimization. They iden-
tified a lean composition optimum alloy having superior
ultimate tensile strength under T6 tempering condition
compared to other 7xxx series alloys [9]. Xue et al. devel-
oped an ML-model and an adaptive learning strategy for
high-property shape memory alloys [10]. Raccuglia et al.
used an ML strategy to model the synthesis laws from
failed experiments in order to design new materials [11].
Devi et al. predicted mechanical properties of aluminum
alloys with three ML methods including linear regression
(LR), K-nearest neighbor (KNN), and artificial neural net-
work (ANN) [12].

Similar, ML approaches have been applied composition
design of piezoelectric materials [13, 14], superconducting
materials [15], stainless steel [16], and high-entropy alloys
[17], as well as to structure and property predictions such
as diffusion [18-20], lattice misfit [21], and fatigue [22, 23].

These studies are largely focused on developing new
materials with improved properties, rather than optimizing
the existing alloy grades. Therefore, they often overlook the
challenge of having a large range of alloy grades, which
could exacerbate recycling issues in the long run.

Some initiatives have been taken to reduce the solution
space of aluminum alloys to a few best-performing alloys;
however, the number of alloys keeps increasing with further
alloy development [24-26]. The main challenge in recycling
wrought aluminum alloys is maintaining the correct chemi-
cal composition while minimizing the addition of primary
aluminum and alloying elements. In mixed scrap, excessive
concentrations of critical elements (Fe, Cu, Mn, Mg, Zn, Si)
often necessitate dilution with primary aluminum, making
careful scrap sorting essential for direct reuse. Understand-
ing compositional tolerance limits is crucial, as impurities
can accumulate and impact alloy properties, emphasizing
the need for optimized compositions [27-29].

Additionally, the wide range of current standard alloys
makes the recycling challenging and needs to be narrowed
down. Fewer alloy grades make it easier to sort the scrap and
allow the producers and users to mix different alloys upon
recycling without the loss of quality. Therefore, there is an
urgent need to optimize aluminum alloy compositions while
minimizing the number of alloy grades in use.

In our previous work [30], we attempted to narrow down
the solution space of the 6xxx series dataset, consisted of
tensile properties and alloying compositions in the T6 tem-
pering condition, using a combined approach of K-means
clustering and principal component analysis (PCA). We
divided the dataset into five clear clusters consisting sim-
ilar properties within them. Furthermore, we used the
Local Interpretable Model-Agnostic Explanations (LIME)
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algorithm to explain the clusters and suggested a metallurgi-
cal reasoning behind clustering.

In this study, we expanded our analysis of the 6xxx series
aluminum alloys by developing a comprehensive design
framework for optimal alloy selection. We have expanded
our dataset to include fatigue strength, technological charac-
teristics, corrosion resistance (CR), and anodizing response,
in addition to the already existing tensile properties. We have
also expanded the dataset to include the T5 and T7 temper-
ing conditions, whereas previously, all the datasets were in
the T6 tempering condition. This work not only streamlines
the alloy selection process but also provides the metallurgi-
cal reasoning behind the clustering and optimal alloy selec-
tion process. The main focus of this work is to develop a
universal methodology for reducing the number of alloys
grades through optimal alloy selection, marking a significant
step forward in aluminum alloy optimization and recycling
practices. This methodology enables faster identification of
alloys that not only meet but exceed performance expecta-
tions. While rapid fabrication and testing are valuable, they
are less effective when the solution space is vast. Narrowing
this space increases the likelihood of selecting alloys with
the desired properties.

The 6xxx alloy series was selected as an example, as
these alloys are widely used (mostly as extrusions) in con-
struction and automotive industries. The developed meth-
odology, however, can be applied to other alloying series as
well as to an expanded range of process conditions.

