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Abstract: Occupancy detection for large buildings enables optimised control of indoor
systems based on occupant presence, reducing the energy costs of heating and cooling.
Through machine learning models, occupancy detection is achieved with an accuracy of
over 95%. However, to achieve this, large amounts of data are collected with little consider-
ation of which of the collected data are most useful to the task. This paper demonstrates
methods to identify if data may be removed from the imbalanced time-series training
datasets to optimise the training process and model performance. It also describes how
the calculation of the class density of a dataset may be used to identify if a dataset is
applicable for data reduction, and how dataset fusion may be used to combine occupancy
datasets. The results show that over 50% of a training dataset may be removed from imbal-
anced datasets while maintaining performance, reducing training time and energy cost by
over 40%. This indicates that a data-centric approach to developing artificial intelligence
applications is as important as selecting the best model.

Keywords: occupancy detection; data reduction; dynamic data application; time-series
data; useful data; class balance; class density; dataset fusion; green AI

1. Introduction
Indoor occupancy detection is an important task for operations such as energy saving,

management, and security [1,2]. It allows for automated control of heating, ventilation
and air conditioning (HVAC) by only powering these systems when occupant presence is
detected. A classic approach to occupancy detection for indoor environments is to deploy
multiple homogeneous sensors, which are positioned around the interior for maximum
coverage, and feed these data into an artificial intelligence (AI) model. These sensors collect
thousands of datapoints each day, resulting in copious datasets which require processing,
cleaning, and validating before they can be used to estimate occupancy. To coalesce these
data from multiple sources, embedded or “edge” devices are ideal due to their small
size and ease of use. Edge devices are low-power and low-compute devices, making
them appropriate for energy-saving solutions, but this makes them incapable of running
the increasingly complex AI models that have become commonplace. Cloud computing
allows these devices to send data to a more powerful machine for classification, but data
transmission has a high energy cost, especially when large amounts of data must be sent
multiple times a minute [3]. To alleviate this cost, it is beneficial to perform as much
processing as early in the pipeline as possible on the edge device and reduce the amount of
data to be sent. In order to optimise these devices for use on such large collections of data,
data analysis can give us an understanding of which data are more or less relevant to the
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task at hand, and therefore, which data may be removed from the training dataset. This can
minimise the amount of data transmitted further and stored. Additionally, environmental
datasets often suffer from noise and class imbalance which can lead to bias in training [4,5].
By reducing the amount of data in the majority class, class balance may be alleviated
and the cost of transmission reduced. This paper aims to show that, depending on the
attributes of the data, derived from centroid distance and class density, some data may
be removed and model performance maintained. It also aims to find the compatibility
of low-compute Random Forest (RF) algorithms with data reduction to maximise data
efficiency. The final aim is to perform dataset fusion on occupancy datasets to observe if
previously obtained data may be used with newly collected data for a more robust classifier.
The experimentation includes reduction strategies inspired by previous works on image
data to identify compatibility of these methods with lower-dimensional environmental
sensor data.

1.1. Related Works

This paper discusses three topics: Data reduction to find the most useful data in
the time-series domain, machine learning for occupancy detection, and dataset fusion of
time-series data.

With the rapid expansion of AI, the models and data necessary for its operation have
grown substantially, posing sustainability challenges for users [6]. Also, the environmental
effects of AI have become an increasing concern, leading to the trend towards green AI [7].
For these reasons, there is a strong desire to be able to train AI more cheaply. This includes
both more efficient AI models and training data. Generally, an increase in data can enhance
model performance; however, recent research has focused on identifying the most useful
data to streamline collection efforts and model training [8]. This targeted approach reduces
the resources required for training without sacrificing accuracy or performance.

Class imbalance can lead to bias, where the model favours a class’s samples due to its
larger sample size. To counter this, imbalance can be relieved by adding artificial samples
to the smaller (minority) class, or removing samples from the larger (majority) class. These
processes are called undersampling and oversampling, respectively [9]. Undersampling
can be considered a data reduction technique as it reduces the size of the dataset.

Data pruning [10] is a technique that reduces an entire dataset by giving each datapoint
a ‘parameter influence’, and then removing datapoints with the lowest influence. In this
way, not only is data utility optimised but also the computational load of training the model.
A similar alternative is to perform preliminary training for a few iterations on a complete
dataset to first identify the most impactful features. After these features are identified, only
they are used to train for the full duration [11]. Research by Toneva et al. [12] used the
‘forgetting score’ as a metric to group data, eliminating less forgotten and therefore less
useful data before training on the refined dataset. This practice further minimises time and
computational resources, increasing overall efficiency.

Dimensionality reduction is a popular technique which transforms data into a lower-
dimensional space. This reduction aids in data visualization and addresses challenges
associated with the ‘curse of dimensionality’, which can impede data grouping and analy-
sis [13]. Principal component analysis (PCA), for example, identifies and analyses principle
components within a dataset, which may then be used as feature sets for training, replacing
raw data [14]. By using only these essential components, models experience a reduction
in complexity and operational costs without sacrificing key data insights or performance.
Dimensionality reduction is popular in reducing image data [15], but when reducing time-
series data it is important to consider the temporal nature of the data, and that feature
order must be preserved. PCA has proven to be useful as a preprocessing step before
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applying machine learning, but assumes linearity in the data. Kernel PCA (KPCA) resolves
this by applying a kernel to the data, allowing it to handle non-linearity, but it has a high
computational overhead [16].

Understanding the most useful data in a dataset is important, but it is also important
to understand which data are most useful at different stages of training. Usually, training
AI models involves several iterations of computation on the full dataset. However, recent
work on dynamic data inclusion shows an alternative in which a model is trained for some
time on a subset of the data, and gradually data exposure is increased over time [17]. After
identifying which data are ‘easy’ to learn and which are ‘hard’, by means of parameter
influence or the forgetting score, training may be performed with only the easier data for
more rapid training, and fine-tuned with harder data once the model parameters have
been improved.

Many of these methods produce a data subset which is used for partial training. While
this is an improvement from training on a full dataset, there is a desire to be able to identify
the usefulness of data without having to use AI at all. The work in [18] aims to identify
redundant data in a dataset, which may be removed from training before running any AI
models at all. By calculating the ‘class density’, each class is given a score which may be
used to quantify how much data may be removed before training.

Occupancy detection using AI holds significant potential for optimizing heating,
ventilation, and air conditioning (HVAC) systems to achieve greater energy efficiency
and cost savings [19,20]. While methods such as camera-based systems can be employed
to detect occupancy, these techniques are often seen as intrusive by users, as they may
infringe on privacy and personal comfort [21,22]. To address these concerns, non-intrusive
sensing methods are preferred. These alternatives rely on environmental indicators like
temperature, humidity, and CO2 levels within a space to infer human presence. Such
non-intrusive techniques offer a viable solution for occupancy detection, achieving notable
success while preserving user privacy [21,23].

AI models are most often trained on data specific to the domain they are to operate in.
However, data from the real world may be combined to make it more heterogeneous and
informative, increasing the reliability of the classification and quality of the extracted infor-
mation [24]. ‘Data fusion’ refers to the combination of multiple features into a single dataset,
which is used in regression or classification [25]. In the context of occupancy detection,
this is often referred to as sensor fusion, as multiple sensor readings are concatenated into
one complete dataset. ‘Dataset fusion’ allows AI models to perform more reliably in new
domains by introducing data from multiple sources. By combining datasets, information
from other domains becomes available, giving improved performance when tested in other
domains. This is a popular method in image classification tasks, as new images are easily
resized to match the original data [26]. However, time-series datasets are seldom in the
same format as each other, due to the domain-specific information they capture. This is
true even for datasets that aim to capture the same information; for example, in the case
of occupancy detection, occupancy datasets capture different types of data such as tem-
perature and humidity, image and sound, altitude and location. When attempting to fuse
these datasets, this causes issues such as mismatching data formats or missing data, which
makes training difficult. Data pre-processing must be performed in order to homogenise
datasets prior to fusion. There has been less attention given to fusing completed occupancy
datasets together to improve model robustness.

