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Abstract: Camera and LiDAR data fusion has been a popular research area, especially
in the field of autonomous vehicles. This study evaluates the efficiency and accuracy
of different depth point extraction methods, including Point-by-Point (PbyP), Complete
Region Depth Extraction (CoRDE), Central Region Depth Extraction (CeRDE), and Grid
Central Region Depth Extraction (GCRDE), across object categories such as person, bicycle,
car, bus, and truck, and occlusion levels ranging from 0 to 3. The approaches are assessed
based on extraction time, accuracy, and root mean squared error (RMSE). Bounding box-
based methods, such as PbyP and CoRDE, consistently show slower extraction times
compared to segmentation mask methods, with CeRDE being the most efficient in terms
of computational speed. However, segmentation mask methods, particularly CeRDE and
GCRDE, offer superior accuracy, especially for complex objects like trucks and cars, where
bounding box methods struggle, particularly at higher occlusion levels. In terms of RMSE,
segmentation mask methods consistently outperform bounding box methods, providing
more precise depth estimations, particularly for larger and more occluded objects. Overall,
segmentation mask methods are preferred for applications where accuracy is critical,
despite their slower processing speed, while bounding box methods are suitable for real-
time applications requiring faster depth extraction. GeRDE offers a balance between speed
and accuracy, making it ideal for tasks needing both efficiency and precision.

Keywords: computer vision; LiDAR; light detection and ranging; object detection; multi-
sensor fusion; distance measurement; real-time depth extraction; semantic depth sensing;
autonomous vehicles

1. Introduction
In recent years, the demand for accurate and robust perception systems in autonomous

vehicles, robotics, and other computer vision applications has led to the development of
multi-sensor fusion techniques. Combining data from various sensors, such as Light
Detection and Ranging (LiDAR) devices and cameras, enables more comprehensive and
reliable scene understanding. Cameras provide high-resolution color images that capture
texture and appearance, while LiDAR generates three-dimensional (3D) point clouds that
offer precise spatial information, including distance measurements and object shapes. Each
sensor has its strengths and weaknesses: cameras are affected by lighting conditions, and
LiDAR lacks rich appearance information but excels at measuring distances accurately.
Thus, fusing data from both types of sensors can significantly improve the performance of
perception systems, especially for tasks like object detection and distance estimation.
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Traditionally, LiDAR-camera fusion involves projecting LiDAR point cloud data onto
the camera image plane using extrinsic and intrinsic calibration parameters, where the
LiDAR points within the camera’s field of view are used to enhance perception tasks. This
fusion typically includes combining spatial information (i.e., the 3D positions) from LiDAR
with appearance features from camera images, followed by applying object detection
algorithms to locate and classify objects. After detecting objects, the challenge lies in
associating LiDAR points with object bounding boxes to determine their precise distances.

This research proposes three novel approaches for extracting object distances using
camera-LiDAR sensor fusion: Complete Region Depth Extraction (CoRDE), Central Region
Depth Extraction (CeRDE), and Grid Central Region Depth Extraction (GCRDE). Each
method focuses on improving distance estimation accuracy by leveraging sparse depth
maps generated from LiDAR data and refining object-specific distance calculations using
object detection results. By comparing the three methods, this study aims to highlight
the strengths and limitations of each approach, providing insights into more accurate and
efficient distance estimation for real-time applications such as autonomous driving.

1.1. Research Questions and Motivation

This study aims to investigate object distance estimation using camera-LiDAR sensor
fusion under varying levels of occlusion. While previous methods primarily focus on fully
visible objects using raw point cloud data, our approach considers easy, moderate, and
hard occlusion scenarios and uses a projected transparent sparse depth map to speed up
the process. Based on this motivation, we address the following research questions.

1. How can object distance be accurately estimated from fused camera-LiDAR data in
the presence of different occlusion levels?

2. How do the bounding box and the segmentation-based depth extraction methods
perform under easy, moderate, and hard occlusion conditions?

3. Can the transparent sparse depth map projected from LiDAR data provide sufficient
information for reliable object distance estimation despite the lack of intermediate
depth data?

1.2. List of Main Contributions

The following is a list of the main contributions that this work makes:

1. We propose a camera-LiDAR fusion pipeline that generates transparent Sparse Depth
Images and normalizes depth values for accurate spatial mapping.

2. We introduce three novel object depth extraction methods. Complete Region Depth
Extraction (CoRDE), Central Region Depth Extraction (CeRDE), and Grid Central
Region Depth Extraction (GCRDE).

3. We fuse YOLOv8 object detection with LiDAR clustering to improve depth estimates
for object regions.

4. We evaluate our methodologies on objects in the KITTI dataset with different occlusion
levels, evaluating mean time and point, accuracy, and root mean square error (RMSE),
through a truth table.

5. Our findings show the advantages of segmentation masks compared to bounding
boxes in object distance estimation and establish CeRDE as a method that effectively
balances precision and speed.

1.3. Brief Description of the Following Paper Sections

The subsequent sections of the article are structured as follows. Section 2 examines
related work on camera-LiDAR fusion and object distance estimation. Section 3 defines our
suggested methodology, which encompasses the generation of transparent depth image
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generation, YOLOv8 detection, and three depth point extracting strategies for estimating
distance. Section 4 shows the evaluation procedure, which involves the description of
the dataset, the generation of the ground truth table, and analysis formulas. Section 5
delineates the implementation results and comparative evaluations. Section 6 ultimately
concludes this study and defines further research.

2. Related Works
Multi-sensor fusion has been a popular research area, especially in the field of au-

tonomous vehicles, where accurate environmental perception is critical. Combining LiDAR
and camera data has been shown to improve object detection, tracking, and distance
estimation compared to using a single sensor. Several existing approaches aim to fuse
LiDAR and camera data at different levels, including early fusion, late fusion, and deep
fusion techniques.

In early fusion, sensor data are combined at an early stage of processing, allowing
the perception system to utilize raw data from multiple sensors. One common approach
is to project LiDAR points onto the camera image plane, aligning the data in 2D space
using calibration parameters. Geiger et al. employed this technique for depth estimation
in urban environments [1]. Charles et al. proposed an early fusion technique where RGB
images and depth information from LiDAR are fused to enhance object detection [2]. The
fused data are then passed through a neural network for classification. However, early
fusion methods may struggle to handle differences in sensor resolution and noise from
each modality, limiting their effectiveness in certain scenarios.

Late fusion involves fusing the sensor data after independent feature extraction from
each modality. Ku et al. introduced a 3D object detection system where features from
LiDAR point clouds and camera images are extracted separately using convolutional neural
networks (CNNs) before being combined for final object detection [3]. Late fusion methods
offer flexibility in handling sensor-specific noise and characteristics, but may miss potential
correlations between raw sensor data.

Deep learning methods for sensor fusion have become increasingly prominent due
to their ability to learn very complicated feature representations. Chen et al. introduced
Multi-View 3D (MV3D), a framework that processes LiDAR point clouds and RGB images
to generate 3D object proposals and performs detection in a joint 2D-3D space [4]. Sim-
ilarly, the PointPainting method paints LiDAR point clouds with semantic information
from image segmentation, enabling the network to leverage both 2D and 3D data for
improved detection [5]. However, deep fusion techniques frequently require large amounts
of annotated data and considerable processing resources, making them challenging for
real-time applications.

In distance estimation, multiple strategies have been explored to accurately deter-
mine object distances using LiDAR and camera fusion. Nabati et al. demonstrated a
camera-radar sensor fusion architecture for precise object detection and the estimation of
distance in autonomous driving contexts [6]. Their approach utilizes radar view and RGB
images, employing a middle-fusion technique to combine these data sources effectively [6].
Similarly, a study by Favelli et al. proposed an accurate data fusion technique between a
stereolabs ZED2 camera and a LiDAR sensor to determine object distance, hence improving
the vehicle’s perception capabilities [7].

Sparse depth maps derived from LiDAR data are increasingly used in fusion tasks
to address the low spatial resolution of LiDAR sensors. Sparse-to-dense depth estimation
methods have been explored, where sparse LiDAR points are used to estimate dense depth
maps corresponding to the camera’s field of view. This technique allows for better handling
of regions where LiDAR data may be sparse, such as at far distances or occluded areas.
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Work by Ma et al. demonstrated an efficient depth completion approach that combines
sparse depth measurements from LiDAR with RGB images using a deep neural network,
improving depth map quality [8]. Additionally, the Sparse LiDAR and Stereo Fusion
(SLS-Fusion) method integrates data from LiDAR and stereo cameras through a neural
network for depth estimation, resulting in enhanced dense depth maps and improving 3D
object detection performance [9].

