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ABSTRACT This paper presents a novel methodology for fault detection, classification, and localization in 

Multi-Terminal Medium Voltage Direct Current (MT-MVDC) networks. The proposed approach utilizes 

Singular Spectrum Analysis (SSA) to decompose measured positive and negative pole voltages, isolating the 

seasonal component that represents the traveling wave. Fault detection is based on comparing this component 

against a predefined threshold, where minimal fluctuations occur under normal conditions, but significant 

variations emerge after a fault. Fault classification is achieved by analyzing the rate of change of the line-

mode current to distinguish between forward and backward faults. For fault localization, the method leverages 

traveling wave attenuation and dispersion. The first traveling wave is extracted from the voltage seasonal 

component, and its spreading behavior over distance is analyzed to compute the curvature rate, enabling 

precise fault location estimation. The methodology is validated through extensive simulations on an MT-

MVDC distribution system using PSCAD/EMTDC. MATLAB is employed for signal processing, and the 

approach is tested under various fault scenarios, including high fault impedance and extreme external faults. 

Comparative analysis with existing methods highlights the advantages of the proposed technique in terms of 

accuracy and robustness. 

INDEX TERMS MVDC distribution network, intelligent electronic device (IED), fault detection, fault 

location, singular spectrum analysis (SSA).

I. INTRODUCTION 

MT-MVDC networks facilitate the interconnection of 

multiple terminals, including renewable energy sources and 

microgrids, offering significant improvements in power 

system efficiency, reliability, and operational flexibility. 

However, ensuring the stable operation of these networks 

requires precise fault detection, location, and isolation to 

maintain system reliability and minimize downtime. 

In DC networks, fault development is characterized by a 

rapid current surge due to capacitor discharge. To mitigate 

this, the insulated-gate bipolar transistor (IGBT) is blocked, 

halting further current flow. Subsequently, a diode 

freewheeling phase occurs, during which the stored energy 

in the line inductance dissipates [1]. To prevent damage to 

freewheeling diodes, effective DC protection schemes must 

ensure fast fault detection and precise fault localization. 

Accurate identification of faulted lines enables targeted 

isolation, while precise location information facilitates 

rapid system restoration. 

Fault detection schemes for MT-MVDC networks can be 

categorized into voltage and current protection, boundary 

protection, pilot protection, and traveling wave protection. 

Various strategies, including overcurrent, undervoltage, 

phased overcurrent/current rate-of-change, and voltage 

rate-of-change methods, have been proposed in [2], [3], [4]. 

While effective for single-terminal systems, these 

approaches may lack selectivity in multiterminal networks 

and struggle with large transition resistances. 

Single-ended protection schemes, widely used in high-

voltage direct current (HVDC) systems, are less effective 

in MVDC networks due to the absence of boundary 

elements (line reactors), which are rarely installed even at 
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converter terminals [5]. While line reactors aid fault 

detection and location, their absence presents a key 

challenge for MVDC protection design. 

Pilot protection offers a more robust alternative for DC 

distribution, ensuring effective zone-based protection. Pilot 

protection is divided into directional pilot protection and 

current differential protection. The former identifies faults 

based on triggered events using electrical quantities at both 

line ends, while the latter compares currents at both ends of 

the protected element. References [6–9] explore current 

differential protection methods using both time-domain and 

frequency-domain analysis. Additionally, event-based 

protection schemes utilizing communication infrastructure 

and transient fault current derivatives have been introduced 

in [10] & [11]. 

Traveling wave-based detection enables rapid fault 

identification due to the near-speed-of-light propagation of 

traveling waves, making it well-suited for DC protection 

schemes that require swift response times to protect 

freewheeling diodes. This method provides comprehensive 

fault information through single-ended or double-ended 

configurations, with its accuracy heavily dependent on the 

signal processing techniques used for feature extraction. 

Reference [12] proposes a high-speed fault detection 

method for MVDC networks using the Extended Kalman 

Filtering Algorithm, though it lacks analysis of noise 

impact and is limited to a fault resistance of 50 ohms. 

Techniques such as Short-Time Fourier Transform (SFFT) 

[13] and Fast Fourier Transform (FFT) [14] offer fast 

computation but struggle with time-frequency resolution, 

while Hilbert-Huang Transform (HHT) [15] improves 

adaptability but is constrained by intrinsic mode function 

(IMF) selection. Reference [16] introduces a non-unit 

traveling wave protection method using Discrete Wavelet 

Transform (DWT) to analyze high-frequency components 

of voltage traveling waves. 

Advanced methods, including Variational Mode 

Decomposition (VMD) and the S-Transform (ST) [17] and 

[18], enhance fault detection but remain sensitive to noise. 

While the S-Transform provides high time-frequency 

resolution, it requires adaptive parameter tuning [18]. 

Noise interference remains a challenge for both VMD and 

the S-Transform, potentially affecting fault detection 

accuracy. Reference [19] combines singular value 

decomposition (SVD) and empirical mode decomposition 

(EMD) for arc fault localization, though its computational 

complexity challenges real-time application.  

While traveling wave-based methods enable rapid fault 

detection, their practical implementation faces several 

challenges. Noise sensitivity is a significant issue, as 

conventional signal processing techniques, such as FFT and 

HHT, often struggle to mitigate noise, reducing detection 

accuracy in noisy environments, as stated in [20]. High 

Impedance Faults (HIFs) present another challenge, as their 

weak fault signatures can be misinterpreted as normal 

transient disturbances [21] [22]. Additionally, the dispersed 

energy distribution of HIFs further complicates detection. 

In multiterminal systems, wave interactions, including 

reflections and refractions, can obscure fault identification. 

These challenges underscore the need for more robust and 

adaptive signal processing techniques to improve fault 

detection reliability in MVDC networks. 

The proposed fault detection methodology, based on the 

SSA technique, overcomes the limitations associated with 

conventional traveling wave-based approaches in MT-

MVDC networks. SSA is an advanced time-series 

decomposition method that partitions the measured signal 

into three distinct components: trend, seasonal, and noise. 

This study demonstrates that applying the SSA algorithm 

for fault detection effectively addresses key limitations of 

existing traveling wave-based methods, as outlined below: 

▪ Noise Reduction: SSA efficiently isolates noise 

components, enhancing fault detection robustness even 

in noisy environments. 

▪ Cyclic Pattern Identification: The seasonal component 

captures cyclic patterns of traveling waves, improving 

the detection of fault events, including high-impedance 

faults. 

