
Journal of Global Optimization (2025) 92:111–133
https://doi.org/10.1007/s10898-024-01450-9

Solution existence for a class of nonsmooth robust
optimization problems

Nguyen Canh Hung1,2,3 · Thai Doan Chuong4 · Nguyen Le Hoang Anh2,5

Received: 28 March 2024 / Accepted: 26 October 2024 / Published online: 18 November 2024
© The Author(s) 2024

Abstract
The main purpose of this paper is to investigate the existence of global optimal solutions
for nonsmooth and nonconvex robust optimization problems. To do this, we first introduce
a concept called extended tangency variety and show how a robust optimization problem
can be transformed into a minimizing problem of the corresponding tangency variety. We
utilize this concept together with a constraint qualification condition and the boundedness
of the objective function to provide relationships among the concepts of robust properness,
robust M-tamesness and robust Palais-Smale condition related to the considered problem.
The obtained results are also employed to derive necessary and sufficient conditions for the
existence of global optimal solutions to the underlying robust optimization problem.

Keywords Mordukhovich/limiting subdifferential · Robust optimization · Extended
tangency variety · Solution existence · Constraint qualification · Palais-Smale condition

1 Introduction

The existence of optimal solutions is an important topic in optimization theory and has
recently received remarkable attention from the researchers; see, e.g. [2, 8, 9, 12, 15, 26] and
other related references therein. Notably, we refer the reader to a recent work [16] for the
study of the existence of solutions to a multiobjective optimization problem involving locally
Lipschitz functions. As a matter of fact, there are vast real-world problems whose data are
often uncertain or fluctuate. So, robust optimization has emerged as efficient techniques and

B Thai Doan Chuong
chuongthaidoan@yahoo.com; chuong.thaidoan@brunel.ac.uk

Nguyen Canh Hung
hungnc@ntu.edu.vn

Nguyen Le Hoang Anh
nlhanh@hcmus.edu.vn

1 Faculty of Mathematics and Computer Science, University of Science, Ho Chi Minh City, Vietnam

2 Vietnam National University, Ho Chi Minh City, Vietnam

3 Faculty of Information Technology, Nha Trang University, Nha Trang, Khanh Hoa Province,
Vietnam

4 Department of Mathematics, Brunel University of London, London, UK

5 Department of Optimization and System Theory, University of Science, Ho Chi Minh City, Vietnam

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10898-024-01450-9&domain=pdf
http://orcid.org/0000-0003-0893-5604


112 Journal of Global Optimization (2025) 92:111–133

effective frameworks for studying problems with uncertain data; see, [2, 3, 5–8, 13, 14, 17,
18, 27, 31] for more details.

In this paper, we consider an uncertain optimization problem that is defined by

min
x∈Rn

{
f (x, τ ) | x ∈ �, hi (x, ui ) ≤ 0, i = 1, ...,m

}
, (U)

where x is a decision variable, τ and ui , i = 1, . . . ,m, are uncertain parameters, which
reside in the uncertainty sets T and Vi , respectively, � ⊂ R

n is a nonempty closed set,
T ⊂ R

k , Vi ⊂ R
ni , i = 1, . . . ,m, are nonempty compact sets, and f : Rn × T → R and

hi : Rn × Vi → R, i = 1, ...,m, are functions.
To deal with the uncertainty problem (U), we associate it with the following robust

counterpart:

min
x∈Rn

{
max
τ∈T f (x, τ ) | x ∈ �, hi (x, ui ) ≤ 0, ∀ui ∈ Vi , i = 1, ...,m

}
. (P)

In what follows, we assume that the feasible set of problem (P) is nonempty and it is denoted
by S, i.e.,

S := {x ∈ � | hi (x, ui ) ≤ 0, ∀ui ∈ Vi , i = 1, ...,m}. (1.1)

The set S is also called the robust feasible set of problem (U).
The problem of type (P) covers an important class of robust optimization programs and has

been intensively investigated in the literature. For instance, when � := R
n , the related func-

tions are SOS-convex polynomials and the uncertainty sets Vi , i = 1, ...,m, are boundedly
intersection ellipsoidal, Chuong and Jeyakumar in [8] presented semidefinite programming
relaxations for the corresponding problem under the well-posed regularity, where there is no
uncertainty in the objective function. In [14], Jeyakumar et al. provided necessary and suffi-
cient conditions for the robust optimality to convex optimization problems under the robust
Slater constraint qualification. Some results of [14] have been improved and extended by Li
andWang in [19] using the robust Farkas-Minkowski constraint qualification. Recently, Sis-
arat et al. in [27] characterized the optimal solution set of an uncertain convex optimization
problem by using convex subdifferentials and Lagrangian multipliers for the robust convex
feasible set described by locally Lipschitz constraints. It should be noted further that checking
whether a problem of polynomial with only degree 4 admits its solution is strongly NP-hard
[1]. The interested reader is referred to [15, 16, 28] for some recent results on the existence
of solutions to vector/polynomial optimization problems.

The main aim of this paper to investigate a question: When and under which conditions
does the robust optimization problem (P) admit an optimal solution? Answering this question
is generally challenging because the related functions of problem (P) are not only nonsmooth
and nonconvex but also depend on uncertainties. In a special setting, where the problem does
not have uncertainty, f is a quadratic polynomial bounded from below on S and hi , i =
1, ...,m, are affine functions, Frank andWolfe in [12] showed that an optimal solution of the
underlying program exists. More generally, if a robust SOS-convex polynomial program is
well-posed and its objective is bounded from below on S, then the considered problem attains
its optimal solutions (cf. [8, Proposition 2.2]). However, an answer to the above question for
a general robust optimization problem like (P) is currently unavailable.

In this work, we answer the above question by presenting new results on the existence of
optimal solutions to the robust optimization problem (P). To this end, we define an extended
tangency variety and prove that the robust optimization problem (P) can be reformulated as an
equivalent problem in terms of the extended tangency variety. Consequently, the information
for the existence of optimal solutions to the robust optimization problem (P) is revealed.
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Moreover, under suitable hypotheses on the related functions of problem (P) and a constraint
qualification, we present relationships among the concepts of robust M-tameness, robust
properness and robust Palais-Smale condition related to the uncertain problem (U) or its
robust version (P). In this way, we derive necessary and sufficient conditions for the existence
of optimal solutions to the robust optimization problem (P).

The rest of the paper is organized as follows. Section 2 gives some basic concepts and
calculus rules needed for proving our main results. In Sect. 3, we introduce the concept of
extended tangency variety and use this concept to turn the problem (P) into a new equiva-
lent problem. In Sect. 4, we examine links among the concepts of robust properness, robust
Palai-Smale condition and robust M-tameness under certain assumptions. Section 5 provides
conditions for the problem (P) to have an optimal solution. The last section summarizes the
obtained results.

2 Preliminaries

Throughout the paper, letRn be a finite-dimentional space with the usual scalar product 〈·, ·〉
and the Euclidean norm ‖ · ‖, where n ∈ N := {1, 2, ...}. For n = 1, let R1 := R and
R := R ∪ {+∞}. We use IBn and R

n+ to denote the closed unit ball and the nonnegative
orthant of Rn , respectively. For a nonempty subset � ⊂ R

n, the closure and covex hull of

� are denoted by cl� and co�, respectively. The notation x
�−→ x means that x → x and

x ∈ �.

Let F : X ⊂ R
n ⇒ R

m be a multi-valued function/set-valued map. F is said to be closed
at x ∈ X if for any sequence {xk} ⊂ X , xk → x and any sequence {yk} ⊂ R

m, yk ∈ F(xk),
yk → y as k → ∞, we have y ∈ F(x).

Let us recall some concepts and calculus rules from Variational Analysis (see e.g., [21,
22]). Given a set-valued map F : Rn ⇒ R

n, we denote by

Lim sup

x
�−→x

F(x) :=
{
ϑ ∈ R

n | ∃ sequences xk
�−→ x and ϑk → ϑ with ϑk ∈ F(xk) for all k ∈ N

}

the sequential Painlevé–Kuratowski upper/outer limit of F as x → x .
The Fréchet normal cone (regular normal cone) N̂ (x;�) to � at x ∈ � is defined by

N̂ (x;�) :=
⎧
⎨

⎩
ϑ ∈ R

n | lim sup
x

�→x

〈ϑ, x − x〉
‖x − x‖ ≤ 0

⎫
⎬

⎭
. (2.1)

The limiting normal cone (basic/Mordukhovich normal cone) N (x;�) to � at x ∈ � is
given by

N (x;�) := Lim sup
x

�→x

N̂ (x;�). (2.2)

For any x ∈ R
n \ �, we put N̂ (x;�) := ∅ and N (x;�) := ∅.