Ultimately, this work contributes to a more sustainable
and efficient future for the aluminum industry by optimiz-
ing alloy selection and minimizing resources spent on trial
and error. The process of selecting and narrowing down
optimized alloys directly enhances the recycling efficiency.
By reducing the number of alloys in circulation while still
meeting necessary application requirements, we facilitate
better sorting, minimize contamination, and improve the

Fig.1 A design framework for
optimum alloy selection
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Materials and Methods
Framework

A systematic design framework for optimal alloy selec-
tion within the 6xxx series aluminum alloys is shown in
Fig. 1. It consists of the following key stages: data collection
— combined PCA and K-means clustering — sub-cluster-
ing — optimum alloy selection algorithm. Initially, dataset
collection was done by collecting chemical compositions,
mechanical properties, technological and service properties
at TS5, T6, and T7 tempering conditions. Following data col-
lection, clustering was performed. Once clear clusters con-
taining similar range of properties within them were formed
and supported by metallurgical reasoning, the dataset was
sub-clustered to get more compact sub-clusters, from which
an optimum alloy was selected in the next step. An optimal
alloy selection algorithm was employed to select the alloys
with optimal properties within each sub-cluster. This frame-
work enabled the design and selection of the most promising
6xxx series aluminum alloys with the optimal set of proper-
ties which not only met but exceed the required performance
criteria.

Data Collection and Processing

In this study, we selected commercially available ASTM
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aluminum alloys is widely used in automotive and construc-
tion industries, hence need to be highly recyclable. It covers
data collected on chemical compositions, mechanical prop-
erties, technological and service properties, and processing
of 6xxx series aluminum alloys at T5, T6, and T7 tempering
conditions to capture the broader range of properties at vari-
ous stages of artificial aging. The dataset was tabulated into
a CSV format. All the implementations of ML algorithms
were done in Anaconda's Jupyter Notebook environment
[33]. Data visualization and plotting of all graphs were per-
formed with the help of the Matplotlib and Seaborn libraries
[34, 35]. The above setup allowed running machine learning
algorithms quite smoothly. Unlike previous studies where
the database was comprised mostly of numerical features,
our database contained numerical as well as categorical
features, i.e., weldability, corrosion resistance, and anodiz-
ing response. These three properties are important for 6xxx
series alloys that are used in construction and automotive
industries. At the preprocessing stage, categorical variables
were converted into numerical representations to enable
their integration into the modeling process. These variables
were then concatenated with the already existing numerical
features (i.e., chemical composition and mechanical proper-
ties), by the use of a joining function.

PCA and K-Means Clustering

K-means clustering and principal component analysis algo-
rithms were applied in grouping the 6xxx series dataset
into various clusters containing alloys with similar ranges
of composition and properties. The unsupervised machine
learning algorithm, K-means clustering, separates the data-
set into a number of clusters by assigning data points to the
nearest cluster centroid. On each iteration, data points that
share similar features get assigned to the same centroid [36].

Principal component analysis is a technique of reducing
dataset dimensionality to a lower dimensionality space such
that most of the dataset information is preserved by lesser
number of principal components, which is determined by the
PCA variance plot [37].

The combined approach of PCA and K-means clustering
involved the following steps [38]:

Step 1: Standardize the dataset—Normalize variable
scales if they are measured in different values
scales.

Step 2: PCA—Use PCA after the dataset standardization

to reduce the dataset dimensionality and identify
the number of principal components.
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Step 3:  Select principal components—By the amount of
variation, through a variance plot, determine how

many principle components to retain.

Dataset Transformation—Apply selected principal
components to the original dataset.

Step 4:

Decide the number of clusters—Apply an elbow
method to the transformed dataset.

Step 5:

Step 6: Perform K-means clustering—Assign each data
point to the nearest cluster centroid until there was
no further reassignment of the data points.

Step 7:  Evaluate clustering quality—Assess the cluster-
ing quality using Within-Cluster Sum of Squares
(WCSS) or silhouette score to determine the opti-
mal number of clusters.

Step 8:  Clustering analysis—This includes analyzing
the resultant clusters for derivations or insights
to understand the underlying patterns within the
dataset.

Step 9:  Sub-clustering analysis of clusters obtained
from combined approach of PCA and K-means
clustering.

For details on PCA and K-means clustering, refer to the
Supplementary Material Text S1.

Optimization of Clusters

Following sub-clustering, a “technique for Order Preference
by Similarity to Ideal Solution (TOPSIS)” subcategory of
Multi-Criteria Decision Analysis algorithm (MCDA) was
employed, which allowed for structured decision-making
by evaluating multiple property criteria simultaneously to
predict the optimum alloys with the best combination of
properties within each sub-cluster.

The TOPSIS approach consisted of the following steps
(For details see Supplementary Material):

Step 1:  Convert categorical variables to numerical values.
Step 2:  Construct properties matrix.
Step 3: Normalization of property matrix consisting of all

the properties of the alloys.