▪ Trend Isolation: The trend component distinguishes 

long-term variations, such as normal load fluctuations, 

from fault-induced disturbances. 

▪ Simplicity and Robustness: Unlike many advanced 

signal processing techniques, SSA does not require 

adaptive adjustments or parameter tuning, simplifying 

implementation. 

▪ Threshold Determination: The clear separation of 

signal components facilitates threshold selection, 

making the method adaptable to various test scenarios 

and practical applications. 

However, SSA remains relatively unexplored in transient 

condition protection schemes and is not yet widely adopted 

in the field. 

On the other hand, to improve system restoration time, 

various fault location techniques have been employed in 

DC systems, including model-based methods, knowledge-

based approaches, and traveling wave-based techniques. 

Model-based methods, such as the approach in [23], 

utilize an estimated R-L representation of transmission 

lines for fault location. However, their accuracy is highly 

sensitive to variations in line parameters, such as resistance 

and inductance, which can change due to environmental 

conditions or aging. Additionally, these methods require 

precise system modeling and parameter estimation, 

limiting their adaptability in real-world scenarios with 

uncertain or fluctuating line characteristics. 

Recent research has explored machine learning (ML) to 

enhance fault location strategies. For example, [24] 

integrates artificial neural networks with wavelet 

transforms, while [25] employs a feature matrix combined 

with a long short-term memory (LSTM) model. Although 
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ML-based methods offer promising advancements, they are 

affected by data quality and generalization challenges in 

diverse network configurations. Moreover, their 

complexity can reduce interpretability and increase 

computational costs. 

Traveling wave-based techniques determine fault 

locations by detecting and analyzing traveling waves. For 

instance, [26] applies a first-order high-pass Butterworth 

filter to identify wave polarity and timing, while [27] 

enhances wave peak differentiation using a high-pass filter. 

Reference [28] introduces a double-ended traveling wave 

method that leverages the linear relationship between wave 

time differences and fault location. Additionally, [29] 

utilizes Variational Mode Decomposition and the Teager 

Energy Operator to extract fault features and detect 

traveling wave arrivals. 

Although traveling wave (TW) fault location schemes 

provide rapid and precise fault detection, they face several 

key challenges. Both single-ended and double-ended 

methods are affected by noise interference, variations in 

wave propagation speed, and interactions between incident 

and reflected waves [20]. Noise interference is particularly 

problematic, as fault-induced traveling waves can be 

obscured by background noise from load fluctuations and 

measurement inaccuracies. Additionally, accurate fault 

location depends on precise estimation of wave propagation 

speed, which can vary due to environmental conditions and 

cable characteristics [30]. 

High Impedance Faults (HIFs) further complicate 

detection, as their weak traveling wave signatures make it 

difficult to identify wave-fronts, determine arrival times, 

and differentiate between incident and reflected waves [21] 

[22]. Moreover, double-ended approaches are highly 

sensitive to data transmission errors or delays, which can 

compromise synchronization between line terminals and 

reduce accuracy. These limitations highlight the need for 

advanced fault location techniques that improve accuracy 

and reliability in multiterminal MVDC networks. 

To overcome the limitations of existing traveling wave-

based fault location techniques, this study introduces a 

novel approach that integrates Singular Spectrum Analysis 

(SSA) to enhance fault detection and localization in MT-

MVDC networks. The decomposition capabilities of SSA 

provides several advantages. First, it effectively isolates 

noise from trend and seasonal components, improving 

robustness against measurement inaccuracies. Second, it 

enhances traveling wave detection, even in high-impedance 

fault scenarios, as the seasonal component captures the 

cyclic patterns characteristic of traveling waves. 

Additionally, the proposed method eliminates dependence 

on traveling wave arrival time and propagation speed, 

addressing key challenges of conventional fault location 

techniques. 

The proposed approach applies SSA to voltage 

measurements for fault identification and localization. 

Fault detection is achieved by comparing the extracted 

seasonal component against a predefined threshold. To 

determine fault location, the method leverages traveling 

wave attenuation and dispersion, analyzing the relationship 

between the initial wave propagation and fault distance 

within a specified time window. Notably, the approach 

does not require synchronization, ensuring accurate fault 

localization. It effectively detects faults with resistances up 

to 200 Ω, demonstrating its robustness. Furthermore, the 

method is independent of specific grid configurations, 

making it adaptable to various network topologies. 

This paper is structured as follows: Section I presents an 

overview of fault detection and location methods in MT-

MVDC distribution networks, highlighting their 

limitations. Section II describes the MT-MVDC network 

test model used in the study. Section III analyzes the 

structure of the singular spectrum analysis approach and 

outlines the step-by-step procedure for fault identification 

and location. Section IV examines the simulation results for 

fault identification and location under various scenarios 

and compares them with existing methods. Section V 

summarizes the key findings and contributions of the study.  

II. Multi-terminal MVDC network 

The 33-kV MT-MVDC network, illustrated in Figure 1, was 

modeled using the PSCAD/EMTDC platform. This network 

employs a unipolar symmetric bus structure with a low-

resistance grounded DC capacitor neutral point, where each 

pole operates at 16.5 kV. The system comprises six DC buses 

interconnected by five pairs of 18/30 kV XLPE single-core 

cables. Bus 1 and Bus 4 are connected to AC networks 1 and 

2 via 50 MVA Voltage Source Converter (VSC) units (VSC1 

and VSC2), respectively. Bus 3 interfaces with a DC load 

through a DC-DC converter and connects to a microgrid via a 

DC-AC converter. The microgrid includes inverter-based 

distributed generation (DG) units, which contribute limited 

fault currents, typically capped at 120% of their rated full-load 

current. In grid-connected mode, these DG units operate in 

constant power mode, injecting a fixed amount of power into 

the network. Additionally, an AC load is connected to the 

system via a DC-AC converter at Bus 5, and a wind farm 

interfaces with Bus 5 through an AC-DC converter. 

To simplify control strategies and modelling, a two-level 

voltage source converter will be employed for the test system 

This choice is justified as the fault current characteristics 

remain consistent across various DC topologies, including 

two-level, three-level, and Modular Multi-level Converters 

(MMC). The MVDC network utilizes a vector control 

mechanism, comprising a Phase-Locked Loop (PLL) 

Controller, an Inner Loop Controller, and an Outer Loop 

Controller. To ensure the stability and reliability of the MVDC 

network, VSC1, connected to AC grid 1, is assigned the 

primary role of DC voltage regulation. VSC2, on the other 

hand, is primarily responsible for active power flow control. 