The limiting/Mordukhovich subdifferential of ψ : Rn → R at x ∈ R
n with |ψ(x)| < ∞

is defined by

∂ψ(x) := {
ϑ ∈ R

n | (ϑ,−1) ∈ N ((x;ψ(x)); epiψ)
}
,

where

epiψ := {(x, y) ∈ R
n × R | ψ(x) ≤ y}.
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If |ψ(x)| = ∞, then one puts ∂ψ(x) := ∅.

Remark that the above-defined normal cones and subdifferentials reduce to the corre-
sponding concepts of normal cone and subdifferential in convex analysis when sets and
functions are convex. Moreover, if ψ is strictly differentiable at x then ∂ψ(x) = {∇ψ(x)},
where ∇ψ(x) stands for the derivative of ψ at x .

The function ψ is locally Lipschitz at x ∈ R
n if there exist a real number L > 0 and a

neighborhood U of x such that

|ψ(z) − ψ(w)| ≤ L ‖z − w‖ ∀z, w ∈ U .

Furthermore, we obtain by [21, Corollary 1.81] that ‖ϑ‖ ≤ L for any ϑ ∈ ∂ψ(x), and if x
is a local minimizer for ψ , then we get, see [21, Proporsition 1.114],

0 ∈ ∂ψ(x). (2.3)

The following lemma presents a formula in convex analysis.

Lemma 2.1 For x ∈ R
n, one has

∂(‖ · −x‖)(x) =
⎧
⎨

⎩

IBn i f x = x,
x − x

‖x − x‖ i f x �= x .

A sum rule for the limiting subdifferential is as follows.

Lemma 2.2 (See [21, Theorem 3.36]). Let the functionsψi : Rn → R for i = 1, ...,m, m ≥
2,be lower semicontinuous around x ∈ R

n,and let all but oneof these beLipschitz continuous
around x . Then it holds

∂(ψ1 + ψ2 + · · · + ψm)(x) ⊂ ∂ψ1(x) + ∂ψ2(x) + · · · + ∂ψm(x). (2.4)

Finally in this section, we recall a necessary optimality condition for a scalar nonsmooth
optimization problem.

Lemma 2.3 (See [22, Corollary 6.6]). Let the functions ψi : Rn → R, i = 1, ...,m + p, be
Lipschitz continuous around x ∈ �, where � ⊂ R

n is locally closed around this point. If ψ0

attains its infimum value at x on the set

{x ∈ � | ψi (x) ≤ 0, i = 1, ...,m, ψi (x) = 0, i = m + 1, ...,m + p},
then, one can find (μ0, ..., μm+p) ∈ R

m+p+1\{0} such that μi ≥ 0, i = 0, ...,m and

0 ∈
m∑

i=0

μi∂ψi (x) +
m+p∑

i=m+1

μi
[
∂ψi (x) ∪ ( − ∂(−ψi )(x)

)] + N (x;�),

μiψi (x) = 0, i = 1, ...,m.

3 Extended tangency variety in robust optimization

In this section, we introduce an extended tangency variety for the feasible point set S of the
robust optimization problem (P) defined by (1.1). Then, we show that the robust optimization
problem (P) can be transformed into an equivalent problem in terms of this extended tangency
variety.
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In the rest of the paper, for a fixed x ∈ R
n, we denote

F(x) := max
τ∈T f (x, τ ), Hi (x) := max

ui∈Vi
hi (x, ui ), i = 1, ...,m (3.1)

and

T (x) := {τ ∈ T | f (x, τ ) = F(x)}, Vi (x) := {ui ∈ Vi | hi (x, ui ) = Hi (x)}. (3.2)

Furthermore, we assume that the function f together with the constraint functions
h1, ..., hm of the problem (P) satisfy the following assumptions:

(A) For a fixed x ∈ R
n, there exist neighborhoods Ui , i = 0, ...,m, of x such that the

functions τ ∈ T �→ f (x, τ ), x ∈ U0, and ui ∈ Vi �→ hi (x, ui ), x ∈ Ui , i = 1 . . . ,m are
upper semicontinuous and the functions f and hi are partially uniformly Lipschitz of ranks
L0 > 0 and Li > 0 on U0 and Ui , respectively, i.e.,

| f (z, τ ) − f (w, τ)| ≤ L0 ‖z − w‖ ∀ z, w ∈ U0, ∀τ ∈ T ,

|hi (z, ui ) − hi (w, ui )| ≤ Li ‖z − w‖ ∀ z, w ∈ Ui , ∀ui ∈ Vi .

(B) For the above x ∈ R
n, the multi-valued function (x, τ ) ∈ U0 × T ⇒ ∂x f (x, τ ) ⊂ R

n

is closed at (x, τ ) for each τ ∈ T (x) and the multi-valued function (x, ui ) ∈ Ui × Vi ⇒
∂xhi (x, ui ) ⊂ R

n is closed at (x, ui ) for each ui ∈ Vi (x), where ∂x stands for the limiting
subdifferential with respect to the first variable x .

We want to emphasize that the above two assumptions often appear in studying robust
optimization problems or in nonsmooth analysis such as calculating the nonsmooth subdif-
ferentials/subgradients of max or supremum functions over an infinite set. More precisely,
the hypothesis (A) ensures that the functions F and Hi , i = 1, . . . ,m are well-defined, and
furthermore, it entails that the functions F, Hi are locally Lipschitz of ranks L0, Li , i =
1, ...,m, respectively. The hypothesis (B) can be considered as a relaxation of subdifferen-
tials for the class of convex functions, and actually, this assumption is still valid for a broader
class of regular functions, including subsmooth and continuously prox-regularity functions
whenever (A) holds. The reader is referred to [5, 7] and the references therein for a detailed
review.

We are now ready to introduce the concept of extended tangency variety for the feasible
set S of problem (P).

Definition 3.1 The extended tangency variety for the feasible set S of problem (P) is defined
by

�(P) :=
{
x ∈ S | ∃μ := (μ0, ..., μm) ∈ R

m+1+ , ∃λ ∈ R, (μ, λ) �= 0,

0 ∈ μ0co{∂x f (x, τ ) | τ ∈ T (x)}

+
m∑

i=1

μico{∂xhi (x, ui ) | ui ∈ Vi (x)} + λx + N (x;�),

μi max
ui∈Vi

hi (x, ui ) = 0, i = 1, ...,m
}
. (3.3)

Consider a special setting, where there is no uncertainty and there are no constraints (i.e.,
S = R

n) in the considered optimization problem. In this case, if the objective function f is a
non-constant polynomial, then the concept in Definition 3.1 reduces to the tangency variety
of f (see [29]), which is given by

	( f ) :=
{
x ∈ R

n | rank

(∇ f (x)
x

)
≤ 1

}
.
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More particularly, if f is a non-constant polynomial on R
2, then the above-defined concept

agrees with the curve of tangency (see [10]) defined by

	( f ) := {x := (x1, x2) ∈ R
2 | x2

∂ f

∂x1
− x1

∂ f

∂x2
= 0},

where
∂ f

∂xi
stands for the partial derivative of f with respect to the variable xi for i = 1, 2.

Thefirst theorem in this section gives a sufficient condition for the existence of the extended
tangency variety for the feasible set S of problem (P).

Theorem 3.1 Let the assumptions (A) and (B) hold for the problem (P). If S is unbounded,
then �(P) is nonempty and unbounded.