1.2. Research Gap and Contributions

There has been recent research on data reduction for time-series data, but not on
occupancy data specifically. Moreover, there is a research gap in fusing occupancy datasets.
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To address this, this paper describes data reduction techniques, based on previous work
on image datasets, developed for time-series data. More specifically, these techniques
focus on sorting time-series data by their distance from the data centroid, and reduction is
performed based on this metric.

This paper aims to show the effects of data reduction in two aspects: reduction
across all classes indiscriminately, and reduction of only the larger class. This comparison
will show if undersampling is better than pure, random data reduction in the context
of occupancy data. Also, this paper investigates the effects of varying amounts of data
reduction to observe the optimal amount of reduction for best performance. This paper aims
to then correlate these findings with class density, to observe if this technique is applicable
to time-series data, where it has previously only been tested on high-dimensionality image
datasets. Finally, this paper demonstrates the effectiveness of data reduction techniques
on individual datasets and fused datasets to identify the suitability of data reduction on
one-dimensional data.

We define the most useful data as the data that best describe a model, while the
least useful data are those which do not provide any new information to the model. We
define sufficient data as the amount of data required to successfully train an AI model.
By identifying the sufficient amount of data, it is possible to optimise training by not
spending resources training on data that do not contribute further to model performance.

Our contributions are as follows:

• This paper introduces methods of data reduction for time-series data based on previ-
ously established techniques for 2D image data;

• This paper shows, through experimentation, the benefits and drawbacks of varying
amounts of data reduction on time-series data;

• This paper compares data reduction on the larger of imbalanced classes and data reduc-
tion on the entire dataset to identify the effects of data undersampling in conjunction
with our novel data reduction strategies;

• This paper shows the correlation between class density and model and model per-
formance after data reduction to show how data reduction may be suitable for a
given dataset;

• This paper shows the suitability of dataset fusion for occupancy datasets, in combina-
tion with data reduction.

2. Materials and Methods
We aim to identify the most useful data in a dataset. We achieve this by calculating

centroid distances, which consolidate all the features, the sensor values, into one variable.
This allows data to be organised by a single metric, which is used to remove data by our
multiple data reduction techniques, giving us reduced datasets. These reduced datasets are
used for training and testing, and the results are compared to show which data reduction
method, and therefore which data, is most beneficial for training. However, as occupancy
data commonly have an imbalanced number of datapoints in each class, we propose a
method of balancing data by removing data from only the larger class. This resolves both
issues of class imbalance and the abundance of less useful data.

2.1. Dataset Preparation and Fusion

Multiple open-source datasets have been developed for the purpose of occupancy
detection with machine learning [27,28]. The dataset selected for this experiment is the
HPDMobile dataset [29], due to it having multiple sites of homogeneous environmental
sensor data, making it ideal for dataset fusion. It is an open-source dataset that collects
data from six sites, with each site containing the same type of sensors and using the same
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capture methods. Each sensor device captures temperature, humidity, and the volatile
organic compound (VOC) count. Each site has either four or five of these sensors, which
equates to twelve or fifteen features for each site, respectively. Each datapoint has an
associated ground truth of the number of occupants, but for the sake of simplicity, the
experimentation aims to differentiate between ‘some’ or ‘no’ occupants.

The HPDMobile dataset is not originally formatted by site, but by sensor; each sensor’s
data are stored in a separate file. To make a complete dataset, each file of sensor data is
sorted by location, time, and date and aggregated into a table for each site. The result is a
dataset csv file for each of the six sites. Details of the six subsets of the HPDMobile dataset
are shown in Table 1.

Table 1. HPDMobile dataset information. Class balance ratio is between classes ‘Not Occupied’ and
‘Occupied’. Each sensor contains three features: temperature, humidity, and VOC.

Site Number of
Datapoints

Original Number
of Sensors/Derived
Number of Features

Least Important
Sensor

Class Balance Ratio
(Not Occ:Occ)

Alpha 147,750 5:15 4 20:80
Beta 146,879 4:12 N/A 40:60

Charlie 302,399 5:15 0 22:78
Delta 146,879 5:15 4 21:79

Epsilon 129,599 5:15 4 24:76
Fazbear 328,319 4:12 N/A 47:53

The HPDMobile dataset has on average 7% of data missing across all sites and time
frames due to sensor synchronisation and duplicate dropping [29]. As gaps in data cause
a loss in information, and the Random Forest algorithm does not support missing data,
this issue is addressed by filling these gaps in artificially with data imputation. K-Nearest-
Neighbour averaging was selected as an appropriate imputation technique for this pur-
pose [30]. Prior to any training, each site’s dataset undergoes imputation. For each missing
datapoint in each dataset, the three most similar datapoints are averaged to give the missing
value. The KNNImputer package from scikit-learn is used for this.

When attempting to fuse datasets, there may be issues in mismatching data formats or
missing data, which makes training difficult. Data pre-processing must be performed in
order to homogenise datasets prior to their fusion. In the case of the HPDMobile dataset,
there are six individual site datasets, some containing 5 sensors, giving a total of 15 features,
and with 4 sensors giving 12 features. To be able to fuse the individual site datasets together
and to make comparison between each site simpler, each dataset is homogenised into the
same shape with the same number of features by removing the least important sensor,
and therefore the 3 least important features. The least important sensor for the larger
sites is identified by classifying each of the 5 sensor datasets, and using the scikit-learn
importances metric. The importances for each feature are collected and summed. The
sensor with the smallest sum is then identified as the least important feature and omitted
from the dataset before training. Sensor importances are highlighted in Table 1.

To create a fused dataset from the six individual site datasets, each site is first split into
training and test sets. Then, each training set is combined into one large training dataset.
The test sets are not combined but tested on individually, after the model is trained on the
fused dataset. Figure 1 shows this procedure.
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Figure 1. Dataset fusion procedure. Data from each site are split between train and test sets at a ratio
of 80:20.

2.2. Centroid Distance Calculation

Five strategies for data reduction were developed for this paper, four of which use
centroid distance as an identifier for reduction. Algorithm 1 shows the process of calculating
each centroid distance.

Algorithm 1 Centroid distance calculation

1: for Each Dataset do
2: Split Data into 2 classes: Occupied & Not Occupied
3: for Each Feature in Each Class do
4: Feature Centroids = Calculate Mean Average of Each Feature
5: for Each Datapoint in Dataset do
6: Feature Distances = Difference Between Feature And Feature Centroid
7: Centroid Distance = Linear Normalisation of all Feature Distances
8: end for
9: end for

10: end for

2.3. Data Reduction Strategies

Once data centroids are calculated, they are used to identify which data to remove
from the dataset for training. This paper contains two experiments for data reduction:
Data balancing through undersampling and data reduction on both classes, or pure data
reduction. Data balancing aims to set the class distribution to 50:50 to alleviate the effects
of class imbalance and to reduce the amount of data used by removing data from the
dominant class. For example, if a dataset has two classes with 100 and 300 datapoints per
class, the data balance methods aim to reduce the majority class from 300 datapoints to
100. In total, this would be a reduction of ((300 − 100)/(100 + 300)) = 50.0%. As this is
quite a large reduction, the experimentation described below caps the amounts of reduction
by 5%, 10%, 25%, 50%, 75%, as well as the maximum. This allows us to observe the
effects of varying the amount of reduction. Pure data reduction aims to identify the effects
of reducing data in both classes indiscriminately. For consistency between experiments,
the same reduction caps are used as above for pure data reduction. As each site dataset has
a different class balance, the maximum amount of data to remove to balance the classes
differs across datasets. Datasets with greater class imbalance require more reduction to
balance the classes, and vice versa.

