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application of the one-step extrapolation procedure of [3], it is found IIl. CONCLUSION

that the existence of signalt) is not valid in the spac&(T). Based on the existence of signét) € R(T), a one-step extrapola-

tion procedure was developed in [3]. In. space, the existence is not

valid. This can be remedied in a specifically defined space by using the
In[3, Sec. V1], under the assumption that there exists a sigitale ~ prolate spheroidal wave function.

R(T) such that

Il. NONEXISTENCE OFz(#)
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Unfortunately, the signal(t) € R(T) assumed above does not exist 4-12 1r9a7ngs_ coust., Speech, Signal Processing PP

if the observed signat is bandlimited. Lep4 (¢) be the characteristic  [4] A. Papoulis,Signal Analysis New York: McGraw-Hill, 1977.
function of subset\. If a signalz(¢) € R(T) does exist in (1), let
zo(t) = pa(t)z(¢), and rewrite (2) as

the author obtained the following extrapolation equation:

z(t) = / h(t — 1)zo(7) d7 3)
whereh(t) = [, exp(2miwt) dw. After Fourier transformation (FT), Robust Hz / Ho FiIte:ring for Linear. Systems with Error
(3) becomes Variance Constraints
X (w) = pa(w)Zo(w) 4) Zidong Wang and Biao Huang

where pq(w) denotes the characteristic function of subSgtand
Zo(w) denotes the FT ofo(t). Obviously, X (w) = 0 whenw ¢ Q, Abstract—in this correspondence, we consider the robusH ; / H fil-
andZo(w) = X (w) onQ. Sincezo(t) is a time;limited signal, its FT tering problem for linear perturbed systems with steady-state error vari-

. . . . ance constraints. The purpose of this multiobjective problem is to design a
Zo(w) should be an analytical function. Howevef(w) is a function linear filter that does not depend on the parameter perturbations such that

with support inf2. In most cases, it is not an analytical function, excefhe following three performance requirements are simultaneously satisfied.
that it can be analytically expanded to the whole space. This yields a1) The filtering process is asymptotically stable.
contradiction. 2) The steady-state variance of the estimation error of each state is not
A simple counterexample is given below. Let= [—1, 1], letQ = more than the individual prespecified value.
[~1, 1], and define 3) The transfer function from exogenous noise inputs to error state out-
r b puts meets the prespecified ., norm upper bound constraint.
) 1—|w], weQ We show that in both continuous and discrete-time cases, the addressed
X(w)= { ’ h . (5) filtering problem can effectively be solved in terms of the solutions of a
0, otherwise couple of algebraic Riccati-like equations/inequalities. We present both the

. N - . existence conditions and the explicit expression of desired robust filters. An
At the origin, X (0) has no derivative, buk (w) should be differen- illustrative numerical example is provided to demonstrate the flexibility of

tiable according to (4). This counterexample indicates that we can®g proposed design approach.
find a Sig”?’?(” € R(T), satisfying (2) even for a simple signal Index Terms—Algebraic Riccati equation, H,, filtering, Kalman
w(t) = sinc*(1). filtering, quadratic matrix inequality, robust filtering. ’
The reason for above result is that the convergence of [3, eq. (19)]
depends on the conditiory, — = € Bgq. Actually, we do not know
whether [3, eq. (27)] is valid for a signalt) € R(T). |. INTRODUCTION

A remedy to remain (2) is to use)a specifically defingd space instead, rocon years, the study of the so-called cost-guaranteed filters has
of Lz ’ Assume thath z [h_Tf T, S'b: [0, z;],jccordmg o0 [41f0r gained growing interest; see, e.g., [2], [5], [10], and [11]. A common
every:(t) € F(B) and that it can be expanded as feature of these results is that they have focused on designing a filter

that first provides an upper bound on the variance of the estimation
x(t) = i (t 6
«(t) Z arpk(t) © error for all admissible parameter perturbations and then minimizes this

