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Abstract
Motivation: Molecular Dynamics (MD) simulations provide critical insights into biomolecular processes 
but they generate complex high-dimensional data that are often difficult to interpret directly. 
Dimensionality reduction methods like Principal Component Analysis (PCA), Time-Lagged 
Independent Component Analysis (TICA) and Self-Organising Maps (SOMs) have helped in extracting 
essential information on functional dynamics. However, there is a growing need for a user-friendly and 
flexible framework for SOM-based analyses of MD simulations. Such a framework should offer 
adaptable workflows, customizable options, and direct integration with a widely adopted analysis 
software.
Results: We designed and developed SOMMD, an R package to streamline MD analysis workflows. 
SOMMD facilitates the interpretation of atomistic trajectories through SOMs, providing tools for each 
stage of the workflow, from importing a wide range of MD trajectories data types to generating 
enhanced visualizations. The package also includes three example projects that demonstrate how 
SOM can be applied in real-world scenarios, including cluster analysis, pathways mapping and 
transition networks reconstruction. 

Availability: SOMMD is available on CRAN (https://CRAN.R-project.org/package=SOMMD) and on 
GitHub (https://github.com/alepandini/SOMMD).
Contact: stefano.motta@unimib.it; alessandro.pandini@brunel.ac.uk 
Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction 
Molecular Dynamics (MD) simulations are invaluable tools to study the 

dynamic behaviour of biomolecules, offering a detailed view of molecular 
processes at the atomistic level and the ability to gain insights on the 
interplay between conformations and functions (Dror et al., 2012). 
However, to understand these molecular processes, it is crucial to describe 

the conformational states sampled by the system during the simulation and 
their relationships (Hollingsworth & Dror, 2018). 

Exploring the conformational space through MD simulations can 
generate high dimensional data due to the number of degrees of freedom in 
complex molecular systems. A significant challenge lies in interpreting this 
large volume of data and transforming it into meaningful representations 
that can reveal the relationships between different states (Hollingsworth & 
Dror, 2018). Such representations should be not only informative but also 
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interpretable, enabling researchers to gain insights into the functional 
dynamics of the systems being studied. Dimensionality reduction methods, 
which transform high-dimensional data into lower-dimensional 
representations, have become indispensable in this context. Among the 
available approaches, methods preferentially used for simulation data 
include Principal Component Analysis (PCA), Time-Lagged Independent 
Component Analysis (TICA) (Molgedey & Schuster, 1994; Noé & Nüske, 
2013), and Self-Organising Maps (SOMs) (Bouvier et al., 2015; 
Fraccalvieri et al., 2011; Kohonen, 2013; Shao et al., 2007; T, 1990).

SOMs provide a distinctive approach to organise complex, high-
dimensional data into a two-dimensional grid of neurons, where each 
neuron represents a specific region in the data space. Topological 
relationships between these regions in the original data space are preserved 
in the SOM. In recent years, SOMs have been successfully used to cluster 
conformational ensembles (Bouvier et al., 2015; Fraccalvieri et al., 2011; 
Motta et al., 2023), and to reconstruct conformational pathways of protein 

(un)folding (Hendrix et al., 2022; Motta et al., 2021), protein-protein 
binding (Yuan et al., 2024a, 2024b) and ligand binding (Motta et al., 2022; 
Tripathi & Nair, 2023), with the ability to provide estimates of binding 
kinetics constants (Callea et al., 2024; Rubina & Moin, 2023). Despite their 
potential, there is currently no user-friendly and extendable framework that 
allows researchers to work seamlessly in a single environment and to 
develop ad-hoc workflows for specialized SOM-based analyses. To 
address this gap, we have chosen the R environment for its versatility and 
extensive ecosystem of packages. Currently available packages on CRAN 
(e.g. kohonen (Wehrens & Kruisselbrink, 2018), aweSOM (Boelaert et al., 
2021), popsom7 (Hamel et al., 2025)) are general-purpose implementations 
that have not been designed to process MD data and do not include 
functions to reconstruct conformational pathways and model transitions 
between states. Therefore, we have developed SOMMD, a dedicated 
package for the analysis of MD simulations using SOMs. 

Figure 1: Summary diagram of the SOMMD package architecture and analysis workflow. The package provides functions to read the structure topology and trajectory files 
(A. input), to compute the desired conformational descriptors and to train the SOM (B. preprocessing and training). From a trained SOM analysis and visualization can be 
performed on three levels: conformational states, pathways and transition networks (C. analysis and visualization).
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Article short title

SOMMD is an R package specifically designed to meet the needs of the 
MD community by providing a format-agnostic tool, support for 
processing large datasets, flexible user-defined geometrical descriptors of 
dynamics, effective visualization tools, and the ability to convert trajectory 
data into interpretable models of conformational transitions. To this end, 
SOMMD offers R functions to read and process MD trajectories of various 
formats, calculate descriptors for SOM training, extract representative 
structures of the sampled states, trace pathways followed during the 
simulations on the trained SOM, construct transition graphs between SOM 
neurons, and generate customizable visualizations for effective analysis. 
SOMMD offers a user-friendly and integrated solution, allowing 
researchers to easily model and interpret the dynamics of biomolecular 
systems using SOMs.

The SOMMD package includes both pre-defined workflows in the form 
of R notebooks which serves as “scenario recipes”, as well as a set of R 
functions for developing ad-hoc workflows for the analysis of molecular 
simulations. Simulation data required to execute the workflows are hosted 
on Figshare (see Data availability) and can be automatically downloaded 
and loaded from the notebooks. 

