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Abstract: This paper proposes an advanced deep convolutional neural network model for
motor bearing fault detection that was designed to overcome the limitations of traditional
models in feature extraction, accuracy, and generalization under complex operating condi-
tions. The model combines multi-scale residuals, hybrid attention mechanisms, and dual
global pooling to enhance the performance. Convolutional layers efficiently extract features,
while hybrid attention mechanisms strengthen the feature representation. The multi-scale
residual network structure captures features at various scales, and fault classification is
performed using global average and max pooling. The model was trained with the Adam
optimizer and sparse categorical cross-entropy loss by incorporating a learning rate decay
mechanism to refine the training process. Experiments on the University of Paderborn
bearing dataset across four conditions showed that the model had superior performance,
where it achieved a diagnostic accuracy of 99.7%, which surpassed traditional models, like
AMCNN, LeNet5, and AlexNet. Comparative experiments on rolling bearing vibration
and motor current datasets across four bearing conditions highlighted the model’s effec-
tiveness and broad applicability in motor fault detection. Its robust feature extraction and
classification capabilities make it a reliable solution for motor bearing fault diagnosis, with
significant potential for real-world applications. This makes it a reliable solution for motor
bearing fault diagnosis with significant potential for practical applications.

Keywords: motor fault; fault diagnosis; convolutional neural network (CNN); multi-scale
residual network; hybrid attention mechanism

1. Introduction
As technology advances rapidly, motors have become indispensable in industrial

production, serving as the backbone of modern industrial systems [1–3]. However, motors
often operate in harsh environments and complex conditions, which can lead to issues such
as fatigue damage, overheating, and insulation material degradation. These problems can
cause equipment failure or even shutdowns, posing significant threats to the safe and stable
operation of enterprises [4–6]. Therefore, implementing condition monitoring and precise
fault diagnosis for motor bearings has emerged as a critical challenge in the industrial
sector [7,8].

Traditional motor fault diagnosis techniques primarily rely on collecting signals, such
as the current and vibration during motor operation, combined with advanced signal
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processing algorithms to detect faults [9]. To avoid the need for additional sensors and
the installation space required by conventional vibration-signal-based methods, this study
utilized current signals for feature extraction and fault diagnosis. Common current signal
analysis methods include fast Fourier transform (FFT) [10], wavelet transform (WT) [11], em-
pirical mode decomposition (EMD) [12], and variational mode decomposition (VMD) [13].
For instance, Merabet [14] employed the FFT for stator current spectral analysis, defining
residual indicators to visualize changes in electrical and mechanical quantities, thereby
enabling the real-time health monitoring and diagnosis of motor systems. Lu [15] proposed
a gearbox fault diagnosis method based on motor current signature analysis, using varia-
tional mode decomposition and genetic algorithms to remove irrelevant information and
wavelet transforms to extract fault features while suppressing noise, achieving effective
gearbox fault diagnosis. Wu [16] introduced a bearing fault diagnosis method for induction
motors, processing stator current signals with wavelet denoising and quasi-synchronous
sampling to extract harmonic features, and mapping these features to fault labels using
Random Vector Functional Link networks for an accurate distinction between healthy
and faulty bearings. Jin [17], based on the dynamics and equivalent circuit model of a
V-shaped ultrasonic motor (VSUM), investigated the relationship between real-time output
characteristics and input signals by considering the nonlinear effects of preload variations,
and established a current prediction model to simplify fault diagnosis. However, manu-
ally extracted fault features are often insufficient, with subtle fault characteristics easily
overlooked or masked by noise.

With the development of artificial intelligence, intelligent fault diagnosis methods
have gained significant attention, primarily categorized into machine learning [18] and
deep learning approaches [19]. Machine learning-based methods rely on traditional signal-
processing techniques for feature extraction, followed by classification using algorithms
such as Support Vector Machines (SVMs), Random Forests, Principal Component Analysis
(PCA), and Enhanced Principal Component Analysis (EPCA). For example, Santer [20]
utilized current and vibration signals, proposing feature extraction methods based on
envelope analysis and a wavelet packet transform, combined with a SVM for bearing
fault detection in motors. Zhang [21] introduced a Harmonic Drive (HD) fault diagnosis
method, eliminating speed effects through Equal Angular Displacement Signal Segmenta-
tion (EADSS) and optimizing weight matrices with an improved NAP method and cosine
distance. Subsequently, PCA was used for feature extraction, followed by fault diagnosis
with a Backpropagation Neural Network (BPNN). Liao [22] proposed a motor current
signature analysis (MCSA) method based on Enhanced Principal Component Analysis
(EPCA), employing power frequency filtering to reduce interference, enhance harmonic
features, and extract fault characteristics for effective diagnosis. Nevertheless, machine
learning-based methods are cumbersome and lack strong interdependencies between steps,
limiting further improvements in diagnostic efficiency [23].