In addition to the above, transformer-based multi-modal fusion and attention-based
camera-LiDAR fusion architectures have recently emerged as powerful tools for camera-
LiDAR fusion. BAFusion [10] introduces a bidirectional attention fusion module for 3D ob-
ject detection in autonomous driving. It uses cross-attention and a cross-focused linear atten-
tion fusion layer to improve performance, particularly for smaller objects. FusionViT [11]
introduces a vision transformer-based 3D object detection model that outperforms existing
methods and image-point clouds deep fusion approaches in real-world object detection
benchmark datasets. Moreover, CLFT [12], LCPR [13], and CalibFormer [14] propose a
network that is a view converter-based network for semantic segmentation, location identifi-
cation, and automatic LiDAR camera calibration, respectively, enhancing multimodal place
recognition and robustness to viewpoint changes in autonomous vehicles by combining
LiDAR point clouds with multi-view RGB images.

Recent studies have introduced innovative methods to further enhance camera-LiDAR
fusion for distance estimation and 3D object detection. Dong et al. proposed SuperFusion, a
multilevel fusion network integrating LiDAR and camera data for the creation of long-range
HD maps [15]. Similarly, Dam et al. introduced AYDIV, a framework that incorporates
a tri-phase alignment method to improve long-distance detection [16]. AYDIV addresses
challenges arising from data discrepancies between the sparse data of LiDAR and the
high resolution of cameras, improving performance on datasets like Waymo Open Dataset
and Argoverse2 [16]. Another notable contribution is that Kumar et al. proposed an
approach for multi-sensor fusion, where LiDAR and camera data are integrated to enhance
both object detection and distance estimation. Their method needs relatively clear object
visibility, like fully visible or minimally occluded objects, to ensure accurate distance
predictions [17]. In contrast, the methods proposed in our study are designed to operate
effectively across varying levels of object visibility, including easy, medium, hard, and
unknown cases. By utilizing the transparent sparse depth maps and object detection
outputs, the proposed approaches aim to offer robust distance estimation even under
partial occlusion or challenging perception conditions, addressing real-world scenarios
where objects are not always fully observable.

Object detection plays a critical role in multi-sensor fusion systems, especially for
tasks involving depth estimation from LiDAR and camera data. The YOLO (You Only
Look Once) family of models has been widely adopted due to its high detection speed and
competitive accuracy. Recent versions, including YOLOv7 [18], YOLOv8 [19], YOLOv9 [20],
and YOLOv10 [21], support both bounding box detection and instance segmentation,
making them suitable for tasks requiring detailed spatial information.

Earlier YOLO versions, such as YOLOv3 [22], YOLOv4 [23], YOLOv5 [24], and
YOLOv6 [25], only support bounding box detection and do not provide native segmentation
mask output. This limitation reduces their effectiveness for tasks that require pixel-level
accuracy, such as extracting depth values from specific object regions in sparse depth maps
through Camera-LiDAR fusion.

This study chose YOLOv8 due to its balance of performance, speed, and ease of
integration. YOLOv8 is lightweight and optimized for real-time applications, which aligns
with the goals of this work, where fast and reliable detection is necessary for accurate depth
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extraction from sparse LiDAR data. It is particularly useful for methods requiring precise
object localization to extract depth values from segmented regions.

Building on the advancements in LiDAR-camera fusion, this research proposes three
novel methods aimed at improving object distance estimation. These methods take ad-
vantage of the transparent sparse depth maps generated from LiDAR data, combined
with object detection results from the camera, to refine distance estimates. The CoRDE
calculates object distances by extracting all pixel values within the detected bounding box
and averaging their distances. The CeRDE focuses on the central region of the object to
mitigate errors caused by sparse LiDAR points, while the GCRDE subdivides the object
region into smaller grids, performing depth extraction for each grid cell to achieve a more
reliable overall distance estimate. These approaches aim to address challenges associated
with sparse LiDAR data and noisy object detection results, offering a more accurate and
efficient solution for distance estimation.

3. Methodology
This methodology outlines a novel approach for object detection and distance mea-

surement that integrates camera and LiDAR data by converting point-cloud data into a 2D
transparent Sparse Depth Image. A detailed description of each algorithm can be found in
Appendix A.

3.1. LiDAR-Camera Processing Pipeline

The CoRDE pipeline fuses the camera and LiDAR point clouds to generate accurate
depth estimates for object detection and segmentation, as shown in Figure 1a.

(a) CoRDE: Complete Region Depth Extraction.

(b) CoRDE: CeRDE: Central Region Depth Extraction.

Figure 1. Cont.
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(c) GCRDE: Grid Central Region Depth Extraction.

Figure 1. Comparison of the three proposed pipelines for object distance estimation using camera-
LiDAR fusing with Semantic 3D Depth Sensing. (a) CoRDE pipeline integrates LiDAR data and
camera inputs to generate a transparent sparse depth map and extract the minimum pixel value from
the complete bounding box or segmentation region in the sparse depth map. (b) CeRDE focuses on
the central area of each detected object, extracting the minimum value from an (n × n) region around
the center point. (c) GCRDE applies a grid over the detected region and extracts min depth value
from (n × n) area centered on each grid cell. The most frequently occurring depth group among these
values is used as the final estimate.

Initially, a transparent sparse depth map is created from the LiDAR point cloud using
the provided calibration file. The YOLOv8 model is applied to the image to detect objects,
outputting bounding box coordinates and segmentation masks. These outputs are then
mapped onto the transparent sparse depth map. For each detected object, the pipeline
extracts the pixel color values within the full bounding box and segmentation region. The
minimum depth value within these regions is selected to represent the object’s distance.
See Figure 1a for an overview of the CoRDE pipeline.

The CeRDE pipeline also combines camera and LiDAR point clouds to estimate object
distances, as shown in Figure 1b. A transparent Sparse Depth Image is first generated using
the calibration data and LiDAR point cloud. YOLOv8 provides the bounding box and the
segmentation mask coordinates. For each detected object, central regions are calculated
in the bounding box. Around the central point, a local area of size (n × n) is extracted
in the transparent Sparse Depth Image. The minimum value of pixels within this area is
selected as the depth distance of the object. A similar process is applied to the segmentation
mask. The central point of the segmentation polygon is located, and the object distance is
extracted from the Transparent Sparse Depth Image. This approach focuses on the object’s
central region to reduce the influence of outlier pixels and noise. An illustration of the
CeRDE pipeline is provided in Figure 1b.

The GCRDE pipeline extends the CeRDE approach by applying a grid cell strategy
across each object, as shown in Figure 1c. After creating the transparent Sparse Depth
Image using the LiDAR point cloud and the calibration file, YOLOv8 is used for object
detection. For each detected object, a grid is overlaid on the bounding box or segmentation
mask. The center point of each grid cell is identified, and a (n × n) pixel region is extracted
around it. The minimum depth value from each region is collected. These minimum values
are grouped by similar depth values, and the group with the highest count indicates the
estimated object distance. This grid-based approach investigates multiple grid cell regions,
hence it increases robustness by reducing the impact of noise and missing depth data. A
demonstration of the GCRDE pipeline is provided in Figure 1c.
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In this work, we propose CoRDE, CeRDE, and GCRD novel pipelines that share a
YOLOv8 detection method and transparent Sparse Depth Image (produced by LiDAR point
cloud) but differ significantly in their depth extraction strategies, as shown in Table 1. Each
pipeline introduces a novel approach for combining image features with sparse LiDAR
data to enhance object-level distance estimation.

Table 1. Comparison of the depth estimation pipelines and their estimation strategies.

Pipeline Fusion Strategy Region Type Estimating Distances

CoRDE Full Region Entire Region Minimum value in the region

CeRDE Central point n × n region around the center point Minimum in n × n region

GCRDE Grid + Central point n × n regions around grid cell centers The most frequent depth group

3.1.1. Transparent Sparse Depth Image Generation

The sparse depth map is generated by converting the 3D LiDAR point cloud into a 2D
depth image, with the depth of each point consisting of pixel color values. Our transparent
Sparse Depth Image process creates a map image in which depth information is present
in each pixel that corresponds to a LiDAR point, while other pixels remain transparent.
The core idea is to convert LiDAR data into a transparent Sparse Depth Image enabling its
seamless integration with the image captured by the camera. To project the LiDAR points
into the 2D image plane, it is used the intrinsic and extrinsic parameters of both sensors in
the calibration file. The intrinsic parameters have the camera’s focal length and main point.
The extrinsic parameters have the relative position and orientation between the LiDAR
sensor and the camera. These parameters are utilized to compute and map the 3D points
from the LiDAR into the 2D coordinate system of the camera.[

u
v

]
= R(0)

rect ∗
[
R
]
∗
[
T
]
∗
[

X Y Z 1
]⊤

(1)

Equation (1) shows the projection matrix between a 3D LiDAR point and its corre-
sponding 2D pixel coordinate in the image. Here, (u, v) represent the pixel coordinates,
while Rrect is a rectification matrix. [R, T] represent the rotation matrix and translation
vector that align the coordinate systems of the LiDAR and camera. Finally, [x, y, z, i] denote
the coordinates of points in 3D LiDAR data [26].

