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Abstract

Deep learning methods have shown significant success in detecting and segment-
ing diseases or pathogens in medical images. However, most of these models are
trained and tested on data from the same source, resulting in poor generalizability
when applied to unseen data, as often encountered in real-world scenarios. This
challenge is primarily due to the domain shift problem, which occurs when there
is a discrepancy in data distributions between the source (training) domain and
the target (testing) domain. This shift often occurs because medical images are
collected from diverse sources, modalities, and vendor machines, with varying scan-
ning protocols and expertise levels among radiologists and annotators. Furthermore,
deep learning models typically require large, annotated datasets for training. Given
that annotating medical images is labor-intensive and time-consuming, the size of
available datasets is often limited. While numerous small, annotated datasets exist
across various medical domains, directly combining them can introduce another issue
known as Negative Knowledge Transfer (NKT), where knowledge from one domain
negatively impacts performance in another, particularly in multi-domain training.
This research aims to address these challenges by proposing the integration of Atrous
Spatial Pyramid Pooling (ASPP) and Squeeze-and-Excitation (SE) blocks to cap-
ture global contextual information in the case of specific designed architectures, and
knowledge transfer and domain adapters to mitigate negative knowledge transfer in
the case of diverse, multi-source data. These enhancements improve the model’s seg-
mentation and generalization performance. Three key contributions are presented:
1)Enhancing Retinal Disease Detection, Segmentation, and Generaliza-
tion with an ASPP Block and Residual Connections Across Diverse Data
Sources: We propose a novel algorithm nnUNet RASPP, an enhanced variant of
nnU-Net that incorporates an Atrous Spatial Pyramid Pooling (ASPP) block im-
mediately after the input layer to capture global contextual information, as well as
residual connections to mitigate the vanishing gradient problem, thereby improv-
ing the model’s generalizability across data from diverse sources (collected using
three different manufacturer devices). Additionally, we conducted a performance
evaluation of the top teams in the RETOUCH challenge, highlighting the differ-
ent architectures employed. Experimented on the RETOUCH Grande Challenge
dataset, and evaluation results on the hidden test set show that nnUNet RASPP
outperformed the baseline nnU-Net and state-of-the-art models by a clear margin.
Also, nnUNet RASPP is the current winner of both the online and offline phases of
the competition. Additionally, nnUNet RASPP demonstrated strong generalization
on unseen datasets.
2) Dynamic Network for Global Context-Aware Disease Segmentation
in Retinal Images Using Multiple ASPP and SE Blocks: We further ex-
plore the potential of using multiple ASPP blocks at various locations, along with
Squeeze-and-Excitation (SE) blocks, within a dynamic convolutional neural network
(CNN) architecture that can automatically adjust the kernel size and depth of the
network based on input size. We propose a novel algorithm, Deep ResUNet++, a
dynamic CNN model that incorporates multiple ASPP and SE blocks to capture
global contextual information for disease segmentation in 2D B-Scans. The use of
multiple ASPP and SE blocks offer a more detailed and effective method for feature
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extraction, context aggregation, and feature recalibration. Deep ResUNet++ was
evaluated on two public datasets, the AROI and Duke DME datasets, outperform-
ing state-of-the-art algorithms by a clear margin.
3) Enhancing Medical Image Segmentation Through Knowledge Trans-
fer with Domain-Specific Adapters Across Diverse Data Sources: To fur-
ther enhance model generalizability, we aim to leverage the synergistic potential
of multiple datasets to create a single, diverse model trained on data from vari-
ous sources, covering multiple modalities, organs, and disease types, collected with
different device vendors and protocols. To mitigate negative knowledge transfer,
we incorporate domain knowledge adapters into the network architecture. We pro-
pose two novel algorithms: (i) MMIS-Net (MultiModal Medical Image Segmenta-
tion Network), which addresses label inconsistencies through a one-hot label space
and employs a similarity fusion block for multi-source medical image segmentation.
And (ii) CVD Net (Convolutional Neural Network and Vision Transformer with
Domain-Specific Batch Normalization), which integrates Vision Transformers and
CNNs with domain-specific batch normalization to improve generalization. Both
algorithms were evaluated on two dataset groups. The first group, comprising 10
benchmark datasets from the Medical Segmentation Decathlon (MSD) and the RE-
TOUCH, challenge benchmark and the second group, is the HECKTOR challenge
benchmark dataset. Experimental results on the hidden test sets show that both
algorithms outperformed state-of-the-art algorithms and large foundation models
for medical image segmentation by a clear margin, demonstrating superior general-
ization on new, unseen data.
In summary, this research introduces techniques to enhance model segmentation
performance and generalizability by integrating Atrous Spatial Pyramid Pooling
(ASPP) and Squeeze-and-Excitation (SE) blocks for capturing global contextual
information in specific designed models and domain-adaptive adapters to mitigate
negative knowledge transfer on diverse, multi-source data. These methods not only
improve model generalization on new, unseen data but also set new benchmarks in
medical image segmentation, providing robust and generalizable solutions for real-
world clinical applications.
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Abbreviations

This section provides a list of abbreviations used throughout this work, along with
their corresponding meanings. The abbreviations are presented in the order of their
first appearance in the text.

