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I. INTRODUCTION

HE Worldwide LHC Computing Grid (WLCG) pro-
vides storage and computational power for four LHC
experiments (ALICE, ATLAS, CMS and LHCb). The WLCG
infrastructure is a highly distributed and heterogeneous plat-
form with various middleware characteristics, job submission
and execution tools, and diverse methods of transferring
and accessing the dataset. The high computation activity
and distributed nature of the WLCG make the system very
complex. Hence, it increases the probability of failures or
inefficiencies. Efficient monitoring is necessary in order to
present a comprehensive strategy to recognise and resolve
any issues within such a dispersed infrastructure. It is also
important for the effective utilisation of computational and

data resources.
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Fig. 1. WLCG data activity events size.

The original solutions for monitoring are based on the
Oracle Relational Database Management System (RDBMS)
for data storage and processing, but recent developments
evaluate Lambda Architecture [3], in particular, data storage
and batch processing for processing large-scale monitoring
datasets using Hadoop and its MapReduce framework [1].
However, this approach does not support real-time monitoring.
Therefore, this paper presents an optimised Lambda Architec-
ture using Apache Spark technology, which involves modelling
an efficient way of joining batch computation and real-time
computation without the need to add complexity to the User
Interface (UI). Three models were explored for WLCG Data
acTivities (WDT) (e.g. average transfer rate from site A to site
B over time): pure streaming, pure batch computation and the
combination of both batch and streaming.

II. BACKGROUND

The Experiment Dashboard system provides common solu-
tions for monitoring data transfers, job processing and site
and service status [2]. Monitoring events, metadata of the
jobs and data transfers are collected and analysed to produce
summary plots used by operators and experts to evaluate
WLCG computing activities. However, due to the high volume
and speed of the events that are produced as shown in Figure
1, the traditional methods are not optimal. Therefore, Lambda
Architecture [3], an architecture leveraging many different
technologies for supporting Big Data, was employed in order
to support the WDT use case [1]. However, the complexity
of combining and synchronising many technologies is a very
significant concern.

The Lambda Architecture that is presented in [1] has
demonstrated that it works well for monitoring. In particular,
the WDT use case has shown that it outperforms the traditional
architecture. However, with the three-layer structure, it comes
at a price when integrating all three layers together to serve
a single purpose goal, which is to monitor the infrastructure
in real-time. Having different technologies for each layer will
be difficult to integrate, implement and maintain. Hence, there
is a requirement for a single solution that will accommodate
and integrate batch processing as well as the real-time pro-
cessing of monitoring data seamlessly. Apache Spark [4] is a
new parallel processing paradigm similar to MapReduce, but
with better analytical performance by exercising in-memory
computation and therefore supporting iterative computation. It
also supports data streaming, SQL-like commands, interactive
command line, machine learning and Graphx. Having Spark
batch and streaming under a stack is useful in optimising
the Lambda Architecture. The Spark streaming and batch
computations adapt the Resilient Distributed Dataset (RDD),
an abstract data collection that is distributed across nodes for
parallel processing. Therefore, transformation and computation
logics can be reused between batch and streaming jobs.

III. ARCHITECTURE AND DESIGN

The main requirement of any monitoring system is that it
should be able to provide information about the infrastructure
at least in near-real-time so that an appropriate action can be
taken. Therefore, the following methods were designed and
implemented:

1. Pure stateless batch computation, which can be scheduled

to run at a preferred time interval, thus, it will not
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have any knowledge of the previous jobs. However, this
does not support the real-time computation but Spark
framework provides in-memory computations. Therefore,
the execution time can be compared with the MapReduce
framework that was used in [1]. The batch computation
can also be used for historical computation.

2. Pure stateful streaming computation, which will carry out
incremental computation on continuously streaming data,
thus, it maintains the state of the computed statistics. It
also has a checkpoint mechanism to dump the state to
a disk; in case of job failure it can pick up from where
it stopped. This method on its own is enough for real-
time computation. Therefore, the complexities of merging
multiple technologies as in the Lambda Architecture
approach can be eliminated.

3. A combination of batch and streaming computation: the
pure streaming is enough but there is the potential to get
duplicate events from the message brokers due to sys-
tem failures. Having pure streaming computation cannot
address this issue as the raw events are dropped when
they are processed. The state of the streaming job cannot
keep the unique ID of the events once they are aggregated
by the statistics group by key (e.g. sites). Incorporating
batch computation can correct the inaccurate statistics as
it will recompute whole datasets from the storage layer,
such that it can eliminate duplicate events. Therefore,
having a streaming job to do the continuous calculation
and scheduling the batch job to run every hour to override
the results to validate the statistics seems appropriate. To
support this approach, the monitoring events were dupli-
cated with one sent to an Hadoop Distributed File System
(HDFS) for batch computation and the other streamed
straight into the streaming receiver. However, there are a
lot of complexities addressed in synchronising the two
approaches together such as: informing the streaming
job about the newly available data computed by batch
job so that it can pick it up and override the streaming
state as well as the serving layer that is used for storing
computed statistics for serving the Ul, and a mechanism
to eliminate the network communication bottleneck at the
serving layer to make sure that only the newly streamed
data are updated/inserted into the serving layer.

IV. RESULTS AND DISCUSSION

To evaluate how accurately the architecture was able to
compute the WLCG site throughput in time-series all three
proposed methods were tested. As shown in Figure 2, the
stateless batch job was scheduled to run every 5 minutes to
carry out batch computations on the data stored in an HDFS.
However, the plot highlighted in Figure 2 shows that some data
are missing. This is due to the latency of the batch computation
and the unavailability of the data when the job started.

Figure 3 represents both the pure streaming and the com-
bination of batch and streaming methods. Both methods are
showing the computation in real-time as highlighted in the
plot. This shows that both of these methods are capable of
providing up-to-date statistics that are more beneficial to the
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Fig. 2. The Spark batch computations for WLCG monitoring.

users in comparison with the pure batch computation. On
average ~ 15k events were received and processed by the
streaming job per minute. Also, the Spark batch computation
performed faster than the MapReduce job presented in [1] due
to the use of in-memory processing so the intermediate results
were cached into memory in comparison with the latter, which
utilises the disk for reading and writing.

Throghput

{ Message Broker }

Ry
Flume

&

/s)
E

Eul (MB!
1
18]
[ T
1

I

Throughi

AR IS S (© 1S A9 aS 4D S © A8 4D S0 S © O S a8 1S S WS
B A A i O S N S N
Spark streaming job

9 BNL®IGRIG 11 IN2P3 | SWT2_CPB | USCMS-FNAL-WC1 * 66 OTHERS
incremental/micro-batch~ 1 min)
HADOOP ; ‘

Fig. 3. The Spark batch and streaming computations for WLCG monitoring.
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V. CONCLUSION

The three methods for effective monitoring presented in
this paper outperform the RDBMS based system that is used
by the WLCG in terms of execution time and scalability.
In particular, the streaming approach provides an up-to-date
state of the infrastructure. The WLCG group has adopted the
optimised Lambda Architecture, which is a combined batch
and streaming approach, and it has been used for monitoring
the WLCG Data activities Dashboard since October 2015 [5].
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