2 Description

The SOMMD package was designed to streamline the generation of 
interpretable Self-Organising Maps from MD data in R. To this end it takes 
advantage of powerful data classes from bio3d (Grant et al., 2006) and 
machine learning functions from the kohonen (Wehrens, 2007; Wehrens & 
Kruisselbrink, 2018) and cluster (Maechler et al., 2022) packages, but it 
extends them. Specifically, SOMMD introduces a more general-purpose 
trajectory class and dedicated visualization functions for MD data. The 
architecture of SOMMD is structured into three distinct components, each 
fulfilling a specific role in the analysis workflow (Figure 1):

A) input: this initial step involves the handling and preprocessing of 
input data, introducing a new core class for trajectory data ('trj'). An 
additional class is provided to represent structural files in GROMOS 
format (‘gro’). These two new classes are designed to complement 
the existing molecular structure classes in the bio3d package. This 
implementation ensures compatibility with widely used input formats 
and extends the capabilities of the bio3d package (Grant et al., 2006) 
for structural and trajectory processing.
B) preprocessing and training: the input data is pre-processed to 
compute descriptors for the variables used in training the SOM. These 
descriptors typically consist of a subset (or the entire set) of relevant 
interatomic distances for a group of atoms, but the package also 
supports user-defined geometrical measures. The map is trained using 
a wrapper around functions provided by the kohonen package 
(Wehrens and Kruisselbrink, 2018; Wehrens, 2007). 
C) analysis and visualization: this step provides functions to analyse 
and identify microstates and macrostates. Time-dependent 
relationships between states can be reconstructed and visualised as 
pathways on the map and as transitions in a graph model. SOMMD 
also offers functions for ad-hoc mapping of time-dependent 
properties on both the SOM and the transition graph. Various 
workflows can easily be constructed to extract system-specific 
information tailored to the biomolecular process under investigation. 

The next section presents three example scenarios that are included as R 
Markdown notebooks in the package. These notebooks serve as 
prototypical examples of the most common use cases for SOMMD.

3 Usage scenarios
The R package includes example notebooks that illustrate how SOM 
analysis can be performed on previously published and validated cases.
Clustering of MD trajectories: The first scenario provides a brief 
introduction to SOM training with SOMMD. In this case, the user is 
interested in describing the conformations sampled during MD simulations. 
The study case is a set of multiple unbiased simulations of the FOXP1 
protein DNA-binding domain. By applying SOMMD, it is possible to 
extract representative structures of clusters and create informative plots for 
selected property. Additionally, sampling can be assessed by remapping 
multiple replicas.
Analysis of Pathways: This scenario demonstrates how to use SOMMD to 
compare different replicas for a process of interest recovering alternative 
pathways. In the present case, the process was the unfolding of a protein 
domain generated through steered MD (Motta et al., 2021). SOMMD can 
be used to obtain a clustering of pathways based on the sequence of neurons 
sampled during the different replicas.
Transition network analysis: This scenario demonstrates how to build a 
transition matrix starting from the mapping of each frame of the simulation 
on the SOM. Starting from a metadynamics reconstruction of the ligand-
binding process (Callea et al., 2021), an approximate transition matrix is 
built according to the observed number of transitions between pairs of 
neurons. The visualization of the SOM neurons as a graph provides a 
unified picture of the sampled pathways.
Summary descriptions of the workflows and detailed results for each 
scenario are reported in the Supplementary Data (sections 1-3). Moreover, 
for users working with large datasets, Supplementary Section 4 outlines 
practical tips for managing memory and computational efficiency, ensuring 
that SOMMD remains scalable and effective even on standard 
workstations.

4 Conclusions
The SOMMD package is a versatile tool for the analysis of molecular 

conformations using unsupervised learning. It integrates dimensionality 
reduction and clustering of conformational states sampled during MD 
simulations. Additionally, through dedicated functions, it facilitates the 
visualization of alternative pathways in molecular processes and the 
construction of state graphs based on the transition matrix between pairs of 
neurons.

SOMMD addresses the need for a comprehensive framework to generate 
interpretable and informative representations of conformational states and 
their interrelationships. While other methods for dimensionality reduction, 
such as PCA and TICA, are commonly used for this scope, SOMs have the 
distinct advantage of preserving the topological relationships between 
microstates, providing a visual model for clustering data into distinct 
regions of the map. Supplementary Section 5 provides a detailed 
comparison between SOMs and PCA, demonstrating that SOMs offer a 
more intuitive and comprehensive understanding of molecular unfolding 
pathways with only a minimal increase in computational time.

SOMMD also supports customizable visualizations, simplifying the 
process to map specific properties or features onto the SOM grid. This 
flexibility can be valuable for researchers interested in visualizing and 
understanding system-specific properties from MD simulation data. 

The package is designed for efficient analysis of large datasets within 
the limits of available RAM. Details on computational performance and 
strategies to mitigate memory limitations are provided in Supplementary 
Section 4. Like other methods for analysing conformational dynamics, 
SOMMD is limited by the sampling in the original trajectory, as detection 
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of transition pathways and state modeling requires sufficient sampling of 
critical functional events. Additionally, the package does not include an 
automated method for selecting the best input features, so identifying the 
important degrees of freedom is a prerequisite.
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Summary diagram of the SOMMD package architecture and analysis workflow. The package provides 
functions to read the structure topology and trajectory files (A. in-put), to compute the desired 

conformational descriptors and to train the SOM (B. preprocessing and training). From a trained SOM 
analysis and visualization can be performed on three levels: conformational states, pathways and transition 

networks (C. analysis and visualization). 
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