3.1.2. Depth Normalization and Mapping

LiDAR-color normalization refers to the process of mapping LiDAR data, often height
or intensity values from a point cloud, to color values for visualization purposes [27]. Since
LiDAR data consist of points in 3D space, typically represented as [x, y, z, i] and sometimes
intensity, it lacks direct color information. To visualize these points meaningfully in 2D or
3D maps, it is essential to normalize certain attributes, such as height z or intensity, and
map them to color values. This process helps in creating colorized point clouds or height
maps where different heights or intensities are represented by different colors [28,29]. In
addition, the normalization process involves scaling the attribute values into a specific
range, from 0 to 255, to ensure that the color representation is accurate and meaningful. By
doing this, the visual output becomes more intuitive, allowing for easy interpretation of the
data based on color changes. This normalization is performed using the following equation:

znormalized =
(z− zmin)

(zmax − zmin)
x(cmax − cmin) + cmin (2)
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where zmin and zmax represent the minimum and maximum elevation values, while cmin

and cmax define the range of colors used in the mapping. By applying this transformation,
LiDAR data can be visualized effectively in applications such as colorized point clouds and
height maps, improving data interpretation and analysis.

Figure 2 illustrates the pixel color range from 0 to 255. A pixel value of 0 corresponds to
0 m, while a pixel value of 255 represents 255 m. The transparent sparse depth map consists
of x, y, and z points, where the z values are derived using this scale. After extracting
the pixel from the transparent sparse depth map, Equation (2) is applied to calculate
the distance corresponding to each pixel. Since there are no pixel colors representing
intermediate values, the margin of error relative to the actual value is ±1 m.

0 32 64 128 256

Figure 2. Gradient representation of pixel values from 0 to 255, where a pixel value of 0 corresponds
to 0 m and a pixel value of 255 represents 255 m.

Figure 3a presents transparent Sparse Depth Images, generated using Equation (1).
The pixel colors represent different distance ranges. Black pixels indicate the closest points.
Gray pixels represent slightly farther distances, followed by light gray pixels, which are
even more distant. An even lighter shade of gray signifies points that are significantly
farther away. Finally, white pixels denote the farthest distances. The transparent sparse
depth map becomes unclear when projected onto the RGB image. To enhance clarity, the
depth map was colorized for better visualization, as shown in Figure 3b. In this paper, the
results are presented in color.

(a)

(b)

Figure 3. (a) Transparent sparse depth map with darker pixels indicating closer distances and
lighter pixels representing farther distances. (b) Colorized transparent sparse depth map for
improved visualization.

3.2. YOLOv8 Object Detection Method

YOLOv8 excels in providing accurate and efficient bounding box predictions, which
are critical for object localization in real-time applications. The bounding box output in
YOLOv8 is represented by four key coordinates: the center (x, y), width (w), and height
(h). These parameters define the region in the image where an object is detected. YOLOv8
improves upon earlier versions by using a more advanced architecture that enhances
the precision of the predicted bounding box, even in crowded or complex scenes. The



Appl. Sci. 2025, 15, 5543 9 of 36

coordinates of the bounding box for the N-th object are given by the detection of an object
in an image, and its bounding box is defined as follows:

YOLOBbox = {(x10 , y10 , x20 , y20), . . . . . . , (x1N , y1N , x2N , y2N )} (3)

where (xmin, ymin) and (xmax, ymax) represent the top-left and bottom-right coordinates of
the bounding box. Figure 4 shows the bounding box outputs from YOLOv8 for each object.

Figure 4. Bounding box output from YOLOv8 shown for each object.

In addition to the bounding box prediction, YOLOv8 provides segmentation masks,
which are critical for more detailed object recognition tasks. Unlike traditional bound-
ing box-based models that only identify the object’s location, YOLOv8 offers pixel-level
segmentation, making it capable of capturing the precise shape of the object within the
bounding box. This segmentation mask is generated by predicting pixel-wise classification
for each object within the bounding box, providing a more accurate delineation of object
boundaries. If the mask consists of a series of points (xi , yi), it can be represented as a
polygon, and YOLOv8 provides a segmentation mask as a set of N points:

YOLOSegMask = {(x0, y0), (x1, y1), (x2, y2), . . . . . . , (xN , yN)} (4)

Figure 5 illustrates the segmentation mask polygons across multiple objects, which are
generated by YOLOv8.

Figure 5. Segmentation mask output from YOLOv8 shown for each object.

3.3. LiDAR-Camera Object Distance Extraction

LiDAR point cloud has an [x, y, z, i] value and these x, y values define the point in
the position on the LiDAR scanner area, and z defines the distance between the point and
LiDAR origin points.

3.3.1. Complete Region Depth Extraction

This CoRDE extracts depth values from within the bounding box and segmentation
mask. It has two primary stages. Initially, all pixel values within the bounding box and
segmentation mask are extracted from the transparent Sparse Depth Image. Next, the
minimum pixel intensity value is then identified, as smaller depth values signify proximity
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to objects. The minimal intensity value is thereafter correlated to its respective distance by
a predetermined normalization function.

The bounding box (bbox) is a rectangular area surrounding the detected object. It is
typically provided by object detection models and has been defined by four coordinates.
xmin, xmax, ymin, and ymax represent the left, right, upper, and lower bounds, respectively.
Every pixel within this rectangle is regarded as belonging to the object.

Bbox = {(x, y) | xmin ≤ x ≤ xmax, ymin ≤ y ≤ ymax} (5)

The pixel coordinates of the bounding box frame generated by the object detection
method are located on the transparent Sparse Depth Image (I(x, y)). Then, the depth values
in this frame are subsequently extracted. Each extracted pixel value contains a depth value.

DBbox = {I(x, y) | (x, y) ∈ Bbox} (6)

To determine the actual distance to the object from the depth data, the predetermined
normalization function is employed, and the minimal depth within the bounding box is
computed using Equation (7).

dBbox
min = min

(x,y)∈Bbox
I(x, y) (7)

The transparent Sparse Depth Image (shown in Figure 3a) and the RGB image (as
shown in Figure 3b) have been fused as inputs for the Complete Region Depth Extraction.
The output image displays the depth value points for each object, as illustrated in Figure 6.

Figure 6. Depth value points for each object in Complete Region Depth Extraction (CoRDE) result
using the bounding box.

A segmentation mask (SegMask) is a classification map that is presented pixel-by-pixel,
determining which pixels are associated with the item. The shape of the object that it offers
is more precise than that of a bounding box. The segmentation mask is represented as
follows:

SegMask(x, y) =

1, if (x, y) is part of the object

0, otherwise
(8)

The segmentation mask with (x, y) coordinates in the shape of a polygon is provided
by the semantic object detection method. The mask, called SegMask, is a frame line
containing the object. Polygon coordinates are found in the transparent Sparse Depth
Image (I(x, y)). After that, the pixel points contained within the polygon are extracted
from the transparent Sparse Depth Image. Each extracted pixel has a depth value that
corresponds to it.

DSegMask = {I(x, y) | SegMask(x, y) = 1} (9)
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A predefined normalization function is used to estimate the distance from the depth
data to the object. Since each pixel extracted from the segmentation mask area belongs to
the object, Equation (10) is utilized to calculate the estimated distance.

dSegMask
min = min

(x,y)∈DSegMask

I(x, y) (10)

The depth values of each object are fused with the semantic segmentation results of
the object detection method with the transparent Sparse Depth Image. In Figure 7, the
extracted pixel points are colored to provide better clarity and comprehension.

Figure 7. Depth value points for each object in Complete Region Depth Extraction (CoRDE) result
using the segmentation mask.

Table 2 shows that the bounding box provides a rectangular shape, which may include
background pixels, whereas the segmentation mask offers the exact shape of the object,
reducing background noise.

Table 2. Comparison of bounding box and segmentation mask for complete region depth extraction.

Feature Bounding Box Segmentation Mask

Shape Precision Rectangular Exact object shape
Background Noise Includes background pixels Only object pixels
Distance Accuracy May include far pixels More precise

As a result, the segmentation mask provides more precise depth values by focusing
only on the object’s pixels, while the bounding box may introduce inaccuracies due to the
inclusion of pixels at varying depths.

3.3.2. Central Region Depth Extraction

The CeRDE estimates the object’s distance by choosing a single representative point
instead of evaluating all pixels within the bounding box and the segmentation mask.
This approach greatly reduces computational complexity while it consistently increases
the accuracy of the depth estimation. The bounding box that is shown in Figure 8a is a
rectangular box delineating the detected object. The center point of the bounding box is
determined by calculating the midpoint between its minimum and maximum coordinates
along both the x-axis and y-axis.

(xmin, ymin) (xmax, ymin)

(xmin, ymax) (xmax, ymax)

(xc, yc)

(a) Bounding Box

(x′c, y′c)

(b) Segmentation Mask

Figure 8. (a) Bounding box representation with center point (xc, yc) and (b) segmentation mask
representation with center point (x′c, y′c).
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The coordinates xmin, ymin, xmax, and ymax provided by the object detection algorithm
are used to determine the center point within the bounding box. The coordinates of the
central point (xc, yc) are computed using Equation (11).

xc =
xmin + xmax

2
, yc =

ymin + ymax

2
(11)

Once the central point is identified, it is mapped onto the transparent Sparse Depth
Image to extract the corresponding depth value. However, due to the low resolution of the
LiDAR point clouds, the exact depth value at (xc, yc) may not always be available.

