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Unsteady flow and mass transfer induced by
Rayleigh-Bénard-Marangoni Convection

Jan Wissink, Fatima Ali and Herlina Herlina

Abstract Evaporative cooling at the water surface is usually modelled by imposing
a constant heat flux at the surface. This boundary condition allows for variations in
the water surface temperature T, which then induce variations in surface tension.
The resulting Marangoni forces tend to move surface water from low surface tension
(high T) regions to high surface tension (lowT) regions. To study the combined effect
of buoyancy andMarangoni forces on interfacial mass transfer, (fully resolved) direct
numerical simulations have been performed. The simulations were carried out for
a fixed macro Rayleigh number of RaL = 21200 and a variety of Marangoni (Ma)
numbers to assess the relative importance of buoyancy and Marangoni forces on the
air-water mass transfer. It is known that both forces tend to reinforce one another
even though the underlying physical mechanisms are different. This is highlighted
in the present results showing that Marangoni forces, acting at the water surface,
induce very efficient mixing of dissolved gases (as well as heat) in a well-defined
layer adjacent to the surface. Buoyant convection, on the other hand, tends to cause
deep penetration of plumes of cold, saturated water into the bulk.
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1 Introduction

The motivation behind this study is to gain a better understanding of the heat and
mass transfer process across the air-water interface in natural water bodies. A specific
example of this phenomenon is the heat and atmospheric gas transfer across the
interface of lakes and reservoirs. It is vital to accurately predict the transfer rate in
order to generate a definitive global heat and greenhouse gas budget. In this context,
wind shear is commonly recognized as the primary factor responsible for generating
turbulence, which supports the interfacial heat and mass flux [1], [2]. Typically,
other sources of turbulence, such as buoyancy, are often overlooked. However, there
has been a growing interest in buoyancy-driven heat and gas transfer resulting from
surface cooling, especially in lakes and ponds with low wind speeds [3], [4], [5].
During this process, surface cooling, often caused by evaporation, leads to the
formation of plumes and sheets of relatively dense, cold water. These cold-water
(gas-saturated) plumes plunge down while being replaced by warmer bulk water
that is not fully saturated, thus facilitating the heat and gas transfer across the water
surface.

Surface cooling is known to create an unstable density gradient and can also
cause variations in surface tension due to localized changes in temperature. These
variations in surface tension give rise to Marangoni forces, which induce flows from
regions of low surface tension (high temperature) to regions of high surface tension
(low temperature). Consequently, buoyancy- and/or Marangoni-induced convective
instabilities lead to the formation of convection cells at the surface [6], [7]. The
characteristic pattern of these convection cells reveals the existence of one or more
regions with elevated temperature within their structure [8]. Additionally, it demon-
strates that individual cells are separated by narrow regions characterized by lower
temperatures. Numerous theoretical and experimental studies have been conducted
to explore the onset of the underlying instability and the resulting formation of con-
vection cell patterns [9], [10], [11], [12].Many of these investigationsweremotivated
by applications in the field of chemical engineering and involved the utilization of a
relatively thin fluid layer that was confined by a solid wall with a no-slip boundary
condition. These studies demonstrated that within such thin fluid layers, horizon-
tal temperature-gradient-induced Marangoni forces, in conjunction with buoyancy
forces, promote themixing of cooler surface water with warmer water from the upper
bulk region [13], [14].

In previous numerical simulations of buoyancy-driven heat transfer across the
air-water interface two approaches were commonly used: prescribing a constant tem-
perature [8] or a constant heat flux [15], [16]. Unlike simulations where the surface
temperature remains constant, constant-heat-flux simulations generate variations in
surface temperature that results in the generation of Marangoni forces. It should be
noted that in previous numerical investigations on the effect of these forces on interfa-
cial mass transfer, theMarangoni forces were surfactant-concentration-induced [17],
[18]. Even tiny amounts of surfactants were found to significantly inhibit interfacial
mass transfer. Despite the potentially significant impact of Marangoni forces on heat
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and mass transfer coefficients, the surface-temperature-induced ones were ignored
in previous numerical studies.