In contrast, deep learning methods can automatically learn features from raw data,
significantly reducing the reliance on manual feature extraction and offering new opportu-
nities for fault diagnosis technology. In recent years, CNNs have been increasingly applied
to motor fault detection [24–26]. Some researchers have proposed models combining 1D
CNN and Recurrent Neural Networks (RNNs) for induction motor fault detection, incorpo-
rating multi-head mechanisms to enhance the feature attention, simplifying the diagnostic
process, and improving the accuracy [27]. Morales-Perez, Carlos [28] developed an ITSC
fault diagnosis method based on current signal imaging and CNNs, highlighting fault spec-
trum features and converting them into images for CNN input, achieving high-precision
fault identification with a test accuracy of 98.62%. Liu [29] introduced a fault diagnosis
model combining CNN and Bidirectional Long Short-Term Memory (BiLSTM) networks.



Machines 2025, 13, 413 3 of 19

By extracting frequency-domain features from three-phase currents using CEEMD and
leveraging CNN-BiLSTM, they addressed open-circuit fault detection and classification in
permanent magnet synchronous motor inverters. Du [30] proposed a hybrid CNN model
with multi-scale convolutional kernels for feature extraction and dynamic weighted layers
for feature fusion. Experiments demonstrated its superiority over existing CNN models in
bearing and gearbox fault diagnosis for motors.

In summary, while CNNs are increasingly being utilized for motor bearing fault diag-
nosis, they frequently encounter challenges, such as limited feature extraction in complex
conditions, insufficient diagnostic accuracy, and inadequate generalization capabilities. To
address these limitations, this paper innovatively proposes a multi-scale residual CNN
model specifically designed for motor bearing fault detection. The model integrates a
hybrid attention mechanism that combines a squeeze and excitation (SE) block and spatial
attention mechanism (SAM), thereby significantly enhancing the feature representation.
By synergistically combining the hybrid attention mechanism with multi-scale residual
modules, the model effectively captures and amplifies both local and global features. Addi-
tionally, the integration of dual global pooling further refines the feature extraction process.
Empirical validation using publicly available datasets demonstrates that these enhance-
ments enable the model to achieve a high diagnostic accuracy and robust generalization.

The rest of this article is organized as follows: Section 2 presents an overview of
CNN and SE modules. Section 3 elaborates on the proposed hybrid attention mechanism,
multi-scale residual network, and dual global pooling module. Section 4 introduces the
experimental datasets, data preprocessing, and an analysis of how model parameters influ-
enced the performance. Section 5 assesses the model’s performance through comparative
and ablation experiments. Finally, Section 6 concludes this paper.

2. Materials
2.1. CNN

Convolutional layers serve as a cornerstone in deep neural networks for feature
extraction, leveraging a parameter-sharing local connectivity mechanism. This architecture
employs multiple trainable convolutional kernels to facilitate hierarchical feature learning.
Each kernel, which is equipped with adjustable weights and bias parameters, functions as
a specialized feature detector. During computation, the convolutional kernels traverse the
input feature maps in a sliding window fashion, performing weighted summations within
a defined receptive field, as shown in Figure 1.

Figure 1. Principle of convolution operation.
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2.2. SE Block

The SE Block [31] adaptively learns weights for each channel. This adaptive recal-
ibration of feature channels enhances the discriminative power of the features and the
expressive power of neural networks, thereby improving the model performance. The struc-
ture of the SE module is shown in Figure 2.

Figure 2. Schematic of SE block.

The module primarily consists of two parts: squeeze and excitation. In the squeeze
part, global average pooling is employed to compress the feature map into a feature vector,
as shown in Equation (1):

z = GAP(y) (1)

In this equation, z denotes the feature vector obtained from the global average pooling,
while y represents the input feature map. In the excitation part, a combination of two fully
connected layers with nonlinear activation functions is used to learn the weight for each
channel. Specifically, the first fully connected layer uses the ReLU function as the activation
function, and the second fully connected layer employs the Sigmoid activation function,
as shown in Equation (2):

s = σ(W2ReLU(W1z)) (2)

In this equation, s denotes the output after two fully connected layers, W1 represents
the weight parameters of the first fully connected layer, and W2 represents the weight
parameters of the second fully connected layer.