To address this issue, a (n × n) pixel rectangular area is delineated around (xc, yc),
ensuring that at least a few depth values can be obtained from the Sparse Depth Image.
The depth values of all eligible pixels within this rectangle are extracted and the minimum
depth value is chosen as the estimated distance of the object using Equation (12).

dmin = min{I(x, y) | (x, y) ∈ R} (12)

where R represents the set of pixels inside the (n × n) rectangular area, and I(x, y) is the
depth value at pixel (xc, yc) in the transparent Sparse Depth Image. Depth values associated
with each object are represented by color pixels to be clear in Figure 9.

Figure 9. Depth value points for each object in Central Region Depth Extraction (CeRDE) result using
the bounding box.

Segmentation masks provide a more precise depiction of the object by delineating
the actual shape of the object, in contrast to bounding boxes, which only provide an
approximate representation of the object’s localization. To extract the depth information
that is meaningful, the segmentation mask is converted into a polynomial. The central
point of the segmentation mask is computed by averaging the coordinates of the polygon
using Equation (13), ensuring that the estimated center accurately represents the object’s
true position instead of relying on the center of the bounding box. N is the total number
of pixels in the polynomial, while (xi, yi) are the coordinates of each polynomial pixel, as
defined in Equation (13).

x′c =
1
N

N

∑
i=1

xi, y′c =
1
N

N

∑
i=1

yi (13)

The coordinates (x′c, y′c) are determined and then the depth value is extracted from the
transparent Sparse Depth Image at this coordinate. However, due to the limited space of
LiDAR data, the precise depth value at (x′c, y′c) may be missing. To resolve this, a small
search region around (n ×n) is examined and the minimum depth value in this region is
found using Equation (12). The selected depth value from the transparent Sparse Depth
Image is illustrated in color in Figure 10.
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Figure 10. Depth value points for each object in Central Region Depth Extraction (CeRDE) result
using the segmentation mask.

The comparison highlights that both approaches achieve high shape precision, with ex-
act center point determination (xc, yc) for bounding box and (x′c, y′c) for segmentation mask.
In addition to this, they efficiently reduce background noise by taking into consideration
only object pixels, which results in clearer data extraction.

Additionally, both methods exhibit good accuracy when it comes to measuring dis-
tance. As a consequence of this, their performance is comparable in terms of precision,
noise filtering, and measurement accuracy, as summarized in Table 3.

Table 3. Comparison of bounding box and segmentation mask for Central Region Depth Extraction.

Feature Bounding Box Segmentation Mask

Shape Precision Extract (xc, yc) Point Extract (x′c, y′c) Point
Background Noise Only object pixels Only object pixels
Distance Accuracy More precise More precise

3.3.3. Grid Central Region Depth Extraction

The GCRDE is designed to enhance the accuracy of object distance estimation. This
approach improves the object detection process by employing both bounding boxes and
segmentation masks to improve depth estimates. Once an object is detected in an image, a
grid is drawn over it to divide it into smaller regions for more precise depth extraction. The
KITTI dataset provides occlusion levels and difficulty information based on object height.
Depending on the information, objects with a bounding box or a segmentation mask height
of a minimum of 25 pixels fall under the hard or moderate category. In this case, no grid is
drawn, and only the central point of the entire bounding box or the segmentation mask
is used. Equation (14) shows that ymin and ymax are determined by finding the top and
bottom of the bounding box and the segmentation mask.

height = ymax − ymin > 25 (14)

If the object’s bounding box or segmentation mask height exceeds a minimum of
40 pixels, a m×m grid is created over the object, and the length and width of each grid cell
are calculated using Equation (15).

wcell =
xmax − xmin

m
, hcell =

ymax − ymin

m
(15)

Since the bounding box contains background pixels, direct depth extraction from its
center can lead to inaccuracies. To prevent this, each grid cell’s central point is calculated,
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ensuring a more localized and precise estimation. The central point of each grid cell
(xcellc , ycellc) is computed as follows:

xcellc = xmin +

(
i +

1
2

)
wcell , ycellc = ymin +

(
j +

1
2

)
hcell (16)

where i, j are the row and column indices of the grid cells, and they range from 0 to m− 1,
as given by i, j ∈ {0, 1, . . . , m− 1}. The grids shown in Figure 11 were generated using the
bounding box coordinates of each object, and then the center point of each grid cell was
calculated based on these grids.

Figure 11. Overlaying a grid on the detected objects using the bounding box coordinates.

Due to the lower resolution of the transparent sparse depth map, an (n × n) pixel
search area is used around each cell’s central point. If depth values exist within this region,
the minimum depth value is selected using Equation (12) to estimate the object distance.
This process is repeated for each grid cell, ensuring that depth values are captured at
multiple points in the object.

Figure 12 illustrates the grid cells drawn on each object, with colors representing the
distance measurement of these cells. Even though some grid cells belong to the same object,
they appear in different colors. This variation occurs because object detection methods
create bounding boxes that not only encompass the object itself but also capture parts of the
surrounding background. Figure 12 shows how irrelevant background fields can influence
the detected object distance.

Figure 12. The center point of each grid cell is calculated, and due to the low resolution of the
depth image, a surrounding n × n area is analyzed. The colors indicate the distance for each
corresponding cell.

Each depth value that is extracted corresponds to a specific grid center point. In
order to ensure consistency and robustness, a grouping process is applied. This process
involves counting the number of grid cells that share the same depth value. The depth
value that has the largest occurrence is then chosen as the object’s final estimated distance.
By extracting multiple depth values (dgrid = {d1, d2, . . . , dm′}, where m′ is the total number
of grid center points, from the object and selecting the most dominant one, this method
improves accuracy and ensures a more reliable object distance measurement. The regions
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of the objects corresponding to the distance information derived from the depth values of
the most dominant grid cells are illustrated in Figure 13.

Figure 13. Depth value points for each object in Grid Central Region Depth Extraction (GCRDE)
result using the bounding box.

When 3D LiDAR points from different parts of large objects, such as vehicles, buses, or
trucks, are projected onto a 2D plane, the points are concentrated in a restricted area within
the image. This causes errors in the depth information extracted from the transparent
Sparse Depth Image, utilizing data from object detection methods. Despite the extraction
of depth values utilizing the segmentation mask frame that completely covers the objects,
Figure 14 illustrates that background noise remains. To reduce background noise, grids are
generated to fully cover each object, utilizing the segmentation mask information along
with Equations (14)–(16). The center points of the grid cells corresponding to each object
are then determined, as illustrated in Figure 15.

Figure 14. The center point of each grid cell is calculated, and due to the low resolution of the
depth image, a surrounding n × n area is analyzed. The colors indicate the distance for each
corresponding cell.

Figure 15. Overlaying a grid on the detected objects using the bounding segmentation mask.

The depth values for each grid cell within the (n × n) area around its center point are
extracted from the transparent Sparse Depth Image. These depth values are then utilized in
Equation (12) to compute the distance information for each grid cell. The retrieved distance
information is visualized in Figure 14.

For each grid cell, the extracted depth values from the object are grouped and stored.
The most frequent depth values are then used to determine the object’s distance. The
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distance corresponding to the most common group is selected as the object’s final distance.
By utilizing the segmentation mask, which accurately defines the object boundaries, errors
caused by irrelevant background pixels are significantly reduced. This results in more
precise and reliable distance estimations, especially for complex objects. The locations of
the depth information extracted from the objects are illustrated in Figure 16.

Figure 16. Depth value points for each object in Grid Central Region Depth Extraction (GCRDE)
result using the segmentation mask.

The bounding box captures more background noise, whereas the segmentation mask
reduces it but does not eliminate it entirely. In contrast, the grid Central Region Depth
Extraction method effectively removes background noise, ensuring precise depth estimation
for both the bounding box and segmentation mask approaches. Despite these variations,
both methods demonstrate high performance in precision, noise filtering, and overall
measurement accuracy, as summarized in Table 4.

Table 4. Comparison of bounding box and segmentation mask for Grid Central Region Depth Extraction.

Feature Bounding Box Segmentation Mask

Shape Precision Rectangular grid Exact object shape grid
Background Noise Includes background pixels Only object pixels
Distance Accuracy Much more precise Much more precise

4. Evaluation
All implementations were executed on a server computer with an Intel® Xeon® 2.20

GHz CPU, 64 GB of RAM, and an NVIDIA GeForce RTX 3090 GPU with 24 GB of VRAM,
running Ubuntu 20.04.6. The implementations were developed in Python 3.10 using
PyTorch 2.2.2, CUDA12, OpenCV 4.9, and Numpy 1.26.4. All timing measurements were
performed on this server without parallelization or GPU-specific acceleration.