Proof Let S be unbounded. Fixing any k ∈ N, there exists xk ∈ S such that ||xk || > k. Put

Sk := {x ∈ � | ‖x‖2 = ‖xk‖2, Hi (x) ≤ 0, i = 1, ...,m},
where Hi (x) := max

ui∈Vi
hi (x, ui ) for i = 1, ...,m. Note that Sk �= ∅ due to xk ∈ Sk . We

consider an auxiliary optimization problem (Pk) as follows:

min{F(x) | x ∈ Sk}, (Pk)

where F(x) := max
τ∈T f (x, τ ). Since Sk is a nonempty compact set, the problem (Pk) exists

an optimal solution, denoted by x∗
k . According to Lemma 2.3, one can find the real numbers

μi ≥ 0 for i = 0, ...,m and μm+1 ∈ R, not all zero, such that

0 ∈ μ0∂F(x∗
k ) +

m∑

i=1

μi∂Hi (x
∗
k ) + 2μm+1x

∗
k + N (x∗

k ;�), (3.4)

μi Hi (x
∗
k ) = 0, i = 1, ...,m. (3.5)

Under the assumptions (A) and (B), we use some simliar arguments of [5, Theorem 3.3] to
obtain that

∂F(x∗
k ) ⊂ co{∂x f (x∗

k , τ ) | τ ∈ T (x∗
k )},

∂Hi (x
∗
k ) ⊂ co{∂xhi (x∗

k , ui ) | ui ∈ Vi (x∗
k )}, i = 1, ...,m,

where T (x∗
k ) and Vi (x∗

k ) are defined as in (3.2). Then, we get from (3.4) and (3.5) that

0 ∈ μ0co{∂x f (x∗
k , τ ) | τ ∈ T (x∗

k )}

+
m∑

i=1

μico{∂hi (x∗
k , ui ) | ui ∈ Vi (x∗

k )} + 2μm+1x
∗
k + N (x∗

k ;�),

μi max
ui∈Vi

hi (x
∗
k , ui ) = 0, i = 1, ...,m.

This shows that x∗
k ∈ �(P) for all k ∈ N, and so �(P) is a nonempty set. Moreover, it is

obvious that ‖x∗
k ‖ = ‖xk‖ → ∞ as k → ∞, which means that �(P) is unbounded. The

proof of the theorem is complete. �

We now show that the optimal value of problem (P), denoted by inf (P), can be found by
minimizing of its robust objective over the extended tangency variety.
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Theorem 3.2 Let the assumptions (A) and (B) hold for the problem (P). Then, we have

inf (P) = inf{F(x) | x ∈ �(P)},
where F(x) := max

τ∈T f (x, τ ) for x ∈ R
n .

Proof It is clear that �(P) ⊂ S, and one has

inf (P) = inf{F(x) | x ∈ S} ≤ inf{F(x) | x ∈ �(P)}.
In the rest of the proof, we show that

inf (P) ≥ inf{F(x) | x ∈ �(P)}. (3.6)

Denote α∗ := inf (P). Then, one finds a sequence {xk}k∈N ⊂ S such that F(xk) → α∗ as
k → ∞. For each k ∈ N, let

Sk := {x ∈ � | ‖x‖2 = ‖xk‖2, Hi (x) ≤ 0, i = 1, ...,m},
and consider the optimization problem (Pk) as in the proof of Theorem 3.1. Similarly as in
the proof of Theorem 3.1, for k ∈ N, we find an optimal solution of problem (Pk), say x∗

k ,
such that x∗

k ∈ �(P). Then, for each k ∈ N, we get

inf{F(x) | x ∈ �(P)} ≤ F(x∗
k ) = min{F(x) | x ∈ Sk} ≤ F(xk),

where the last inequality holds due to xk ∈ Sk . Hence,

inf{F(x) | x ∈ �(P)} ≤ F(xk) for all k ∈ N. (3.7)

Letting k → ∞ in (3.7), we obtain that

inf{F(x) | x ∈ �(P)} ≤ α∗,

which shows that (3.6) is valid and so the proof of the theorem is complete. �

The following example illustrates Theorem 3.2.

Example 3.1 Let f : R2 × T → R and h1 : R2 × V1 → R be given respectively by

f (x, τ ) := |x1| − |x2| + τ − 3, h1(x, u1) := −x1 − x2 − u21,

where x := (x1, x2) ∈ R
2, τ ∈ T := [−5, 3] and u1 ∈ V1 := [−4,−2] ∪ [−1, 3]. Consider

the following robust optimization problem

min
x∈R2

{max
τ∈T f (x, τ ) | x ∈ �, h1(x, u1) ≤ 0, ∀u1 ∈ V1}, (EP1)

where the set � is define by

� := {(x1, x2) ∈ R
2 | x1 ≥ 0, x2 ≥ 0, x1 − x2 ≥ 0}.

The problem (EP1) is in the form of (P), and we can verify that both assumptions (A) and
(B) are satisfied for this setting.

On the one hand, we can check that the feasible set of problem (EP1) is � (i.e., S = �,
see Fig. 1a) and moreover, it holds that

inf (EP1) = 0. (3.8)

One the other hand, by direct calculation, we see that, for x ∈ S,

∂x f (x, τ ) = {(ν,−1) | −1 ≤ ν ≤ 1} ∪ {(ν, 1) | −1 ≤ ν ≤ 1} for x = (0, 0),

123



118 Journal of Global Optimization (2025) 92:111–133

Fig. 1 (a) The feasible set S is shaded in blue, (b) The extended tangency set �(EP1) is in red

∂x f (x, τ ) = {(1,−1)} for x = (x1, x2) with x1 ≥ x2 > 0,

∂x f (x, τ ) = {(1, 1), (1,−1)} for x = (x1, 0) with x1 > 0,

∂xh1(x, u1) = {(−1,−1)}, max
u1∈V1

h1(x, u1) = −x1 − x2,

N (x;�) = {(a, b) ∈ R
2 | a ≤ 0, a + b ≤ 0} for x = (0, 0),

N (x;�) = {(−a, a) ∈ R
2 | a ≥ 0} for x = (x1, x2) with x1 = x2 > 0,

N (x;�) = {(0, a) ∈ R
2 | a ≤ 0} for x = (x1, 0) with x1 > 0,

N (x;�) = {(0, 0)} for x = (x1, x2) ∈ intS,

where τ ∈ T (x) = {3} and u1 ∈ V1(x) = {0}. Then, the extended tangency variety set (see
Fig. 1b) is given by

�(EP1) = {
x ∈ S | ∃(μ0, μ1) ∈ R

2+, ∃λ ∈ R, (μ0, μ1, λ) �= 0, 0 ∈ μ0co{∂x f (x, τ ) | τ ∈ T (x)}
+ μ1co{∂x h1(x, u1) | u1 ∈ V1(x)} + λx + N (x; �), μ1 max

u1∈V1
h1(x, u1) = 0

}

= {
(x1, x1) ∈ R

2 | x1 ≥ 0
} ∪ {

(x1, 0) ∈ R
2 | x1 > 0

}
,

and so

inf{F(x) | x ∈ �(EP1)} = 0, (3.9)

where F(x) := max
τ∈T f (x, τ ) = |x1| − |x2| for x := (x1, x2) ∈ R

2. From (3.8) and (3.9), we

see that the conclusion of Theorem 3.2 holds for this setting. In fact, we can verify further
that any x∗ := (a, a) with a ≥ 0 is an optimal solution of problem (EP1) and the problem
in the left-hand side of (3.9).

4 Asymptotic conditions for robust optimization problems

This section is devoted to introducing and establishing relations between the notions of
asymptotic robust conditions including robust properness, robust M-tameness and robust
Palais-Smale condition for the uncertain optimization problem (U). These asymptotic robust
conditions provide sufficient criteria that guarantee the solution existence of the robust opti-
mization problem (P) studied in the next section.
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Definition 4.1 Consider the uncertain optimization problem (U) with its robust feasible set
S defined by (1.1).

(i) The problem (U) is called robust proper at a sublevel y ∈ R if
[ ∀{xk}k∈N ⊂ S, ‖xk‖ → ∞, F(xk) ≤ y, k ∈ N

] ⇒ [ |F(xk)| → ∞ as k → ∞]
,

where F(x) := max
τ∈T f (x, τ ) for x ∈ R

n .

(ii) The problem (U) is called robust proper if
[ ∀{xk}k∈N ⊂ S, ‖xk‖ → ∞] ⇒ [ |F(xk)| → ∞ as k → ∞]

.

(iii) The problem (U) is called robust coercive if
[∀{xk}k∈N ⊂ S, ‖xk‖ → ∞] ⇒ [

F(xk) → +∞ as k → ∞]
.

Remark 4.1 (i) The above asymptotic robust concepts can be viewed as extensions from the
coercivity/properness of functions on a set, which provide sufficient conditions for an
unconstrained optimization problem to attain its optimal value, see e.g., [24, 25, 30].