3. Method
3.1. Hybrid Attention

This paper proposes a hybrid attention mechanism based on SE–spatial dual-path
processing. By parallelly processing the channel and spatial dimensions of the feature
maps, this mechanism comprehensively extracts critical information. It optimizes both
dimensions, enabling the model to focus on key features, enhancing the adaptability to
various targets and scenarios, and improving the discriminability of low-salience small
targets, thereby significantly boosting the overall model performance. The structure is
shown in Figure 3.

The SE attention mechanism uses global average pooling to extract channel-wise
statistics and generates channel weights through two fully connected layers, emphasizing
important feature channels. By learning channel correlations via global average pooling
and fully connected layers, it suppresses irrelevant features and enhances critical ones. The
spatial attention mechanism employs a single-channel convolutional kernel to learn spatial
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correlations. By replicating across the channel dimension, it generates a spatial weight
matrix. The mathematical formulation is expressed as shown in Equation (3):

SAM(x) = Repeat(Conv1×7(x), C) (3)

The convolutional layer generates spatial attention weights, which emphasize im-
portant time steps in time-series data while suppressing noise and irrelevant information.
Finally, by summing the channel and spatial attention weights and multiplying them with
the input feature tensor, the model performs a weighted feature adjustment. This process
highlights important features and suppresses less important ones.

Figure 3. Hybrid attention mechanism architecture.

3.2. Multi-Scale Residual Network

This paper proposes a method of using multi-scale residual block [32] connections with
heterogeneous convolutional kernels to collaboratively extract multi-level features from
time-series signals. The core design integrates multi-branch convolutions, dynamic feature
fusion, and residual optimization. Specifically, parallel 3 × 3 and 5 × 5 convolutional kernels
are used to capture local transient and global trend features of current signals, respectively.
This multi-scale feature coverage enhances the model’s ability to represent complex fault
patterns. Next, an SE–spatial hybrid attention mechanism is introduced to dynamically
weight the concatenated heterogeneous features, emphasizing fault-sensitive frequency
bands and critical time-domain segments. Finally, the method achieves the dimensionality-
adaptive matching of residual paths, which not only addresses the vanishing gradient
problem but also effectively prevents feature degradation during deep network training.
The structure of the multi-scale residual module is shown in Figure 4.

Figure 4. Multi-scale residual network module architecture.



Machines 2025, 13, 413 6 of 19

3.3. Dual Global Pooling Architecture

This paper proposes extracting salient features from input tensors using global average
pooling and global max pooling, followed by concatenation to form a multimodal feature
representation. The dual global pooling structure is illustrated in Figure 5.

Figure 5. Dual global pooling architecture.

The global average pooling layer calculates the average value of each channel in the
temporal dimension, thereby capturing the overall trend of the time-series data. In contrast,
the global max pooling layer identifies the peak values of each channel, preserving critical
peak information. The mathematical expressions are shown in Equation (4):

ffina1 = Concat(GAP(x), GMP(x)) (4)

Global average pooling reflects the overall feature distribution, while global max pooling
captures the abnormal peaks. By concatenating the results of these two pooling operations,
the generated feature map contains both the average and maximum feature information,
creating a richer and more comprehensive feature description. This multi-level feature
fusion strategy not only enhances the model’s ability to handle complex patterns but also
improves its generalization ability.

3.4. Motor Bearing Fault Detection Model

In summary, this paper proposes a deep convolutional neural network for motor
fault detection tasks. Starting from the input layer, the model incorporates a dynamic
convolution block and a hybrid attention mechanism to extract local features and highlight
important channels and time steps. It then employs multi-scale residual modules to capture
features at different scales, alleviating the vanishing gradient problem. Finally, the model
uses a dual global pooling module that combines global average pooling and global max
pooling to aggregate features, followed by a classification head with a Softmax activation
function to output fault classification results. The model was trained using the Adam
optimizer and sparse categorical cross-entropy loss function, with a learning rate decay
mechanism to update the learning rate in real time to enhance the model performance.
The model architecture is shown in Figure 6.
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Figure 6. The overall model architecture.