In the event of an outage in AC grid 1, VSC2 assumes the role 
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of DC voltage regulation to maintain system stability. Table I 

provides a detailed overview of the control strategies 

implemented for each VSC. 
In the following section, a novel fault detection and location 

technique is proposed to address the limitations highlighted in 

Section 1. The proposed technique will be demonstrated 

through simulations on the MT-MVDC network depicted in 

Figure. 1 

 

FIGURE 1. MVDC Network 

 

TABLE I 

MVDC NETWORK DATA 

System 

Voltage 

DC Network 33 kV / ±16.5 kV 

AC grid 22 kV 
AC load 22 kV, P=40MW, Q=4 MVAR 

DC load 6.6 kV, P = 14 MW 

Converter 
Stations 

Name 
Rated 

Voltage 
Bus Operation mode 

VSC-1 33 kV 1 Q=2 MVAR, Vdc =33 kV 

VSC-2 33 kV 4 P=30 MW, Q = Q=2 MVAR 
AC-DC 33 kV 5, 6 P=20 MW, Q =0 

DC-AC 33 kV 5 Vac =22kV, Q=4MVAR  

DC-DC 33/6.6 kV 6 P=12 MW, Q=0 

Cable 

Data 

R= 0.0176 Ω/km 
Cables 1, 3 7 km 

L= 0.3387 mH/km 

C=0.44 μF/km 
Cables 2, 4, 5 5 km 

Surge impedance 15.5 Ω 

III. Proposed fault Identification & location scheme for 
MVDC network 

In this section, a novel scheme for fault detection and location 

in MVDC networks is presented. The framework of DC fault 

current was previously examined by the authors in [11], 

enabling the development of an effective fault protection 

scheme. Initially, an analysis of SSA is conducted. SSA has 

been effectively applied across various domains. Reference 

[31] uses SSA to preprocess electric load data by removing 

high-frequency noise, enhancing input quality for Long Short-

Term Memory (LSTM) models in load forecasting. Reference 

[32] applies SSA to decompose stator current signatures, 

enabling fault detection in induction machines under low slip 

conditions. Reference [33] proposes an SSA-based method for 

fault detection in rolling element bearings by constructing a 

baseline feature space from healthy signals for comparison 

with new data. 

The proposed scheme, which follows a step-by-step 

procedure to facilitate fault identification and precise 

pinpointing of fault locations, is then illustrated.  

A. SINGULAR SPECTRUM ANALYSIS 

The SSA method, introduced by Broomhead and Gregory 

in 1986 [34], has demonstrated remarkable efficacy across 

various practical domains. Its applications include identifying 

underlying data structures, extracting periodic patterns and 

intricate trends, as well as facilitating data smoothing and 

detecting change points [35]. SSA is a versatile technique used 

in decomposing a time series data into its underlying 

components, such as trend, seasonal, and residual. To 

streamline the SSA procedure, the following step is 

introduced: 

Stage 1: Decomposition  

a) Embedding: transform the one-dimensional time series Y 

into a multi-dimensional series to form a trajectory 

matrix. The embedding step can be described as follows: 

Given a time series Y = (y1, y2, ……, yN) of length N, the 

number of lagged vectors K is defined within the range 

[3, N/2], where N is the length of the input data, and the 

window length L is computed as L=N−K+1. The formed 

trajectory matrix [X] containing lagged vectors is 

expressed as follow: 

𝑋 = [

𝑥1 𝑥2
𝑥2 𝑥3

… 𝑥𝐾
… 𝑥𝐾+1

⋮ ⋮
𝑥𝐿 𝑥𝐿+1

⋱ ⋮
… 𝑥𝑁

] (1) 

b) IEEE will do the final formatting of your paper. If your 

paper is intended for a conference, please observe the 

conference page limits. Singular Value Decomposition 

(SVD) is a powerful mathematical tool used in linear 

algebra for analyzing and simplifying complex datasets. 

SVD has broad applications, including dimensionality 

reduction, which is used in data compression, and noise 

reduction. It decomposes a given matrix into three distinct 

components: two orthogonal matrices and a diagonal 

matrix of singular values.  As follow: The general Form of 

SVD is as follow: 

[

𝑥1 𝑥2
𝑥2 𝑥3

… 𝑥𝐾
… 𝑥𝐾+1

⋮ ⋮
𝑥𝐿 𝑥𝐿+1

⋱ ⋮
… 𝑥𝑁

] = [

𝑢11 𝑢12
𝑢12 𝑢22

⋯ 𝑢1𝐿
⋯ 𝑢2𝐿

⋮ ⋮
𝑢𝐿1 𝑢𝐿2

⋱ ⋮
… 𝑢𝐿𝐿

] ×

[

𝜎1 …
0 𝜎2

⋯ 0
⋯ 0

⋮ ⋮
0 0

⋱ ⋮
… 𝜎𝑟

] × [

𝑣11 𝑣12
𝑣12 𝑣22

… 𝑣1𝐾
… 𝑣2𝐾

⋮ ⋮
𝑣𝐾1 𝑣𝐾2

⋱ ⋮
… 𝑣𝐾𝐾

] (2) 

, where: 

[U]: An (L x L) orthogonal matrix whose columns are the 

left singular vectors of [X] 

AC Grid1
AC Grid2

22 kV

33 kV
22 kV

Line 1 Line 2

Line 4

Wind Farm

AC Sensitive Load

Line 5

Line 3

DC Load 

(Facility)

MicroGrid

Bus-1 Bus-2
Bus-3 Bus-4

Bus-5

Bus-6

VSC 1 VSC 2

R12 R21
R23

R25

R52

R32 R34
R43

R63

R36

R1 R2

R3

R4

R5

R6

6.6 kV
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[Σ]: An (L x K) diagonal matrix containing the singular 

values of [X], which are non-negative real numbers sorted in 

descending order. 

[VT]: is the transposed matrix of an (K × K) orthogonal 

matrix [V] whore the columns represent the right singular 

vectors of [X]. 

The SVD process sorts decomposition matrices in 

descending order of singular values, with the largest singular 

values and their corresponding eigenvectors in (U) and (VT) 

representing the most significant principal components, used 

to construct the trend component. 