4.1. Dataset

The KITTI (Karlsruhe Institute of Technology and Toyota Technological Institute)
object detection benchmark consists of 7481 training images and 7518 test images, along
with corresponding point cloud data calibration files and annotations. It includes five object
categories, which are person, bicycle, car, bus, and truck. The dataset also defines three
levels of occlusion difficulty, which are easy, moderate, and hard, based on object visibility,
bounding box height, and truncation. The easy category requires a minimum bounding box
height of 40 pixels, with objects being fully visible and a maximum truncation of 15 percent.
The moderate category includes objects with a minimum bounding box height of 25 pixels,
partial occlusion, and up to 30 percent truncation. The hard category consists of objects with
at least 25 pixels in bounding box height and significant occlusion, making them difficult
to see, and up to 50 percent truncation. These difficulty levels ensure a comprehensive
evaluation of object detection models under various real-world conditions [1].
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Table 5 shows the specific criteria for each difficulty level, including the maximum
occlusion level, minimum bounding box height, maximum truncation, and the number of
objects in each category.

Table 5. The KITTI object detection benchmark.

Image Feature Easy Moderate Hard

Max. occlusion level: Fully visible Partly occluded Difficult to see
Min. bounding box height: 40 Px 25 Px 25 Px

Max. truncation: 15 30 50
Number of Object: 14550 6428 3511

4.2. Bounding Box Similarity Check

The KITTI dataset provides occlusion values for each object. In this study, the time
and the occlusion value required to estimate the distance of each object were evaluated to
measure the efficiency of the methods. YOLOv8 was used as the object detection method,
and it provided the bounding box and the segmentation mask for detected objects, including
persons, bicycles, cars, buses, and trucks. To ensure an accurate evaluation, the bounding
box information of objects with occlusion values from the KITTI dataset must match the
bounding box information provided by YOLOv8. Figure 17 illustrates the bounding boxes
drawn in the image using coordinate information from both KITTI and YOLOv8.

Figure 17. Bounding boxes overlaid on the image, showing the detection results from both KITTI and
YOLOv8 datasets. The position of irrelevant objects is shown with red arrows.

As shown in Figure 17, YOLOv8 detects more objects, whereas the KITTI dataset
provides fewer object annotations and includes information about a foreign object outside
the defined categories of person, bicycle, car, bus, and truck. Furthermore, while YOLOv8’s
bounding box coordinates closely match the exact size of the object, the KITTI dataset’s
annotation bounding boxes tend to be larger than the actual object size. To address this
discrepancy and ensure a high-accuracy evaluation, similarity checks were performed
between the bounding box annotations from the KITTI object detection benchmark dataset
and the bounding boxes provided by YOLOv8 for each object in the image.

KITTI = (x1
1, y1

1, x1
2, y1

2), and YOLOv8 = (x2
1, y2

1, x2
2, y2

2) (17)

The similarity between the KITTI and YOLOv8 bounding boxes was compared by
computing the absolute differences between their corresponding bounding box coordinates.
The differences in the top-left coordinates were calculated as ∆x1 = |x1

1 − x2
1| for the x-

coordinates and ∆y1 = |y1
1 − y2

1| for the y-coordinates. Similarly, the differences in the
bottom-right coordinates were calculated as ∆x2 = |x1

2 − x2
2| for the x-coordinates and

∆y2 = |y1
2 − y2

2| for the y-coordinates. These differences helped to quantify the spatial
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deviation between two bounding boxes, allowing a threshold-based similarity condition to
be defined.

is_similar(KITTI, YOLOv8) =


True, if ∆x1 ≤ T and ∆y1 ≤ T

and ∆x2 ≤ T and ∆y2 ≤ T

False, otherwise

(18)

To determine whether two bounding boxes were similar, a predefined threshold
(T) was applied to the coordinate differences. The similarity condition required that the
absolute differences between the corresponding coordinates of the two bounding boxes
remain within this threshold. When all these conditions were satisfied, the bounding boxes
were considered similar. Mathematically, this was expressed in Equation (18).

Figure 18 shows the refined bounding box data after the elimination of irrelevant
objects. All KITTI and YOLO bounding boxes have been successfully matched, ensuring
consistency between the data. In this way, the final bounding box and segmentation mask
information is optimized for input into our methods.

Figure 18. Refined bounding box data, after filtering out irrelevant objects (illustrated with red
arrows), show only the relevant detections in the image.

4.3. Truth Table Generation for Object Distance Measurement with YOLO Segmentation and
LiDAR Clustering

The KITTI object detection benchmark dataset comprises annotation object coordi-
nates, and the objective of this part was to generate a truth table for comparison with our
method’s distance measurements. YOLO object detection was employed to acquire object
segmentation masks. The coordinates of these segmentation masks were compared with the
KITTI object annotation. Afterward, the matched annotations were used to verify whether
the LiDAR points were inside the segmentation mask of the detected object. If a LiDAR
point was located within the mask, the (x, y, z) coordinates were stored. The collected
data comprised LiDAR points associated with things, along with extraneous noise and
irrelevant LiDAR information. Clustering was employed to eradicate this noise. Figure 19
illustrates that the clustering comprises 15 types.

After that, the clustering was focused on objects within a range of 0 to 2.5 m. The
nearest cluster was located, and the minimum value was retrieved to ascertain the object’s
distance. Ultimately, the truth table was generated for several item categories, encompass-
ing pedestrians, bicycles, cars, buses, and trucks. The occlusion levels were categorized
into four classifications, respectively, 0, 1, 2, and 3.

Table 6 presents the distribution of objects in the truth table categorized into four
difficulty levels: Easy (fully visible objects), Moderate (partially occluded objects), Hard
(highly occluded or difficult-to-see objects), and Unknown (objects with uncertain visibility
or occlusion status). This classification helps in analyzing object detection performance
under varying visibility conditions.
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Figure 19. LiDAR point clustering results. (a) Shows LiDAR points before noise removal, containing
both object-related points and irrelevant data. (b) Displays the filtered LiDAR points after clustering,
where noise has been removed, leaving only relevant object points.

Table 6. Number of objects classified as Easy, Moderate, Hard, and Unknown in the Truth Table.

Image Feature Person Bicycle Car Bus Truck

Easy 2963 62 12410 245 768
Medium 785 45 7387 114 600

Hard 166 6 4164 14 271
Unknown 210 15 859 65 285

4.4. Quantifying Error for Bounding Box and Segmentation Mask Depth Predictions

Although the mean squared error (MSE) [17,30] is commonly used in research, the root
mean squared error (RMSE) [7,31,32] is chosen in this study due to its interpretability in
the same unit as the original data, which in this case is distance (meters). RMSE provides a
more sensitive measure of prediction accuracy, making it particularly useful for evaluating
the performance of depth estimation. The process begins by extracting the object distances
separately using the bounding box and segmentation mask data. Afterward, the truth
table is used to compute the RMSE for both the bounding box and segmentation mask.
The truth table provides the actual ground truth distances for comparison, while the
distances obtained from the predicted bounding box and segmentation mask are compared
separately. The RMSE for the bounding box and segmentation mask is then calculated
using the following formula:

RMSE =

√√√√ 1
N

N

∑
i=1

(yi − ŷi)2 (19)

where yi represents the actual distance from the truth table for the i-th data point, ŷi

represents the predicted distance either from the bounding box or the segmentation mask,
and N is the total number of data points. By calculating RMSE separately for the bounding
box and segmentation mask, we can quantify the error in the predicted depth values for
each method. Lower RMSE values indicate better alignment between the predicted and
actual distances, reflecting improved performance in the model’s depth extraction process.

4.5. Accuracy Evaluation Using Truth Table and Predicted Distances

In this study, we evaluate the performance of object distance estimation methods
by comparing their predicted values with the truth table. The tested methods used the
bounding box and the segmentation mask to estimate the object distance. To assess the
accuracy of each method, we perform a binary comparison between predicted distances and
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the true values from the true table. True Positive (TP ) occurs when the predicted distance
matches the true value, while False Positive (FP) occurs when the predicted distance does
not match the true value. Accuracy is calculated as the ratio of the number of correct
predictions (TP) to the total number of predictions (TP + FP).

Accuracy =
TP

TP + FP
(20)

This accuracy metric, shown in Equation (20), is computed independently for both the
bounding box and segmentation mask approaches, allowing for consistent evaluation of
their performance in estimating object distances.

5. Results and Discussions
This section explains the results of three different approaches: the Complete Region

Depth Extraction, the Central Region Depth Extraction, and the Grid Central Region
Depth Extraction. These approaches leverage object detection and distance measurement
through camera-LiDAR fusion to enhance depth perception. LiDAR points were projected
onto a transparent sparse depth map, which was fused with the output of the object
detection method. The object detection framework provided the bounding box and the
segmentation mask frame data, allowing precise depth extraction. Furthermore, the depth
value extraction time and the number of extracted points for both the bounding box and
the segmentation mask were recorded. These results help to evaluate the efficiency and
accuracy of each method in extracting depth information.