4. Data Processing and Model Parameter Analysis
4.1. Data Processing
4.1.1. The University of Paderborn Bearing Fault Dataset

This study used two current signals from the bearing dataset [33] of Paderborn Uni-
versity to train the motor bearing fault detection model. As illustrated in Figure 7, the test
platform employed an LEM CKSR 15-NP current transducer, which offered an accuracy of
0.8% relative to the IPN = 15 A current, to measure the motor phase currents. These signals
were subsequently filtered through a 25 kHz low-pass filter and digitized at a 64 kHz
sampling rate. Current transducers were chosen over the inverter’s internal ammeters to fa-
cilitate convenient external current measurements between the motor and inverter. During
each measurement, the key operational parameters—rotational speed, radial force on the
test bearing, and load torque—were maintained at constant levels. Table 1 details the fixed
levels of these parameters. In the baseline configuration (Set no. 0), the test rig operated at
n = 1500 rpm, M = 0.7 Nm, and F = 1000 N. Three additional configurations (Set nos. 1–3)
individually reduced these parameters to n = 900 rpm, M = 0.1 Nm, and F = 400 N. For each
configuration, 20 measurements that lasted 4 s each were recorded, with the temperature
maintained at approximately 45–50 °C. Fault simulation experiments were conducted on
32 SKF6203 bearings across four operational conditions, including inner race faults, outer
race faults, and healthy states, with each condition further divided into two severity levels.
As depicted in Figure 8, the fast Fourier transform (FFT) of the motor current signals
exhibited characteristic peaks at the fault frequency fe = 100 Hz across different datasets,
such as K001 (healthy bearing), KA04 (outer race fault), and KI04 (inner race fault). These
spectral features were vital for distinguishing different fault types and their severity levels.
This research evaluated the model’s performance using four naturally accelerated degraded
bearings and one healthy bearing. Table 2 lists the fault load information under various
working conditions. All bearings exhibited fatigue pitting as the damage formed, which
covered two severity levels of outer and inner race faults. Consequently, each working
condition comprised four fault categories and one healthy state.
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Figure 7. Modular test rig [33].

Figure 8. Frequency spectra for (a) healthy, (b) outer fault, and (c) inner fault.

Table 1. Different working conditions segmentation [33].

Condition Index Rotational Speed (rpm) Torque (Nm) Radial Force (N)

1 1500 0.7 1000
2 900 0.7 1000
3 1500 0.1 1000
4 1500 0.7 400

Table 2. Fault load information under different working conditions [33].

Dataset Index Damage Fault Type Fault Severity Label

K001 None None None 0
KA04 Fatigue pitting Outer fault 1 1
KA16 Fatigue pitting Outer fault 2 2
KI04 Fatigue pitting Inner fault 1 3
KI16 Fatigue pitting Inner fault 2 4

4.1.2. Vibration and Motor Current Dataset of Rolling Element Bearing

To assess the model’s generalization capability in algorithm comparison experiments,
this study utilized a dataset [34] comprising vibration and current signals of ball bearings
with various fault types (inner ring, outer ring, and ball faults) across different motor
speeds (680 rpm and 2460 rpm). As depicted in Figure 9, the experimental setup involved
four PCB352C34 accelerometers positioned in the X- and Y-directions of bearing boxes A
and B for the vibration data collection. Three-phase current data were acquired via three
HIOKI CT6700 current transformers. The Siemens SCADA Mobile 5PM50 system sampled
vibration signals at 25.6 kHz, while the NI9775 device sampled current signals at 100 kHz.
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The dataset includes 600 s of constant-speed data and 2100 s of variable-speed data. This
study focused on current signals under variable-speed conditions for motor bearing fault
detection. Table 3 details the datasets for different fault conditions, and the current signal
frequency spectra are illustrated in Figure 10.

Figure 9. Layout of the rotating machine testbed and its components [35].

Figure 10. Frequency spectra for (a) healthy, (b) outer fault, (c) inner fault, and (d) ball fault.

Table 3. Description of the dataset containing vibration and current signals from ball bearings with
different fault types [35].