k
bound. It is remarkable that in this case, the associated upper bound is

whereg; (t) is the prolate spheroidal wave function for the gair €2).
Letting A, be the eigenvalue af, (¢) and defining . ) . )
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not specifieda priori, and the resulting optimal robust filters are often My = M, N, =[N 0
P : M=\ pean | Ne=INV 0]
unigue in certain cases. My — KM,
In practical engineering, however, it is often the case that for a large AAf = MyF(t)Ny 5)

class of filtering problems, the performance objectivesiatarallyde-

scribed as the upper bounds on the error variances of estimation; §6l considering (1) and (3), we obtain the following augmented system:
e.g., [7] and [12]. Unfortunately, it is usually difficult to utilize tradi- . , L ,

tional methods to deal with this class@instrained variancéltering p(t) = (A + Ady)as(t) + Drw(t). ©)
problems. A novel filtering method, namely, error covariance assign-When the system (6) is robustly asymptotically stable, the steady-
ment (ECA) theory (see, e.g., [12]) was recently developed to providgyia covariance defined by

a closed-form solution fadirectly assigning the specified steady-state

estimation error covariance. Subsequently, [8] and [9] extended the X:= lim X():= lim E [mf(t)ﬂ(t)]

ECA theory to the parameter uncertain systems by assigning a pre- t—oo t—o0 ’

scribed upper bound to the steady-state error variance, but the pertur- — [let-r XM} @)
bations were assumed to be time invariant and measurable, and the ’ X, P

adopted filter structure depended on the availability of perturbatio
This is very restrictive in practical applications.

To overcome the drawback indicated above, this correspondence (A; + AAf)X + X(Ar 4+ A4;)" + DsD] =0. 8)
aims at designing perturbation-independeriiiter, where the pertur- ‘
bations are not required to be time-invariant and available, such thaDur objective is to seek the filter parametétandi” such that for alll

Sists and satisfies the following Lyapunov matrix equation:

we have the following. admissible parameter perturbatioAst and AC, the following three
1) The filtering process is asymptotically stable. requirements are simultaneously satisfied.
2) The steady-state variance of the estimation error of each state i) The augmented system (6) is asymptotically stable.
not more than the individual prespecified value. 2) The steady-state error covarianBemeets[P];; < o, i =
3) The transfer function from exogenous noise inputs to error  1,2....,n, where[P);; stands for theth diagonal element of
state outputs meets the prespecififld, norm upper bound P.o? (i =1,2,...,n) denotes the steady-state estimation error
constraint. variance constraint on thgh state, which is not less than the
The results obtained improve those of [8] and [9]. minimal value obtained from the (robust) minimum variance fil-
tering theory.
1. PROBLEM FORMULATION: CONTINUOUS-TIME CASE 3) TheH .. norm of the transfer functio® (s) = C'¢[s] — (A +

. . . . . ) AAp]™' Dy from disturbancess(t) to error state outputs
Consider the following class of linear uncertain continuous-time sys- Le(t) (or Cray(t)) satisfies the constraiftH (s)[|ee <

< v
tems:

whereL is the known error state output matrixy := [0 L],
.['(t) = (.‘1 + A‘/‘l).l'(t) + DlUJ (t) ||H(S) ||O<> = Supweﬁ’, O max [H(Jw)]y .o—ulax[ ‘ ] denOtes the

largest singular value gf ], and~ is a given positive constant.
y(t) = (C'+ AC)z(t) + Daw(t) 1)

wherez € R", y € R”, andA, C, D, D- are known constant ma- I1l. M AIN RESULTS CONTINUOUS-TIME CASE

trices.w(t) is a zero mean Gaussian white noise process with covari-pPrior to providing the main results, we first make the following def-
ancel > 0. The initial statex(0) has the mea(0) and covariance jnitions for notational simplicity:
P(0) and is uncorrelated withy (). AA andAC are real-valued per-

turbation matrices satisfying A=A+ (: My ME + Dy D}l') Pt

AAT_ M i x @ C=C+ (EMZMI n DleT) P! (9)

AC My R .