Recently, a numerical study of the combined effect of buoyancy and Marangoni
forces on developing interfacial heat transfer, was performed by Wissink and Her-
lina [19]. It was found that at a fixed Rayleigh number the Marangoni-force-induced-
mixing of water from the surface and from the upper bulk resulted in a progressively
earlier onset of the so-called Rayleigh-Bénard Marangoni (RBM) instability with
increasing Marangoni number. Hence, it is to be expected that also the impact of
Marangoni forces on interfacial mass transfer will be non-negligible.

In the paper we will present results of a series of fully resolved three-dimensional
direct numerical simulations (DNS) that study the initial development of the RBM
instability and its effect on interfacial mass transfer at a Rayleigh number of RaL =

21200 and a variety of Marangoni (Ma) and Schmidt (Sc) numbers. The results
presented will show the development of convection cells from initially random
disturbances added to the temperature field at t = 10 s, thereby highlighting the
influence of Marangoni-forces on the instantaneous surface mass transfer velocity.
Also, the effect of Marangoni forces on the scaling of the horizontally-averaged mass
transfer KL as a power of the Schmidt number will be investigated.

2 Numerical Aspects

The in-house numerical code employed was especially developed to produce fully
resolved simulations of the subsurface flow and scalar fields. It allows for the ap-
plication of a dual mesh, where the evolution of the velocity and temperature fields
are calculated on the base mesh, while the evolution of the low-diffusivity scalars
are calculated on a refined mesh. To normalise the components of the Navier-Stokes
equations, the length scale L = 0.01m is used together with the velocity scale
U = κ/L m/s, where κ is the thermal diffusivity. As a result, using the Einstein
summation convention, the continuity equation reads

∂uk
∂xk
= 0 (1)

and the momentum equations read

∂ui
∂t
+
∂uiu j

∂xj
= −

∂p
∂xi
+ Pr

∂2ui
∂xj∂xj

+ RaL Pr T?δi3 i = 1, . . . ,3, (2)

where u1,u2,u3 are the normalised velocity components in the x1, x2, x3 direction,
respectively, with x1 = x, x2 = y, x3 = z, p is the universal pressure, δi j is the
Kronecker delta,

T? =
Tb,0 − T

L(∂T/∂z)|S
(3)
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is the nondimensional temperature, where Tb,0 is the intital temperature in the bulk,
which is normalised using the heat flux at the surface and the length scale L (note
that the subscript "S" denotes the water surface),

RaL =
α (∂T/∂z)|S gL4

κν
(4)

is the Rayleigh number, where α is the thermal expansion rate, g = −9.81m/s2 is
the gravitational acceleration, ν is the kinematic viscosity, and

Pr =
ν

κ
= 7 (5)

is the Prandtl number corresponding to a temperature of T = 20◦C. The Marangoni
number, finally, is defined by

MaL =
(∂σ/∂T) (∂T/∂z)|S L2

µκ
, (6)

where µ is the dynamic viscosity.
The scalar transport equations are solved in parallel with the Navier-Stokes equa-

tions. They consist of the convection-diffusion equations for the temperature

∂T?

∂t
+
∂u jT?

∂xj
=

∂2T?

∂xj∂xj
, (7)

and the normalised scalar concentrations C? = C/CS (where CS is the saturation
concentration), given by

∂C?

∂t
+
∂u jC?

∂xj
=

Pr
Sc

∂2C?

∂xj∂xj
, (8)

where Sc is the Schmidt number defined by the ratio of the momentum diffusivity
of the fluid and the mass diffusivity of the dissolved substance D.

2.1 Discretisations and Boundary Conditions

The discretisation of the momentum equations is carried out using fourth-order
central discretisations of the convection and diffusion, while the Poison equation
for the pressure is solved using the conjugate gradient method with diagonal pre-
conditioning.