Fault Types Length (s) Load (Nm) Rotating Speed
(rpm)

Sampling Rate
(kHz)

Normal 2100 0 680–2460 100
Outer 2100 0 680–2460 100
Inner 2100 0 680–2460 100
Ball 2100 0 680–2460 100
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4.1.3. Data Preprocessing

To enhance the model accuracy and stability, each signal segment underwent stan-
dardization, as shown in Equation (5), to eliminate the dimensional differences between
the features, placing them on the same scale:

X̃ =
x − µ

σ
(5)

The diagnosis of electric motor faults faces the typical challenge of data imbalance,
where normal samples are overly predominant and fault samples are scarce. This distri-
bution imbalance can easily lead to model overfitting to the majority class and make it
difficult to effectively identify fault features. To address this, this section employs selective
oversampling for data augmentation, as shown in Equation (6):

xi[n] = x[n + i · (L − D)] (6)

In this equation, xi[n] denotes the n-th sample of the i-th signal segment, where i is the
segment index, L represents the length of each segment, and D is the number of overlapping
samples. Overlapping sampling effectively increases the number of fault samples without
additional data acquisition costs, balances the data distribution, and enhances the model’s
generalization and detection accuracy.

In summary, the overall data-preprocessing procedure is illustrated in Figure 11.
Initially, each signal segment underwent standardization to enhance the model stability.
Subsequently, the continuous current signal was divided into multiple fixed-length frames,
with each frame containing 1024 data points. Next, an overlapping window of 512 data
points was employed for resampling each segment to increase the data diversity. Finally,
the dataset was constructed using each frame of data after overlapping the sampling.

Figure 11. Data-preprocessing process.

4.2. Model Parameter Analysis
4.2.1. Impact of the Number of Convolution Kernels in the First Layer

A CNN extracts multi-dimensional features from input data through multiple convolu-
tional kernels. These kernels progressively capture patterns from simple to complex across
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layers, yielding richer feature information. In motor fault detection tasks, this architecture
extracts fault-related features from motor current signals, serving as inputs to a classifier for
accurate motor operation classification. This section examines the impacts of the number
of convolutional kernels in the first layer (ranging from 1 to 12) on the fault detection
accuracy and error rates (standard deviation) based on 10 repeated trials while keeping
other parameters unchanged. The results are shown in Figure 12.

Figure 12. The impact of the number of convolutional kernels in the first layer on the model.

As shown in Figure 12, the number of convolutional kernels in the first layer signifi-
cantly impacted the model’s performance for motor fault detection. The average accuracy
initially rose rapidly and then stabilized as the number of kernels increased from 1 to
12. When the count increased from 1 to 5, the average accuracy increased from 82.37% to
97.07%, indicating an enhanced feature extraction. Beyond eight kernels, the accuracy stabi-
lized near 99.75%, with marginal gains suggesting performance saturation. Increasing the
kernels allowed the model to capture more feature dimensions, which improved the fault
diagnosis. However, beyond a certain point, further increases yielded limited performance
gains while adding computational complexity and resource use.

In summary, the optimal number of convolutional kernels in the first layer was 8,
which achieved the highest average accuracy and lowest error. Deviating from this number
reduced the accuracy and increased the error and resource consumption. Thus, this section
used 8 kernels to construct the first convolutional layer for the motor fault detection.

4.2.2. Impact of the Size of Convolution Kernels in the First Layer

A CNN achieves hierarchical feature extraction through multi-scale convolutional ker-
nel designs. Research indicates that selecting convolutional kernel sizes requires balancing
the receptive field and computational efficiency. Larger kernels capture broader contextual
information but increase the parameters and computational costs, while smaller kernels,
though computationally efficient, may miss global features. This study systematically
compared the impacts of the first-layer convolutional kernel sizes (1 × 1, 2 × 2, 3 × 3, 5 × 5,
7 × 7, and 11 × 11) on the fault detection performance for the motor fault diagnosis tasks.
The experiments set the number of first-layer kernels to 8 and conducted 10 repeated trials
with the other parameters unchanged. The influences of the first-layer kernel size on the
model accuracy and error rate (standard deviation) are shown in Figure 13.
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Figure 13. The impact of the size of convolutional kernels in the first layer on the model.

As shown in Figure 13, when the first-layer kernel size was set to 1, the model’s fault
detection accuracy was only 95.06%, significantly lower than the other sizes. In contrast,
a size 3 kernel achieved a markedly higher accuracy. Kernels of sizes 2, 5, and 7 yielded
close accuracies (98.90%, 99.18%, 99.01%) and similar error rates. At size 9, the accuracy
slightly dropped but the error rate reduced, which placed it second only to size 3. However,
a size 11 kernel led to a significant accuracy drop and a higher error rate.