Journal of Sustainable Metallurgy (2025) 11:2323-2334

2327

Step 4: Determine the ideal-best solution, T*, and ideal-
worst solutions, T~.

Step 5: Calculate the distance of each alloys from the
Ideal-best and Ideal-worst Solutions.

Step 6:  Closeness Coefficient, i.e., TOPSIS score.

Step 7:  Ranking of all alloys based on TOPSIS score (C'),
to identify the optimum alloy.

Step 8:  Optimum alloy prediction by the highest TOPSIS

score.

This method ensured an optimum alloy is selected for
each sub-cluster having a superior combination of properties
covering the broader range of properties of already existing
alloys within the same sub-cluster, which contributed toward
reducing the number of alloys [39, 40].

Results and Discussion
Data Collection

An accuracy of machine learning prediction depends on the
availability of a high-quality dataset. We gathered 292 sets
of data on 42 wrought 6xxx series aluminum alloys (see
Supplementary Material). Data collection involves a number
of quantitative and qualitative properties in a number of tem-
pering as described above. These tempering conditions, i.e.,
TS5, T6, T7, represent stages of artificial aging [41]. Every
stage of artificial aging gives the alloys a unique set of prop-
erties. Note that here in this work we only considered artifi-
cial aging as this is the main temper to achieve high strength,
used in structural applications. Since, 6xxx series alloys are
primarily heat-treatable, our study focused on heat-treated
conditions rather than work-hardened (H-states) or annealed
(O-condition) alloys. This aligns with industrial practices.
The methodology can be expanded to other process states
and alloying systems but this goes beyond the scope of this
work that is focused on the methodology development.
The numerical columns in the dataset represented chemi-
cal compositions spanning the following intervals: 0.35 <Si
<1.35,0.075 <Fe £0.5,0.1 <Cu £0.95, 0.03 <Mn <£0.75,
and 0.35 <Mg < 1.4. The tensile properties depended on the
tempering conditions employed. For instance, for T6 tem-
pering the properties ranges were as follows: 160 <Yield
strength <430, 205 < Ultimate tensile strength <483, 3 <
Elongation at fracture <15, 13.14 <Modulus of toughnessl

! Modulus of toughness =0.5 X (UTS + YS) x EI

[42] <49.5, and 62 <High cycle fatigue strength <180. It
can be noted that we standardized the chemical composi-
tion data to ensure consistency and facilitate the clustering
algorithm by:

e Averaging the main alloying elements (Mg, Si) to repre-
sent typical content.

e Taking the maximum values for alloying elements that
enhance properties (Cu, Mn).

¢ Using half of the maximum allowable value for impurity
elements (Fe) to balance their influence. Also, this pre-
processing step helps control impurity levels in recycled
alloys.

To facilitate easy processing in ML algorithms, the rat-
ings of categorical columns, i.e., corrosion resistance,
weldability, and anodizing response, were transformed
into numerical values as Poor =0, Fair =1, Good =2, and
Excellent =3. The range of total solute content (Mg + Si
+ Cu) was between 1 and 3 wt%, suggesting that a larger
solute content was associated with a greater precipitation
of strengthening precipitates. Furthermore, the ratio of Mg
to Si varied from 0.34 to 1.71. This ratio was important
because it impacted the kinetics of precipitation hardening
in the alloy, which in turn affected the mechanical proper-
ties [43].

Combined PCA and K-Means Clustering

A combined approach of PCA and K-means clustering was
employed to examine the similarities present in the 6xxx
series aluminum alloy dataset and organize them into clus-
ters consisting similar compositions and properties.

We applied standard scaling to the entire dataset after
concatenating converted categorical features with the
numerical features (i.e., compositions, yield strength, modu-
lus of toughness, fatigue strength) using a joining function.
Standard scaling eliminated the disparities between absolute
values (see Table 1) by dataset transformation into a more
consistent scale (see Table S1) and assigning a standard
deviation of 1 and a mean of 0 to all alloy attributes. If we
had not standardized the data, properties with larger numeri-
cal ranges, such as yield strength, would have disproportion-
ately influenced the clustering process. This could result in
the clustering being dominated by such properties, making it
difficult to interpret how compositions and other properties
are related. To clearly visualize the dataset and minimize its
dimensionality, we employed a PCA variance plot as shown
in Fig. 2 (a) between the cumulative explained variance (i.e.,
total variance explained by each component) and the number
of principal components. Conventionally 80% of the dataset
information should be retained but at last the choice is ours
which number of parameters we need to clearly visualize