. R =:MyM! + DsD!
whereF(t) € R’ is a real time-varying uncertain matrix meeting I— d— (:M1 M 4D, D;[) R-C. (10)
F(t)F*(t) < I, andM,, M>, andN are known constant matrices of ‘ . : ’
appropriate dimensions. o . Theorem 1: Leté; > 0 andé: > 0 be sufficiently small constants,
_Assumptlon_lzThe system matrixl is Hurwitz stable, and the ma- 5nq |ett7 € RP*? be an arbitrary orthogonal matrix. If there exist a
trix Dy or Mz is of full row rank. _ _scalar= > 0 and a matrixd € R”*” such that the Riccati equations
In the continuous-time case, the linear full-order filter under consid-

eration is given by AP + PAT + ey MT + = 'PNTN P,

. T _

Bt) = Ga(t) + Ky(t) @) + DD +6I=0 (11)

AP, + BRA" - P(C'R'C - LT L),

wherez(t) denotes the state estimation, arn@nd K are filter param- temyM? 4 Dy DT+ HET - (le M+ DIDQT)

eters to be determined.

The estimation error covariance in the steady state is denoted by -1 ol T
X R =M, M. DD 621 =0 12
P :=limi—o P(t) := limi—oo E[e(t)er(t)], wheree(t) = z(t) — ( 1Mz + D 2) + 02 (12)
&(t), if the limit exists. By defining respectively, have positive definite solutiaRs > 0 and P, > 0, then

2(t) A 0 with the parameters determined by
IOE ] PR ) )
e(t)D A-G-RC G K= (P2c“7[ + M M, + D1D§’) R~ '+ HUR™'/?
pa— 1 ~ -~
Dy = [01 - KDJ @ G=A-KC (13)
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the filter (3) will be such that for all admissible perturbatiakst and Conclusion 2) follows fromP = [X]s2, P> = [Py]22 directly,
AC, we have the following. where[ - ]2 is the 22-sub-block of- ].
1) The augmented system (6) is asymptotically stable. 3) Since—¥ + = > 0, the proof of|| H(s)[|~ < ~ can be com-
2) The steady-state error covarian@exists and meet® < P,. pleted by a standard manipulation of (19) [9]. The proof of The-
3) |H(s)||oe < 7. orem 1 is then completed.
Proof: o

In view of Theorem 1, if the positive definite solutiof% and P, to
(11) and (12) exist, an® > 0 meets|Ps].;; < 02,0 =1,2,...,n,
we will have the following conclusions.
1) The augmented system (6) is asymptotically stable.
2) [[H(s)]loe < v-
3) [Pl < [P)ii < 0f,i=1,2,...,n.
(14) Hence, with the filter (3), whose parametdfsandG are determined
by (13), the variance-constrained robikt/ H ., filtering gain design
task will be accomplished, and we can see that the key step in designing
the expected filters is to deal with the solvability of the Riccati equa-
(T r T L —1p AT ar T tions (11) and (12). o
Y =AP+ DA +eMMy +e DN NP+ DDy Lemma 1 [5]: If A is stable and| N (s] — A)~' M|l < 1, then
(15) there exists a constant > 0 such that for ale € (0, ), the matrix
V=P (A-G - Kc)’f + e My (M, — I{MZ)T Riccati equation (11) has a positive definite solutién
4+ D.(D) - K—Dz)T (16) _In a_ddltlop, since (12) is a parameter-_depende_nt continuous-time
- : o Riccati matrix equation, the related numerical algorithms can be found
Voo =GP+ PG 4 o(My = KMe)(My = K M?X in many papers, such as [5] and [10].
+~2PLTLP + (Dy — KD2)(Dy — Ix’Dz)f. a7 Moreover, we can use the modified quadratic matrix inequalities
(QMI's) to restate Theorem 1 in a clearer sense and obtain the fol-
Equation (11) means tha@;; = —6;I < 0, and the expres- lowing results immediately.
sion of G in (13) and (16) impliest ;> = 0. Now, substitute the ~ Theorem 2: Let U € RP*? be an arbitrary orthogonal matrix. If
expressiory = A— K€ into (17), and itis not difficult to verify there exists a positive scalar> 0 such that the QMI’s