Stage 2: Reconstruction 

c) Group Eigenvectors: After performing SVD, the 

eigenvectors (columns of U and V) are grouped based on 

their singular values. Each group represents components 

of the time series with similar patterns. Let {G1, G2…, 

Gm} denote the disjoint subsets of eigenvectors. The 

grouping process involves summing the matrices 

corresponding to each subset as in (3) to form: 

𝑋𝐺𝑖 = ∑ 𝜎𝑖𝑢𝑖𝑣𝑖
𝑇

𝑗∈𝐺𝑖  (3) 

Each XGi represents a component of the time series, 

such as trend or seasonality. 

The grouping step entails the process of clustering 

similar eigenvectors following the decomposition of the 

trajectory matrix through SVD. After the SVD, the 

eigenvectors are arranged in accordance with their 

corresponding singular values, facilitating the 

identification of clusters or groups of eigenvectors that 

represent analogous patterns or components within the 

time series. 

d) Average Along Diagonals: Calculate the diagonal 

averages to obtain the time series component for each 

group. The k-th term of the reconstructed time series 

component, 𝑦𝑘
(𝐺𝑖)i, for matrix XGi, is calculated using (4)  

𝑦𝑘
(𝐺𝑖)

=
1

𝑑𝑘
∑ 𝑥𝑖,𝑗𝑖+𝑗=𝑘+2  (4) 

, where, dk is the number of terms contributing to the 

k-th diagonal. 

e) Reconstruct Time Series Components: Summarize the 

components obtained from diagonal averaging as in (5): 

𝑦𝑘 = ∑ 𝑦𝑘
(𝐺𝑖)𝑚

𝑖=1  (5) 

, where yk represents the k-th term of the overall 

reconstructed time series. 

To illustrate the decomposition of voltage signals using 

SSA, Fig. 2(a-d) depict the simulated line-mode voltage, trend 

component, seasonal component, and residual noise at IED12, 

respectively. A fault is simulated at 0.2 s on Line 1, 4 km away 

from Bus 1, with a lag value of 3. As shown in the figures, the 

trend component captures the overall trend of the voltage 

signal, while the seasonal component isolates the cyclic 

patterns associated with traveling waves. The residual 

component comprises the remaining signal components, 

including noise and other disturbances. 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

FIGURE 2. SSA decomposition components with lag value of 3 

The trend component corresponds to the slowly varying, 

non-oscillatory part of the data, identified by examining the 

leading eigenvectors from the SVD that capture the gradual 

variations in the time series. The seasonal component, on the 

other hand, represents the oscillatory patterns not explained by 

the trend. SSA identifies these patterns by analysing the 

eigenvectors associated with specific frequencies. The 

residual component represents the remaining noise or irregular 

fluctuations after removing the trend and seasonal 

components. In this analysis, the seasonal component is of 

particular interest as it represents the traveling waves 

superimposed on the voltage signal, which arise at the moment 

of a fault occurrence. 

A key parameter in Singular Spectrum Analysis (SSA) is 

the window length L, which defines the size of the trajectory 

matrix and significantly influences both the accuracy and 

computational complexity of the algorithm. The choice of L 

affects the temporal resolution of the decomposition, 

impacting the ability of SSA to capture transient features and 

accurately separate trend, seasonal, and noise components. 

Given the focus of this study on the transient behavior of 

traveling waves, special emphasis is placed on extracting the 
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seasonal component. To enhance sensitivity to such transients, 

the minimum reasonable value in selected, L=3, which ensures 

the reconstruction of all three components (trend, seasonal, 

and residual). 

To assess the effect of L on decomposition quality, 

simulations were performed using L=3, L=15, and L=30, as 

shown in Fig. 3a, 3b, and 3c, respectively. The results indicate 

that L=3 provides the most accurate representation of the 

seasonal component, whereas larger values result in smoother 

trend components but reduced temporal resolution. 

Furthermore, smaller window lengths improve computational 

efficiency, reducing both memory usage and execution time. 

The simulation results indicate that using L=3 yields a fault 

location error of only 0.14%, compared to 0.25% and 0.37% 

for L=15 and L=30, respectively. In terms of execution, L=3 

runs approximately 25% faster than L=15, and over 40% faster 

than L=30. Compared to larger L values, the use of L=3 not 

only enhances fault location accuracy by better capturing 

transient features but also significantly reduces computational 

complexity, making it highly suitable for real-time protection 

applications. This makes the SSA-based approach comparable 

in computational complexity to the FFT and WT, while being 

significantly faster than the HHT and VMD. Moreover, the 

low computational overhead achieved with small window 

lengths (e.g., L=3) underscores the feasibility of real-time 

implementation of SSA in practical protection devices 

equipped with standard microcontrollers. 

  
(a) 

  
(b) 

  
(c) 

FIGURE 3. Effect of L value on the SSA decomposition components 

B. FAULT DETECTION, IDENTIFICATION, LOCATION 
ALGORITHM 

As discussed in the preceding section, the seasonal component 

of the signal effectively models the cyclical patterns often 

associated with high-frequency components. These 

components represent traveling waves that propagate during 

fault events. By applying SSA to the voltage signal, anomalies 

indicative of fault conditions can be readily identified. The 

fault detection, classification, identification, and localization 

process, illustrated in Fig. 4 as a flowchart, follows these steps: 

Step 1- voltage & current measurement: The Intelligent 

Electronic Device (IED) at the line's head measures both pole 

voltages and currents.          

Step 2- Apply the SSA algorithm: Apply SSA to the both 

positive and negative pole voltages in order to extract the 

seasonal component. 

Step 3- Fault Detection: Fault detection is achieved when 

the positive seasonal voltage exceeds the threshold value (ST+ 

> K) or the negative seasonal voltage falls below the threshold 

value (ST- < -K). The fault is classified based on the pole 

whose voltage exceeds the threshold. 

To determine the optimal threshold value (K) for TW fault 

detection, a balance must be struck between sensitivity and 

noise immunity. The threshold must be set sufficiently high to 

mitigate the effects of measurement noise, while remaining 

sensitive to low-amplitude TWs that may result from distant, 

high-resistance faults. Voltage transducers typically maintain 

a minimum SNR of 50 dB, and commercial protective devices 

have an error tolerance of ±3%, which influence the choice of 

threshold value. Additionally, the proposed method, utilizing 

SSA, further enhances noise isolation by separating noise from 

the trend and seasonal components. To illustrate this, a 

positive pole-to-ground fault with a resistance of 200 ohms 

was introduced at the terminal of Line 1, the longest line in the 

network. The calculated seasonal component voltage at IED12 

is depicted in Fig. 5. Analysis of the results revealed that the 

lowest detected voltage traveling wave amplitude at IED12 

was 66 volts, while the maximum noise level was 11 volts. 