The convection-diffusion equations for the temperature and the normalised scalar
concentrations C? = C/CS (where CS is the saturation concentration) are solved
using a fifth-order WENO scheme for the convection and a fourth-order central
discretisation for the diffusion. The code is parallelised by dividing the computational
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mesh in several blocks of identical size. Each block is allocated to a unique processing
core, while communication between cores is done using theMPI protocol. The cubic
computational domain, of size 5L ×5L ×5L, is periodic in the horizontal directions.
The surface is assumed to be flat with zero vertical velocity, fully saturated scalar
concentrations and a fixed temperature flux to model evaporative cooling. The effect
of Marangoni forces on the horizontal velocity components is modelled by

∂u
∂z = −MaL

∂T?

∂x

���
S

∂v
∂z = −MaL

∂T?

∂y

���
S

, (9)

where the temperature derivatives are taken at the water surface. At the bottom, zero
flux conditions are employed for all scalars in combination with a free-slip condition
for the velocity.

2.2 Grid Resolution

In all simulations a 200 × 200 × 252 mesh was used to discretise the 5L × 5L × 5L
computational domain. In the horizontal directions the mesh was chosen to be
uniform, while in the vertical direction the mesh was gradually refined towards the
surface in order to resolve the thin thermal and concentration boundary layers.

Run D1 D2 D3 D4 D5 D6 D7 D8 D9

MaL −1050 −250 0 250 550 800 1050 2700 5250
Table 1 Overview of macro Marangoni numbers. In all simulations, RaL = 21200 and the
refinement factor for the scalar mesh with Sc = 50, 100, 200 was R = 2.

In table 1 an overview is presented of the simulations discussed in this paper.
All simulations employ the same Rayleigh number, RaL = 21 200, combined with
a variety of Marangoni numbers. The Prandtl number was set to Pr = 7 and the
Schmidt numbers employed in the simultaneously solved scalar transport equations
were Sc = 50,100,200. Note that all passive scalars were solved by refining the base
mesh with a factor of 2, while the temperature was solved on the 200 × 200 × 252
base mesh.

Figure 1 shows the maximum ratio over time of the geometric mean of the grid
cell size

∆ = 3
√
δx × δy × δz, (10)

and the scaled horizontally-averaged Batchelor length scale at Sc = s (or Pr = s)

〈π ηB,s〉x,y, (11)
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Fig. 1 Ratio of geometric mean of grid cells to (a) Batchelor scale at Sc = 16 (for base mesh) and
(b) Batchelor scale at Sc = 100 (for two times refined mesh).

where δx, δy, δz are the mesh sizes in the x, y, z-directions. It can be seen that in
all simulations, the ratio ∆/〈π ηB,s〉x,y is less than one for both s = 7 (resolved on
the base mesh) and s = 200 (resolved on the two times refined mesh). Additionally
(not shown here), in all simulations the linear (diffusive) part of the concentration
boundary layer, located adjacent to the surface, is fully resolved by at least 4 grid
points. Hence, according to the Grötzbach criterion, the scalar fields adjacent to the
surface are sufficiently well resolved. Please note that for the convection part of the
transport equations, a WENO scheme is used that is capable of resolving very steep
gradients.

3 Results

The paper focuses on studying the mass transfer during the initial development of the
RBM instability and the simulations were stopped some time after the first plumes
started to fall down.

3.1 Instantaneous Mass Transfer

The RBM instability combines the effects of buoyancy forces and Marangoni forces.
The former are responsible for the formation of thermal plumes that results from
the accumulation of cold (relatively heavy) water near the surface. This process
continues until sufficient potential energy is obtained to overcome diffusive forces
resulting in cold water plumes penetrating relatively deep into the bulk. Marangoni
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forces, on the other hand, result from local differences in surface tension, where a
force is generated moving fluid from low surface tension (high T |S) regions to high
surface tension (low T |S) regions. For a more detailed description see [19]. Both
instabilities tend to reinforce one another even though the Marangoni forces only act
at the surface and, hence, do not result in deep penetrative convection.