@ Springer



2328

Journal of Sustainable Metallurgy (2025) 11:2323-2334

Table 1 Composition and

L Group 0 (Medium) 1 (High) 2 (Lowest) 3 (Highest) 4 (Low)
property variability across
clusters Si, wt% 0.55-0.6 0.9-1.35 0.35-0.58 0.8-1.35 0.7-1.25
Fe, wt% 0.35-0.4 0.2-0.5 0.08-0.18 0.1-0.25 0.2-0.25
Cu, wt% 0.2-0.28 0.1-0.6 0.1-0.25 0.85-0.95 0.1-0.2
Mn, wt% 0.1-0.27 0.7-0.95 0.03-0.12 0.5-0.85 0.1-0.6
Mg, wt% 0.85-1 0.7-0.95 0.35-0.68 09-1.4 0.5-0.8
Yield strength, MPa ~ 240-296 270-352 160-214 350-430 195-270
Modulus of toughness 25-35 14-36 15-23 35-49 20-31
(MOT), MPa%
Fatigue strength 90-110 95-100 62-88 110-180 88-110
Corrosion Good Good-Excellent  Good-Excellent Fair-Good  Good
Weldability Excellent Good Excellent Poor-Good  Excellent
Anodizing Fair-Excellent  Good Good Fair-Good  Good
Mg:Si 1.667 <1 1.33-1.68 1-1.667 <1
Cu content medium high low High low
Excess Si Stoichiometry — Large excess Slight excess Excess Large excess
Mg +Si +Cu, wt% 1.9 (medium) 2.3 (high) 1.3 (lowest) 3.4 (high) 1.8 (low)
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Fig.2 A PCA variance plot to detect the number of principal compo-
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Fig.3 Clustering results for T6

the clusters [37, 44], therefore we selected four principal
components, as indicated in the curve. Consequently, we
reduced the dataset dimensionality from 12 features (12 D
space) to 4 components for easier cluster visualization in a
2D or 3D space.

We employed an elbow plot on the low-dimensional
feature dataset, as illustrated in Fig. 2 (b) as WCSS vs the
number of clusters [36]. The point on the x-axis at which
there was a kink in the elbow curve represented the number
of clusters present in the dataset. As shown in the curve the
kink occurred between points 4 and 5. After employing both
values of the number of clusters, we found 5 well-defined
clusters corresponding to point 5.

Figure 3 illustrates five well-defined clusters at T6 temper.
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Similar clustering patterns were observed at T7 and TS
tempering conditions, as shown in Fig. S-1 (a) & (b) (refer to
Supplementary Material), with similar alloy grades present
within them. Same colors specify similar clusters.

Clustering results remained same at various process-
ing conditions, i.e., rolling, forging, and extrusion of 6xxx
series aluminum alloys (the results are not shown here for
brevity), which further supported our clustering findings
that remained unchanged even if processing and tempering
conditions varied. We have discussed a detailed explanation
of the T6 tempering condition in our previous paper [30],
because it is the most commonly used condition in 6xxx
series aluminum alloys. The current clustering results were
quite similar but more clearly defined as they include a wider
range of properties. For further analysis, we extracted this
information (i.e., clusters numbered from O to 4) into a CSV
file and manually examined whether the algorithm correctly
grouped the alloys before further processing. The results
confirmed that the algorithm successfully categorized alloys
with similar properties and composition ranges into the same
clusters. Table 1 illustrates the range of chemical composi-
tions and properties values found in each cluster.

For example, Cluster 2 consists of alloys that possess the
lowest range of tensile properties, due to low amount of sol-
ute content, i.e., Mg + Si + Cu while it showed excellent cor-
rosion resistance and weldability. On the other hand, Cluster
3 comprised alloys containing higher range of tensile proper-
ties but showed medium corrosion resistance and weldabil-
ity. It is well-established that, in general, as the strength of
these alloys increases, corrosion resistance and weldability
tend to decrease, and vice versa as can be seen in Table 1.
This inverse relationship is a key characteristic of the 6xxx
alloys, making it crucial to evaluate these properties together
to get a comprehensive view of how the alloys perform.