Abbreviations Meaning
NFL Nerve fiber layer
OPL Outer plexiform layer
ONL Outer nuclear layer
ELM External limiting membrane
RPE Retinal pigmented epithelium
DME Diabetic macular edema
AMD Age-related macular degeneration
DR Diabetic retinopathy
RD Retinal detachment
VEGF vascular endothelial growth factor
OCT Optical coherence tomography
CT Computed Tomography
MRI Magnetic Resonance Imaging
PET Positron Emission Tomography
UV ultraviolet
BCC Basal cell carcinoma
SCC squamous cell carcinoma
RCM Reflectance Confocal Microscopy
HFUS High-Frequency Ultrasound
MICCAI Medical Image Computing and Computer Assisted Intervention
CNN Convolutional neural networks
RETOUCH Retinal OCT Fluid Detection and Segmentation Benchmark and Challenge
HECKTOR HEad and neCK TumOR
DS Dice Score
IoU Intersection over Union
AVD Absolute Volume Difference
nnU-Net no-new-Net
CAD Computer-aided detection and diagnosis
SSA Shared-specific adapter
DB Dual-branch
AFP Atrous feature pyramid
STSC Spatiotemporal Separate Convolution
MSD Medical Segmentation Decathlon
MLP Multi-layer perceptron
BTCV Beyond The Cranial Vault
DCAC Domain and Content Adaptive Convolution
GPU Graphics Processing Unit
ROI Regions of interest
CoTr Convolutional Neural Network and Transformer
GAP Global Average Pooling
AH-Net Anisotropic Hybrid Network
SGD Stochastic gradient descent
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DAC Domain Adaptive Convolution
CAC Content Adaptive Convolution
DANN Domain Adversarial Neural Network
DoFE Domain-Oriented Feature Embedding
BCE Binary Cross-Entropy
MDViT Multi-domain Vision Transformer
ViT Vision Transformers
NKT Negative knowledge transfer
MKD Mutual knowledge distillation
MHSA Multi-head self-attention
MKD Mutual Knowledge Distillation
DA Domain Adapter
DSBN Domain-Specific Batch Normalization
SE Squeeze-and-Excitation
I2CVB Initiative for Collaborative Computer Vision Benchmarking
TCIA The Cancer Imaging Archive
FCN Fully convolutional network
BN Batch normalization
HCP Human Connectome Project
ADNI Alzheimer’s Disease Neuroimaging Initiative
ABIDE Autism Brain Imaging Data Exchange
IXI Information eXtraction from Images
CSS Continual semantic segmentation
B-MHA Bidirectional multi-head attention
PaNN Prior-aware Neural Network
PIPO-FAN Pyramid Input Pyramid Output Feature Abstraction Network
DCNN Deep convolutional neural network
MD Multi-dataset
CPTM Cross-patch transformer module
UMA-Net Uncertainty-guided Multi-source Annotation Network
QAM Quality Assessment Module
DFQ Decoupled Feature Query
MiT-B3 Mix Transformer
KD Knowledge distillation
DDA-GAN Diverse data augmentation generative adversarial network
UDA Unsupervised domain adaptation
DCNN Deep convolutional neural networks
CMA Cross-Modality Adaptation
RPA Relation Prototype Awareness
IA Inheritance Attention
MMWHS Multi-Modality Atlases for Whole Heart Segmentation
FNN Feedforward Neural Network
ELCFS Episodic Learning in Continuous Frequency Space
FedAvg Federated Averaging
CIIL Cyclic Institutional Incremental Learning
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Med-SA Medical SAM Adapter
SD-Trans Space-Depth Transpose
HyP-Adpt Hyper-Prompting Adapter
MMDKD Multi-Modal Decoupled Knowledge Distillation
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HD Hausdorff distance
BBox Bounding box
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MSD Mean Surface Distance
ASSD Average symmetric surface distance
AUC Area Under the curve
ASD Average Surface Distance
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FLAIR Fluid-Attenuated Inversion Recovery
LASC Left Atrial Segmentation Challenge
LiTS Liver Tumor Segmentation
ADC Apparent diffusion coefficient
PZ Peripheral zone
TZ Transition zone
GTVp Gross Tumor Volumes
GTVn Gross Tumor Volumes
HNSCC Head-and-neck squamous cell carcinoma
AROI Annotated Retinal OCT Images
CoNet Coherent Network
IRF Intraretinal Fluid
SRF Subretinal Hyperreflective
PED Retinal Pigment Epithelial Detachment
ILM Internal Limiting Membrane
RPE Retinal Pigment Epithelium
ME Macular Edema
ASPP Atrous Spatial Pyramid Pooling
SRHM Subretinal Hyperreflective Material
IPL Inner Plexiform Layer
INL Inner Nuclear Layer
SNR signal-to-noise ratio
RF Random Forest
GSP Graph-shortest path