The surface heat flux continuously cools the instantaneous surface temperature
T |S , which results in an initial thickening of the thermal boundary layer. Simultane-
ously, also the concentration boundary layer thickens in time, which, in turn, results
in a reduction of the instantaneous mass transfer velocity

kL =
���� −1

C − Cb

1
Re Sc

∂C
∂z

����
S

���� . (12)

Some time after the RBM instability starts to develop from the initially random
disturbances, eventually T |S becomes increasingly non-uniform. In areas where the
thermal boundary layer grows, generally also the concentration boundary layer be-
comes thicker so that kL reduces.On the other hand, in areaswherewarm, unsaturated
fluid from the (upper) bulk moves upwards both T |S and kL become larger. Figure 2
illustrates the effect of the RBM instability in simulation D9 by comparing snap-
shots of the instantaneous surface temperature T and the instantaneous mass transfer
velocity kL at Sc = 100 for t = 20,28,35,58 s, where the first two time-instances
t = 20,28 s correspond to the times where the horizontally-averaged kL is minimum
and maximum, respectively (see also figure 4). In this time-interval, increasingly
well-defined convection cells can be seen to develop. Each convection cell consists
of one or more upflow areas where relatively warm water from the lower thermal
boundary layer flows to the surface, where it continues to flow in the radial direction
as it cools down. At locations where two convection cells meet, the now relatively
cold water is transported back down into the upper bulk. In time, the size of the
convection cells can be seen to increase significantly. At t = 20 s, areas of low T |S
can be seen to correlate well with areas of low kL , while areas of high T |S correlate
well with areas of high kL . At later times, this correlation very gradually reduces.
At t = 58 this deterioration can be seen most clearly. It is (partially) linked to an
increased variation of kL as reflected in the absence of kL maxima in the middle of
large convection cells (where peaks in T can clearly be observed) and the presence
of local peaks of high instantaneous mass transfer in most of the smaller convection
cells (which do correspond to peaks in T |S). The peaks in the small convection
cells are associated with small vortical structures immediately underneath the water
surface that actively promote the local upflow of unsaturated, warm water from the
lower thermal boundary layer resulting in the emergence of relatively small (often
elongated) convection cells with a more intense mixing than in the larger cells). The
emergence of these small surface-parallel) vortices are typical for the Marangoni
instability and result in a locally increased vertical mixing.

Figure 3 shows snapshots from simulation D9 of the temperature T and the
concentration C100 at Sc = 100 in the plane y/L = 2.5, taken at the same time
instances as the snapshots of the instantaneous surface temperature and mass transfer
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(a)

(b)

(c)

(d)

Fig. 2 Snapshots from simulation D9 of the instantaneous surface temperature and mass transfer
velocity at Sc = 100 and (a) t = 20 s., (b) t = 28 s., (c) t = 35 s. and (d) t = 58 s.
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in figure 2. It can be seen that at t = 20 s the thermal boundary layer shows almost
no disturbances (due to the relatively large thermal diffusivity with Pr = 7), while
the concentration boundary layer at Sc = 100 shows very small disturbances. In
time these disturbances grow and at t = 28 s these disturbances also become clearly
visible in the thermal boundary layer in the form of diffused thermal plumes. Because
of the relatively high Schmidt number of Sc = 100, the concentration contours
are much less diffused and clearly show the typical mushroom-shape that is often
associatedwith the initial formation of thermal plumes driven by buoyant convection.
In time, these plumes gradually merge such that their number reduces while their
size increases. As a result, at t = 58 s only two plumes remain visible in the plane
y/L = 2.5, while due to significant differences in diffusion, the correlation between
T and C100 gradually reduces.