1) For a scalar > 0 and a matrixPs > 0, itis easy to prove that
(AAf)Pr+Pr(AAp)" < eMypM{ +2 'PyN{ NyPp.Next,
by settingP; := Block-diag P:, P»), we have

(Ay + AAp)Pr+ Pp(Ay + AAp)' + 4 2 PCHCy Py
‘Illl lelZ:|

D;D¥ <¥:=|
PP s |:‘I’112 Wao

where

that
AP+ P AT 4 MMy + e ' PNTNP
Uoy = APy + PLAT + =My MY +~ 2P, LY LP, + D1 DY + DD <0 (20)
+ [I{Rl/z - (Pgél’ +eMIME + Dlpg') R*I/Z] A= AP+ PAY —P(C"R'C =~y 2L L)P,
b A L T £V _L',/T T_ eV _L',/T r
y [Ix’RVZ ~ (PZCT M MT 4 Ds D;) R—1/2] +eMyMT + Dy D! ( M, M. —|—D1D2)
. T
- (PQC”' oM MY + DLD%’) xR (EMlMZI + DIDZT) <0 (1)
< R~ (ch“ﬂ" LMy M! 4+ DIDQT)T ] (18) respectively, have positive definite solutiafis > 0 andF; > 0, then
the filter (3) with parameters
Furthermore, taking into account the expression of i o T N\ 1/
K in (13) and vnoticing the facts thaltflfl = I and K= (PQC + e M, M, +D1D2>R +EUR
KR'Y? — (RC" + eMiM3 + D:D3)R™'Y? = HU, G=A-KC (22)

we easily obtain from (18) tha¥s, = AP, + P AT —
Py(C! Rf_lc - 7”;,2L171;J)P2 +eM M+ P#I_Df +HH" —  \yhereE € R"*” (p < n) is an arbitrary matrix meeting + EE? <
(eMy My + DDy )R (M M; + DiD3 ) 0, andA is defined in (21) will be such that for all admissible pertur-
Finally, it results from (12) tha¥,; = —6,1 < 0. Now, We  pationsA 4 and AC, we have the following.
I;avithe Zogdlf"gn thd;? Oc?rgi ;?us,(gf ;lfAAf\I)JPf 3’ 1) The augmented system (6) is asymptotically stable.
j(Ay +AAp)T < (v Py Cy Py + Dy Dy) + ¥ <0, 2) The steady-state error covarian@exists and meet® < P,.
which shows from Lyapunov stability theory that the augmented 3) |H($)||loo < v
system (6) is asymptotically stable. oo =

Sinced y + A Ay remains asymptotically stable, the steady-stat?’ Theo(;em 3:1f ttherle (?[X|5Fte_p03|tt_|ve c:e_flnlte sct)_lutlonﬁfﬂl > (;agczi
covarianceX exists and meets (8). Define := ¥ — [(Af + 2 > 0, respectively, to Riccati matrix equations (11) and (12) or

A ) AANT 4 =2 T s QMI’s (20), (21), andP:]i; < o (i = 1,2,...,n), then the filter
élle{é;r)lifz—i_zlj)f,(;rf d—;uAb:ef (iu e—r:tl))/ PyCy CsPy + DsDyl. with p_ara_meters determined by (1_1) or (12) will satisfy the desired ro-
bust filtering performance constraints.

T s T Remark 1: In practical applications, it is very desirable to directly
(A5 + AAf)Pf + Pr(As + Adp) +7y 7 PrCr Cr Py solve Riccati matrix equations (11) and (12) or QMI's (20) and (21),
+D;Df — ¥ +Z=0. (19) subject to the constraifi%];; < o7 (i = 1,2,...,n) and then obtain

the expected filter parameters readily from (13) or (22). When we deal
Subtract (8) from (19) to obtaid s + AAdy)(Py — X )+ (Pr—  with the QMI's (20) and (21), the local numerical searching algorithms
X)(Ar+AAp)" +472P;CfCyPr — ¥ +Z =0, 0requiva- suggested in [1] are very effective for a relatively low-order model.
lently, Py — X = [ exp[(Ay + Ad)t](v *PrC;CyPr—  Arelated discussion of the solving algorithms for QMI’s can also be
U4+E)exp[(As+AAz)TH dt > 0,whichmeansthaX < P;.  found in [6].