In summary, considering the accuracy, error rate, and the increased parameters and
computations from larger kernels, this study selected a first-layer kernel size of 3 to con-
struct the network model.

4.2.3. Impact of Batch Size

A CNN utilizes the backpropagation algorithm to update network weights. Different
batch sizes impact the model performance in motor fault detection. Smaller batches,
with higher gradient noise, can enhance the generalization and prevent overfitting. They
allow the model to adapt to diverse data distributions, improving the detection of rare fault
patterns. Conversely, larger batches offer more accurate gradient directions but may cause
overfitting to training data, reducing the test performance.

This section explores how varying the batch sizes (from 4 to 64) affects the fault
detection accuracy and error rates. The experiments used 8 first-layer convolutional kernels
of size 3, with 10 repeated trials, while keeping the other parameters constant. The results
are shown in Figure 14.

As shown in Figure 14, the model achieved the highest test accuracy of 99.65% with
the smallest error when the batch size was 8. As the batch size increased from 16 to 48,
the training accuracy decreased. Notably, when the batch size was 32, the error rate peaked
significantly compared with the other batch sizes. Even though the model’s fault detection
accuracy slightly recovered and the error reduced when the batch size was increased to
32, it still underperformed compared with smaller batch sizes in terms of the accuracy and
error rate.

In summary, the training batch size had a significant impact on the model’s perfor-
mance in the motor fault detection. A batch size of 8 was optimal, as it allowed the model
to better adapt to different fault data types, which enhanced its ability to detect rare fault
patterns. Therefore, this study selected a batch size of 8 for training the network model.
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Figure 14. The impact of the batch size on the model.

4.2.4. Impact of the Number of Multi-Scale Residual Networks

This section evaluates the impact of the number of multi-scale residual module layers
on the model accuracy. Specifically, it assesses how varying the number of layers from 1 to
6 influenced the accuracy and error rates (standard deviation) based on 10 experimental
trials. The first-layer convolutional kernel count and size were set to 8 and 3, respectively,
with a batch size of 8, while the other parameters remained constant. The results, presented
in Figure 15, revealed that the optimal balance between the accuracy and error rate was
achieved with three layers of multi-scale residual modules. This configuration was thus
selected for constructing the motor fault detection model.

Figure 15. The impact of the number of multi-scale residual networks on the model.

As shown in Figure 15, the number of multi-scale residual module layers significantly
impacted the fault detection model’s performance. When the number of layers increased
from 1 to 2, the average accuracy rose from 90.65% to 98.56%. At 3 layers, the average
accuracy peaked at 99.65% with the lowest error rate. However, at 4 layers, the model’s
accuracy dropped markedly with a larger error. At 5 and 6 layers, the accuracies were
98.46% and 99.35%, respectively, with smaller errors, indicating a slight performance
improvement and saturation. In summary, the model’s fault detection accuracy and
error rate were optimal with three layers of multi-scale residual modules. Increasing the
layers beyond this point led to a performance decline and higher computational demands.
Thus, this study used 3-layer multi-scale residual modules for the motor fault detection
model construction.
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5. Experiments and Analysis
5.1. Model Parameter Settings

The model was trained using the Adam optimizer to update the weights, with a
learning rate decay mechanism for dynamic adjustment. The batch size was set to 8,
and the maximum number of iterations was 300. The dataset was split into training,
validation, and testing sets in a 6:2:2 ratio. Detailed model parameters are provided in
Table 4. The experiments were conducted within the environment of TensorFlow 2.4.0 and
Python 3.8, with the model initially trained on a PC equipped with an Intel i7-12700H
processor (Intel, Santa Clara, CA, USA) operating at 4.7 GHz and featuring 16 GB of RAM.

Table 4. Model parameters.

Layer Structure Output Dimensions Number of
Parameters

Activation
Functions

Convolutional
Kernel Size

Input (None, 1024, 2) 0 None None
Convolution (None, 1024, 16) 176 ReLU 3 × 3

Hybrid attention (None, 1024, 16) 261 Sigmoid, ReLU None
Max pooling (None, 512, 16) 39 ReLU None

MSRB (None, 256, 32) 3401 ReLU 3 × 3, 5 × 5
MSRB (None, 256, 32) 3401 ReLU 3 × 3, 5 × 5
MRSB (None, 256, 32) 3401 ReLU 3 × 3, 5 × 5

Convolution (None, 256, 8) 1800 None 7 × 7
Hybrid attention (None, 256, 8) 99 Sigmoid, ReLU None

Dual global pooling (None, 16) 0 None None
Output (None, 5) 85 None None

5.2. Model Training

The model was trained 10 times, with 300 iterations each, where it achieved an
average accuracy of 99.7%. As shown in Figure 16, the accuracy and loss rate curves
indicate that the accuracy began to converge after 50 iterations and stabilized after 100. The
loss gradually approached zero as the iterations increased, which reflected the model’s
progressive learning of data features.