(ii) If the problem (U) is robust coercive, then it is robust proper, and these properties are the
same whenever the optimal value of problem (P) is finite.
The following simple example illustrates a difference.

Example 4.1 Let f : R × T → R and h1 : R × V1 → R be given respectively by

f (x, τ ) := x3 + τ, h1(x, u1) := −x2 − u21, x ∈ R, τ ∈ T , u1 ∈ V1,

where T := [−3, 5] and V1 := [−5, 5]. Let � := R and consider an uncertain optimization
problem of the form (U) as

min
x∈R{ f (x, τ ) | x ∈ �, h1(x, u1) ≤ 0}, (EU2)

where τ ∈ T and u1 ∈ V1 are uncertain. In this setting, we have F(x) := max
τ∈T f (x, τ ) =

x3 + 5 for x ∈ R and the robust feasible set of (EU2) is R, i.e., S := {x ∈ � | h1(x, u1) ≤
0, ∀u1 ∈ V1} = R. Taking any sequence {xk}k∈N ⊂ S satisfying |xk | → ∞, one has
|F(xk)| → ∞ as k → ∞. This means that the problem (EU2) is robust proper. However, it
is not robust coercive as F(xk) → −∞ with xk := −k when k → ∞.

To introduce asymptotic robust properties for the uncertain optimization problem (U),
we consider an extended Rabier function R : S → R for the robust problem (P) by

R(x) := inf
{‖x∗‖ | x∗ ∈ co{∂x f (x, τ ) | τ ∈ T (x)} +

m∑

i=1

μico{∂xhi (x, ui ) | ui ∈ Vi (x)}

+ N (x;�), μi ≥ 0, μi max
ui∈Vi

hi (x, ui ) = 0, i = 1, ...,m
}
, x ∈ S, (4.1)

and define sets of asymptotic values at a sublevel y ∈ R for the robust problem (P) as follows:

K̃∞
y (P) := {y ∈ R | ∃{xk}k∈N ⊂ S, ‖xk‖ → ∞, F(xk) ≤ y, k ∈ N,

F(xk) → y, R(xk) → 0 as k → ∞},
K∞

y (P) := {y ∈ R | ∃{xk}k∈N ⊂ S, ‖xk‖ → ∞, F(xk) ≤ y, k ∈ N,

F(xk) → y, ‖xk‖R(xk) → 0 as k → ∞},
T∞
y (P) := {y ∈ R | ∃{xk}k∈N ⊂ �(P), ‖xk‖ → ∞, F(xk) ≤ y, k ∈ N,
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F(xk) → y as k → ∞},
where �(P) is defined by (3.3). If y = +∞, the above notations can be simply denoted
respectively by K̃ (P), K (P) and T (P).

Definition 4.2 Consider the uncertain optimization problem (U) with its robust feasible set
S defined by (1.1).

(i) The problem (U) is called to satisfy the robust Palais-Smale condition at a sublevel
y ∈ R if K̃∞

y (P) = ∅.
(ii) The problem (U) is called to satisfy the weak robust Palais-Smale condition at a

sublevel y ∈ R if K∞
y (P) = ∅.

(iii) The problem (U) is called to satisfy the robust M-tame condition at a sublevel y ∈ R

if T∞
y (P) = ∅.

Remark 4.2 (i) The above-defined concepts can be regarded as variants and extensions of
a so-called compactness condition/Palais-Smale condition introduced in [23] (see also,
[20]) for the smooth setting, which is stated that, for a differentiable real-valued function
ψ : X → R, if for a sequence {xk}k∈N ⊂ X , ψ(xk) is bounded and ‖∇ψ(xk)‖ → 0 as
k → ∞, then {xk}k∈N contains a convergent subsequence.

(ii) It is clear that K∞
y (P) ⊂ K̃∞

y (P) for y ∈ R. For a special class of polynomial problems,
where there are no uncertainty and constraint functions, i.e., S = � = R

n , we have
inclusions

T∞
y (P) ⊂ K∞

y (P) ⊂ K̃∞
y (P), (4.2)

and moreover these inclusions may be strict, see [15] for more details. However, the first
inclusion in (4.2) (i.e., T∞

y (P) ⊂ K∞
y (P)) might not be valid for the robust problem (P)

in general as the following example shows.

Example 4.2 Let f : R3 × T → R and hi : R3 × Vi → R, i = 1, 2 be given respectively
by

f (x, τ ) := sin(x1 + x2 + x3) + τ − 4,

h1(x, u1) := u1(x
2
2 + x23 ), h2(x, u2) := x33 − |u2| + 3,

where x := (x1, x2, x3) ∈ R
3, τ ∈ T := [−2, 4], u1 ∈ V1 := [1, 5] and u2 ∈ V2 :=

[−9,−7] ∪ [6, 9]. Consider a robust optimization problem in the form of (P) as

min
x∈R3

{max
τ∈T f (x, τ ) | x ∈ �, hi (x, u1) ≤ 0, ∀ui ∈ Vi , i = 1, 2}, (EP3)

where � := R
3. In this setting, the feasible set S of (EP3) is computed by

S := {x ∈ R
3 | x ∈ �, hi (x, ui ) ≤ 0, ∀ui ∈ Vi , i = 1, 2} = {(x1, 0, 0) ∈ R

3 | x1 ∈ R},
and for each x := (x1, 0, 0) ∈ S, τ ∈ T (x) = {4}, u1 ∈ V1(x) = {5} and u2 ∈ V2(x) = {6},
we have

∇x f (x, τ ) = (cos x1, cos x1, cos x1), ∇xh1(x, u1) = (0, 0, 0),

∇xh2(x, u2) = (0, 0, 0), N (x;�) = {(0, 0, 0)},
where ∇xh(x, v) stands for the derivative of h with respect to the first variable x at a given
point (x, v). The extended tangency variety set �(EP3) is given by

�(EP3) = {
x ∈ S | ∃μ := (μ0, μ1, μ2) ∈ R

3+, ∃λ ∈ R, (μ, λ) �= 0, 0 ∈ μ0∇x f (x, τ )
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+
2∑

i=1

μi∇xhi (x, ui ) + λx + N (x;�), τ ∈ T (x), ui ∈ Vi (x), i = 1, 2,

μi max
ui∈Vi

hi (x, ui ) = 0, i = 1, 2
} = S,

and the extended Rabier function R : S → R for the problem (EP3) is given by

R(x) := inf
{‖x∗‖ | x∗ ∈ ∇x f (x, τ ) +

2∑

i=1

μi∇xhi (x, ui ) + N (x;�), τ ∈ T (x),

ui ∈ Vi (x), μi ≥ 0, μi max
ui∈Vi

hi (x, ui ) = 0, i = 1, 2
} =

√
3 cos2 x1, x ∈ S.

Let y := 0 ∈ R. Taking a sequence {xk}k∈N ⊂ �(EP3) with xk := (2kπ, 0, 0) for k ∈ N,
we see that F(xk) = 0 ≤ y for k ∈ N, where F(x) := max

τ∈T f (x, τ ) = sin(x1 + x2 + x3) and

‖xk‖ → ∞ and F(xk) → 0 as k → ∞. Hence, 0 ∈ T∞
y (EP3).

We now show that 0 /∈ K∞
y (EP3). Assume the contrary that 0 ∈ K∞

y (EP3). Then, there
exists a sequence {̃xk}k∈N ⊂ S, where x̃k := (̃x1k, 0, 0), such that

‖x̃k‖ → ∞, F (̃xk) ≤ 0, F (̃xk) = sin x̃1k → 0 and ‖x̃k‖R(̃xk) → 0 as k → ∞,

where R(̃xk) = √
3 cos2 x̃1k for k ∈ N. By taking a subsequence if necessary, we conclude

from ‖x̃k‖R(̃xk) → 0 that cos2 x̃1k → 0 as k → ∞. Then, 1 = sin2 x̃1k + cos2 x̃1k → 0 as
k → ∞, which is impossible. Consequently, 0 /∈ K∞

y (EP3). So we conclude that

T∞
y (EP3) �⊂ K∞

y (EP3).

It is also worth mentioning here that if the problem (U) is robust proper, then we have

K̃∞
y (P) = K∞

y (P) = T∞
y (P) = ∅ for y ∈ R. (4.3)

The following example shows that (4.3) is not a sufficient condition for an uncertain opti-
mization problem to have the robust properness.