Figure 2 shows the reduction methods developed. These are as follows:

• Random exclusion—random datapoints are removed from the training set.
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• Central exclusion—datapoints with the smallest class centroid distance are removed.
• Lateral exclusion—datapoints with the largest class centroid distance are removed.
• Data even—datapoints from the largest density of class centroid distances are removed.

This effectively cuts the top off the tallest columns in the centroid distribution plots.
• Data squash—an amount of datapoints proportional to the density of each of 10 bins

of data is removed from each bin. This effectively flattens all columns in the centroid
distribution plots, proportionally to the size of each column.

(a) (b)

(c) (d)

(e)

Figure 2. Centroid distance-based reduction strategies. Original dataset distribution in blue; reduced
dataset in orange. (a) Random reduction: Data are removed from the dataset at random. (b) Cen-
tral reduction: Datapoints with the smallest centroid distance are removed. (c) Lateral reduction:
Datapoints with the largest centroid distance are removed. (d) Even reduction: Datapoints from the
largest density of centroid distances are removed. (e) Squash reduction: Datapoints are removed
proportionally to the local density.

The central and lateral exclusion methods are based on similar work on 2D image
data [18], and data even and data squash were developed for this paper.
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2.4. Class Density Calculation

Class density, or label density [18,31], is a measure of the aggregate similarity of
datapoints within each class of a dataset. A low class density suggests the datapoints of
that class are unique, while a high class density suggests many datapoints hold the same
features. For the latter case, it stands to reason that similar datapoints may be removed to
reduce a dataset without taking away key features from it.

Equation (1) shows how class density is calculated, where d is the density for class i
for all n classes, where ci is the count of samples for that class; σi is the standard deviations
of the m Gaussians of the m-dimensional class i.

di = n · ci · (
n

∑
j

cj)
−1 · ( 1

m

m

∑
k

σik )
−1 (1)

For each experiment in this paper, we calculate the class densities to identify the effect
the different reduction strategies have on class density. With this knowledge, and the
corresponding model performance, we can observe the importance of specific data to
overall model performance. We may also use this information to identify if a dataset may
be reduced before attempting any data reduction; findings by [18] suggest that by reducing
data from the denser classes and converging each class’s density towards a value of 1,
model performance may be maintained. We identify if this is true for the HPDMobile
dataset and, by extension, other time-series datasets.

2.5. Metrics and Model

Accuracy is traditionally used to measure the performance of AI models, but especially
in the case of unbalanced datasets, it is known to give bias to the majority class in a
phenomenon known as the accuracy paradox [32]. To avoid this, model performance is also
measured by the area under the receiver operating characteristic curve (AUC-ROC) [33].
This is a single value that leverages a model’s sensitivity against its specificity instead of
considering these metrics individually, and is considered a more descriptive metric over
accuracy for biased datasets for binary classification tasks. The experimental results in this
paper show accuracy and AUC-ROC. The p-values of each experiment are also given to
show the statistically significant difference between the results and the test benchmark. A
p-value below 0.05 is selected to identify statistical significance.

Multiple models were considered for the experimentation, and preliminary testing was
performed on each to identify the most suitable model for the rest of the experimentation.
Those included were Random Forest (RF), XGBoost, Convolutional Neural Network (CNN),
and Long Short-Term Memory (LSTM) models. The RF and XGBoost models are available
as part of the scikit-learn library, and the CNN and LSTM models were created using the
Pytorch library. Below are the configurations of each network:

• Random Forest Algorithm (RF)

– Maximum depth: unlimited;
– Number of estimators: 100.

• XGBoost

– Maximum depth: unlimited;
– Number of estimators: 100;
– Tree method: ‘approx’.

• Convolutional Neural Network (CNN)

– Layer configuration: 3 convolutional layers with batch normalization; 2 fully
connected final layers;
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– Learning rate: 0.001;
– Optimiser: Adam;
– Loss function: Binary cross-entropy;
– Data window size: 6 datapoints.

• Long Short-Term Memory Network (LSTM)

– Number of layers: 4 LSTM layers, 1 fully connected layer;
– Hidden layer size: 250;
– Bidirectional: False ;
– Learning rate: 0.001;
– Optimiser: Adam;
– Loss function: Binary cross-entropy;
– Data window size: 6 datapoints.

Table 2 shows the results from preliminary testing on Site Alpha of the HPDMobile
dataset. This shows that the RF model was the best-performing model. The RF and
XGBoost models are the simpler models to train with, while the CNN and LSTM models
require the input data’s sequencing to be preserved. This adds a level of complexity which
may be avoided by using a model that does not require sequencing preservation. Also,
as one objective of this study is for it to be deployable on edge devices with computational
constraints, a computationally simpler model would be preferred. The Random Forest
model was selected as a simple single-loop model for classification.

Table 2. Preliminary test results on RF, XGBoost, CNN, and LSTM models with HPDMobile dataset
Site Alpha.

Model Accuracy AUC-ROC

RF 98.744% 97.143%
XGBoost 95.128% 93.054%

CNN 91.021% 89.783%
LSTM 85.470% 85.393%

2.6. Hardware and Power Calculation

As the focus of this paper is to reduce the cost of operation of occupancy classification
on edge devices, it is important to consider the hardware the experiments are carried
out on. Due to the large number of experiments and the amount of data logging that
will be performed, experimentation is performed on a desktop PC. The code is designed
to be transferable to an IOT device for deployment, but in the context of this paper the
following hardware is used for experimentation:

• CPU: Intel i7-11700k;
• RAM: 16 GB DDR4;
• OS: Windows 10.

The power consumption of the CPU is measured using HWiNFO software [34] while
the model is trained. For the processor used, the power consumption is 14 W when idle and
46 W when busy. The power consumption of the program is the difference between these
two: 32 W. This value is consistent between experiments regardless of tree depth or dataset
size, although these factors instead increase the runtime of training. In the UK, according
to the Department for Energy Security and Net Zero [35], this translates to 6.623 g of CO2

emissions per hour.
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3. Results
3.1. Experiments on Individual Sites

For each experiment performed, the datasets were split into training and testing sets
at a ratio of 80:20. Each experiment was run five times and results were averaged.

Experimentation was performed to observe the effects of reducing the data by varying
amounts, from different areas in the data distribution. Due to the different class balances of
each dataset, class balancing removes more data for more imbalanced classes, and vice versa.
Table 3 shows the maximum percentage reduction of the larger class, and the dataset overall.
It also shows the densities of the classes, derived from research in [18]. This will be used as
a metric to identify suitability for data reduction.

Table 3. HPDMobile class balance and class density properties, and maximum reduction amounts
after class balancing.