Figure 16. Model accuracy and loss rate.

To verify the model’s cross-condition generalization in motor bearing fault detection,
tests were conducted on four bearing faults. The confusion matrix in Figure 17 shows the
model’s performance. The model underwent consecutive detections as follows: 401 for
healthy bearings, 399 for outer fault L1, and 399 for outer fault L2, with misclassifications
occurring 3, 1, and 1 times, respectively. Additionally, it performed 399 consecutive
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detections for both inner fault L1 and inner fault L2, misjudging them 1 and 2 times,
respectively. These experimental results demonstrate that the model maintained a high
level of detection accuracy, even in cross-condition motor bearing fault detection scenarios.

Figure 17. The confusion matrix of the model.

5.3. Comparison of Single-Phase and Dual-Phase Currents on Model Performance

The University of Paderborn bearing fault dataset comprises two current signals (U,V),
namely, Current Signal 1 and Current Signal 2. To assess how these signals affected the
model performance, this study compared the model’s performance when trained solely on
each signal individually versus when trained on both signals concurrently. The findings of
this comparison are summarized in Table 5.

(1) Dual-phase vs. single-phase currents: The dual-phase current signals achieved
an accuracy of 99.7%, recall of 99.85%, and F1 score of 99.78%, which all surpassed the
single-phase currents. This indicates that the dual-phase currents provided richer feature
information, which enhanced the model accuracy and robustness.

(2) Accuracy advantage: the higher accuracy of the dual-phase currents reduced the
misclassification risks, which ensured more reliable fault detection.

(3) Recall advantage: The superior recall of the dual-phase currents ensured more
comprehensive fault case identification, which minimized the risk of missed detections.

(4) F1 score improvement: The improved F1 score reflected a better balance between
the precision and recall, which met the dual needs of accurate fault identification and
comprehensive case coverage.

In summary, the dual-phase current signals offered significant advantages in motor
fault detection by providing more accurate and robust performance. Thus, this study
used dual-phase current signals as inputs for the motor fault detection model to better
distinguish the various fault patterns.

Table 5. Comparison of single-phase and dual-phase currents.

Data Type Accuracy (%) Recall (%) F1 (%)

Current 1 97.33 96.90 97.11
Current 2 96.65 97.86 97.25

Dual-current 99.70 99.85 99.78



Machines 2025, 13, 413 16 of 19

5.4. Performance Comparison of Classic Fault Diagnosis Models
5.4.1. The University of Paderborn’s Bearing Dataset

This study employed a multi-dimensional evaluation method to compare the overall
performances of four fault diagnosis models based on the University of Paderborn’s bearing
dataset, with the experimental results presented in Table 6.

Table 6. Comparison of different models.

Model Accuracy (%) Recall (%) F1 (%) Inference Time (s)

This paper 99.70 99.85 99.78 0.202
AMCNN 98.45 98.03 98.23 15.67
LeNet5 89.88 90.38 90.13 0.159
AlexNet 97.56 98.40 97.98 0.342

Transformer 98.77 98.56 98.66 1.322

As shown in Table 6, the AMCNN, LeNet5, AlexNet, and Transformer models achieved
respective accuracies of 98.45%, 89.88%, 97.56%, and 98.77%. By contrast, the deep con-
volutional neural network model proposed in this study attained a superior accuracy of
99.7%, alongside higher recall and F1 scores. Although LeNet5 boasted a faster inference
time than the model presented herein, the latter significantly outperformed the former
across key evaluation metrics, including the accuracy, recall, and F1 score. In summary,
the model introduced in this paper demonstrated exceptional accuracy and robustness in
motor bearing fault detection tasks, highlighting its superior ability to effectively identify
and classify motor bearing faults.

5.4.2. Vibration and Motor Current Dataset of Rolling Element Bearings

To evaluate the model’s generalization and universality, this study employed the vibra-
tion and motor current dataset of rolling element bearings [34], encompassing current data
from four states: healthy, outer ring fault, inner ring fault, and ball fault. The comparative
experimental results are presented in Table 7.