Consequently, a threshold value of ±20 volts was selected for 

this study. 

Step 4- Identifying Forward or Backward Fault: To 

distinguish between forward and backward faults, calculate 

the rate of change of the line mode current using the phase 

transformation matrix as defined in Equation (6). A forward 

fault is identified when the rate of change of current (ROCOC) 

is positive. Conversely, a negative ROCOC indicates the 

occurrence of a backward fault. This step serves solely for 

fault direction identification, as fault detection is already 

achieved in earlier stages—thus, no threshold justification is 

required here. 

[
𝑋0
𝑋1
] =

1

√2
[
1 1
1 −1

] [
𝑋𝑃
𝑋𝑁

] (6) 

In this equation, X0 and X1 represent the ground-mode and 

line-mode voltages or currents, respectively, while XP and XN 

denote the positive and negative pole voltages or currents, 

respectively. This transformation effectively reduces the 

impact of mutual coupling on transient voltage analysis in DC 

networks. 

Step 5- calculate the line mode voltage according to 

Equation (6) followed by applying SSA algorithm then extract 

the initial traveling wave by window concept of 10 μs. To 

illustrate the extraction of the first line-mode traveling wave,  
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FIGURE 4. Fault Detection, Classification, and Localization Scheme 
Chart 

FIGURE 5. Seasonal component of Vtw of IED12 for a 200 Ω PPG fault 
at χ = 7 km on L1, and with SNR of 50 dB 

a series of pole-to-pole faults with a resistance of 10 ohms 

were introduced at various locations (0, 1, 2, 3, 4, 5, 6, 7 km) 

along Line L1 of the system depicted in Figure 1. Both pole 

voltages were measured and subsequently transformed into 

line-mode voltage using phase domain transformation. The 

SSA algorithm was then applied to extract the seasonal 

component. Finally, a windowing function with a 10 μs 

duration was employed to isolate the first traveling wave for 

each fault. Figure 6 presents the extracted first line-mode 

voltage traveling waves at their respective fault locations. 

As depicted in Fig. 6, the first traveling wave undergoes 

dispersion as it propagates along the transmission line. While 

no discernible curvature is observed for the 0 km fault, the 

curve becomes increasingly pronounced and exhibits a higher 

curvature rate as the fault location moves away from the feeder 

head. This dispersion phenomenon is particularly evident in 

the negative portion of the signal. The observed spreading and 

curvature of the wave are attributed to attenuation and 

dispersion effects. Attenuation results from energy losses 

within the line, while dispersion arises from variations in the 

line's inductance and capacitance, leading to different 

propagation speeds for various frequency components. The 

wave velocity along the cable was determined in PSCAD by 

measuring the arrival times of faults at various locations 

ranging from 0 to 7 km. The calculated average wave velocity, 

representing the group velocity, is 1.833×108 m/s. 

A 10 μs time window was selected to capture the initial 

traveling wave, considering the maximum dispersion at the 

furthest fault location across the 7 km line length. This ensures 

the first wavefront is fully captured. As shown in Fig. 7, the 

initial transient is successfully recorded even at the maximum 

distance of 7 km from IED12. A sensitivity analysis confirmed 

that shorter windows may miss key features, while longer 

windows introduce reflected components, reducing fault 

localization accuracy. Therefore, the 10 μs window provides 

an optimal balance for precise fault location. 

Step 6- Extract the negative part: To illustrate the 

relationship between curvature rate and fault location, five 

distinct fault types were introduced at a distance of 4 

kilometers from IED5 on Line 3: bolted pole-to-pole, pole-to-

pole with fault resistances of 10 and 50 ohms, positive pole-

to-ground with a fault resistance of 150 ohms, and negative 

pole-to-ground with a fault resistance of 200 ohms. The 

negative portion of the extracted traveling waves was isolated 

and normalized for each fault. Figure 8 illustrates the first line-

mode traveling waves for each fault type, while Fig. 9 depicts 

the normalized negative portions. As observed in the figures, 

the normalized negative portions remain relatively constant 

despite variations in fault type and transition resistance. 

Step 7- Establish quadratic relation: calculate the 

summation of the curvature rate by applying differential on the 

negative part of the initial traveling wave to establish between 

the curvature rate and the fault location. To elucidate this 

relationship, a series of fault types were introduced along Line 

L1 at varying distances from the system origin: bolted pole-to-

pole, positive pole-to-ground with a fault resistance of 10 ohm, 

FIGURE 6. Initial Traveling Waves at different fault distances 
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and negative pole-to-ground with a fault resistance of 150 

ohms. The curvature rate of the negative portion of the first 

line-mode traveling wave voltage was calculated for each fault 

and plotted against its respective location in Fig. 10. The 

quadratic coefficients are calculated in MATLAB using 

curve-fitting methods that fit a polynomial of a specified 

degree to the given data points. 

Step 8- Faulty section identification, and fault location 

determination: For each new fault, the curvature rate (CR) is 

calculated from the normalized negative portion of the initial 

traveling waves extracted from the line mode voltage using the 

SSA algorithm. The resulting CR value is then applied to the 

quadratic relation depicted in Fig. 11 to determine the fault 

location and classify it as internal or external. For 7 km lines, 

the CR threshold (C1) is 0.7, while for 5 km lines, it (C2) is 

0.6. If the CR falls below the corresponding threshold value, 

an internal fault is indicated, and a trip signal is sent to the 

associated circuit breaker. 

 

FIGURE 7. Selection of 10 μs window for extracting the first traveling 
wave 

 

FIGURE 8. Initial Traveling Waves for different faults at the same fault 
location 

 

FIGURE 9. Extracted Negative Part of Initial Traveling Waves for 
different faults at the same fault location 

 

FIGURE 10. Quadratic relation curve between initial TW curvature rate 
and fault location distance 

 

FIGURE 11. Determination of fault location on the quadratic relation 
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IV. MODELING, ASSESSMENT, AND VALIDATION 

This study examines a multiterminal 33 kV MVDC 

distribution system (Fig. 1). To evaluate the proposed fault 

location algorithm, various fault scenarios were simulated 

using PSCAD. Fault simulations employed a solution step of 

0.2 μs and a sampling step of 1 μs. A sampling frequency of 1 

MHz is adopted for voltage measurements to ensure precise 

fault location. While a lower sampling frequency of 25 kHz 

may suffice for fault detection, a higher sampling rate is 

essential for accurate time-domain analysis of traveling 

waves. Notably, commercial protection relays already utilize 

a sampling frequency of 1 MHz [36], making this approach 

feasible and practical. Both pole voltages and currents were 

analyzed in MATLAB to develop the fault detection and 

location algorithms.  