Site Number of
Datapoints

Class Balance
(Not Occ:Occ)

Balanced
Class Max
Reduction

Total Dataset
Reduction at

Max Balancing

Class Density
(Not Occ:Occ)

Alpha 147,750 20:80 74.912% 59.887% 0.674:1.585
Beta 146,879 40:60 34.599% 20.918% 1.068:1.201

Charlie 302,399 22:78 72.111% 56.386% 0.639:1.532
Delta 146,879 21:79 77.569% 63.358% 0.547:1.576

Epsilon 129,599 24:76 67.755% 51.235% 0.886:1.392
Fazbear 328,319 47:53 12.111% 6.446% 1.260:0.892

3.1.1. Experimental Benchmark

Before data reduction was performed, the models were trained with the full dataset to
acquire the benchmark results. These results are shown in Table 4. The runtime of each of
these experiments was less than one minute.

Table 4. Experimental benchmarks of accuracy and AUC-ROC with RF model.

Site Accuracy AUC-ROC

Alpha 98.813% 98.812%
Beta 99.613% 99.613%

Charlie 99.755% 99.612%
Delta 99.589% 99.271%

Epsilon 99.692% 99.574%
Fazbear 99.367% 99.368%

3.1.2. Site Alpha

Site Alpha has 147,750 datapoints and a class balance of 20:80. Figure 3 shows the
results of varying degrees of data reduction on the single dataset. Tables 5 and 6 show the
p-values of the AUC-ROC of each experiment.

Figure 3a,b show that model accuracy decreases steadily as more data are removed,
regardless of whether the removed data are from the majority class or both. Figure 3c,d,
show a similar drop in performance. The AUC-ROC score may be maintained with
majority class reduction, up to 50%. This is interesting behaviour as the accuracy up to
this amount of reduction decreases. By performing reduction in this way, we may improve
the model’s ability to avoid false positives and false negatives. It is also important to note
that the p-values of all experiments corresponding to majority class reduction indicate
that the results are not statistically differentiable from the benchmark, apart from with the
maximum reduction. For the maximum reduction, the performance is clearly worse, hence



AI 2025, 6, 98 11 of 26

the differentiation. For every other case, performance is maintained while reducing the
amount of data.

Tables 7 and 8 show the class densities for each experiment. Table 7 shows that,
for each reduction method, the densities of each class become closer, up to a reduction
cap of 50%. At maximum reduction, the minority class, class 0, has a greater class density
than class 1. At the same time, both the accuracy and the AUC-ROC of the model decrease
by a relatively large amount. This supports the theory that data may be reduced in order
to balance the density of each class towards a value of 1, but further reduction that leads
to an imbalance causes the model to deteriorate. Also, Table 8 shows that by performing
data reduction on both classes, the difference in class density between classes 0 and 1 does
not change by a significant amount. This may explain why the accuracy and AUR-ROC
decrease as the amount of data is reduced, while they do not with reduction only on the
majority class.

(a) (b)

(c) (d)

Figure 3. Experimental results for Site Alpha test set. (a) Accuracy, Majority class reduced; (b) Accu-
racy, Both classes reduced; (c) AUC, Majority class reduced; (d) AUC, Both classes reduced.

Table 5. p-values of the AUC metrics of each experiment of reduction on the majority class, on Site
Alpha test set. Values marked with an * have a statistically significant difference from the benchmark.

Reduction Random Central Lateral Even Squash

5% 0.268 0.182 0.616 0.794 0.329
10% 0.971 0.255 0.906 0.652 0.625
25% 0.74 0.972 0.688 0.482 0.673
50% 0.605 0.731 0.948 0.341 0.239
Max 2.25 × 10−4 * 2.63 × 10−5 * 1.49 × 10−4 * 1.59 × 10−4 * 1.18 × 10−4 *
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Table 6. p-values of the AUC metrics of each experiment of reduction on both classes, on Site Alpha
test set. Values marked with an * have a statistically significant difference from the benchmark.

Reduction Random Central Lateral Even Squash

5% 0.273 7.04 ×10−3 * 4.42 × 10−2 * 5.92 × 10−2 5.56 × 10−3 *
10% 3.51 × 10−3 * 0.267 1.44 × 10−2 * 0.16 3.48 × 10−2 *
25% 1.71 × 10−2 * 5.21 × 10−3 * 1.21 × 10−3 * 1.98 × 10−4 * 2.83 × 10−3 *
50% 3.96 × 10−4 * 2.56 × 10−5 * 2.64 × 10−5 * 7.09 × 10−4 * 2.11 × 10−4 *
Max 1.85 × 10−5 * 3.14 × 10−5 * 1.25 × 10−4 * 1.73 × 10−6 * 3.52 × 10−5 *

Table 7. Class density of Site Alpha dataset after data reduction on the majority class only. R: random
reduction, C: central reduction, L: lateral reduction, E: even reduction, S: squash reduction.

Class 0 (Not Occupied) Class 1 (Occupied)
Data

Reduced R C L E S R C L E S

5% 0.707 0.712 0.670 0.687 0.704 1.565 1.565 1.582 1.565 1.551
10% 0.739 0.721 0.722 0.756 0.740 1.565 1.562 1.552 1.511 1.550
25% 0.812 0.875 0.848 0.848 0.882 1.507 1.485 1.482 1.389 1.447
50% 1.112 1.185 1.176 1.161 1.133 1.324 1.308 1.315 1.112 1.311
Max 1.782 1.734 1.725 1.796 1.621 1.008 1.010 0.977 0.680 0.968

Table 8. Class density of Site Alpha dataset after data reduction across both classes. R: random
reduction, C: central reduction, L: lateral reduction, E: even reduction, S: squash reduction.

Class 0 (Not Occupied) Class 1 (Occupied)
Data

Reduced R C L E S R C L E S

5% 0.720 0.706 0.719 0.643 0.707 1.549 1.555 1.579 1.591 1.572
10% 0.782 0.669 0.634 0.704 0.709 1.565 1.579 1.598 1.532 1.557
25% 0.792 0.752 0.781 0.635 0.622 1.562 1.573 1.580 1.531 1.597
50% 0.707 0.716 0.735 0.595 0.633 1.571 1.569 1.582 1.458 1.579
Max 0.766 0.804 0.850 0.554 0.541 1.556 1.571 1.622 1.340 1.594

3.1.3. Site Beta

Site Beta has 146,879 datapoints and a class balance of 40:60. This dataset has relatively
few datapoints and less class imbalance than the others in the HPDMobile dataset, causing
a lower maximum reduction of 34%. Figure 4 shows the results of varying degrees of data
reduction on the Site Beta dataset, and Tables 9 and 10 show the p-values of the AUC-ROC
of each experiment.

Both the accuracy and AUC-ROC values change by less that 0.2% as the amount of
data is reduced. This is due to much less reduction being required to balance the classes,
compared to the reduction performed for Site Alpha. However, there is still a very slight
drop in both accuracy and AUC-ROC. Most of the p-values show no statistically significant
difference from the benchmark, expect for some of the more extreme reduction amounts.
These results show a larger difference from the benchmark, which raises questions about
the stability of the model after reducing the dataset.

Tables 11 and 12 show that the densities of both classes are values above 1 for all
experiments except the maximum reduction of the majority class, where class 1’s density is
between 0.9 and 1. This suggests that the reduction methods performed are not enough to
shift the densities towards 1. Alternative methods may be required to optimise datasets
like Site Beta, where classes are already closely balanced.
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(a) (b)

(c) (d)

Figure 4. Experimental results for Site Beta test set. (a) Accuracy, Majority class reduced; (b) Accuracy,
Both classes reduced; (c) AUC, Majority class reduced; (d) AUC, Both classes reduced.