The tables present the mean depth extraction time (in milliseconds), accuracy, and
root mean squared error (in meters) for different object classes using the Complete Region
Depth Extraction, the Central Region Depth Extraction, and the grid Central Region Depth
Extraction. The results are shown for the bounding box and the segmentation mask under
different occlusion levels (Easy, Moderate, Hard, and Unknown). Performance times
presented in Figures 20–33 were computed using the system configuration outlined in
Section 4.

5.1. Comparative Analysis of Fully Visible Objects

Figure 20 illustrates the average time required to perform depth extraction for fully
visible objects at occlusion level 0. Among all approaches, the bounding box and the
segmentation mask in CeRDE show the fastest processing times, all under 3 milliseconds.
These are significantly faster than the traditional PbyP approach, which ranges from 6
to 16 milliseconds. Notably, the CoRDE approach is the slowest, especially for larger
objects like buses and trucks, taking over 200 milliseconds in some cases. The GCRDE
approach strikes a balance, offering faster performance than CoRDE but slower than
CeRDE. These results indicate that CeRDE is the most time-efficient, making it well-suited
for real-time applications.
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Figure 20. This comparison shows mean depth extraction time (in milliseconds) at occlusion Levels 0
for the traditional approach: PbyP (Point-by-Point) and our proposed approaches: CoRDE (Complete
Region Depth Extraction), CeRDE (Central Region Depth Extraction), and GCRDE (Grid Central
Region Depth Extraction).

Figure 21 presents the accuracy of each method in estimating depth for various object
types. The segmentation mask for the CeRDE and GCRDE approaches stands out with the
highest accuracy, above 88% for all objects and reaching nearly 97% for “Person”. Similarly,
the bounding box for CeRDE and GCRDE also demonstrates strong performance, although
slightly below their segmentation masks’ accuracies. In contrast, the CoRDE approach
shows the lowest accuracy, particularly for smaller objects like bicycles. PbyP approaches
perform reasonably well but lack the consistency seen in CeRDE and GCRDE. These results
confirm that central and grid-based region strategies, especially with segmentation masks,
significantly enhance depth estimation accuracy.
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Figure 21. This comparison shows depth extraction accuracy (%) at occlusion Levels 0 for the
traditional approach: PbyP (Point-by-Point) and our proposed approaches: CoRDE (Complete
Region Depth Extraction), CeRDE (Central Region Depth Extraction), and GCRDE (Grid Central
Region Depth Extraction).

Figure 22 shows the RMSE values for depth estimation, where lower values indicate
higher precision. The CeRDE approach again outperforms all others, with the segmentation
mask and the bounding box achieving the lowest RMSEs, particularly for large objects like
buses and trucks. The bounding box method in the GCRDE approach provides moderate
error values. PbyP and CoRDE approaches show significantly higher RMSEs, especially for
buses, where values exceed 6 m in some cases. These findings show that CeRDE delivers
the most precise depth estimations.
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Figure 22. This comparison shows depth extraction RMSE (in meters) at occlusion Levels 0 for the
traditional approach: PbyP (Point-by-Point) and our proposed approaches: CoRDE (Complete Region
Depth Extraction), CeRDE (Central Region Depth Extraction), and GCRDE (Grid Central Region
Depth Extraction).

The comparative evaluation of depth extraction methods under occlusion level 0
demonstrates that CeRDE, especially when combined with segmentation masks, offers
the best performance overall. While the GCRDE approach provides a good compromise
between speed and accuracy, it falls short of matching CeRDE’s optimal results. The CoRDE
approach is both slow and less accurate, indicating that a more extensive Complete Region
Depth Extraction processing may introduce noise.

5.2. Comparative Analysis of Partly Visible Objects

Figure 23 illustrates the mean depth extraction time (in milliseconds) for partially
visible objects at occlusion level 1. The bounding box and the segmentation mask in CoRDE
exhibit significantly higher processing times, especially for larger objects, such as buses and
trucks. In contrast, the proposed CeRDE and GCRDE approaches demonstrate markedly
faster performance. Notably, the bounding box in CeRDE and the segmentation mask in
GCRDE stand out with the lowest computation times across all object classes, indicating
their suitability for real-time applications.
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Figure 23. This comparison shows mean depth extraction time (in milliseconds) at occlusion Levels 1
for the traditional approach: PbyP (Point-by-Point) and our proposed approaches: CoRDE (Complete
Region Depth Extraction), CeRDE (Central Region Depth Extraction), and GCRDE (Grid Central
Region Depth Extraction).

Figure 24 presents the accuracy (%) of depth extraction at occlusion level 1. The
proposed GCRDE and CeRDE approaches outperform both the traditional PbyP and the
CoRDE approaches. The segmentation mask in GCRDE achieves the highest accuracy
across all object categories, exceeding 90% for the person class and maintaining strong
performance with bus and truck. The performance gap between traditional and proposed
approaches is especially wide for categories like bicycles and cars.
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Figure 24. This comparison shows depth extraction accuracy (%) at occlusion Levels 1 for the
traditional approach: PbyP (Point-by-Point) and our proposed approaches: CoRDE (Complete
Region Depth Extraction), CeRDE (Central Region Depth Extraction), and GCRDE (Grid Central
Region Depth Extraction).

The lowest RMSE values are provided in the CeRDE and GCRDE approaches as shown
in Figure 25. The largest errors are observed in the bounding box in CoRDE and PbyP,
indicating their vulnerability to noise and inaccurate estimations when objects are only
partially visible.
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Figure 25. This comparison shows depth extraction RMSE (in meters) at occlusion Levels 1 for the
traditional approach: PbyP (Point-by-Point) and our proposed approaches: CoRDE (Complete Region
Depth Extraction), CeRDE (Central Region Depth Extraction), and GCRDE (Grid Central Region
Depth Extraction).

CeRDE and GCRDE approaches offer substantial improvements in both efficiency
and accuracy over other approaches. CeRDE, in particular, consistently provides the best
trade-off between speed, accuracy, and error reduction. These results validate the strength
of the CeRDE approach in overcoming the challenges posed by occlusion.

5.3. Comparative Analysis of Difficult-to-See Objects

The proposed segmentation mask in the CeRDE and GCRDE approaches provided
significant improvements in processing time compared to the traditional PbyP and CoRDE
approaches, as shown in Figure 26. Among all approaches, the bounding box in CeRDE
achieves the lowest extraction time, particularly for the person and bicycle classes, demon-
strating its high computational efficiency. In contrast, the bounding box and the segmenta-
tion mask in CoRDE exhibit the highest time consumption, making them less suitable for
real-time applications.
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Figure 26. This comparison shows mean depth extraction time (in milliseconds) at occlusion Levels 2
for the traditional approach: PbyP (Point-by-Point) and our proposed approaches: CoRDE (Complete
Region Depth Extraction), CeRDE (Central Region Depth Extraction), and GCRDE (Grid Central
Region Depth Extraction).

The PbyP and CoRDE approaches generally yield lower accuracy, especially for the
car and truck categories, as shown in Figure 27. The proposed segmentation mask in the
GCRDE method achieves the highest accuracy across a lot of classes, reaching over 90%
for the person class and significantly outperforming others in the truck and car categories.
Also, the segmentation mask in CeRDE shows strong performance, particularly for cars
and trucks.
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Figure 27. This comparison shows depth extraction accuracy (%) at occlusion Levels 2 for the
traditional approach: PbyP (Point-by-Point) and our proposed approaches: CoRDE (Complete
Region Depth Extraction), CeRDE (Central Region Depth Extraction), and GCRDE (Grid Central
Region Depth Extraction).

The segmentation mask in the GCRDE approach achieves the lowest RMSE for trucks
and persons, as shown in Figure 28. The segmentation mask and the bounding box in
CeRDE also demonstrate improved depth precision compared to other approaches. PbyP
and CoRDE exhibit the highest RMSE, particularly for larger objects such as buses and
trucks, suggesting poor reliability in occlusion-heavy scenarios.

The bounding box and segmentation mask in the CeRDE approach outperform others
in all three metrics, achieving the fastest processing time, the highest depth extraction
accuracy, and the lowest RMSE. Central region depth extraction strategies provide sub-
stantial advantages over traditional approaches, especially when applied to segmentation
mask objects.
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Figure 28. This comparison shows depth extraction RMSE (in meters) at occlusion Levels 2 for the
traditional approach: PbyP (Point-by-Point) and our proposed approaches: CoRDE (Complete Region
Depth Extraction), CeRDE (Central Region Depth Extraction), and GCRDE (Grid Central Region
Depth Extraction).