Example 4.3 Let f : R2 × T → R and h1 : R2 × V1 → R be given respectively by

f (x1, x2) := x1 − x2 + τ, h1(x, u1) := u1x
2
1 x

2
2 − 1, x := (x1, x2) ∈ R

2, τ ∈ T , u1 ∈ V1,

where T := [−5, 0] and V1 := [−4,−1]. Let � := R
2 and consider an uncertain optimiza-

tion problem in the form of (U) as follows:

min
x∈R2

{ f (x, τ ) | x ∈ �, h1(x, u1) ≤ 0}, (EU4)

where τ ∈ T and u1 ∈ V1 are uncertain. The robust counterpart of (EU4) can be captured by

min
x∈R2

{max
τ∈T f (x, τ ) | x ∈ �, h1(x, u1) ≤ 0, ∀u1 ∈ V1}. (EP4)

In this case, we see that the feasible set S of (EP4) is defined by

S := {x ∈ R
2 | x ∈ �, h1(x, u1) ≤ 0, ∀u1 ∈ V1} = R

2

and the extended tangency variety �(EP4) is computed by

�(EU4) := {
x ∈ S | ∃(μ0, μ1) ∈ R

2+, ∃λ ∈ R, (μ0, μ1, λ) �= 0, 0 ∈ μ0∇x f (x, τ )

+ μ1co{∇x h1(x, u1) | u1 ∈ V1(x)} + λx + N (x;�), τ ∈ T (x), μ1 max
u1∈V1

h1(x, u1) = 0
}
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= {(x1,−x1) | x1 ∈ R}.
Similarly, we can calculate the extended Rabier functionR : S → R for the problem (EP4),
which is given by R(x) = √

2 for x ∈ S.

Now, take any y ∈ R. For any sequence {xk}k∈N ⊂ S, it holds that R(xk) = √
2 for all

k ∈ N, and so K̃∞
y (EP4) = K∞

y (EP4) = ∅. Choosing any sequence {xk}k∈N ⊂ �(EP4)
satisfying ‖xk‖ → ∞ as k → ∞, it holds that xk := (x1k,−x1k) with x1k ∈ R for all k ∈ N

and |x1k | → ∞ as k → ∞. This entails that the sequence F(x1k) = 2x1k does not converge
to some y ∈ R, where F(x) := max

τ∈T f (x, τ ) = x1 − x2 for x := (x1, x2) ∈ R
2. This means

that T∞
y (EP4) = ∅, and consequently,

K̃∞
y (EP4) = K∞

y (EP4) = T∞
y (EP4) = ∅.

However, the problem (EU4) is not robust proper. To see this, just take a sequence {xk}k∈N ⊂
S with xk := (k, k) for k ∈ N. It is clear that ‖xk‖ → ∞ as k → ∞ and F(xk) = 0 for all
k ∈ N.

To proceed, we state the robust qualification conditions for the uncertain optimization
problem (U).

Definition 4.3 Consider the uncertain optimization problem (U) with its robust feasible set
S defined by (1.1).

(i) The problem (U) is called to satisfy the robust qualification (RQ) at x ∈ S if there
does not exist (μ1, ..., μm) ∈ R

m+ \ {0} such that

0 ∈
m∑

i=1

μico{∂xhi (x, ui ) | ui ∈ Vi (x)} + N (x;�). (4.4)

(ii) The problem (U) is called to satisfy the robust qualification (RQ) if it satisfies the (RQ)
at every x ∈ S.

(iii) The problem (U) is called to satisfy the robust qualification at infinity (RQ)∞ if there
exists a real number r > 0 such that (U) satisfies the (RQ) at any x ∈ S with ‖x‖ ≥ r .

Remark 4.3 (i) In the above definition, the concept of (RQ) can be viewed as a development
of the classical Mangasarian-Fromovitz constraint qualification in the smooth setting
(see, e.g. [4, 5, 21, 22] for more details), while the concept of (RQ)∞ reduces to a so-
called regularity at infinity (CQ)∞ in [30], which was stated for a setting of polynomial
functions.

(ii) Obviously, the (RQ) implies the (RQ)∞. However, the inverted statement is not true in
general as the following example illustrates.

Example 4.4 Let hi : R2 × Vi → R, i = 1, 2 be given respectively by

h1(x, u1) := 2(x21 − x22 ) + u1, h2(x, u2) := x1x2 + u2 − 3,

x := (x1, x2) ∈ R
2, u1 ∈ V1, u2 ∈ V2,

where V1 := [−5, 0] and V2 := [−3, 3]. Let f : R2 × T → R be a function and T ⊂ R be
a nonempty compact set. We consider an uncertain optimization problem of the form (U) as

min
x∈R2

{ f (x, τ ) | x ∈ �, hi (x, ui ) ≤ 0, i = 1, 2}, (EU5)
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Fig. 2 The robust feasible set S
of (EU5) is in blue

where � := R
2 and τ ∈ T and ui ∈ Vi , i = 1, 2 are uncertain parameters.

In this setting, we see that the robust feasible set S of (EU5) is computed by

S := {x ∈ � | hi (x, ui ) ≤ 0, ∀ui ∈ Vi , i = 1, 2} = {x ∈ R
2 | |x1| ≤ |x2|, x1x2 ≤ 0},

which is depicted in Fig. 2.
Moreover, it can be verified that the problem (EU5) does not satisfy the (RQ) as it does

not satisfy the (RQ) at x := (0, 0) ∈ S. However, for any r > 0, the problem (EU5) satisfies
the (RQ) at any x ∈ S with ‖x‖ ≥ r . This means that (EU5) satisfies the (RQ)∞.

We are now ready to describe relationships among the asymptotic robust properties of the
uncertain optimization problem (U).

Theorem 4.1 Let the assumptions (A) and (B) hold for the problem (P) with inf (P) > −∞.
Assume that the problem (U) satisfies the (RQ)∞. Then, for any feasible point x of (P), the
following statements are equivalent to each other:

(i) The problem (U) is robust proper at a sublevel F(x), where F(x) := max
τ∈T f (x, τ ) for

x ∈ R
n .

(ii) The problem (U) satisfies the robust Palais-Smale condition at a sublevel F(x).
(iii) The problem (U) satisfies the weak robust Palais-Smale condition at a sublevel F(x).
(iv) The problem (U) is robust M-tame at a sublevel F(x).

Proof We exploit some techniques from the proof of [16, Theorem 3.1]. Observe first by
definition that the assertions (i) ⇒ (ii), (ii) ⇒ (iii) and (i) ⇒ (iv) are straightforward. To
finish the proof, it remains to show that (iii) ⇒ (i) and (iv) ⇒ (i).

(iii) ⇒ (i): Let the problem (U) satisfy the weak robust Palais-Smale condition at F(x),
where x is a feasible point of problem (P), i.e., x ∈ S. Suppose for the contradiction that (U)
is not robust proper at the sublevel F(x). This means that one finds a sequence {xk}k∈N ⊂ S
satisfying

F(xk) ≤ F(x), ∀k ∈ N, ‖xk‖ → ∞ as k → ∞, (4.5)
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and the sequence {|F(xk)|}k∈N is bounded. Put

X := {x ∈ � | F(x) − F(x) ≤ 0, Hi (x) ≤ 0, i = 1, . . . ,m}, (4.6)

where F(x) := max
τ∈T f (x, τ ) and Hi (x) := max

ui∈Vi
hi (x, ui ), i = 1, ...,m for x ∈ R

n . Clearly,

X is unbounded as X contains the squence {xk}k∈N in (4.5).
Since inf (P) > −∞, it follows that lim inf

x∈X , ‖x‖→∞ F(x) exists and is finite, and sowe denote

lim inf
x∈X , ‖x‖→∞ F(x) := ω ∈ R. (4.7)

Consider a function θ : [0,+∞) → R by

θ(r) := inf
x∈X , ‖x‖≥r

F(x), r ∈ [0,+∞).