Table 9. p-values of the AUC metrics of each experiment of reduction on the majority class, on Site
Beta test set. Values marked with an * have a statistically significant difference from the benchmark.

Reduction Random Central Lateral Even Squash

5% 0.955 0.684 0.591 0.258 0.325
10% 0.929 0.486 0.32 0.672 0.376
25% 4.65 × 10−2 * 4.82 × 10−3 * 0.297 0.483 0.251
Max 3.47 × 10−2 * 0.589 5.31 × 10−2 1.71 × 10−2 * 4.05 × 10−2 *

Table 10. p-values of the AUC metrics of each experiment of reduction on both classes, on Site Beta
test set. Values marked with an * have a statistically significant difference from the benchmark.

Reduction Random Central Lateral Even Squash

5% 7.27 × 10−2 0.151 0.349 0.657 0.368
10% 0.784 3.04 × 10−2 * 0.389 0.564 2.12 × 10−2 *
25% 0.142 0.111 7.13 × 10−2 0.247 0.523
Max 1.80 × 10−2 * 0.124 1.38 × 10−4 * 1.00 × 10−2 * 9.75 × 10−2

Table 11. Class density of Site Beta dataset after data reduction on the majority class only. R: random
reduction, C: central reduction, L: lateral reduction, E: even reduction, S: squash reduction.

Class 0 (Not Occupied) Class 1 (Occupied)
Data

Reduced R C L E S R C L E S

5% 1.111 1.132 1.112 1.114 1.126 1.172 1.153 1.164 1.157 1.149
10% 1.144 1.157 1.162 1.149 1.158 1.137 1.146 1.146 1.119 1.120
25% 1.277 1.276 1.279 1.263 1.298 1.055 1.047 1.035 1.004 1.021
Max 1.383 1.345 1.371 1.345 1.387 0.963 1.002 0.970 0.917 0.952
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Table 12. Class density of Site Beta dataset after each data reduction method, with reduction on
both classes. R: random reduction, C: central reduction, L: lateral reduction, E: even reduction,
S: squash reduction.

Class 0 (Not Occupied) Class 1 (Occupied)
Data

Reduced R C L E S R C L E S

5% 1.083 1.097 1.087 1.091 1.071 1.195 1.180 1.198 1.180 1.189
10% 1.087 1.088 1.094 1.062 1.079 1.191 1.194 1.192 1.187 1.177
25% 1.057 1.078 1.085 1.047 1.061 1.205 1.198 1.186 1.156 1.185
Max 1.085 1.138 1.114 1.052 1.068 1.190 1.184 1.218 1.126 1.174

3.1.4. Site Charlie

Site Charlie has one of the larger class imbalances, and therefore larger maximum
reduction caps, with a maximum reduction of 72%. It is also one of the larger datasets,
with over 300,000 datapoints. Figure 5 shows the experimental results and Tables 13 and 14
show the p-values of the AUC-ROC of each experiment.

Figure 5a shows that up to a reduction cap of 50%, accuracy is above the benchmark,
with the lateral data reduction method with a reduction cap of 10% performing best.
With the maximum reduction cap (at 72.111%), however, the performance is below the
benchmark for all strategies. This indicates a delicate balance is needed for data reduction
to ensure that too much data is not removed. This is further explained by the class densities;
Table 15 shows that as more of the majority class is reduced, both classes’ densities converge
around a value of 1. At a reduction cap of 50%, the combined difference between each
density and 1 is smallest, which is where the AUC-ROC is greatest across all strategies.
However, the results are less stable, as shown by the size of each box. Furthermore, Table 16
shows that by reducing data across both classes, the model performance is worse.

(a) (b)

(c) (d)

Figure 5. Experimental results for Site Charlie test set. (a) Accuracy, Majority class reduced; (b) Accu-
racy, Both classes reduced; (c) AUC, Majority class reduced; (d) AUC, Both classes reduced.
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Table 13. p-values of the AUC metrics of each experiment of reduction on the majority class, on Site
Charlie test set. Values marked with an * have a statistically significant difference from the benchmark.

Reduction Random Central Lateral Even Squash

5% 0.14 4.96 × 10−2 * 3.08 × 10−2 * 1.18 × 10−2 * 0.215
10% 2.05 × 10−3 * 7.93 × 10−3 * 6.49 × 10−4 * 2.93 × 10−2 * 8.29 × 10−3 *
25% 2.96 × 10−2 * 2.23 × 10−2 * 6.12 × 10−4 * 1.41 × 10−2 * 8.71 × 10−3 *
50% 6.60 × 10−3 * 9.01 × 10−3 * 1.74 × 10−2 * 2.63 × 10−3 * 3.41 × 10−3 *
Max 7.02 × 10−2 0.389 4.31 × 10−4 * 0.365 2.89 × 10−2 *

Table 14. p-values of the AUC metrics of each experiment of reduction on both classes, on Site Charlie
test set. Values marked with an * have a statistically significant difference from the benchmark.

Reduction Random Central Lateral Even Squash

5% 0.138 0.116 0.299 1.71 × 10−3 * 1.23 × 10−3 *
10% 0.233 0.461 0.3 0.396 0.924
25% 0.863 0.705 0.994 2.66 × 10−2 * 0.804
50% 2.42 × 10−2 * 0.255 0.194 6.01 × 10−4 * 2.02 × 10−3 *
Max 3.48 × 10−4 * 5.56 × 10−3 * 2.32 × 10−3 * 9.48 × 10−5 * 3.73 × 10−4 *

Table 15. Class density of Site Charlie dataset after data reduction on the majority class only.
R: random reduction, C: central reduction, L: lateral reduction, E: even reduction, S: squash reduction.

Class 0 (Not Occupied) Class 1 (Occupied)
Data

Reduced R C L E S R C L E S

5% 0.663 0.662 0.664 0.663 0.661 1.512 1.524 1.519 1.511 1.513
10% 0.689 0.689 0.690 0.693 0.695 1.492 1.493 1.491 1.487 1.489
25% 0.794 0.793 0.793 0.791 0.791 1.449 1.423 1.421 1.403 1.414
50% 1.046 1.033 1.046 1.048 1.042 1.260 1.271 1.222 1.202 1.251
Max 1.458 1.466 1.460 1.457 1.467 0.985 0.981 0.991 0.891 0.957

Table 16. Class density of Site Charlie dataset after data reduction across both classes. R: random
reduction, C: central reduction, L: lateral reduction, E: even reduction, S: squash reduction.

Class 0 (Not Occupied) Class 1 (Occupied)
Data

Reduced R C L E S R C L E S

5% 0.636 0.637 0.640 0.637 0.636 1.531 1.541 1.531 1.529 1.530
10% 0.638 0.639 0.639 0.632 0.637 1.534 1.532 1.531 1.525 1.528
25% 0.635 0.635 0.638 0.636 0.635 1.538 1.537 1.526 1.512 1.522
50% 0.639 0.636 0.635 0.633 0.633 1.533 1.538 1.526 1.489 1.512
Max 0.634 0.646 0.638 0.631 0.631 1.556 1.563 1.554 1.445 1.509

3.1.5. Site Delta

Site Delta has similar properties to Site Alpha, with 146,879 datapoints and a class
balance of 21:79. Figure 6 shows the experimental results, and Tables 17 and 18 show the
p-values of the AUC-ROC of each experiment.