A variety of fault types were introduced at different 

locations, including internal positive pole-to-ground faults to 

assess algorithm sensitivity and location accuracy, external 

bolted pole-to-pole faults to evaluate detection security and 

location accuracy, and negative pole to ground to assess the 

fault classification and location algorithm. The fault inception 

time was set to 0.2 s. 

A. INTERNAL PPG FAULT THROUGH 180 OHMS 
TRANSITION RESISTANCE ON LINE L1 AT 6.8 KM 
FROM BUS1 

A 180-ohm positive pole-to-ground (PPG) fault was 

introduced 6.8 km from Bus 1 on Line L1 to assess the 

detection sensitivity and location accuracy. Fault detection, 

classification, and localization procedures were performed at 

both ends of the line, with results presented in Fig. 12. In Step 

1, the pole voltages were measured by IED12 and IED21 at 

both ends, as shown in Figs. 12a and 12b, respectively. In Step 

2, the seasonal components were decomposed and compared 

to threshold values +K and -K, confirming the presence of a 

positive pole-to-ground fault at IED12 and IED21, as depicted 

in Figs. 12c and 12d. Step 3 involved calculating the rate of 

change of current (ROCO) in line mode at IED12 and IED21, 

which show positive values, confirming a forward fault at both 

ends, as illustrated in Figs. 12e and 12f. In Step 4, the first 

traveling wave of the line-mode seasonal voltage was 

extracted at both IED12 and IED21, as shown in Figs. 12g and 

12h. In Step 5, the negative part of the initial traveling wave 

was extracted at IED12 and IED21, as shown in Figs. 12i and 

12j. In Step 6, the curvature rate of the negative part was 

calculated at both ends and compared to a threshold value (C1 

= 0.795378), corresponding to the 7 km line length. Both IEDs 

confirmed the internal fault and issued a trip command to the 

associated circuit breakers. In the final Step 7, the curvature 

rate was projected onto a quadratic curve to determine the fault 

location. The estimated fault distance was 6804 m from 

IED12, with an error of 4 m (Fig. 12k), and 197 m from 

IED21, with an error of 3 m (Fig. 12l). 

 

B. BPP FAULT ON LINE L2 AT 400 M AWAY FROM BUS 
3 

A bolted pole-to-pole (BPP) fault was introduced 0.4 km from 

Bus 3 on Line L2 to evaluate detection security and location 

accuracy. Since IED34 detected a negative rate of change of 

current (ROCOC), indicating a backward fault, it blocked 

itself. Fault detection, classification, and localization 

procedures were carried out for IED43 and IED32, with the 

results presented in Fig. 7. In Step 1, the pole voltages were 

measured by IED32 and IED43 at both ends, as illustrated in 

Figs. 13a and 13b. In Step 2, the seasonal components were 

decomposed and compared to threshold values +K and -K, 

confirming the presence of positive and negative pole faults at 

IED32 and IED43, indicating a pole-to-pole fault, as depicted 

in Figs. 13c and 13d. Step 3 involved calculating the rate of 

change of line mode current at IED32 and IED43 are greater 

than zero, confirming a forward fault at both IEDs, as shown 

in Figs. 13e and 13f. In Step 4, the first traveling wave of the 

line-mode seasonal voltage was extracted at both IED32 and 

IED43, as presented in Figs. 13g and 13h. In Step 5, the 

negative part of the initial traveling wave was extracted at 

IED32 and IED43, as shown in Figs. 13i and 13j. In Step 6, 

the curvature rate (CR) of the negative part was calculated at 

both ends and compared to threshold values. For IED43, the 

CR was compared to the threshold value (C1 = 0.795378) 

corresponding to the 7 km length of Line 3, while for IED32, 

it was compared to the threshold value (C2 = 1.00097) 

corresponding to the 5 km length of Line 2. IED43 indicated 

an external fault as its CR was 0.7458404, which was less than 

C1, leading it to block itself, while IED32  confirmed an 

internal fault as its CR was 1.2075744, which exceeded C2, 

prompting it to send a trip command to the associated circuit 

breaker. In the final Step 7, the curvature rate was projected 

onto a quadratic curve to estimate the fault location. The 

estimated fault distance was 405 m from IED32, with an error 

of 5 m (Fig. 13k), and greater than 7 km from IED43 (Fig. 

13l). 

C. NPG FAULT ON LINE L5 AT 3 KM AWAY FROM BUS 
3 

A negative pole-to-ground (NPG) fault with a 50-ohm fault 

resistance was introduced 3 km from Bus 3 on Line L5 to 

evaluate the accuracy of fault classification and location. Fault 

detection, classification, and localization were performed at 

both ends of the line, with results shown in Fig. 14. In Step 1, 

pole voltages were measured by IED36 and IED63 at both 

ends, as illustrated in Figs. 14a and 14b. In Step 2, the seasonal 

components were decomposed and compared to threshold 

values (+K and -K), confirming negative pole  faults at both 

IED36 and IED63, indicating a negative pole-to-ground fault 

(Figs. 14c and 14d). In Step 3, the rate of change of current 

(ROCO) in line mode was calculated at IED36 and IED63 are 

greater than zero, confirming a forward fault at both ends 

(Figs. 14e and 14f). In Step 4, the first traveling wave of the 

line-mode seasonal voltage was extracted at both IED36 and 
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IED63 (Figs. 14g and 14h). Step 5 involved extracting the 

negative part of the initial traveling wave at IED36 and IED63 

(Figs. 14i and 14j). In Step 6, the curvature rate (CR) of the 

negative part was calculated at both ends and compared to the 

threshold value (C2 = 1.00097), which corresponds to the 5 

km length of Line 5. IED36 indicated an internal fault as its 

CR was 1.13611, exceeding C2, and IED63 confirmed an 

internal fault with a CR of 1.17797, also exceeding C2. This 

prompted both IED36 and IED63 to send a trip command to 

the respective circuit breakers. Finally, in Step 7, the curvature 

rate was projected onto a quadratic curve to estimate the fault 

location. The  estimated fault distance was 3006 m from 

IED36, with an error of 6 m (Fig. 14k), and 1995 m from 

IED63, with an error of 5 m (Fig. 14l). 