3.2 Horizontally-Averaged Statistics

Figure 4 shows the development in time of the horizontally-averaged mass transfer
velocity

KL = 〈kL〉x,y (13)

for all simulations D1-D9 listed in table 1. It can be seen that at a fixed Rayleigh
number RaL , an increase in the Marangoni number results in an earlier onset of
the RBM instability, as identified by KL starting to deviate from its laminar value
that is identified by the lower envelope of the curves (up to t ≈ 95 s). While the
positive Marangoni numbers used in simulations D4-D9 result in a promotion of the
RBM instability, negative Marangoni numbers (simulations D1,D2) can be seen to
progressively inhibit the RBM instability as the onset of growth in KL is delayed
compared to the purely buoyant simulation D3, where MaL = 0.

Figure 5 investigates (at a fixed RaL = 21200) the dependence of KL/U on (a)
MaL for Sc = 50,100,200 and (b) Sc for a variety of Marangoni numbers MaL at
the time where KL/U is maximum (see figure 4). In figure 5a, it can be seen that
with increasing Schmidt number, not only KL/U reduces for fixed MaL , but also
that at each fixed Sc, the rate of increase in KL/U with increasing MaL is reduced.
Figure 5b indicates the existence of a power-law relation

KL

U
∝ Scn (14)

for each fixedMarangoni number (with n dependent on MaL). For the purely buoyant
simulation D3, with MaL = 0, the slope of n = −0.49 is very close to the theoretical
slope of n = −0.5 obtained in [8], which is valid for simulations with a free-slip
surface boundary condition for the velocity (such as obtained when MaL = 0).
For MaL , 0, the slope n can be seen to noticeably deviate from −0.50. This is
especially clear for larger MaL , where the slope gradually changes from n ≈ −0.50
to n = −0.40 for simulation D9 with MaL = 5250.
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(a)

(b)

(c)

(d)

Fig. 3 Snapshots from simulation D9 of the instantaneous temperature T and concentration C100
at Sc = 100 and (a) t = 20 s., (b) t = 28 s., (c) t = 35 s. and (d) t = 58 s.
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Fig. 4 Temporal evolution of KL for various Marangoni numbers at fixed RaL = 21200 and
Sc = 100.

In our previous work [18] it was shown that progressive damping of near surface
turbulence leads to a gradual change of slope from n = −0.5 to n = −2/3 (corre-
sponding to the value obtained for a no-slip surface boundary condition). Similarly,
here it is also expected that a change in MaL from MaL = 0 to increasingly negative
values of MaL will result in a similar change in slope n.

4 Conclusions

Fully resolved numerical simulations were performed to study interfacial mass trans-
fer driven by an emerging Rayleigh-Bénard-Marangoni instability induced by em-
ploying a fixed surface heat flux to model evaporative cooling. The study focusses
on the effect Schmidt and Marangoni numbers and uses a fixed Rayleigh number of
RaL = 21200.

In our previous paper [19] it was shown that with increasing MaL , the speed at
which the RBM instability develops significantly increases. It was also shown that,
due to the fact thatMarangoni forces act only at the surface, the (cold, saturated) fluid
pushed down into the lower boundary layer by the Marangoni forces tends to linger
close to the surface until sufficient cold fluid has accumulated for buoyancy forces to
take charge and transport the saturated, cold fluid further down into the bulk. In this
paper it was shown that the generation of shear by the presence of Marangoni forces
caused a change in the scaling of the mass transfer velocity with Schmidt number,
where the slope in the power law KL ∝ Scn changes from n ≈ −0.50 at MaL = 0
(free-slip condition) to n = −0.40 at MaL = 5250.

The combined effect of Rayleigh and Marangoni number on the above scaling is
yet to be determined and will be the focus of a follow-up study.
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Fig. 5 Variation of KL (at the time where KL is maximum) a) with MaL for different Sc. b)
with Sc for different MaL . The fitted slope n (KL ∝ Scn) is obtained using the data points of
Sc = 50, 100, 200. In all simulations RaL = 21200.
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