Figure 6a,b show similar behaviour to each other, where accuracy drops as greater
reduction is performed. Figure 6c shows that the AUC-ROC is maintained up to a 75%
reduction for class balance. However, Figure 6d shows that the AUC-ROC drops by a
larger amount with reduction across both classes. Site Delta has a large class imbalance,
which suggests that some balancing is important for optimal results. The p-values of the
results for all but three experiments (data squash at 10% and maximum reduction and
lateral reduction at 25% reduction) show no statistically significant difference from the
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benchmark. This suggests once again that through this method of data reduction, optimal
model performance is maintained.

Tables 19 and 20 show the class densities after each reduction method for Site Delta.
As with the other sites, reduction on both classes does little to bring the class densities
towards a value of 1. For majority class reduction, an optimal amount of reduction to
achieve balanced class densities is between reduction caps of 50% and 75%. This demon-
strates the delicate balance needed to find the optimal amount of data to remove for the
best performance.

(a) (b)

(c) (d)

Figure 6. Experimental results for Site Delta test set. (a) Accuracy, Majority class reduced; (b) Accuracy,
Both classes reduced; (c) AUC, Majority class reduced; (d) AUC, Both classes reduced.

Table 17. p-values of the AUC metrics of each experiment of reduction on the majority class, on Site
Delta test set. Values marked with an * have a statistically significant difference from the benchmark.

Reduction Random Central Lateral Even Squash

5% 0.704 8.17 × 10−2 0.711 0.396 0.287
10% 0.199 0.35 7.70 × 10−2 0.582 1.59 × 10−2 *
25% 0.949 0.168 4.32 × 10−2 * 0.757 0.212
50% 0.415 0.553 0.807 0.473 0.184
75% 0.375 5.83 × 10−2 0.778 0.802 0.891
Max 0.113 0.254 5.27 × 10−2 0.444 3.14 × 10−2 *
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Table 18. p-values of the AUC metrics of each experiment of reduction on both classes, on Site Delta
test set. Values marked with an * have a statistically significant difference from the benchmark.

Reduction Random Central Lateral Even Squash

5% 0.198 0.918 0.625 0.226 0.591
10% 0.869 0.144 0.155 0.967 0.686
25% 2.07 × 10−2 * 3.73 × 10−2 * 3.20 × 10−3 * 5.53 × 10−2 2.61 × 10−2 *
50% 2.98 × 10−3 * 1.00 × 10−4 * 4.39 × 10−4 * 1.59 × 10−4 * 1.42 × 10−2 *
75% 1.70 × 10−4 * 2.11 × 10−5 * 4.50 × 10−5 * 8.12 × 10−4 * 1.02 × 10−4 *
Max 5.72 × 10−5 * 5.59 × 10−3 * 2.34 × 10−3 * 4.75 × 10−4 * 3.29 × 10−4 *

Table 19. Class density of Site Delta dataset after data reduction on the majority class only. R: random
reduction, C: central reduction, L: lateral reduction, E: even reduction, S: squash reduction.

Class 0 (Not Occupied) Class 1 (Occupied)
Data

Reduced R C L E S R C L E S

5% 0.578 0.561 0.586 0.556 0.559 1.566 1.573 1.553 1.549 1.550
10% 0.633 0.586 0.603 0.633 0.590 1.534 1.559 1.544 1.504 1.523
25% 0.671 0.679 0.662 0.675 0.645 1.475 1.520 1.503 1.414 1.468
50% 0.932 0.969 0.938 0.954 0.914 1.334 1.412 1.352 1.152 1.294
75% 1.354 1.494 1.484 1.493 1.420 1.052 1.052 1.103 0.737 0.957
Max 1.506 1.456 1.583 1.531 1.509 1.074 1.062 0.969 0.685 0.909

Table 20. Class density of Site Delta dataset after data reduction across both classes. R: random
reduction, C: central reduction, L: lateral reduction, E: even reduction, S: squash reduction.

Class 0 (Not Occupied) Class 1 (Occupied)
Data

Reduced R C L E S R C L E S

5% 0.533 0.544 0.558 0.577 0.578 1.577 1.572 1.573 1.553 1.555
10% 0.563 0.516 0.561 0.542 0.557 1.605 1.600 1.579 1.549 1.557
25% 0.627 0.545 0.546 0.518 0.567 1.581 1.577 1.572 1.512 1.540
50% 0.602 0.634 0.559 0.515 0.537 1.663 1.591 1.573 1.416 1.538
75% 0.615 0.569 0.581 0.464 0.632 1.639 1.704 1.634 1.299 1.498
Max 0.573 0.562 0.663 0.445 0.629 1.688 1.593 1.615 1.278 1.474

3.1.6. Site Epsilon

Site Epsilon is the smallest site in the dataset, with only 129,599 datapoints. It is also
among the most imbalanced of the site datasets, with a class balance of 24:76. Figure 7
shows the experimental results, and Tables 21 and 22 show the p-values of the AUC-ROC
of each experiment.

Much like with Site Delta, Figure 7a,b show that data reduction causes a drop in
performance of up to 0.4%. Like the experiments for sites Alpha, Beta, and Delta, the
AUC-ROC does not decrease with accuracy until the maximum reduction.

Table 23 shows that with each reduction cap, the density of class 0 increases while
the density of class 1 decreases, as with the other sites. However, class 0’s density passes
through a value of 1 between reduction caps of 10% and 25%, while class 1 passes through
a value of 1 between a reduction cap of 50% and the maximum (for allreduction methods
except random). This makes it difficult to identify the best reduction cap for this dataset.
Perhaps an alternative method of data reduction would be more appropriate. Table 24
shows that, similarly to sites Charlie and Delta, as data is reduced the densities move
further from a value of 1. This is linked to a drop in both accuracy and AUC-ROC.
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(a) (b)

(c) (d)

Figure 7. Experimental results for Site Epsilon test set. (a) Accuracy, Majority class reduced; (b) Accu-
racy, Both classes reduced; (c) AUC, Majority class reduced; (d) AUC, Both classes reduced.

Table 21. p-values of the AUC metrics of each experiment of reduction on the majority class, on Site
Epsilon test set. Values marked with an * have a statistically significant difference from the benchmark.

Reduction Random Central Lateral Even Squash

5% 0.761 0.618 2.51 × 10−2 * 0.376 0.919
10% 6.61 × 10−2 0.373 0.541 0.844 0.522
25% 0.745 0.765 0.207 0.173 0.991
50% 0.186 1.91 × 10−2 * 8.94 × 10−2 1.57 × 10−2 * 0.282
Max 1.03 × 10−3 * 8.73 × 10−3 * 1.79 × 10−3 * 1.47 × 10−2 * 1.37 × 10−3 *

Table 22. p-values of the AUC metrics of each experiment of reduction on both classes, on Site Epsilon
test set. Values marked with an * have a statistically significant difference from the benchmark.

Reduction Random Central Lateral Even Squash

5% 0.856 0.513 0.676 0.513 0.593
10% 0.639 0.447 6.03 × 10−2 0.127 0.997
25% 3.89 × 10−2 * 4.75 × 10−2 * 0.203 0.105 1.51 × 10−2 *
50% 7.18 × 10−3 * 2.48 × 10−2 * 1.58 × 10−3 * 1.21 × 10−3 * 5.37 × 10−3 *
Max 2.01 × 10−4 * 1.07 × 10−3 * 3.55 × 10−3 * 8.09 × 10−4 * 5.19 × 10−4 *

Table 23. Class density of Site Epsilon dataset after data reduction on the majority class only.
R: random reduction, C: central reduction, L: lateral reduction, E: even reduction, S: squash reduction.