18 Chapter 0 Ndipenoch, Nchongmaje



Advancing Medical Image Segmentation and Generalization by Capturing Global
Context and Mitigating Negative Knowledge Transfer Across Multi-Source Data

SVDNA Singular value decomposition
MUV Medical University of Vienna
RUNMC Radboud University Medical Centre
ROC Receiver operating characteristics
SOTA State-of-the-art
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ViTDA Net Vision Transformer with domain adapters Network
CVD Net Convolutional Neural Network and Vision
Transformer with Domain-Specific Batch Normalization
DSA Domain-Specific Adapters
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Chapter 1

Introduction

Medical image segmentation is a cornerstone of computer-aided diagnosis and health
research. Manual segmentation, while essential, is often labor-intensive, requires
significant expertise, prone to errors, and can introduce bias. To address these
challenges, automated segmentation methods have emerged as a crucial focus of re-
search, offering the potential for more efficient, accurate, and objective analysis of
medical images. Deep learning methods have been successful in the segmentation
and detection of diseases in medical imaging. However, most of these methods are
trained and tested on images from the same source, modality, organ, or disease type,
without fully exploring the synergistic potential of other datasets. This limitation
leads to poor generalization when applied to new, unseen data, often encountered in
real-world scenarios, due to a phenomenon known as the domain shift problem [25]
where the distribution between the training (source) and testing (target) domains
differs. This research aims to address this challenge through two key approaches:
(i) improving the segmentation and generalization performance of specific designed
models by capturing global contextual information at varying rates using Atrous
Spatial Pyramid Pooling (ASPP) [35] and Squeeze-and-Excitation (SE) [74] blocks,
and (ii) enhancing the segmentation and generalization performance of universal
models by employing knowledge transfer techniques and domain adapters to effec-
tively adapt and generalize to new domains and to mitigate Negative Knowledge
Transfer (which occurs when knowledge learned from one domain negatively im-
pacts another) [53] in diverse, multi-source datasets. The latter approach provides
a promising solution to diversify the training set by incorporating multiple datasets
from various sources, modalities, organs, and disease types, allowing a single model
to learn from diverse examples. By leveraging the many small, annotated medical
image datasets available in the public domain, this approach aims to explore the
synergistic potential between datasets. However, simply merging data from differ-
ent sources can lead to degraded performance due to Negative Knowledge Transfer.
To address this, we incorporate knowledge adapters into the model architecture to
capture domain-specific context from each domain while sharing common knowledge
across all domains through a shared backbone. This approach mitigates the effects
of negative knowledge transfer and enhances overall model performance.
This work introduces deep learning models that integrate content and domain adapters
to tackle the challenges of domain shift and enhance model generalization. These
advancements enable reliable disease diagnosis and effective monitoring of disease
progression across diverse and unseen datasets.
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1.1 Aim and Objectives

The aim of this thesis is to enhance segmentation and generalization performance
in medical imaging by (i) capturing global contextual information through specific
designed architectures that incorporate Atrous Spatial Pyramid Pooling (ASPP)
and Squeeze-and-Excitation (SE) blocks, and (ii) employing domain adapters to ef-
fectively adapt and generalize to new domains and to mitigate negative knowledge
transfer from diverse, multi-source data in a single generalizable architecture. The
models developed in this research are designed to assist doctors in hospitals with
diagnosing and monitoring the presence of diseases using medical images. The spe-
cific objectives of this PhD thesis are summarized as follows:

• Enhancing Disease Detection, Segmentation and Generalization:
Develop a novel deep learning model to detect and segment diseases in medical
images with high generalization performance, while handling high variability
across diverse sources.

• Capturing Global Contextual Information:
Develop a novel deep learning model to capture global contextual information
in datasets with high variability, thereby improving the model’s generalization
performance.

• Leveraging the Synergistic Potential of Combined Datasets:
Develop a novel, single, diverse model that leverages the synergistic potential
of multiple small annotated datasets from diverse sources, modalities, organs,
and disease types to improve the model’s generalizability on new, unseen data.