D. EXTREME PPG FAULT THROUGH 500-OHM FAULT 
RESISTANCE ON LINE L1 AT 4 KM FROM BUS1 

A positive pole-to-ground (PPG) fault with a fault resistance 

of 500 ohms was simulated on Line 3 to evaluate the 

performance of the proposed protection scheme under extreme 

fault conditions. Protection procedures were executed at both 

ends of the line, and the results are presented in Fig. 15. In the 

first step, pole voltages were measured by Intelligent 

Electronic Devices (IEDs) IED43 and IED34, as shown in 

Figs. 15a and 15b. The second step involved extracting the 

seasonal components of the voltage signals and comparing 

them to predefined thresholds (+K and −K), confirming a 

positive pole-to-ground fault at both IED43 and IED34 (Figs. 

15c and 15d). The rate of change of current (ROCO) was then 

calculated in the third step, and its positive values confirmed a 

forward fault at both ends (Figs. 15e and 15f). In the fourth 

step, the first traveling wave of the line-mode seasonal voltage 

was extracted at both IEDs (Figs. 15g and 15h), followed by 

the isolation of its negative component in the fifth step (Figs. 

15i and 15j). In the sixth step, the curvature rate of the negative 

component was computed and compared to a threshold value 

(C1=0.795378), corresponding to a line length of 7 km. This 

confirmed the presence of an internal fault, prompting both 

IEDs to issue trip commands to their respective circuit 

breakers. Finally, in the seventh step, the curvature rate was 

projected onto a quadratic curve to estimate the fault location, 

which was determined to be 4008 m from IED43 with a 8 m 

error (Fig. 15k) and 2993 m from IED34 with a 7 m error (Fig. 

15l). This comprehensive analysis demonstrates the reliability 

of the proposed protection scheme in identifying and locating 

faults under extreme high-resistance conditions. 

E. ROBUSTNESS TO SUDDEN LOAD CHANGES 

In this scenario, a sudden 20 MW AC load is added to the AC 

side of the DC-AC converter connected to Bus 5 at t = 0.18 s. 

The resulting line-mode voltage, its trend component, seasonal 

component, and residual component at IED 52 are depicted in 

Figure 16a, 156, 16c, and 16d, respectively. The figures 

indicate that the voltage variation due to the sudden load 

change is primarily captured by the trend component, with 

negligible contributions from the seasonal and residual 

components. This is because the sudden load change results in 

a gradual adjustment of the system, resulting in smooth 

variations in current and voltage as the system stabilizes to the 

new operating point, which is considered a slow variation 

relative to the SSA algorithm's time scale. In contrast, a short 

circuit introduces a low-impedance path, causing abrupt and 

significant increases in current and sharp voltage drops. 

Consequently, the fault detection scheme is robust to such 

disturbances. 

F. SIMULATION RESULTS AND PERFORMANCE 
EVALUATION 

Extensive simulations demonstrate the effectiveness of the 

fault location algorithm. The proposed method's effectiveness 

is demonstrated across three fault types. The maximum 

detection time for the farthest fault is 175 microseconds, 

highlighting the scheme's rapid and efficient fault detection 

capabilities. Simulations confirm the scheme's ability to 

accurately classify faults as pole-to-pole (PP), positive pole-

to-ground (PPG), or negative pole-to-ground (NPG). 

Moreover, the faulty section is successfully identified by 

comparing the maximum curvature rate of the line with 

calculated values. The proposed scheme also effectively 

pinpoints the fault location by projecting the curvature rate 

onto the quadratic relation with distance. The results, 

presented in Table II, encompass a wide range of DC line 

faults, including varying types, impedances, and distances. 

Table II demonstrates the method's ability to calculate fault 

distances for various pole-to-pole, positive-to-ground, and 

negative pole-to-ground faults. The results show a maximum 

percentage error of 0.16%. 

G. COMPARISON WITH EXISTING FAULT DETECTION 
AND LOCATION TECHNIQUES 

The Several fault detection and location techniques have been 

proposed in the literature, each with varying performance in 

terms of accuracy, noise immunity, and hardware 

requirements. The method presented in [16] employs a line 

reactor in conjunction with the wavelet transform, achieving a 

signal-to-noise ratio (SNR) of 25 dB at a sampling frequency 

of 100 kHz. In contrast, the approach in [14] is limited to low-

resistance faults (maximum 10 Ω) and does not consider the 

effect of noise, which limits its practical applicability. 

The proposed method significantly improves upon these 

limitations. It does not require line reactors, is robust to noise 

up to 50 dB, and achieves ultra-fast fault detection within 0.5 

milliseconds. Fault detection is performed effectively with a 

sampling frequency of 50 kHz using the SSA-based technique, 

while fault location requires a higher sampling rate (1 MHz) 

to ensure accurate arrival time identification and minimize 

location error—critical factors for enhancing system 

reliability and reducing outage duration. 

With respect to fault location methods, the double-ended 

model-based technique in [23] achieves a location error of 
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0.8% at a 1 MHz sampling rate. Reference [27] utilizes a high-

pass filter to detect wave arrival time, reaching an error of 

0.145%. Although [27] emphasizes faster computation, it also 

acknowledges that wavelet-based approaches offer higher 

accuracy, which is more desirable for fault location tasks. 

Reference [28] accounts for variations in wave propagation 

velocity and reports a location error of 0.416%, while [29] 

presents a single-ended method using VMD with an error rate 

of 1.31%. Table II summarizes key characteristics of the 

referenced methods compared to the proposed SSA-based 

approach. 
TABLE II 

COMPARISON OF EXISTING AND PROPOSED FAULT DETECTION AND 

LOCATION METHODS IN TERMS OF SAMPLING RATE, NOISE TOLERANCE, 
AND FAULT RESISTANCE HANDLING 

Ref. Function Method 
Sampling 

Freq. 

Noise 

(dB) 

Max. 

Fault 

Resistance 

(Ω) 

[14] Detection FFT – – 10 

[16] Detection WT 100 kHz 25 500 

[23] Location 
Model-

Based 
1 MHz 30 500 

[27] Location HPF 100 kHz – 500 

[28] Location WT 1 MHz – – 

[29] Location VMD 1 MHz 50 500 

Proposed 

Detection 

& 

Location 

SSA 

50 kHz 

(Detection), 

1 MHz 

(Location) 

50 500 

The use of a higher sampling frequency in the proposed 

location algorithm is aligned with previous studies [23], [28], 

and [29], which also rely on high-resolution sampling to 

reduce location error. As fault location accuracy is prioritized 

over computational speed in such applications, the use of a 

high sampling rate (1 MHz) is justified to ensure precise and 

reliable fault localization. 