2

~
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IV. MAIN RESULTS DISCRETETIME CASE 0:= APCT + (eMle + DlDlT) r (eMsz
In this section, we will briefly state the main results for discrete-time Yt T T
T . DyD eM, M. DD
systems and only give the necessary sketches of the proofs. Consider Rt ) Mz + Bl (30)
the following linear uncertain discrete-time stochastic system: R:=ChCT + (sM'z M" 4+ D Df) T (sM'z M7
2(k+1)=(A+AA)x(k) + Diw(k) —I—DngT)T + My MT 4 D, DT, 31)

y(k) = (C + AC)z(k) + Dawl(k) (23)

Theorem 4: Let$; > 0 andé, > 0 be sufficiently small positive
wherez, y, A, C, D1, D2, AA, andAC have the similar meanings constants, and I& € RP*? be an arbitrary orthogonal matrix. If there
to the continuous-time case(k) is a zero mean Gaussian white noisexist a scalas > 0 and a matrixd € R"*? such that
sequence with covariande> 0. The initial statec(0) has the mean
7(0) and covariancé&(0) and is uncorrelated with (k).

hAssumption 2:The m?;riﬁA is Schkur stable and nonsingular, and APAT — P+ APNT (1 — NPINT)_‘ NP AT
the matrixD- or M is of full row rank. N T B
In the discrete-time case, the adopted linear full-order filter is of the . ~+ f;wl My + DD '1; bl =0 , . (32)
following structure: AP, AT — P, — 0RO 4+ (ngMl + D, Dj )
- y T T T T
#(k+1) = Ga(k) + Ky(k) (24) xT (5M1 M + D, D! ) + =M M
+ DD + HH" +6:I=0 (33)

wherez (k) stands for the state estimation, adand K are filter pa-
rameters to be scheduled.

The steady-state estimation error covariance is define®by= together with the inequality constraints
limy oo P(E) := limg_ oo Ele(k)e? (k)], e(t) = x(t) — @(t) if the

g g o 7 7/1‘ = f[v -~ 2
limit exists. Furthermore, defing; (k) := [« (k) ¢’ (k)]* andA;, NPN' <el, LRL <+1 (34)
Dy, My, Ny, AAf i i . .. .. .
syfs,terr{' 7-andAd; asin (4) and (5), and we obtain the auQmemeFespectlvely, have positive definite solutiofs > 0 and P > 0,

then the filter (24) with the parameters determinediby= O R~ +
, , HUR™'?, G = A — K¢ will be such that for all admissible pertur-
rs(k+1)= (A + AAs)es(k)+ D k). 25 ’
v )=y (k) swik) (25) bationsA A andAC, we have the following.
When the augmented system (25) is robustly asymptotically stable,1) The augmented system (25) is asymptotically stable.

the steady-state covariance given by 2) The steady-state error covarianéeexists and meets < P,.
3) IH ()l < 7.
A= lim X(k):= lim B [-Tf(k)-"??(k)] Sketch of the ProofTo start with, we set
X,. X,. Py := Block-diag Pi, ), Q¢ := Block-diag P, P,), and
= { 7 P} (26) by means of Lemma 2 and (27)~(31), it is easy to verify that
Qr = Py + PrC}(¥*1 — C;PyCF) "' Cy Py and

exists and meets the discrete-time Lyapunov equatior= (Af + L
AAPX(Ar+ A4 4+ DyDj. (Aj + AAy) {Pf + PCT (yQI - CfPfcf-)f cfpf}

The purpose of this section is to design the filter parameteasd
I such that for all admissible perturbationst andAC, we have the x (Af +AAy)" — Pr+ DsD]
following. 1 St A N7 =t

1) The augmented system (25) is asymptotically stable. < Ay (Qf - NN f> Ay +eMy My

2) [Plii < o2, i=1,2,...,n. — Py + DD} := V. (35)