• Mitigating Negative Knowledge Transfer:
Develop a novel deep learning model to mitigate negative knowledge transfer
in multi-source datasets using domain-specific adapters, thereby improving
segmentation and generalization performance.
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1.2 Contribution to Knowledge

A significant challenge in deep learning models is the domain shift problem [25],
which arises when models are trained and tested on the same data source exhibit
poor performance on new, unseen data typical of real-world scenarios. This perfor-
mance degradation often stems from variations in image quality due to differences
in vendor devices, scanning protocols, and the expertise of specialists capturing
the images. Our contributions to addressing this challenge and enhancing disease
segmentation and generalization performance in medical imaging are as follows:

• We propose a novel algorithm termed nnUNet RASPP (nnU-Net with Resid-
ual and Atrous Spatial Pyramid Pooling). nnUNet RASPP incorporates an
Atrous Spatial Pyramid Pooling (ASPP) block to : (i) effectively capture struc-
tures of varying sizes within the images, (ii) adapt more effectively to different
dataset characteristics, such as variations in resolution and noise, (iii) cap-
ture both local and global context, and (iv) reduce the model’s over-reliance
on features from any single scale. The ASPP block was positioned directly
before the input layer and prior to downsampling to preserve contextual in-
formation. Also, we introduced residual connections in both the encoding and
decoding paths to mitigate vanishing gradient problem within a convolutional
neural network (CNN) backbone. Additionally, we conducted a performance
evaluation of the top teams in the RETOUCH challenge, highlighting the dif-
ferent architectures employed. The proposed nnUNet RASPP was evaluated
on the benchmark RETOUCH challenge dataset, which comprises of data from
multiple sources acquired using three different device vendors. Experimental
results on the hidden test set demonstrate that nnUNet RASPP significantly
outperforms state-of-the-art algorithms and large foundation models for med-
ical image segmentation. nnUNet RASPP also exhibited exceptional gener-
alization performance on new, unseen data from diverse sources, surpassing
state-of-the-art algorithms. Furthermore, we are the current winners of both
the online and offline versions of the challenge.

• We further explore the potential of capturing global contextual features using
Atrous Spatial Pyramid Pooling (ASPP) blocks to enhance segmentation and
generalization performance. We propose a novel algorithm, Deep ResUNet++,
by integrating multiple ASPP and Squeeze-and-Excitation (SE) blocks at
various locations within a convolutional neural network (CNN) backbone.
This design captures global contextual information while dynamically ad-
justing the kernel size and network depth based on the input image size.
Deep ResUNet++ was evaluated on two public benchmark datasets: the An-
notated Retinal OCT Images (AROI) and the Duke DME datasets, collected
from patients with two distinct disease types. Experimental results demon-
strate that Deep ResUNet++ significantly outperformed state-of-the-art algo-
rithms by a clear margin.

• The success of most deep learning models is often dependent on the availabil-
ity of large datasets. However, in medical imaging, annotating images is a
labor-intensive and time-consuming process which limits the size of available
annotated datasets. Nevertheless, many small, publicly available annotated
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datasets exist, spanning from different sources, organs, modalities, and dis-
ease types. We combine multiple datasets from these diverse domains to build
a single and diverse model, leveraging the synergistic potential of one dataset
on another to improve segmentation performance and generalization on un-
seen data. To accomplish this, we integrate knowledge transfer and domain-
specific adapters to mitigate the effects of negative knowledge transfer within
the backbones of two architectures: (i) a convolutional neural network (CNN)
and (ii) a hybrid model combining CNN for feature extraction with a vision
transformer (ViT) for long-range dependencies. This results in two novel ar-
chitectures: MMIS-Net (MultiModal Medical Image Segmentation Network)
and CVD Net (Convolutional Neural Network and Vision Transformer with
Domain-Specific Batch Normalization). Both MMIS-Net and CVD Net were
evaluated on two groups of datasets. The first group includes 10 benchmark
datasets covering 19 organs across two modalities, and the second group is
the HECKTOR 2022 benchmark dataset, collected from nine medical cen-
ters around the world. Experimental results on the hidden test set show that
MMIS-Net and CVD Net outperformed state-of-the-art algorithms and large
foundation models for medical image segmentation by a clear margin, while
demonstrating high generalization capabilities on new, unseen data.

In this work we have developed deep learning models for the diagnosis and
monitoring of diseases using medical images. The practical implications include
automating the diagnostic and disease-monitoring processes, which are typically
labor-intensive, time-consuming, and prone to errors. This automation will allow
clinicians to focus on more complex tasks and can also serve as a decision-support
tool, providing a valuable second opinion when making critical decisions.
Furthermore, early diagnosis and effective disease monitoring enable doctors to per-
sonalize and initiate treatment plans, such as tumor detection and therapy planning
for cancer patients, improving patient care and reducing the socio-economic burden
on both patients and healthcare systems.
This research also lays the groundwork for future studies, establishing a benchmark
for result comparison and fostering further advancements in the field. By build-
ing on this work, future researchers can explore new techniques and applications in
medical image segmentation.
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1.3 Methodology