5.4. Comparative Analysis of Unknown Objects

The CeRDE approach has the fastest performance, with values for the five objects
ranging from 1.735 ms (truck) to 1.807 ms (bicycle), as shown in Figure 29. In comparison,
the PbyP and proposed CoRDE approaches take considerably longer. GCRDE proposed
another approach, showing moderate times with values from 4.43 ms (bicycle) to 27.64 ms
(car). In summary, the CeRDE approach is significantly faster compared to the proposed
approaches.
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Figure 29. This comparison shows mean depth extraction time (in milliseconds) at occlusion Levels 3
for the traditional approach: PbyP (Point-by-Point) and our proposed approaches: CoRDE (Complete
Region Depth Extraction), CeRDE (Central Region Depth Extraction), and GCRDE (Grid Central
Region Depth Extraction).

PbyP offers varying levels of accuracy across objects, with the highest accuracy for
person (96.59%) and the lowest for truck (2.21%), as shown in Figure 30. The accuracy of
CoRDE is generally lower than that of PbyP, with its highest accuracy for person (88.83%)
and the lowest for Truck (1.85%). On the other hand, CeRDE achieves impressive accuracy
for person (93.88%) and car (93.97%), making it a more accurate method overall, especially
for specific objects like person and car. GCRDE performs quite well, indicating that it is
the best-performing method for certain cases. Overall, CeRDE and GCRDE provide higher
accuracy than PbyP, but the performance varies across different objects.

The PbyP approach shows relatively high RMSE values, ranging from 1.60 m (person)
to 18.237 m (bus), which indicates less precision in depth extraction. CoRDE has worse
RMSE values than other approaches, ranging from 1.785 m (person) to 18.328 m (bus).
However, CeRDE shows a substantial improvement in precision, with RMSE values ranging
from 1.116 m (bus) to 6.892 m (truck), highlighting its superior performance in terms of
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depth accuracy. GCRDE, with RMSE values ranging from 1.392 m (bus) to 7.481 (car), also
offers lower RMSE than PbyP and CoRDE, making it a promising approach for better depth
precision. CeRDE emerges as the most precise method in this analysis, particularly for
objects, where its RMSE is significantly lower than other methods, as shown in Figure 31.
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Figure 30. This comparison shows depth extraction accuracy (%) at occlusion Levels 3 for the
traditional approach: PbyP (Point-by-Point) and our proposed approaches: CoRDE (Complete
Region Depth Extraction), CeRDE (Central Region Depth Extraction), and GCRDE (Grid Central
Region Depth Extraction).
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Figure 31. This comparison shows depth extraction RMSE (in meters) at occlusion Levels 3 for the
traditional approach: PbyP (Point-by-Point) and our proposed approaches: CoRDE (Complete Region
Depth Extraction), CeRDE (Central Region Depth Extraction), and GCRDE (Grid Central Region
Depth Extraction).

In conclusion, the CeRDE approach is the fastest and offers very good accuracy and
precision. The GCRDE method strikes a balance between speed, accuracy, and precision,
offering moderate performance across all three aspects. The PbyP method, while faster
and more accurate than CoRDE, does not consistently outperform CoRDE in terms of
RMSE. Based on the analysis, GCRDE and CeRDE are the most promising methods for
applications requiring high accuracy and precision, while CeRDE is suitable for situations
where speed is the primary concern.

5.5. Comparative Visualization of Depth-Based Distances

In this section, we present a comparative visualization of depth-based distance results
using three extraction methods, which are CoRDE, CeRDE, and GCRDE. The figures below
illustrate the output distances as interpreted through bounding boxes and segmentation
masks. These visuals serve as qualitative evidence to support the numerical comparisons
provided earlier. The reference truth table is included in each visualization to enable
side-by-side evaluation of estimation accuracy. We analyzed various object categories,
including person, bicycle, car, bus, and truck, across different occlusion levels defined as
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easy, medium, hard, and unknown. Additionally, the object with the closest estimated
distance in each frame is highlighted with a red frame to emphasize depth prioritization.

Figure 32 presents a comparison of the transparent sparse depth map, CoRDE, CeRDE,
and GCRDE across various object categories, focusing mainly on easy and medium occlu-
sion levels, as defined by the bounding box.

9

(a) Truth Table.

9

(b) CoRDE.

9

(c) CeRDE.

9

(d) GCRDE.

Figure 32. (a) Truth Table results. (b) Complete Region Depth Extraction (CoRDE) results. (c) Central
Region Depth Extraction (CeRDE) result. (d) Grid Central Region Depth Extraction (GCRDE) result.
The red frame highlights the closest object.

Figure 33 presents a comparison of the transparent sparse depth map, CoRDE, CeRDE,
and GCRDE across various object categories, with a focus on more complex, partly visible
occlusion levels such as medium and hard, as defined by the bounding box. Estimating
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the distance for objects with partial occlusion is particularly challenging because object
detection methods tend to focus on detecting the object (e.g., car, person) but often ignore
obstacles in front of the object. As a result, object detection methods often detect both the
object and the obstacle together. This directly affects the ability to detect the correct distance.

(a) Truth Table.

(b) CoRDE.

(c) CeRDE.

(d) GCRDE.

Figure 33. (a) Truth Table results. (b) Complete Region Depth Extraction (CoRDE) results. (c) Central
Region Depth Extraction (CeRDE) result. (d) Grid Central Region Depth Extraction (GCRDE) result.
The red frame highlights the closest object.

Figure 34 presents a comparison of the transparent sparse depth map, CoRDE, CeRDE,
and GCRDE across various object categories, focusing mainly on easy and medium occlu-
sion levels, as defined by the segmentation mask.
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Figure 34. (a) Truth Table results. (b) Complete Region Depth Extraction (CoRDE) results. (c) Central
Region Depth Extraction (CeRDE) result. (d) Grid Central Region Depth Extraction (GCRDE) result.
The red frame highlights the closest object.

Figure 35 presents a comparison of the transparent sparse depth map, CoRDE, CeRDE,
and GCRDE across various object categories, with a focus on more complex, partly visible
occlusion levels such as medium and hard, as defined by the segmentation mask. Estimating
the distance for objects with partial occlusion is particularly challenging because object
detection methods tend to focus on detecting the object (e.g., car, person) but often ignore
obstacles in front of the object. As a result, object detection methods often detect both the
object and the obstacle together. This directly affects the ability to detect the correct distance.
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(b) CoRDE.
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Figure 35. (a) Truth Table results. (b) Complete Region Depth Extraction (CoRDE) results. (c) Central
Region Depth Extraction (CeRDE) result. (d) Grid Central Region Depth Extraction (GCRDE) result.
The red frame highlights the closest object.

6. Conclusions
In this study, we evaluated various depth extraction methods PbyP, CoRDE, CeRDE,

and GCRDE across different object categories (person, bicycle, car, bus, and truck) and
occlusion levels (0 to 3). The results reveal several important findings about the performance
of these methods in terms of extraction time, accuracy, and RMSE.

Regarding extraction time, bounding box-based methods (PbyP and CoRDE) consis-
tently demonstrated slower extraction times compared to segmentation mask methods
(CeRDE and GCRDE). This trend was evident across all object categories. While PbyP and
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CoRDE took longer to extract depth, CeRDE and GCRDE were generally faster. These
results indicate that GCRDE is more efficient in terms of accuracy compared to the segmen-
tation mask methods, while CeRDE strikes a balance between speed and accuracy, making
it suitable for applications requiring rapid depth extraction.

In terms of accuracy, segmentation mask-based methods, especially CeRDE and
GCRDE, outperformed other approaches for most object categories and occlusion lev-
els. Moreover, segmentation mask methods showed superior performance in more complex
objects like trucks and cars, whereas bounding box methods struggled, particularly at
higher occlusion levels. GCRDE with segmentation masks achieved the highest accuracy
in the person, bicycle, car, and truck categories, even at higher occlusions. This suggests
that segmentation masks are more effective for precise depth estimation, providing higher
accuracy despite extracting fewer depth points.

RMSE analysis further supports the superior accuracy of segmentation mask methods.
Both CeRDE and GCRDE provided lower RMSE values across object categories, indicating
more precise depth estimations. In particular, for larger objects like trucks and buses,
segmentation mask methods yielded significantly lower RMSE values, highlighting their
ability to handle complex object shapes more effectively than bounding box methods, which
showed higher RMSE values, particularly for larger or more occluded objects.

Overall, the findings highlight a trade-off between speed and accuracy. Bounding
box methods (PbyP and CoRDE) are less efficient in terms of speed and may not be ideal
for applications requiring fast depth extraction. However, segmentation mask methods
(CeRDE and GCRDE) excel in accuracy, making them ideal for applications where precise
depth estimation is crucial, even if they come with a higher computational cost.

These results suggest that the choice of method should depend on the specific require-
ments of the application, with CeRDE standing out as a well-rounded option that offers a
strong balance of speed, accuracy, and low RMSE. Its ability to maintain high performance
across various object categories and occlusion levels makes it particularly suitable for
real-time applications where both computing efficiency and depth estimation precision
are critical. CeRDE’s consistent results show its adaptability, making it an ideal choice for
scenarios involving dynamic environments, such as autonomous driving, robotics, and
ADAS systems.