Sub-clustering

After obtaining five well-defined clusters comprising alloys
of similar properties and compositions, we further refined
these clusters by implementing same combined approach
of PCA and K-means clustering algorithm as we performed
in Section"Combined PCA and K-Means Clustering". This
refinement was performed to create finer and more compact
sub-clusters containing a closer range of properties, so that
in next step optimum alloys could be selected.

First, we applied PCA to reduce the dataset dimension-
ality, enabling better visualization of the sub-clusters.
Then, we used K-means clustering to identify number of
sub-clusters within each cluster. Both the clustering results
and our domain understanding confirmed the presence of
two clear sub-clusters per cluster also called hyper-param-
eter tuning where we tune the parameters, i.e., number
of clusters and number of components. This combined
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approach of PCA and K-means clustering resulted in 10
clear sub-clusters, each containing a compact range of
properties and compositions as seen in Fig. 4 for Cluster
0 and in Fig. S-2 (refer to Supplementary Material) for
other clusters. This step ensured that we did not lose a sig-
nificant amount of information while selecting the optimal
alloys from the sub-clusters [45, 46].

Let us consider Cluster 0, which was sub-divided into
two sub-clusters, i.e., Sub-cluster 0 and Sub-cluster 1.
Sub-cluster 0 exhibit a higher range of tensile properties,
moderate corrosion resistance, poor anodizing response,
while Sub-cluster 1 consists of a moderate range of tensile
properties but excellent corrosion resistance and weldabil-
ity. This trend was seen across all sub-clusters, suggesting
the alloys were grouped with a finer range of properties.

The next step involved optimization of these sub-clus-
ters to identify representative alloys with the best combi-
nation of properties.

Optimum Alloy Selection

After obtaining sub-clusters containing a narrower range
of properties, next step was to optimize them selecting the
best combination of properties alloys by using TOPSIS
algorithm. TOPSIS is a powerful method of multi-crite-
ria decision-making, intuitively ranking the alloys with
respect to their distance from the ideal solution and effi-
ciently balancing the trade-offs among conflicting criteria.
Consider for example Sub-cluster 0 of Cluster 0, which
involves four alloys with different ranges of properties
listed in Table S1.
Step 1:  Converting categorical ratings to numerical values:
Ratings of corrosion resistance, weldability, and
anodizing response were converted to numerical
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values, i.e., Excellent =3, Good =2, Fair =1, and
poor =0.

Step 2:  Construction of a property matrix: A property

matrix was created for all alloy properties of Sub-
cluster O of Cluster O as follows (see Table S1 for
clarity):

270 270 240 270

25,5295 25 319
110 110 102.7 110
2 2 2 2
2 3 3 3
0o 2 3 3

Step 3: Normalization of the property matrix: All prop-
erties were converted to normalized values (i.e.,
shown in Table S1 in parenthesis) by using Eq. S3

(see Supplementary Material).

Determine ideal-best and ideal-worst solutions fol-
lowing an algorithm described in Supplementary
Materials (Calculation S1).

Step 4:

Step 5: Distance of each alloy from ideal-best and ideal-
worst solutions (refer to Calculation S2 for

details):

The ideal-best solution for alloys were as follows:
D} = 0.915,D5= 0.2896, D= 0.0717, and D}j = 0.
The distance for each alloy from the ideal-worst solution:

D; = 0.098, D, DZ =,0.095, and Dy, = 0.916

Step 6: Rank the alloys: Ranking the four alloys in Sub-
cluster O of Cluster 0 based on the TOPSIS score
(refer to calculation S3 for details): Alloy D: Cy=
1 (best choice), Alloy C: C 20.9260, Alloy B: Cy

~~0.6903, and Alloy A: C, ~0.0441.

Based on the TOPSIS method calculated above, Alloy
D (Table S1) is the best choice alloy, indicating it offers
a balanced performance across all properties compared to
other alloys as shown in Fig. S-3 (refer to Supplementary
Material) where we also employed other MCDM methods
(i.e., AHP, VIKOR [39]) for comparison, each time Alloy
D gets the best score.

The other optimum alloys chosen for the remaining sub-
clusters followed the same logic. The optimum alloys cho-
sen following the optimization of each sub-cluster and the
parent cluster are shown in Table 2. Through optimization,
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the chosen alloys were guaranteed to match the specified
criteria with a wide range of properties and applications.
By narrowing down the solution space, we ensure that only
the most effective and efficient alloys are selected, leading
to cost savings, improved product performance and simpli-
fied sorting of scrap in the aluminum industry. Addition-
ally, in most clusters the optimum alloys selected coincide
with commercial grade alloys offering better combination
of properties for similar applications as shown in Table 2.