This research aims to enhance clinical outcomes and advance medical image anal-
ysis by addressing critical technical challenges such as capturing global contextual
information, domain adaptation and model generalization. The work is centered on
the development of innovative algorithms, with its scope defined by the following
key areas:
Capturing Global Contextual Features: This research focuses on developing
a robust and generalizable model. The work began by exploring the potential of
capturing global contextual features to improve the generalization performance of
specifically designed architectures. Initially, an Atrous Spatial Pyramid Pooling
(ASPP) block was integrated at a single location just before the input layer within
a convolutional neural network (CNN) backbone to: (i) effectively capture structures
of varying sizes within the images, (ii) adapt more effectively to different dataset
characteristics, such as variations in resolution and noise, (iii) capture both local and
global context, and (iv) reduce the model’s over-reliance on features from any single
scale. Subsequently, the approach was extended by incorporating both ASPP and
Squeeze-and-Excitation (SE) blocks at multiple locations within a CNN backbone.
Diverse Models: One way to improve the generalization performance of a model
is by increasing the diversity of the training dataset. We developed single, diverse
models by combining data from multiple sources, modalities, organs, and disease
types, leveraging the synergistic potential of one dataset on another.
Similarity Fusion Block: Combining datasets from diverse sources, modalities,
organs, and disease types often presents challenges with label inconsistencies. For
instance, an anatomic structure or disease labeled in one dataset may not be labeled
in the same organ in another dataset. To address this, we introduce Similarity Fu-
sion, a novel technique designed to capture cross-dimensional dependencies in feature
maps while effectively managing datasets with inconsistent labels.
Domain Adaptation: Naively combining data from multiple sources can improve
performance on one dataset but lead to degradation on another due to negative
knowledge transfer, ultimately resulting in overall poor model performance. In this
work, we utilize domain adapters to effectively extract domain-specific information
while sharing common features across all domains through a shared backbone. This
approach mitigates the effects of negative knowledge transfer, thereby enhancing the
model’s generalizability.
Benchmarks and Hidden Test Sets: The algorithms presented in this work were
experimented on benchmark datasets, and for fair comparison to other state-of-the-
art architectures, they were evaluated on hidden test sets (where the raw data is
publicly available, but the annotated/ground truth data is hidden). The results are
published online on the respective challenge websites.
Hybrid Model: The two predominant networks in deep learning are Convolutional
Neural Networks (CNN) and Vision Transformers (ViT). This work presents CNN-
based models and a hybrid model that combines CNN for feature extraction with
ViT for capturing long-range dependencies.
Literature Review and Public Resources: In Chapter 2, we provide a compre-
hensive review of the literature, classifying previous work into 6 main areas: Specific
Models, Domain Adaptation, Universal Models, Federated Learning, Fine-tuning,
and Foundation Models. Additionally, we include links to GitHub repositories where
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authors have shared their source code publicly, along with links and descriptions of
large, publicly available annotated multi-modal medical image datasets.

This research lays the foundation for future advancements in medical image
segmentation, establishing a benchmark for continued innovation in the field.

1.4 Data Collection

The datasets used in this work are publicly available benchmarks, with all descrip-
tions and links provided.

1.5 Structure of The Thesis

In this section, we outline the structure and organization of this work. The thesis
is structured as follows:

• Introduction:
Chapter 1 presents a summary of the thesis, the aim and objectives, the con-
tribution to knowledge, scope, data collection, and road map.

• Literature Review:
Chapter 2 provides an in-depth review of the existing literature relevant to this
work. The reviews are categorized into 6 main areas: specific models, domain
adaptation, universal model, federated learning, fine-tuning, and foundation
models. Additionally, we present a summary of several large collections of
public available annotated medical image datasets from various sources.

• Enhancing Retinal Disease Detection, Segmentation, and General-
ization with an ASPP Block and Residual Connections Across Di-
verse Data Sources:
Chapter 3 introduces nnUNet RASPP (nnU-Net with Residual and Atrous
Spatial Pyramid Pooling), a novel approach for disease detection, segmenta-
tion, and generalization in retinal optical coherence tomography (OCT) images
from multiple sources.

• Dynamic Network for Global Context-Aware Disease Segmentation
in Retinal Images Using Multiple ASPP and SE Blocks :
Chapter 4 introduces a novel algorithm, Deep ResUNet++, for disease and
layer segmentation in retinal images.

• Enhancing Medical Image Segmentation Through Knowledge Trans-
fer with Domain-Specific Adapters Across Diverse Data Sources:
Chapter 5 presents novel approaches to enhance model performance and gener-
alizability on new, unseen data by creating a single, diverse, and generalizable
model that combines data from multiple sources, modalities, organs, and dis-
ease types. The chapter proposes two novel methods using knowledge transfer
and domain-specific adapters: one integrates domain-specific adapters within
a convolutional neural network (CNN) backbone, and the other combines a
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CNN for feature extraction with a Vision Transformer (ViT) to capture long-
range dependencies in the backbone.