Class 0 (Not Occupied) Class 1 (Occupied)
Data

Reduced R C L E S R C L E S

5% 0.862 0.932 0.878 0.909 0.907 1.383 1.378 1.391 1.363 1.370
10% 0.944 0.946 0.956 0.969 0.954 1.377 1.341 1.369 1.325 1.340
25% 1.061 1.041 1.079 1.115 1.050 1.319 1.302 1.279 1.207 1.265
50% 1.406 1.400 1.458 1.406 1.456 1.200 1.124 1.168 0.963 1.097
Max 1.834 1.790 1.813 1.836 1.814 1.008 0.977 0.973 0.692 0.935
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Table 24. Class density of Site Epsilon dataset after data reduction across both classes. R: random
reduction, C: central reduction, L: lateral reduction, E: even reduction, S: squash reduction.

Class 0 (Not Occupied) Class 1 (Occupied)
Data

Reduced R C L E S R C L E S

5% 0.906 0.898 0.876 0.884 0.871 1.394 1.386 1.403 1.382 1.387
10% 0.850 0.874 0.873 0.877 0.877 1.406 1.386 1.386 1.372 1.381
25% 0.886 0.883 0.882 0.883 0.875 1.392 1.379 1.417 1.335 1.367
50% 0.858 0.863 0.883 0.878 0.874 1.404 1.443 1.422 1.262 1.365
Max 0.864 0.873 0.883 0.884 0.876 1.349 1.446 1.417 1.183 1.371

3.1.7. Site Fazbear

Site Fazbear is the largest of the sites, with 328,319 datapoints, and the only site to
feature more datapoints in the ‘Occupied’ class, class 1. It is also the most balanced site,
with a class balance of 47:53, giving a maximum reduction of 12.111%. Figure 8 shows
the experimental results, and Tables 25 and 26 show the p-values of the AUC-ROC of
each experiment.

Before analysing the box and whisker plots, the p-values indicate no statistically
significant difference from the benchmark, except with 5% reduction on the data squash
method. For this experiment, the AUC-ROC is slightly better than the benchmark. For all
other experiments, there is no statistical significance. This can be explained by the very
small amount of reduction performed for this dataset, due to the natural class balance of
47:53. Considering the class densities, shown by Tables 27 and 28, class densities reach
values closer to 1 with experiments with reduction of both classes, unlike for the previous
sites. The values reach just under 1.2 for class 0 and just above 0.95 for class 1 at the
maximum reduction on both classes. There is very little change in densities, like with AUC-
ROC, because of the small amount of reduction performed. This indicates the reduction
method of balancing datasets is not aggressive enough for already closely balanced datasets.

(a) (b)

(c) (d)

Figure 8. Experimental results for Site Fazbear test set. (a) Accuracy, Majority class reduced; (b) Accu-
racy, Both classes reduced; (c) AUC, Majority class reduced; (d) AUC, Both classes reduced.
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Table 25. p-values of the AUC metrics of each experiment of reduction on the majority class, on Site
Fazbear test set. Values marked with an * have a statistically significant difference from the benchmark.

Reduction Random Central Lateral Even Squash

5% 0.191 0.297 0.182 0.101 3.72 × 10−2 *
10% 0.993 9.94 × 10−2 0.834 0.435 0.489
Max 6.08 × 10−2 7.90 × 10−2 0.384 0.594 0.207

Table 26. p-values of the AUC metrics of each experiment of reduction on both classes, on Site Fazbear
test set. Values marked with an * have a statistically significant difference from the benchmark.

Reduction Random Central Lateral Even Squash

5% 0.534 0.574 0.138 0.18 0.568
10% 0.596 0.476 6.91 × 10−2 5.22 × 10−2 0.47
Max 0.727 0.742 0.669 0.442 0.929

Table 27. Class density of Site Fazbear dataset after data reduction on the majority class only.
R: random reduction, C: central reduction, L: lateral reduction, E: even reduction, S: squash reduction.

Class 0 (Not Occupied) Class 1 (Occupied)
Data

Reduced R C L E S R C L E S

5% 1.221 1.216 1.208 1.190 1.213 0.918 0.925 0.926 0.931 0.918
10% 1.208 1.172 1.194 1.158 1.169 0.945 0.952 0.944 0.950 0.949
Max 1.174 1.163 1.153 1.154 1.151 0.956 0.958 0.966 0.952 0.959

Table 28. Class density of Site Fazbear dataset after data reduction across both classes. R: random
reduction, C: central reduction, L: lateral reduction, E: even reduction, S: squash reduction.

Class 0 (Not Occupied) Class 1 (Occupied)
Data

Reduced R C L E S R C L E S

5% 1.263 1.249 1.256 1.239 1.242 0.896 0.896 0.896 0.893 0.893
10% 1.247 1.268 1.269 1.233 1.229 0.893 0.885 0.900 0.885 0.898
Max 1.240 1.257 1.232 1.249 1.230 0.897 0.893 0.903 0.877 0.895

3.1.8. Discussion—Individual Site Datasets

First, we discuss the performance of each site individually. We have identified that
datasets Alpha, Charlie, and Delta show promising results when performing reduction
on the majority class. The AUC-ROC may be maintained, so long as class density shifts
towards 1 through data reduction. The class densities of sites Beta, Epsilon, and Fazbear
do not converge around 1 as the amount of data is reduced, and the AUC-ROC decreases
slightly as a result. Site Epsilon has one of the largest class imbalances, but still fails to
improve after class balancing through data reduction. This dataset also has the fewest
number of datapoints, which may explain the poor performance after data reduction is
performed. Therefore, we cannot rely solely on class imbalance as a criterion for data
reduction. Instead, class density offers insight into a dataset that might not be immediately
apparent. Class density shows more than class imbalance, it also shows whether a dataset
has sufficient data for the methods described in this paper. Class density may therefore be
considered as a metric that encompasses class balance and sufficient data, and can be used
to determine if data reduction is applicable.

Table 29 shows the runtimes for all the experiments. This shows the benefits data
reduction may bring to energy and CO2 cost reduction, as runtime, energy use, and CO2

emissions are directly correlated. For most experiments, by increasing the amount of
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reduction performed, we reduce the runtime. Sites Alpha, Charlie, Delta, and Epsilon
have relatively large class imbalance, meaning they remove more data to balance the
classes. However, sites Beta and Fazbear have less imbalance, and therefore remove less
data. This is especially apparent for Site Fazbear, where in experiments to balance classes,
by performing reduction there is an increase in runtime. This is because the overhead of
identifying which data to remove takes longer for this site, due to its size, and as so few
data are removed, the runtime is similar to that of its benchmark. This is correlated to the
fact that experiments that do not balance the classes are in most cases slightly faster, as the
datasets do not have to be split between classes before reduction, which is an additional
overhead. This shows again that the data reduction strategies introduced in this paper are
not applicable to all datasets such as Site Fazbear. It does however show that for datasets
such as Site Charlie, the runtime may be nearly halved (from 44 s to 26 s) by reducing with
a cap of 50%, which also improves model performance.

Table 29. Runtimes for experiments on each individual site at each reduction amount for experiments
to balance classes and without class balancing. A: Site Alpha, B: Site Beta, C: Site Charlie, D: Site
Delta, E: Site Epsilon, F: Site Fazbear.