We see that the function θ is nondecreasing and that θ(r) → ω as r → ∞. This means that
for each k ∈ N, there exists rk > ‖xk‖ such that

−1

k
< θ(r) − ω <

1

k
for all r ≥ rk . (4.8)

Fix k ∈ N. By the definition of θ(3rk), there exists x̃k ∈ X with ‖x̃k‖ ≥ 3rk and

θ(3rk) > F (̃xk) − 1

k
. This, together with (4.8), entails that

F (̃xk) < θ(3rk) + 1

k
≤ ω + 2

k
< θ(rk) + 3

k
(4.9)

and so

F (̃xk) < inf
x∈Sk

F(x) + εk,

where Sk := {x ∈ X | ‖x‖ ≥ rk} and εk := 3

k
. Note that x̃k ∈ Sk and F is bounded from

below on Sk . We apply the Ekeland variational principle (see [11] and also, [21, Theorem

2.26]) to F on Sk and arrive at an assertion that for λk := ‖x̃k‖
2

, there exists vk ∈ Sk such

that the following conditions hold:

(a) F(vk) ≤ F (̃xk),

(b) ‖vk − x̃k‖ ≤ λk,

(c) F(vk) < F(x) + εk

λk
‖x − vk‖ for all x ∈ Sk \ {vk}.

Note that θ(rk) ≤ F(vk) because of vk ∈ Sk . Granting this, we derive from (a) and (4.9) that

θ(rk) ≤ F(vk) < θ(rk) + εk,

which shows that F(vk) → ω as k → ∞. Keeping in mind ‖x̃k‖ ≥ 3rk , we derive from (b)
that

rk <
‖x̃k‖
2

≤ ‖vk‖ ≤ 3‖x̃k‖
2

,

where rk > ‖xk‖. Since ‖xk‖ → ∞ as k → ∞, it holds that ‖vk‖ → ∞ as k → ∞.
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From (c), it shows that vk is a minimizer of ψ := F + εk

λk
‖ · −vk‖ on the set Sk , and so

vk is a minimizer of ψ on the set Ek , where Ek is given by

Ek := {x ∈ � | rk − ‖x‖ ≤ 0, Hi (x) ≤ 0, i = 1, . . . ,m}.
By Lemma 2.3, there exists (μ0, ..., μm+1) ∈ R

m+2+ \ {0} such that

0 ∈ μ0∂ψ(vk) +
m∑

i=1

μi∂Hi (vk) + μm+1∂(rk − ‖ · ‖)(vk) + N (vk;�),

μi Hi (vk) = 0, i = 1, ...,m, μm+1(rk − ||vk ||) = 0. (4.10)

Note that rk < ‖vk‖ and so we conclude by the last equation in (4.10) that μm+1 = 0.
Moreover, by Lemma 2.1 and Lemma 2.2, it holds that

∂ψ(vk) ⊂ ∂F(vk) + εk

λk
IBn,

and under the hypotheses (A) and (B), we use similar arguments of [5, Theorem 3.3] to obtain
that

∂F(vk) ⊂ co{∂x f (vk, τ ) | τ ∈ T (vk)},
∂Hi (vk) ⊂ co{∂xhi (vk, ui ) | ui ∈ Vi (vk)} for i = 1, ...,m.

Therefore, we arrive at

0 ∈ μ0co{∂x f (vk, τ ) | τ ∈ T (vk)} +
m∑

i=1

μico{∂xhi (vk, ui ) | ui ∈ Vi (vk)} + N (vk;�)

(4.11)

+ μ0
εk

λk
IBn, μi max

ui∈Vi
hi (vk, ui ) = 0, i = 1, ...,m. (4.12)

Since the problem (U) satisfies the (RQ)∞, it holds that μ0 > 0. Denoting μ̃i := μi

μ0
≥

0, i = 1, . . . ,m, we derive from (4.11) and (4.12) that

0 ∈ co{∂x f (vk, τ ) | τ ∈ T (vk)}

+
m∑

i=1

μ̃ico{∂xhi (vk, ui ) | ui ∈ Vi (vk)} + N (vk;�) + εk

λk
IBn, (4.13)

μ̃i max
ui∈Vi

hi (vk, ui ) = 0, i = 1, ...,m. (4.14)

We assert by (4.13) that there exists

x∗ ∈ co{∂x f (vk, τ ) | τ ∈ T (vk)} +
m∑

i=1

μ̃ico{∂xhi (vk, ui ) | ui ∈ Vi (vk)} + N (vk;�)

such that ‖x∗‖ ≤ εk

λk
and thus,

R(vk) ≤ εk

λk
≤ 9

k‖vk‖ ,

which shows that ‖vk‖R(vk) → 0 as k → ∞.
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Overall, we find a sequence {vk}k∈N ⊂ S, ‖vk‖ → ∞, F(vk) ≤ F(x), F(vk) → ω and
‖vk‖R(vk) → 0 as k → ∞. This means that ω ∈ K∞

F(x)(P), which results in a contradiction
to K∞

F(x)(P) = ∅. So the implication (iii) ⇒ (i) has been justified.
(iv) ⇒ (i): Let the problem (U) be robust M-tame at F(x), where x is a feasible point of

problem (P), i.e., x ∈ S. Suppose on the contrary that (U) is not robust proper at the sublevel
F(x). Then, as shown in the proof of (iii) ⇒ (i), there exists a sequence {vk}k∈N ⊂ S
such that F(vk) ≤ F(x) for all k ∈ N, ‖vk‖ → ∞ and F(vk) → ω as k → ∞, where
ω := lim inf

x∈X , ‖x‖→∞ F(x) is given as in (4.7).

Let k ∈ N and define the set S̃k := {x ∈ X | ‖x‖2 = ‖vk‖2}, where X is given as in (4.6).
Note that S̃k is a nonempty set because of vk ∈ S̃k . Moreover, since F is continuous and S̃k
is compact, we find x∗

k ∈ S̃k such that

F(x∗
k ) ≤ F(x) for all x ∈ S̃k . (4.15)

This entails that x∗
k is an optimal solution of the following problem:

min{F(x) | x ∈ �, ‖x‖2 − ‖vk‖2 = 0, Hi (x) ≤ 0, i = 1, . . . ,m}.

Using Lemma 2.3, we find (μ0, ..., μm+1) ∈ R
m+2\{0} with μi ≥ 0, i = 0, ...,m such that

0 ∈ μ0∂F(x∗
k ) +

m∑

i=1

μi∂Hi (x
∗
k ) + 2μm+1x

∗
k + N (x∗

k ;�),

μi Hi (x
∗
k ) = 0, i = 1, ...,m.

As above, under the hypotheses (A) and (B), it holds that

∂F(x∗
k ) ⊂ co{∂x f (x∗

k , τ ) | τ ∈ T (x∗
k )}, ∂Hi (x

∗
k ) ⊂ co{∂xhi (x∗

k , ui ) | ui ∈ Vi (x∗
k )}.

Consequently, we arrive at

0 ∈ μ0co{∂x f (x∗
k , τ ) | τ ∈ T (x∗

k )}

+
m∑

i=1

μico{∂hi (x∗
k , ui ) | ui ∈ Vi (x∗

k )} + 2μm+1x
∗
k + N (x∗

k ;�),

μi max
ui∈Vi

hi (x
∗
k , ui ) = 0, i = 1, ...,m,

which shows that x∗
k ∈ �(P).

Consequently, we find a sequence {x∗
k }k∈N ⊂ �(P) ⊂ X such that

F(x∗
k ) ≤ F(x) for all k ∈ N

‖x∗
k ‖ = ‖vk‖ → ∞ as k → ∞. On the one side, by taking (4.7) into account, we see that

ω ≤ lim inf
k→∞ F(x∗

k ). Besides this, it follows by (4.15) that F(x∗
k ) ≤ F(vk) for all k ∈ N,

which yields lim sup
k→∞

F(x∗
k ) ≤ ω inasmuch as F(vk) → ω as k → ∞. Therefore, we assert

that F(x∗
k ) → ω as k → ∞.

In conclusion, ω ∈ T∞
F(x)(P), which results in a contradiction due to T∞

F(x)(P) = ∅. So the
implication (iv) ⇒ (i) has been justified, which completes the proof of the theorem. �
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5 Solution existence for robust optimization problems

In this section, based on the asymptotic robust conditions, we establish necessary and suffi-
cient conditions for the solution existence of the robust optimization problem (P).