• Discussion and Conclusion:
Chapter 6 is a discussion chapter that begins with an overview of the ap-
proaches, contributions, and results from Chapters 3, 4, and 5. It then provides
a detailed assessment of each approach in relation to the research objectives
outlined in Section 1.1. Additionally, the chapter addresses the implications
and limitations of the methods presented and potential directions for future
research.
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Chapter 2

Literature Review

Deep learning has revolutionized computer-aided detection and diagnosis (CAD) in
medical image analysis. However, the performance of these models often deterio-
rates when faced with data from different sources, a phenomenon known as domain
shift, where models often perform poorly given out-of-distribution examples. To
address this challenge, knowledge adapters and model generalizability have emerged
as promising solutions. This chapter presents a comprehensive review of recent ad-
vancements in deep learning methods for medical image analysis, focusing on tasks
such as disease diagnosis, lesion and organ detection, and abnormality detection
from diverse data sources tackling the problem of domain shift. We categorize ex-
isting methods into 6 main areas: Specific Models, Domain Adaptation Models,
Universal Models, Federated Learning Models, Fine-Tuning Models, and Founda-
tion Models, and discuss their effectiveness in handling heterogeneous data sources.
Furthermore, we highlight relevant benchmark datasets and identify key challenges
and future research directions in this rapidly evolving field. This survey aims to
provide researchers with a solid understanding of the current state-of-the-art and
inspire innovative approaches to improve the generalizability of deep learning models
for medical image analysis.

2.1 Introduction

Medical segmentation tasks span a broad spectrum of imaging modalities, includ-
ing optical coherence tomography (OCT), computed tomography (CT), magnetic
resonance imaging (MRI), and X-rays. These modalities are applied to various
anatomical structures, such as the abdomen, chest, brain, retina, head, and even
individual cells, to identify conditions like cancerous cells, tumors, fluid accumula-
tions, organ abnormalities, and more. This diversity has led to the development
of numerous segmentation tools, each typically designed to address a specific task
or a small set of related tasks. In recent years, deep learning has been widely ap-
plied to medical image segmentation, classification, and analysis, often under the
assumption that the training and test datasets share the same data distribution
[185]. However, this assumption frequently does not hold in practice (real world
scenarios). Research has shown that test error typically increases in proportion to
the distributional differences between training and test datasets [16], [182], a chal-
lenge known as the “domain shift“ problem [25]. Therefore, addressing domain shift
is critical for the effective application of deep learning methods in medical image
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segmentation, classification, and analysis.
Numerous small annotated datasets from diverse sources, organs, modalities, and

disease types, collected using different vendor devices, are available online such as
[21], [133], [71], [8], [130], [40], [120] and many more. An intuitive approach is to
build a single robust model by combining datasets from these various sources. How-
ever, the domain shift problem persists across different medical image datasets due
to variations in imaging modalities, disease types, scanning parameters, expertise
levels, subject cohorts, and other factors. To address these challenges and improve
model generalizability, domain knowledge adapters have emerged as a promising
solution [65]. Researchers have increasingly focused on utilizing these small an-
notated datasets from the public domain to tackle various tasks in medical image
segmentation, classification, and analysis.

A summary of previous research including references, year, methodology, target
organ, image dimensions, and metrics is provided across several tables: Table 2.1
for specific models, Table 2.3 focuses on domain adaptation approaches, Table 2.2
highlights universal models, Table 2.4 covers federated learning methods, Table 2.6
presents fine-tuning models, and Table 2.5 details large foundation models. Table
2.7 provides public available large datasets from diverse sources. Finally, Table 2.8
provides a summary of the authors who have made their code publicly available,
along with their corresponding GitHub links.

The rest of this chapter is organized as follows: A brief overview of key spe-
cific model approaches in medical image segmentation from diverse data sources
for medical image analysis categorized into different sections. Section 2.2 presents
specifically designed models, while universal models are discussed in Section 2.3.
Domain adaptation techniques are covered in Section 2.4, and federated learning
approaches are explored in Section 2.5. Foundation models are discussed in Section
2.6, followed by fine-tuning techniques in Section 2.7. Section 2.8 provides a sum-
mary of large benchmark medical image datasets from diverse sources. Finally, a
summary of the literature and identified gaps is presented in Section 2.9.
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2.2 Specific Designed Model Approaches for Med-

ical Image Segmentation

In the diagnosis and segmentation of diseases in medical images using deep learning,
the three most widely adopted base architectures are convolutional neural networks
(CNN), U-Net, and vision transformers (ViTs). To enhance segmentation perfor-
mance and generalization across data from diverse sources, many researchers have
employed CNN, U-Net, ViT, or a combination of these backbones. Before exploring
generalizable models, we will first review some of the recent CNN, U-Net and ViT
based task specific approaches.