Class Balancing
Runtimes (s)

No Class Balancing
Runtimes (s)

Reduction
Amount A B C D E F A B C D E F

None 15 15 44 18 15 42 15 15 44 18 15 42
5% 15 14 43 18 18 49 15 15 41 18 15 42
10% 14 14 41 18 17 49 14 14 43 18 17 40
25% 12 12 37 15 13 - 12 11 36 15 16 -
50% 10 - 26 10 10 - 9 - 27 10 9 -
75% - - - 6 - - - - - 6 - -

Max% 7 11 20 6 8 48 6 12 18 6 7 40

To identify which data reduction strategy performs best, we must focus on the best-
performing scenarios, as they are the most stable and the most useful. We must also
consider the statistical significance of the results. For example, Site Alpha maintains
performance in AUC-ROC up to 50% reduction, but none of the reduction strategies show
significant difference from the benchmark. Therefore, no strategy can definitively be
identified as superior. Site Beta has only inferior results to the benchmark. Site Charlie
shows an increase in AUC-ROC that is statistically different from the benchmark. With a
50% reduction, the data squash method is performs best. Site Delta has two results that
stand out: the data squash method at 10% reduction and the lateral reduction at 25%. The
data squash method is superior, with an average increase in AUC-ROC of 0.137%. For
Site Epsilon, a 5% lateral reduction performs best, with an average AUC-ROC increase of
0.0301%. For Site Fazbear, a 5% reduction with the data squash method has a better AUC-
ROC by an average of 0.0272%. To conclude, the lateral and squash reduction methods are
among the best performing.

3.2. Experiments on Fused Dataset

By fusing all of the sites into one large dataset, we may observe the ability of a single
model to generalise on multiple different test sets from different environments. We may
then see if data reduction will benefit the model further, as it can with the individual site
datasets. Table 30 shows the details of the fused dataset. It has over four million datapoints,
whereas the largest individual site has just under 330,000.
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Table 30. Fused dataset properties.

Number of
Datapoints

Class Balance
(Not Occ:Occ)

Class Density
(Not Occ:Occ)

4,599,960 30:70 0.624:1.386

Table 31 shows the benchmark results of experimentation on the fused dataset, with no
reduction. The model is trained on a fused training set and tested on individual site test sets.

Table 31. Fused dataset benchmark.

Site Accuracy AUC-ROC

Alpha 82.576% 59.915%
Beta 65.829% 57.186%

Charlie 91.316% 84.657%
Delta 84.504% 61.632%

Epsilon 79.618% 59.643%
Fazbear 69.956% 71.670%

For all sites, the accuracy and AUC-ROC are lower than their non-fused counterparts.
For sites Beta and Charlie, the accuracy is substantially lower, by around 25–30%. For sites
Alpha, Beta, Delta, and Epsilon, the AUC-ROC is around 30–35% lower. This shows that
despite the training sets having more data, the model is unable to classify well. Sites Charlie
and Fazbear are the biggest original datasets, meaning that compared to the other sites,
they are affected least by the additional data. This may explain why the AUC-ROCs of
these two sites are slightly above those of the other sites.

The runtime of training the fused dataset is 51 min. This is a huge increase in runtime
from the sub-minute runtime on individual sites; this shows that there is an exponential
increase in runtime with the amount of data used. Because of this large runtime, only
the maximum reduction was performed to balance the classes, and each experiment was
performed only once.

Table 32 shows the properties of the reduced fused dataset. Over half of the majority
class was reduced to balance the classes, giving a total dataset reduction of 38.9%.

Table 33 shows the accuracy of the RF model trained on the reduced fused dataset.
Table 34 shows the AUC-ROC. Table 35 shows the class densities of the fused dataset after
each reduction method.

Table 32. Reduced fused dataset properties.

Number of
Datapoints

Balanced Class
Reduction

Total Dataset
Reduction

2,816,518 55.972% 38.864%

Table 33. Reduced fused dataset accuracies. Values in bold indicate best-performing reduction strategy.

Site Random Central Lateral Even Squash

Alpha 65.781% 65.991% 66.367% 66.516% 67.253%
Beta 75.323% 75.803% 75.014% 74.929% 75.320%

Charlie 67.267% 67.361% 67.207% 67.176% 67.469%
Delta 66.793% 66.187% 66.479% 67.045% 66.684%

Espilon 69.228% 68.611% 68.387% 68.777% 69.090%
Fazbear 87.051% 87.095% 86.941% 86.728% 87.337%
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Table 34. Reduced fused dataset AUC-ROC. Values in bold indicate best-performing reduction strategy.

Site Random Central Lateral Even Squash

Alpha 72.403% 72.648% 73.022% 73.028% 73.546%
Beta 75.904% 76.346% 75.626% 75.445% 75.834%

Charlie 77.896% 77.831% 77.713% 77.688% 77.979%
Delta 74.268% 73.250% 74.039% 74.539% 74.072%

Espilon 73.863% 73.187% 72.951% 73.093% 73.576%
Fazbear 86.914% 86.969% 86.807% 86.599% 87.220%

Table 35. Class density of reduced fused dataset. R: random reduction, C: central reduction, L: lateral
reduction, E: even reduction, S: squash reduction.

Class 0 (Not Occupied) Class 1 (Occupied)
R C L E S R C L E S

1.040 1.039 1.027 1.029 1.032 0.995 0.975 1.007 0.8869 0.980

The results show that for all sites except Beta and Fazbear, the accuracy decreases
further when data are removed. For all sites, accuracy averages around 65–75% except
for Site Fazbear, which is 87%. Still, this is worse performance than when trained on
the individual training datasets. As for AUC-ROC, performance is increased from the
benchmark for all sites except sites Charlie and Fazbear. As these two sites have the highest
benchmark AUC-ROC, it is interesting to see that these two sites perform worse after data
reduction; this may be because the data reduction is able to remove more training data
from these sites, as there are more data to lose.

3.3. Discussion—Fused Dataset

The fused dataset shows poor performance in both the reduced and non-reduced
experiments. Not only are the accuracy and AUC-ROC scores inferior to the individually
trained models, but the runtime is far longer. Therefore, this methodology is not appropriate
for the purpose of energy saving and running on low-compute devices. However, it does
give some insight into the importance of using the correct data; despite each site dataset
containing the same types of data (temperature, humidity, and VOC), there are differences
between sites that mean datasets cannot be fused in this way.

The runtime of training the fused dataset is 51 min, and 28 min for the reduced fused
dataset. While there is a significant decrease in runtime by performing this reduction,
28 min is still much larger than the times observed when training the individual datasets,
which are all less than 1 min. As they are proportional, this runtime means there is an
equivalent increase in energy cost and CO2 usage, which is incompatible with the aim of
reducing energy and CO2 cost for moving towards green AI. This shows that using too
much data can be detrimental to training in both model performance and cost, despite the
similarities between the original data and the additional data.

4. Conclusions
This paper has identified that class density may be used as a metric to qualify a

dataset for reduction. The results have shown that for datasets like Site Charlie, which are
abundant in data and heavily imbalanced, data reduction on the majority class may be used
to improve model performance and reduce the computation required to train the model,
due to there being less data. For other datasets like sites Alpha and Delta that are either
abundant in data or highly imbalanced, data reduction may be used to at least maintain
performance. For highly balanced or less abundant datasets such as sites Beta, Epsilon, and
Fazbear, data reduction is not as beneficial. By calculating the class densities of a dataset
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and gradually reducing the data, if the class densities converge towards a value of 1 then
the dataset may be reduced while performance is maintained.

A direction for future work might be to first perform data reduction on each individual
site dataset, and then attempt dataset fusion. This should ensure that the most important
data are retained at the reduction stage. Alternatively, one might reduce the datasets to a
much smaller set, with more data reduction than needed to balance the classes. Dataset
fusion on heavily reduced data may contain insightful data that could improve model
reliability in new domains.
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