While we have reduced the alloys within clusters to a
few top-performing options, the clusters will always remain
available to meet any unique demands in properties, process-
ing, or economics.

Metallurgical Understanding of Clustering

The clustering by ML methods will only be reliable if it had
some metallurgical/physical background. The general metal-
lurgical reasoning behind clusters obtained by the combined
approach of PCA and K-means clustering, as well as the
rationale behind optimal alloy selection is discussed here.
According to the well-known sequence of precipitation upon
aging in AI-Mg-Si alloys, the precipitation in ternary 6xxx
series alloys proceeds as follows: supersaturated solid solu-
tion (SSS) — GP zones — " —p' — p [43, 57]. B” is the
main hardening phase in 6xxx series aluminum alloys. An
addition of Cu to Al-Mg-Si alloys introduces the possibil-
ity of forming a quaternary phase, Q, with some metastable
variations, changing the kinetics and phase composition of
precipitates as has been summarized in our previous paper
[30] and briefly outlined below for some ranges of alloying
elements (with hardening phases in bold) [57]:

At a lower Cu concentration: SSS—GP zones—f'’ (a
modification with Cu)—Si—numerous variations of f’
(with Cu) including 'C—Mg,Si and Si.

At a higher Cu concentration: SSS—GP zones—p"
(modifications with Cu)—0’ or/and Q'—Si—numer-
ous variations of p’ (with Cu) including p'C, Q" and 8'—Q
(AIMgSiCu), Mg,Si, Al,Cu and Si.

These precipitation paths may also occur at intermediate
copper concentrations during artificial aging. Also, Table S2
(Supplementary Material) shows the role of each alloying
element in the precipitation hardening and the effects on
mechanical and functional properties.

Based on this general understanding of the metallurgy of
6xxx series alloys, we can suggest the following metallurgi-
cal reasons behind grouping the alloys into different clusters.
An example for Cluster 0 is given below, other clusters are
listed in Supplementary Material (Text S2).

Cluster 0 (Medium strength alloys): Composition range
(wt%): Si: (0.55-0.6), Fe: (0.35-0.4), Cu: (0.2-0.28), Mn:
(0.1-0.27), Mg: (0.85-1) determines formation of the fol-
lowing phases: medium amount of ', Q’, p".
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Table 2 Properties and applications of optimum alloys in each cluster

Clusters

Optimum alloys (their standard analogues) and their properties

Applications

Cluster 0 6061, Sub-cluster O
weldability, anodizing

6040, Sub-cluster 1

CR, weldability, fair anodizing

Cluster 1 6012, Sub-cluster O
and excellent CR

6070, Sub-cluster 1

moderate CR, anodizing

Cluster 2 6063, Sub-cluster 0
and anodizing response

6463, Sub-cluster 1

Low strength, modulus of toughness, and good CR,

Good strength, modulus of toughness, and excellent

High strength, modulus of toughness, weldability,

Low strength, toughness, excellent CR, weldability

Truck frames, Rail coaches, Military, commercial
bridges,

Ships, Towers, Aerospace, Rivets, Motorboats, Boiler
making [47]

Automotive, small engine parts, sports products [48]

Moderate strength, toughness, weldability, anodizing Manufacturing parts which require easy machining and

are suitable for anodization. [49]
Pipelines and heavy duty welded structures [50]

Transportation, architectural and, industrial applica-
tions [51]

Moderate strength, modulus of toughness, and excel- Manufacturing extruded architectural and trim sections

lent CR, weldability, anodizing response [52]

Cluster 3 6033, Sub-cluster 0
weldability, anodizing

6011 A, Sub-cluster 1 High strength, modulus of toughness, moderate CR,

weldability, anodizing

Cluster 4 6081, Sub-cluster 0
CR, weldability, and anodizing

6009, Sub-cluster 1

High strength, modulus of toughness, and good CR,

Low strength, modulus of toughness, good strength,
good CR, weldability and anodizing response

Recreational, medical and after-market automotive
parts used in fly reels, oxygen regulators and small
gas-powered engines [53]

Automobile vehicles [54]