The ReLayNet architecture a CNN-based network was introduced in [160] for the
segmentation of layers and fluids in OCT images. The ReLayNet enhanced the ker-
nel shape to match the shape of the input image. The algorithm was experimented
on the publicly available Duke dataset, which comprises of 110 annotated B-scans
(divided into 10 classes: 1 background, 8 layers, and 1 fluid) acquired from ten
patients with Diabetic Macular Edema (DME)[40]. Another CNN-based approach
was presented in [118], which focused on retinal fluid segmentation and detection
in OCT images. This framework is specifically designed to identify and segment
three types of retinal fluids: Intraretinal Fluid (IRF), Subretinal Hyperreflective
Material (SRF), and Retinal Pigment Epithelial Detachment (PED). The method
is comprised of three main stages which are a pre-processing layer, a feature extrac-
tion layer, and a classification layer. Similarly, another CNN-based approach for
the automatic segmentation of nine retinal layer boundaries in OCT images of pa-
tients with dry Age-related macular degeneration (AM) was presented in [54]. The
authors used a regular Convolutional Neural Network (CNN) to extract features of
the layer boundaries from the input image and classified them into nine classes, each
representing one of the layer boundaries. Additionally, they applied a graph search
method to further classify the extracted features into ten classes using probabilistic
methods, aimed at eliminating misclassified features. Another CNN approach was
reported in [101] to segment fluid from 1,289 OCT images of patients with Macular
Edema (ME).

Since the introduction of the 2D U-Net [157], a convolutional network for biomed-
ical image segmentation, in 2015, it has become the standard backbone for numerous
medical image segmentation tasks. U-Net’s architecture is characterized by its U-
shape, consisting of an encoder path for capturing contextual features and a decoder
path for precise pixel localization. These two paths are connected by a bottleneck
that ensures a smooth transition between the encoder and decoder. Both the en-
coder and decoder, along with the bottleneck, are composed of convolutional blocks.
At the end of the decoder path, there is a classification layer which assigns each pixel
to one of the segmentation classes. Some of the derivatives of the 2D U-Net includes:
The ResUNet architecture [216], which was originally developed for road image ex-
traction. The ResUNet incorporated residual blocks into the U-Net back backbone.
An extension of ResUNet for for medical image segmentation for domain-specifi task
specifically targeting colonoscopic images is presented in [88] termed ResUNet++.
The ResUNet++ was experimented on the Kvasir-SEG and CVC-612 datasets out-
performing other model. Moving on, the Md-Unet, a multi-input dilated U-Net
architecture designed for bladder cancer segmentation, was presented in [64]. The
Md-Unet, modified standard convolution, by introducing a hyper-parameter called
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dilated rate, which referred to the number of kernel intervals. The algorithm was
evaluated on a private bladder cancer dataset from Yunnan University, which con-
tains 768 lesion images. Experimental results indicate that the Md-Unet achieved
performance comparable to other state-of-the-art algorithms. Building from the
succcess of the 2D U-Net researchers at Moorfields Eye Hospital NHS Foundation
Trust London and DeepMind Health extended the standard 2D U-Net to present
a 3D U-Net in [43] for the diagnosis and referral in retinal disease. The architec-
ture consisted of two parts: a segmentation model and a classification model. The
algorithm was trained on 14,884 OCT scan volumes obtained from 7,621 patients.
Moving on, USE-Net, which enhanced the 2D U-Net architecture with Squeeze-and-
Excitation (SE) blocks for prostate zonal segmentation on multi-institutional MRI
datasets, was presented in [161]. The integration of SE blocks aimed to improve
segmentation accuracy by modeling channel-wise dependencies in convolutional fea-
tures, applied after each convolutional layer in both the encoding and decoding paths
of U-Net. The model was trained on individual and multi-site prostate MRI datasets
collected from different institutions. Experimental results indicated that USE-Net
significantly outperformed state-of-the-art algorithms in prostate zonal segmenta-
tion across heterogeneous datasets. Inspired by the success of U-Net for medical im-
age segmentation, the nnU-Net (“no new-Net”), a self-configuring method for deep
learning-based biomedical image segmentation, was introduced in [84]. The nnU-Net
is based on the U-Net architecture, but instead of relying on manual parameter tun-
ing “trying an error” methods, nnU-Net proposed a self-parametrizing pipeline. The
pipeline generates a “data fingerprint” by analyzing the training data and uses key
dataset properties, such as modality, shape, and spacing, to automatically config-
ure key model parameters like network topology, image resampling methods, input
patch sizes, and kernel sizes, based on graphics processing unit (GPU) availability
and hardware constraints. During training, data augmentation is applied on the
fly, and after training, the framework determines “empirical parameters” for post-
processing. Certain parameters, such as the loss function, remain fixed throughout
training, with the framework using a combination of Cross Entropy and Dice loss
functions. The framework was evaluated on 11 international biomedical image seg-
mentation challenges, consisting of 23 different datasets and 53 segmentation tasks,
achieving first place in 33 out of the 53 tasks.