3) TheH, norm of the transfer functiofl (z) := Cy[z] — (As +
AAf)] 'D; from disturbancesw(k) to error state outputs Then, similar derivation as in the proof of Theorem 1 shaws: 0,

Le(k) (or Cras(k)) satisfies the constraiftH (2)|| < -+, and therefore, the augmented system (25) is Schur stable. The proof
whereL is the known error state output matrix,; := [0 L], techniques of second and third conclusions are along the lines of those
and||H (z)||eo = SUD ¢ [0,27] gmx[[{(efo)]. used in Theorem 1 and [4, Lemma 5.1], and thus, the detailed proofs

Lemma 2 (see, e.g., [L1])Let a positive scalar > 0 and a positive ar€ omitted here. N o _
definite matrixQ; > 0 be such thatV;Q; N} < =I; then,(A; + We now briefly discuss the solvability of the Riccati equations (32)
AAR)Q(As+AAR)T < Ap(Q7 — "N Np)T AT +eMpMf @Nd(33). . ' '
holds. Lemma 3 [3]: If the uncertain system (23) is quadratically stable,
then there must exist a scatar- 0 and a matrix2 > 0 that satisfy

For technical convenience, we define the following additional not pe - : ) 3 -
NP N* < eI and the discrete-time Riccati equation (32).

tion:
, Next, noting that (33) is actually a generalized parameter-dependent

b= (p;l - glNTN>_ AL Riccati equation, we can deal with it by using the approach proposed

R in [6] and [11]. We further restate Theorem 1 in terms of two QMI's
A=A+ (ng M+ DIDT) d~! (27) and then obtain our main results for the discrete-time case.

. " N Theorem 5:Let U € RP*? be an arbitrary orthogonal matrix. If
C=C+ (EMle + D2Dy ) o there exists a positive scalar> 0 such that the following two QMI’s

-1 —1 1T AN Y g INT ,

=@ (Pl —c N \) (@) @8) AP AT — P+ APNT(sI-NPNT)T'NP AT
Pyi=Po+ PLT (T - LRL")™'LP, (29) +eMiM +DDf <0 (36)
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A:=ARA" - P, —ORT'O" + (ng M! + D,D} ) in (37)] asE = [0.0800 0.1000]%. Then, for the two cases 6f = 1
" andU, = —1, we obtain the corresponding desired filter parameters,
x T (ng Mr 4 DlDlT) +eMyMI + DiDT <0 (37) respectively, as

together with the inequality constraints (34), respectively, have positive 7. _ {0481?} G = { 0.5068  0.3108 }
definite solutionsP, > 0 and P~ > 0, then the filter (24) with the 0.9643 | —1.3758 —0.5144
parameters determined By = OR™' + EUR™'/?, G = A - KC, . 0.4002 0.6240  0.1960
whereE € R"*? (p < n) is an arbitrary matrix meeting + EET < K, = {0.8631} » Gr= [_1_2293 —0.6579} :
0 andA is defined in (37), will be such that we have the following.

1) The augmented system (25) is asymptotically stable. It is not difficult to test that the precsribed performance objectives are
2) P < Ps. all realized.

3) 1H (2)loe < -

Theorem 6: Subject to the constraints (34), if there exist positive VI. CONCLUSION

definite solutions? > 0 andP; > 0, respectively, to Riccati matrix In this correspondence, attention has been focused on designing

equations (32) and (33) or QMI's (36), (37), ap:];; < o2 (i = | L ! ) ;
1,2,....n), then the filter with parameters determined by Theorerlllwnear perturbation-independent filters that achieve the multiple

: . . ibed objecti f filteri :
4 or Theorem 5 will, respectively, meet the desired robflisy H - prescribed objectives ot iftering process

filtering performance requirements. * robust stability,;
e H.. norm;

« steady-state estimation error variance constraints.
The further study will be the development of efficient algorithms with
Consider alinear discrete-time uncertain stochastic system (23) wifffaranteed convergence.
the following parameters:

V. NUMERICAL EXAMPLE
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