Even though the proposed methods demonstrate promising results across different
object categories and occlusion levels, this study has several limitations. One potential
direction involves expanding the dataset to incorporate a larger quantity and variety
of objects. In this study, sometimes obstacles such as trees, utility poles, motorcycles,
and traffic cones block in front of annotated objects. These obstacles are not detected
by the object detection method and are instead grouped with the target object. This
causes instability and inaccurate depth estimates in applications. Moreover, in real-world
challenges, adverse weather (rain, snow, fog), nighttime driving, and sensor misalignment
due to mechanical vibration or calibration drift present additional limitations not yet fully
addressed. These conditions may cause significant noise in the LiDAR point cloud data
and reduce the effectiveness of camera-based detection. Furthermore, another limitation
of our method is that the projected transparent sparse depth map encodes limited depth
values, where the 0-pixel code represents 0 m, and the 255-pixel code represents 255 m. This
design does not allow for the precise representation of intermediate depth values (such as
0.5 m and 10.5 m), which may increase distance accuracy in certain cases. Future work will
focus on resolving these challenges by using different weather-augmented or simulated
training data and self-calibrating sensor fusion frameworks to ensure robustness under
failure conditions.
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In addition, future research could explore advanced deep learning techniques to push
the limits of sensor fusion. Transformer-based sensor fusion architectures, such as cross-
attention for image-LiDAR alignment, offer a promising direction for more effective multi-
modal integration. Moreover, incorporating self-supervised learning methods for depth
completion can reduce reliance on annotated visual data. Multi-scale graph-based fusion
approaches may also offer improvements in spatial reasoning and scene understanding.
Finally, extensive evaluations in varied and complex real-world situations, including rural
roads, low light, night and darkness conditions, and inclement weather, such as rainy,
cloudy, snowy, and foggy conditions, will be essential to confirm the generalizability and
robustness of the suggested approaches.

Author Contributions: Conceptualization, M.R.S. and A.S.Y.; methodology, A.S.Y.; software, A.S.Y.;
validation, A.S.Y.; formal analysis, A.S.Y.; investigation, A.S.Y.; resources, A.S.Y.; data curation, A.S.Y.;
writing—original draft preparation, A.S.Y.; writing—review and editing, A.S.Y., H.M. and M.R.S.;
visualization, A.S.Y.; supervision, H.M.; project administration, A.S.Y.; funding acquisition, A.S.Y. All
authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding and Ahmet Serhat Yildiz’s Ph.D. is sponsored
by the Ministry of National Education of Türkiye.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data used in this study are from the Karlsruhe Institute of Technol-
ogy and Toyota Technological Institute (KITTI) Vision Benchmark 2D Object Detection Evaluation
2012 dataset. The dataset can be accessed publicly at https://www.cvlibs.net/datasets/kitti/eval_
object.php?obj_benchmark=2d (accessed on 10 January 2022).

Acknowledgments: I would like to thank Aidrivers LTD for providing a server computer equipped
with an Intel® Xeon® 2.20 GHz CPU, 64 GB of RAM, an NVIDIA GeForce RTX 3090 GPU with
24 GB of VRAM, and CUDA 12, running Ubuntu 20.04.6, which greatly contributed to the success of
this paper.

Conflicts of Interest: The authors declare no conflicts of interest.

Abbreviations

d Estimated object distance from LiDAR
I Depth value function at pixel coordinate in the transparent Sparse Depth Image
u, v Pixel coordinates in the image
Rrect Rectification matrix
R Rotation matrix
T Translation vector
X, Y, Z Coordinates of points in 3D LiDAR data
zmin, zmax Minimum and maximum elevation values of LiDAR data
cmin, cmax Minimum and maximum color values for depth visualization
DBbox Depth data extracted from the bounding box
dBbox

min Minimum depth value within the bounding box
DSegMask Depth data extracted from the segmentation mask

dSegMask
min Minimum depth value within the segmentation mask

xc, yc Central coordinates of the bounding box
R Set of pixels inside the region for depth extraction
x′c, y′c Centroid coordinates of the polygonal segmentation mask
m Number of cells in the grid (grid size)
wcell, hcell Width and height of grid cells
dgrid Depth values extracted from the grid cell centers

https://www.cvlibs.net/datasets/kitti/eval_object.php?obj_benchmark=2d
https://www.cvlibs.net/datasets/kitti/eval_object.php?obj_benchmark=2d
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∆x1, ∆y1 Differences in top-left coordinates of KITTI and YOLOv8 bounding boxes
∆x2, ∆y2 Differences in bottom-right coordinates of KITTI and YOLOv8 bounding boxes
TP True Positive
FP False Positive

Appendix A

Algorithm A1: Complete Region Depth Extraction (CoRDE)
Input: LiDAR point cloud PLiDAR, RGB image IRGB, calibration file C
Output: Minimum depth dmin for each detected object

1 projectedPoints← ProjectToImagePlane(PLiDAR, C) Equation (1);
2 Transparent Sparse Depth Map← (projectedPoints, IRGB);
3 znormalized ← Depth Normalization Equation (2);
4 detections← YOLOv8(IRGB);
5 foreach detection ∈ detections do
6 B, M← detection BBox, SegMask Equations (3) and (4);
7 regionPixels← GetCoordinatesPoints(B, M) Equations (5) and (8);
8 DBbox, DSegMask ← Extracted Depth Values from Transparent Sparse Depth

Map Equations (6) and (9);
9 if regionPixels ̸= (0, 0, 0, 0) then

10 depthValues← DBbox, DSegMask;

11 else
12 None← DBbox, DSegMask;

13 znormalized ← Depth Normalization;
14 foreach (x, y, z) ∈ depthValues do
15 if dBbox

min [x, y, z] and dSegMask
min [x, y, z] are valid Equation (7) and (10) then

16 Append dmin[z] to depthValues;

17 Close object distance← (Objects, dmin[z]);

18 return Close object distance
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Algorithm A2: Central Region Depth Extraction (CeRDE)
Input: LiDAR point cloud PLiDAR, RGB image IRGB, calibration file C
Output: Minimum depth Dmin for each detected object

1 projectedPoints← ProjectToImagePlane(PLiDAR, C) Equation (1);
2 Transparent Sparse Depth Map← (projectedPoints, IRGB);
3 znormalized ← Depth Normalization Equation (2);
4 detections← YOLOv8(IRGB);
5 foreach detection ∈ detections do
6 B, M← detection BBox, SegMask Equations (3) and (4);
7 CoordinatesPoints← GetCoordinatesPoints(B, M) Equations (5) and (8);
8 centerB and centerM ← ComputeCenter(CoordinatesPoints) Equations (11)

and (13);
9 regionPixels← centerB and centerM;

10 DBbox, DSegMask ←(centerB, n× n), (centerM, n× n) Equations (6) and (9);
11 if regionPixels ̸= (0, 0, 0, 0) then
12 depthValues← DBbox, DSegMask;

13 else
14 None← DBbox, DSegMask;

15 (depthValuesB, depthValuesM)← znormalized(DBbox, DSegMask);
16 foreach (x, y, z) ∈ (depthValuesB, depthValuesM) do
17 if dmin[x, y, z] from Bbox and SegMask is valid Equation (12) then
18 Append dmin[z] to depthValues;

19 Close object distance← (Objects, dmin[z]);

20 return Close object distance
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Algorithm A3: Grid Central Region Depth Extraction (GCRDE)
Input: RGB image IRGB, LiDAR point cloud PLiDAR, Calibration file C
Output: Minimum depth Dmin for each detected object

1 projectedPoints← ProjectToImagePlane(PLiDAR, C) Equation (1);
2 Transparent Sparse Depth Map← (projectedPoints, IRGB);
3 znormalized ← Depth Normalization Equation (2);
4 detections← YOLOv8(IRGB);
5 foreach detection ∈ detections do
6 B, M← detection BBox, SegMask Equations (3) and (4);
7 Grid Coord (Bbox and SegMask)← GetCoordinatesPoints(B, M) Equations (5)

and (8);
8 (m×m) Grid← Grid Coord (Bbox and SegMask) Equations (14) and (15);
9 from 0 to (m-1) and← i, j ∈ {0, 1, . . . , m− 1};

10 xcellc and ycellc ← Central point of each grid cell Equation (16);
11 centerB and centerM ← ComputeCenter( xcellc and ycellc ) Equations (11) and

(13);
12 regionPixels← centerB and centerM;
13 DBbox, DSegMask ←(centerB, n× n), (centerM, n× n) Equations (6) and (9);
14 if regionPixels ̸= (0, 0, 0, 0) then
15 depthValues← DBbox, DSegMask;

16 else
17 None← DBbox, DSegMask;

18 (depthValuesB, depthValuesM)← znormalized(DBbox, DSegMask);
19 foreach (x, y, z) ∈ (depthValuesB, depthValuesM) do
20 if dmin[x, y, z] from Bbox and SegMask is valid Equation (12) then
21 Append dmin[z] to depthValues;

22 Close object distance← (Objects, dmin[z]);

23 return Close object distance
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