H. COMPREHENSIVE ANALYSIS OF FAULT LOCATION 
ACCURACY AND COMPUTATIONAL COMPLEXITY IN 
SSA-BASED FAULT LOCALIZATION COMPARED TO 
OTHER METHODS 

A comprehensive error analysis is conducted to compare 

Singular proposed SSA-based fault localization with other 

methods, including WT, FFT, HHT, and VMD. This analysis 

is performed by applying a series of test scenarios under 

diverse conditions, such as different fault types (e.g., Pole-to-

Ground, Pole-to-Pole, and high-impedance faults). The same 

signal datasets are processed using each algorithm (SSA, WT, 

FFT, HHT, and VMD) to ensure a fair comparison.  

Figure 17 illustrates the normalized first traveling wave 

(TW) for a pole-to-pole fault at 2 km away from Bus1 as an 

example, demonstrating that SSA produces the most pure and 

consistent results. The computational complexity of each 

algorithm (FFT, WT, HHT, VMD, and SSA) is evaluated by  
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FIGURE 12. PPG fault on Line L1 at 6.8 km away from Bus 1 
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FIGURE 13. Bolted PP fault on Line L2 at 400 m away from Bus 3 
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FIGURE 14. NPG fault on Line L5 at 3 km away from Bus 3 
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FIGURE 15. NPG fault on Line L5 at 3 km away from Bus 3 
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(c) 

 

(d) 

FIGURE 16. Sudden Load change at Bus 5 

executing them individually on the same input dataset using a 

uniform computing platform (workstation with Intel Core i5  

CPU and 4 GB RAM). The execution time is measured for 

each algorithm, with the FFT serving as the baseline due to its 

minimal runtime. The execution times of the other algorithms 

are then expressed as a percentage relative to that of the FFT. 

The fault location is determined in each case, and the error 

margin is displayed. Table III presents a comprehensive 

summary of the test case results, encompassing various fault 

types, fault resistance, and noise level, along with the 

corresponding error metrics for all evaluated scenarios.  

Based on the findings presented in Fig. 17 beside Table IV, 

the proposed SSA-based algorithm demonstrates the highest 

fault location accuracy. Additionally, its computational 

complexity is comparable to that of the FFT method and lower 

than that of VMD and HHT, making it the most efficient 

approach overall. 

V. CONCLUSION 

In conclusion, this study introduces a novel fault 

detection, classification, and localization methodology for 

MT-MVDC networks, leveraging SSA to decompose pole 

voltage signals waves. Fault detection is performed by 
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TABLE III 

SIMULATION RESULTS FOR DC LINE FAULTS, ACROSS VARYING FAULT TYPES, IMPEDANCES, AND DISTANCES 

analyzing fluctuations in this component, while 

classification is determined based on the polarity of seasonal 

voltage values. The proposed approach demonstrates 

robustness against noisy measurements and eliminates the 

need for parameter optimization for threshold adjustments. 

Additionally, it effectively differentiates high-impedance 

faults (up to 500 Ω) from sudden load variations. 

For fault localization, the method employs curvature rate 

analysis, utilizing traveling wave attenuation and dispersion 

principles to achieve precise fault identification. Unlike 

conventional techniques, it does not rely on wave arrival 

times and remains effective even under high-impedance fault 

conditions, achieving a maximum localization error of only 

0.16%. A comprehensive comparative analysis with existing 

fault location schemes highlights the superior accuracy of the 

proposed method. Furthermore, extensive simulation studies 

assess its computational efficiency and fault localization 

performance against various signal processing techniques, 

including FFT, WT, HHT, and VMD. The results 

demonstrate that the proposed scheme achieves high 

accuracy while maintaining computational complexity 

comparable to FFT and significantly outperforming VMD 

and HHT in execution time. These findings validate the 

effectiveness of the proposed approach, establishing it as a 

reliable and efficient solution for fault detection and 

localization in MT-MVDC networks. 

 
TABLE IV 

COMPARISON OF FAULT LOCALIZATION METHODS: ACCURACY AND 

COMPUTATIONAL COMPLEXITY ACROSS DIFFERENT FAULT SCENARIOS 

Method Bolted 
PP 

PPG 40 
Ω, 10 dB 

NPG 110 
Ω ,30 dB 

PPG 200 
Ω ,50 dB 

Computation 
complexity 

FFT 0.53 % 0.87 0.94 1.29 100 % 

WT 0.12 % 0.19 0.33 0.46 120% 

HHT 0.06 % 0.112 0.21 0.23 139% 

VMD 0.06 % 0.06 0.12 0.23 142% 

SSA 0.03 % 0.05 0.08 0.16 122% 

 

 

 

 

Normalized Initial Voltage TW 

Method 

Error (%) 

Computational Complexity 

 

FFT 

0.53 % 

100 % (Baseline) 

 

WT 

0.12 % 

120 % 

 

HHT 

0.06 % 

139 % 

 

VMD 

0.06 % 

142 % 

 

SSA 

0.03 % 

122 % 

FIGURE 17. Normalized first voltage TW obtained using different signal 
processing technique 

Cable Length (m) 
Fault 

Resistance 
Fault type IED 

Actual fault 
distance (m) 

CR 
Estimated Fault 

Distance (m) 
Error % 

Line 1 7000 

0.5 PP 

IED12 

200 1.2081325 205 0.0714286 

90 PPG 5750 0.9324884 5746 0.0571429 
190 NPG 6090 0.8973081 6093 0.0428571 

Line 2 5000 

0.5 PP 

IED23 

50 1.2081049 53 0.06 

90 PPG 2060 1.1758856 2058 0.04 
190 NPG 4600 1.0330427 4608 0.16 

Line 3 7000 

0.5 PP 

IED34 

2030 1.1770197 2024 0.0857143 

90 PPG 240 1.20809 235 0.0714286 
190 NPG 6400 0.8642027 6402 0.0285714 

Line 4 5000 

0.5 PP 

IED25 

1100 1.2001775 1094 0.12 

90 PPG 40 1.2080784 37 0.06 
190 NPG 4000 1.0773883 4001 0.02 

Line 5 5000 

0.5 PP 

IED36 

4720 1.0243951 4717 0.06 

90 PPG 320 1.2078744 323 0.06 
190 NPG 1050 1.200961 1046 0.08 
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