Table 7. Comparative experiments of different algorithms.

Model Accuracy (%) Recall (%) F1 (%) Inference Time (s)

This paper 99.68 99.79 99.73 0.21
AMCNN 98.66 98.43 98.54 15.79
LeNet5 86.97 86.38 86.67 0.17
AlexNet 96.84 97.12 96.97 0.32

Transformer 98.89 99.15 99.02 1.245

The experimental results presented in this table demonstrate the superior performance
of the model proposed in this paper compared with other established models. The model
achieved remarkable accuracy, recall, and F1 scores of 99.68%, 99.79%, and 99.73%, re-
spectively, which outperformed the AMCNN, LeNet5, AlexNet, and Transformer models.
While LeNet5 showed the fastest inference time, this paper’s model also maintained a
relatively low inference time of 0.21 s, thus balancing the efficiency and effectiveness.
These results highlight the model’s potential for real-time and high-precision bearing fault
detection applications.

5.5. Ablation Experiment

To evaluate the model performance, an ablation study was conducted using the bearing
dataset of the University of Paderborn in Germany to evaluate the effects of multi-scale
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residual modules, hybrid attention mechanisms, and dual global pooling, with the results
shown in Table 8.

a. Multiscale residual modules and hybrid attention mechanism: Models using only
global average or max pooling had accuracies of 98.47% and 97.85%, while omitting the dual
global pooling reduced the accuracy to 95.61%. This highlights the dual global pooling’s
importance in feature integration.

b. Multi-scale residual blocks and dual global pooling: Excluding the hybrid attention
mechanism lowered the accuracy and recall to 97.48% and 97.33%, with an F1 score of 97.4%.
This shows the hybrid attention mechanism enhanced the performance by integrating
channel and spatial information.

c. Hybrid attention mechanism and dual global pooling: Omitting the multi-scale
residual modules resulted in the lowest performance (97.48% accuracy, 97.33% recall,
97.4% F1 score). This indicates the multi-scale residual modules significantly boosted the
performance by extracting features across scales and dimensions.

d. Full combination of all three techniques: when all three were used together,
the model achieved the optimal performance, with a 99.7% accuracy, 99.85% recall,
and 99.78% F1 score, showing that their synergy enhanced the model’s overall perfor-
mance in motor fault detection.

Table 8. Ablation experiment.

Multi-Scale Residual Hybrid Attention Dual Global Pooling Accuracy (%) Recall (%) F1 (%)

✓ ✓ ✓ 90.41 91.22 90.81
✓ ✓ 95.61 95.23 95.42
✓ ✓ 97.48 97.33 97.40
✓ ✓ 98.47 98.66 98.56
✓ ✓ 97.85 97.01 97.42
✓ ✓ ✓ 99.70 99.85 99.78

In summary, the ablation studies demonstrated that multi-scale residual modules,
hybrid attention mechanisms, and dual global pooling are all key to improving the model’s
accuracy and reliability in motor fault detection. Their effective combination significantly
boosted the performance.

6. Conclusions
A deep convolutional neural network model for motor fault detection is proposed in

this paper. The model employs a spatial hybrid attention mechanism post-convolutional
layer to extract channel and spatial information from the feature map. Subsequently, a three-
layer multi-scale residual module acquires local and global features from the current signal
following max pooling. Then, double global pooling is utilized to extract richer and more
comprehensive feature information, thereby enhancing the model’s performance. Finally,
the softmax function is used to output the classification results. The Adam optimizer
and sparse categorical cross-entropy loss are employed to compile the model, with early
stopping and learning rate decay applied to enhance the training effectiveness. While
the experimental results indicate that the model could effectively detect bearing faults
within the tested data range, it is important to note that the model’s effectiveness was
assessed using motor bearing fault data collected by Padburn University under laboratory
conditions, as well as rolling bearing vibration and motor current fault diagnosis datasets
under variable-speed conditions. Compared with the single-phase current signals, this
model demonstrated higher accuracy, recall, and F1 scores that outperformed the AM-
CNN, LeNet5, AlexNet, and Transformer models within the tested data range. However,
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the model has not yet been applied to engine fault detection, particularly under harsh indus-
trial conditions. Future research will focus on validating the model’s performance in more
complex and diverse industrial environments and across different types of motor faults.
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