Assume that x is a feasible point of the robust optimization problem (P) and put

CF(x)(P) := {F(x) ∈ R | x ∈ S, F(x) ≤ F(x), R(x) = 0} ,

where F(x) := max
τ∈T f (x, τ ), S is the feasible set of (P) defined by (1.1) and R(x) is the

extended Rabier function given by (4.1).
Let us start by providing sufficient conditions in terms of asymptotic robust properties

that guarantee the solution existence for the robust optimization problem (P).

Theorem 5.1 Let the assumptions (A) and (B) hold for the problem (P) with α∗ := inf (P) >

−∞ and let x be a feasible point of (P). Assume that the problem (U) satisfies the (RQ)∞.
Then, the problem (P) admits an optimal solution if one of the following conditions holds:

(i) The problem (U) is robust coercive.
(ii) The problem (U) is robust proper at a sublevel F(x).
(iii) The problem (U) holds for the robust Palais-Smale condition at a sublevel F(x).
(iv) The problem (U) holds for the weak robust Palais-Smale condition at a sublevel F(x).
(v) The problem (U) is the robust M-tame at a sublevel F(x).

Proof Since (i) implies (ii) and under the current assumptions, we assert by Theorem 4.1 that
the assertions in (ii)-(v) are equivalent. Therefore, it suffices to prove that the problem (P)
has an optimal solution whenever (ii) holds. To do so, we assume that the problem (U) is
robust proper at the sublevel F(x). Let us consider a set X given by

X := {x ∈ � | F(x) − F(x) ≤ 0, Hi (x) ≤ 0, i = 1, . . . ,m},
where F(x) := max

τ∈T f (x, τ ) and Hi (x) := max
ui∈Vi

hi (x, ui ), i = 1, ...,m for x ∈ R
n . It

should be noted that X ⊂ S and X is a nonempty set because of x ∈ X . If X is unbounded,
then there exists a sequence {xk}k∈N ⊂ S such that

F(xk) ≤ F(x), ∀k ∈ N, ‖xk‖ → ∞ as k → ∞.

However, we have α∗ ≤ F(xk) ≤ F(x) for every k ∈ N, which means that {|F(xk)|}k∈N
is bounded. This leads to a contradiction to the assumption that the problem (U) is robust
proper at the sublevel F(x). Consequently, X is bounded and hence compact as it is closed.
Moreover, F is continuous. Thus, there is x∗ ∈ X such F(x∗) ≤ F(x) for all x ∈ X . This
entails that x∗ ∈ S and F(x∗) ≤ F(x) for all x ∈ S, i.e., the problem (P) has an optimal
solution x∗. �

The following example illustrates that the asymptotic robust conditions in Theorem 5.1
can be used to justify the solution existence for a robust optimization problem.

Example 5.1 Let f : R2 × T → R and hi : R2 × Vi → R, i = 1, 2 be defined respectively
by

f (x, τ ) := 2τ |x1| + |x2|, h1(x, u1) := |x1| − |x2| + u1, τ ∈ T ,

h2(x, u2) := x1x2 + u2, x := (x1, x2) ∈ R
2, ui ∈ Vi , i = 1, 2,
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where T := [0, 1], V1 := [−1, 0] andV2 := [−3, 0].Let� := R
2 and consider an uncertain

optimization problem in the form of (U) as follows:

min
x∈R2

{ f (x, τ ) | x ∈ �, hi (x, ui ) ≤ 0, i = 1, 2}, (EU6)

where τ ∈ T and ui ∈ Vi , i = 1, 2 are uncertain. The robust counterpart of (EU6) can be
captured by

min
x∈R2

{
max
τ∈T f (x, τ ) | x ∈ �, hi (x, ui ) ≤ 0, ∀ui ∈ Vi , i = 1, 2

}
. (EP6)

We can check that the assumptions (A) and (B) hold for the problem (EP6) and the feasible
set S of (EP6) is given by

S := {x ∈ � | hi (x, ui ) ≤ 0, ∀ui ∈ Vi , i = 1, 2} = {x ∈ R
2 | |x1| ≤ |x2|, x1x2 ≤ 0},

which is depicted in Fig. 2. Moreover, we can verify that α∗ := inf (EP6) ≥ 0 and the
problem (EU6) satisfies the (RQ) at every point x ∈ S\{(0, 0)} and so it satisfies the (RQ)∞.

Take any sequence {xk}k∈N ⊂ S such that ‖xk‖ → ∞ as k → ∞. We see that F(xk) →
+∞ as k → ∞, because F(x) := max

τ∈T f (x, τ ) = 2|x1| + |x2| for x := (x1, x2) ∈ R
2. So

the problem (EU6) is robust coercive. Invoking Theorem 5.1, we conclude that the problem
(EP6) admits an optimal solution. In fact, we can check that x∗ := (0, 0) is an optimal
solution of problem (EP6).

The next theorem provides characterizations of the solution existence for the robust
optimization problem (P).

Theorem 5.2 Let the assumptions (A) and (B) hold for the problem (P) and denote α∗ :=
inf (P). Assume that the problem (U) satisfies the (RQ). Then, the following statements are
equivalent to each other:

(i) The problem (P) admits an optimal solution.
(ii) There exists a feasible point x of (P) such that K̃∞

F(x)(P) ⊂ CF(x)(P) and α∗ > −∞.
(iii) There exists a feasible point x of (P) such that K∞

F(x)(P) ⊂ CF(x)(P) and α∗ > −∞.
(iv) There exists a feasible point x of (P) such that T∞

F(x)(P) ⊂ CF(x)(P) and α∗ > −∞.

Proof We first show that (i) ⇒ (ii) and (i) ⇒ (iv). To do this, assume that (i) holds. This
means that the problem (P) admits an optimal solution, say x . This, in particular, ensures that
α∗ = F(x) > −∞.

To justify (ii), we need to show that

K̃∞
F(x)(P) ⊂ CF(x)(P). (5.1)

This inclusion is obvious if K̃∞
F(x)(P) = ∅. Now, take any y ∈ K̃∞

F(x)(P). Then, there exists
a sequence {xk}k∈N ⊂ S such that ‖xk‖ → ∞, F(xk) → y, R(xk) → 0 as k → ∞ and

F(xk) ≤ F(x) for all k ∈ N.

This entails that F(xk) = F(x) for all k ∈ N because x is an optimal solution of (P).
Since F(xk) → y as k → ∞, we conclude that y = F(x). By Lemma 2.3, there exists
(μ0, ..., μm) ∈ R

m+1+ \{0} such that

0 ∈ μ0∂F(x) +
m∑

i=1

μi∂Hi (x) + N (x;�),
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μi Hi (x) = 0, i = 1, ...,m,

where F(x) := max
τ∈T f (x, τ ) and Hi (x) := max

ui∈Vi
hi (x, ui ) for x ∈ R

n . Under the hypotheses

(A) and (B), we get by similar arguments as in the proof of Theorem 3.1 that

∂F(x) ⊂ co{∂x f (x, τ ) | τ ∈ T (x)}, ∂Hi (x) ⊂ co{∂xhi (x, ui ) | ui ∈ Vi (x)}, i = 1, ...,m.

Therefore, we arrive at

0 ∈ μ0co{∂x f (x, τ ) | τ ∈ T (x)} +
m∑

i=1

μico{∂xhi (x, ui ) | ui ∈ Vi (x)} + N (x;�),

μi max
ui∈Vi

hi (x, ui ) = 0, i = 1, ...,m. (5.2)

Since the problem (U) satisfies the (RQ), it guarantees that μ0 > 0 and so we may assume
without loss of generality that μ0 = 1. By the definition of the extended Rabier function in
(4.1), we get by (5.2) thatR(x) = 0. Therefore, y = F(x) ∈ CF(x)(P), which shows that the
inclusion (5.1) is valid and so (ii) holds. Similarly, we can verify that T∞

F(x)(P) ⊂ CF(x)(P)
and so (iv) holds as well.

By definition, K∞
F(x)(P) ⊂ K̃∞

F(x)(P), we see that (ii) ⇒ (iii) holds.
(iii) ⇒ (i): Assume that (iii) holds, i.e., there exists a feasible point x of (P) such that

K∞
F(x)(P) ⊂ CF(x)(P) and α∗ > −∞. To show that (i) holds, one considers the set X given

by

X := {x ∈ � | F(x) − F(x) ≤ 0, Hi (x) ≤ 0, i = 1, . . . ,m}. (5.3)

It should be noted that X ⊂ S and it is a closed nonempty set because of x ∈ X . If X is
bounded and hence compact, then there is x∗ ∈ X such F(x∗) ≤ F(x) for all x ∈ X . This
entails that x∗ ∈ S and F(x∗) ≤ F(x) for all x ∈ S, i.e., the problem (P) has an optimal
solution x∗.