High strength, moderate modulus of toughness, good Structural components, such as frames for bicycles,

motorcycles, and automobiles [55]

Components of car body, such as door panels, roofs,
front and rear bumpers, side skirts, and wheel arches
[56]

At an average Cu content of 0.275% and with a small
excess of Si as Mg:Si ~1.67 (1.73 is the stoichiometry in
Mg,Si) the main hardening phase is °" may be assisted at
later stages with the Q” phases [57, 58]. Corrosion resist-
ance is rated as good to excellent, primarily attributable to
the relatively high Mg:Si ratio, which influences the type,
size, and distribution of grain boundary precipitates (GBPs),
essential for combating the intergranular corrosion (IGC)
resistance [59, 60]. Weldability is excellent due to the low
presence of liquation cracking-causing elements, i.e., Cu and
the moderate formation of Mg,Si phases [61]. Anodizing
response is excellent due to moderate amount of constitu-
ent Si and Mg,Si particles, resulting in softer surfaces and
increased surface gloss [62].

Similar metallurgical reasoning applies to other clus-
ters. Table 2 provides concise descriptions of the wider
range of properties and applications covered by optimal

alloys selected by optimization algorithm. This approach
serves as a pre-screening tool to suggest alloys with the
balanced combination of properties and a theoretical
metallurgical reasoning behind its selection process. It is
important that each of the optimum alloys has an analogue
among the standard alloy grades, which helps to validate
the selection as the standard alloys and their properties are
well documented. A comparison is performed in Table 3
for the optimum alloys selected for Cluster 0, contrasting
the reported property values from the MatWeb website
[63] with predicted values from our database using the
optimization algorithm. Note that the MatWeb database
was not used in building our database and, therefore, can
be considered as an independent source of data. This com-
parison reveals minimal disparity between the two data
sources. Here, Alloy A is ASTM 6061, and Alloy B is
ASTM 6040.

Table 3 Comparison of

- Property Alloy A (predicted) Alloy A (reported) Alloy B (predicted) Alloy B (reported)

predicted vs measured

properties of optimum alloys for Yield strength 276 276 296 206

cluster 0 Elongation 12 17 15 15
Fatigue strength 96.5 96.5 119 119
Corrosion resistance  Good Good Excellent Excellent
Weldability Excellent Excellent Excellent Excellent
Anodizing Excellent Excellent Good Good
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In this work we developed an ML-based methodology
and identified the optimal alloys for each sub-cluster of the
6xxx alloying series, effectively reducing the number of
alloys while keeping the level of properties; and successfully
found the metallurgical reasoning behind clustering process.

In future we will focus on recycling issues within sub-
clusters by determining the mixing ratios of the alloys allow-
ing the preservation of the optimum properties.

Conclusion

In this study, we developed a methodology of reducing the
number of standard alloys while retaining the level of prop-
erties within each sub-cluster of the alloying series. This
methodology was demonstrated for the 6xxx series of alu-
minum alloys (AlI-Mg-Si—(Cu) under T5, T6, and T7 tem-
pering conditions using PCA and K-means clustering and
optimization algorithm. From an initial set of 42 alloys, we
identified 10 optimum alloys, all of which have analogues
in the existing commercial alloys. These selected alloys not
only maintain desirable mechanical and functional proper-
ties but also improve recyclability due to the lesser require-
ments for scrap sorting.

The clustering approach effectively categorized alloys,
ensuring that widely used commercial alloys were
included in each cluster. Notably, 6061, 6081, and 6063
alloys corresponded to low, medium, and high property
clusters, respectively.

A key limitation of the current methodology is that gen-
eralizing 42 alloys into 10 optimized ones may not fully
account for niche applications with unique property
requirements. However, the clustering process groups
alloys with similar overall properties, ensuring that a
broad range of applications is covered. In specialized
cases, the full range of alloys remains available for tai-
lored needs. Additionally, experimental validation is still
required to confirm our findings, though well-established
reference data supported our optimization approach. This
provides a framework for improved alloy classification,
reducing compositional variability, and enhancing sus-
tainability in recycling when applied to well-sorted mate-
rials.

Future research will focus on refining recycling strategies
within sub-clusters by determining the optimal mixing
ratios of alloys while maintaining desirable properties.

This methodology provides a sustainable approach to
alloy selection and enhances efficiency in the aluminum
industry, facilitating both performance improvement and
material recyclability.

@ Springer
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