Otherwise, X is unbounded. Then, there exists a sequence {xk}k∈N ⊂ S such that

F(xk) ≤ F(x), ∀k ∈ N, ‖xk‖ → ∞ as k → ∞. (5.4)

Since α∗ > −∞, it follows that lim inf
x∈X , ‖x‖→∞ F(x) exists and is finite, denoted by ω as in

(4.7). Note that the problem (U) satisfies the (RQ) and thus it satisfies the (RQ)∞. Following
similar arguments as in the proof of (iii) ⇒ (i) in Theorem 4.1, we obtain ω ∈ K∞

F(x)(P),

which shows that ω ∈ CF(x)(P). Thus, there exists x0 ∈ S such that F(x0) ≤ F(x) and
ω = F(x0). As α∗ ≤ ω, we have the following possibilities:

Case 1: α∗ = ω. This shows that α∗ = F(x0) with x0 ∈ S and so the problem (P) has an
optimal solution x0.

Case 2: α∗ < ω. Take a number q ∈ R such that α∗ < q < ω and considering the set

Xq := {x ∈ � | F(x) − q ≤ 0, Hi (x) ≤ 0, i = 1, . . . ,m}.
By the definition of α∗ := inf

x∈S F(x), for ε := q − α∗ > 0, there exists xq ∈ S such that

F(xq) < α∗ + ε = q and so xq ∈ Xq . Moreover, we can verify that the nonempty set Xq is
compact. Hence, there exists x1 ∈ Xq such that F(x1) ≤ F(x) for all x ∈ Xq . This in turn
implies that F(x1) ≤ F(x) for all x ∈ S as Xq ⊂ S, i.e., the problem (P) has an optimal
solution x1. Consequently, in all cases, (i) holds.

To finish the proof of the theorem, we need to justify that (iv) ⇒ (i) holds. Assume that
there exists a feasible point x of (P) such that T∞

F(x)(P) ⊂ CF(x)(P) and α∗ > −∞. Consider
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the nonempty set X given as in (5.3). If X is bounded, then the problem (P) has an optimal
solution x∗ as shown in the proof of (iii) ⇒ (i). In the case, where X is unbounded, we have
the existence of ω in (4.7) and we can find a sequence {xk}k∈N ⊂ S such that (5.4) holds.

With the help of the (RQ), we use similar arguments as in the proof of (iv) ⇒ (i) of
Theorem 4.1 to come to an assertion that ω ∈ T∞

F(x)(P) and so ω ∈ CF(x)(P). Now, the
existence of an optimal solution for the problem (P) is guaranteed by considering Cases 1
and 2 as in the proof of (iii) ⇒ (i). So the proof of the theorem is complete. �

The following example shows how we can use our characterizations in Theorem 5.2 to
determine if a robust optimization problem has an optimal solution or not.

Example 5.2 Let f : R2×T → R and hi : R2×Vi → R, i = 1, 2, 3 be defined respectively
by

f (x, τ ) := (1 − x1x2)
2 + |x2| + τ,

h1(x, u1) := −x1 − |x2| + u1, h2(x, u2) := −x1x
2
2 + x2 − u2,

h3(x, u3) := −x1 − x2 − 2u3, x := (x1, x2) ∈ R
2, τ ∈ T , ui ∈ Vi , i = 1, 2, 3,

where T := [−5, 0], V1 := [−2, 0], V2 := [0, 5] and V3 := [0, 5]. Consider an uncertain
optimization problem of the form (U) as

min
x∈R2

{ f (x, τ ) | x ∈ �, hi (x, ui ) ≤ 0, i = 1, 2, 3}, (EU7)

where � := R
2 and τ ∈ T and ui ∈ Vi , i = 1, 2, 3 are uncertain parameters, and its robust

counterpart as

min
x∈R2

{
max
τ∈T f (x, τ ) | x ∈ �, hi (x, ui ) ≤ 0, ∀ui ∈ Vi , i = 1, 2, 3

}
. (EP7)

In this setting, we can verify that the assumptions (A) and (B) are satisfied, and the feasible
set of (EP7) is calculated by

S := {x ∈ � | hi (x, ui ) ≤ 0, ∀ui ∈ Vi , i = 1, 2, 3}
= {x ∈ R

2 | x2 > 0, 1 − x1x2 ≤ 0} ∪ {x ∈ R
2 | x1 + x2 ≥ 0, x2 ≤ 0}.

For each x := (x1, x2) ∈ S, by direct calculation, we obtain

∂x f (x, τ ) = (2x1x
2
2 − 2x2, 2x

2
1 x2 − 2x1 + 1) if x2 > 0, τ ∈ T (x),

∂xh1(x, u1) = {(−1, 1), (−1,−1)} if x2 = 0,

∂xh1(x, u1) = (−1,−1) if x2 > 0, ∂xh1(x, u1) = (−1, 1) if x2 < 0,

∂xh2(x, u2) = (−x22 , 1 − 2x1x2), ∂xh3(x, u3) = (−1,−1),

u1 ∈ V1(x), u2 ∈ V2(x), u3 ∈ V3(x), N (x;�) = {(0, 0)},
where T (x) = V1(x) = V2(x) = V3(x) = {0}. Then, we can verify that the problem (EU7)
satisfies the (RQ).

Take any feasible point x of problem (EP7), i.e., x ∈ S. We justify that

K̃∞
F(x)(EP7) �⊂ CF(x)(EP7). (5.5)

To see this, observe first that F(x) := max
τ∈T f (x, τ ) = (1 − x1x2)2 + |x2| > 0 for all x ∈ S.

This entails that 0 /∈ CF(x)(EP7). Now, take a sequence {xk}k∈N with xk :=
( k

F(x)
,
F(x)

k

)
.
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Then, it holds that {xk}k∈N ⊂ S, F(xk) = F(x)

k
≤ F(x) for all k ∈ N and ‖xk‖ →

∞ and F(xk) → 0 as k → ∞. For each k ∈ N, we have

R(xk) := inf
{‖x∗‖ | x∗ ∈ co{∂x f (xk, τ ) |τ ∈ T (xk)}

+
3∑

i=1

μico{∂xhi (xk, ui ) | ui ∈ Vi (xk)}

+ N (xk; S), μi ≥ 0, μi max
ui∈Vi

hi (xk, ui ) = 0, i = 1, 2, 3
}

= inf
{‖x∗‖ | x∗ ∈ (0, 1) + μ1(−1,−1) + μ2

( − F2(x)

k2
,−1

) + μ3(−1,−1), μi ≥ 0,

μi max
ui∈Vi

hi (xk, ui ) = 0, i = 1, 2, 3
}
.

Note by μi max
ui∈Vi

hi (xk, ui ) = 0, i = 1, 2, 3 that μ1 = μ3 = 0. Hence, we assert that

R(xk) ≤ F2(x)

k2
, which ensures that R(xk) → 0 as k → ∞. Hence, 0 ∈ K̃∞

F(x)(EP7) and

consequently, (5.5) holds.
By (ii) of Theorem 5.2, we conclude that the problem (EP7) does not have an optimal

solution.

6 Conclusions

In this paper, we have examined the existence of global optimal solutions for nonconvex and
nonsmooth robust optimization problems. Our approach is to first introduce a concept called
extended tangency variety and then show how a robust optimization problemwith a constraint
set can be transformed into a minimizing problem of the extended tangency variety. We have
employed the extended tangency variety together with a constraint qualification condition
and the boundedness of the objective function to establish relationships among the notions
of robust properness, robust M-tamesness and robust Palais-Smale condition related to
the considered problem. The obtained results are then employed to derive necessary and
sufficient conditions for the existence of global optimal solutions to the underlying robust
optimization problem.

It would be interesting to see howwe can develop numerical schemes to verify criteria that
guarantee the solution existence or optimal solutions for the underlying robust optimization
problem. Moreover, analyzing and developing the obtained results to investigate the exis-
tence of optimal solutions for a more general class of robust vector/set-valued optimization
problems is worth further study.
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