Since the introduction of nnU-Net, several of its variants have been proposed.
In [126], residual, dense, and inception blocks were integrated into the network, and
the approach was evaluated on eight datasets consisting of 20 target anatomical
structures. Advanced architectural variations of the network were explored in [127]
and evaluated on eight medical imaging datasets covering 20 anatomical regions. In
the Multi-Center Fetal Brain Tissue Annotation (FeTA) 2022 challenge [146], the
standard nnU-Net or its variants were used by the top five teams. This benchmark
involved fetal brain MRI data acquired from four different centers. A comparative
analysis and performance evaluation of the nnU-Net was presented in [78], and ex-
perimented on multiple data sources. A study titled nnU-Net Revisited: A Call
for Rigorous Validation in 3D Medical Image Segmentation, was proposed in [83],
providing a comprehensive evaluation of the nnU-Net variants. The study was ex-
perimented on six datasets, emphasizing the importance of rigorous validation in
3D medical image segmentation.

Following the recent success of Transformers in natural language processing
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(NLP) such as [2], [183], and [205], researchers have sought to replicate their ef-
fectiveness in deep learning by using Vision Transformers (ViTs). Some of the ViTs
models used for medical image segmentation will be briefly disscused as follows:
SegFormer3D, an efficient transformer for 3D medical image segmentation, was in-
troduced in [149]. It is a Vision Transformer (ViT) based hierarchical model that
computes attention across multiscale volumetric features. The architecture featured
an all-MLP (multilayer perceptron) decoder that combined local and global atten-
tion features to generate precise segmentation masks. SegFormer3D was evaluated
on three benchmark datasets, achieving results competitive with state-of-the-art al-
gorithms. Similarly, Swin UNETR, another transformer model for medical image
segmentation, was introduced in [66] and was specifically designed for the segmenta-
tion of 3D brain tumors. Swin UNETR features a hierarchical transformer encoder
for feature map extraction, a self-attention mechanism for skip connections, and
a CNN decoder for up-sampling. The model employed the Dice loss function and
was evaluated on the BraTS 2021 dataset [12], achieving results comparable to
state-of-the-art architectures. Building on the success of Swin UNETR, the authors
proposed an enhanced variant called UNETR in [67], which incorporated a modified
loss function combining soft Dice loss and cross-entropy loss. UNETR was evaluated
on the BTCV [100] and MSD [8] datasets, demonstrating performance comparable
to state-of-the-arts algorithms.

Other researchers have explored hybrid approaches that combine Convolutional
Neural Networks (CNNs) and Vision Transformers (ViTs), some of which are briefly
outlined as follows: The TransClaw U-Net, a hybrid model combining the U-Net
and Transformer architectures, was introduced in [30]. The TransClaw U-Net con-
sists of an encoder and a decoder path. The encoder includes convolutional blocks
for extracting shallow spatial features and Transformer blocks for capturing global
features, while the decoder path uses convolutional blocks for pixel localization.
The model was evaluated on the Synapse Multi-Organ Segmentation dataset[177]
and achieved performance comparable to state-of-the-art algorithms. Similarly,
SwinBTS, another hybrid model integrating CNNs and Vision Transformers, was
proposed in [91]. SwinBTS used Transformer modules for feature extraction and
convolutional operations for up and down sampling. It was evaluated on three
brain segmentation datasets: BraTS 2019, BraTS 2020, and BraTS 2021, achiev-
ing performance comparable to state-of-the-art architectures. Moving on, another
notable hybrid model is the nnFormer, a volumetric medical image segmentation
model introduced in [220]. This approach combines CNNs and 3D Transformers
for effective disease segmentation in medical images. The nnFormer leverages the
self-parameterization, pre-processing, and post-processing capabilities of nnU-Net.
It was evaluated on three benchmark datasets.

One limitation of specific designed algorithms is their task-specific nature. They
perform well on a particular task, organ, or disease type but may struggle or perform
poorly when applied to other tasks.
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Reference Year Backbone Organ Modalities Dimensions Metrics

U-Net[157] 2015 U-Net Multiple Multiple 2D IoU

[54] 2017 CNN Eye OCT 2D MD

ReLayNet [160] 2017 U-Net Eye OCT 2D DS

[101] 2017 CNN Eye OCT 2D DS

[43] 2018 U-Net Multiple OCT 3D DS

ResUNet++ [88] 2019 U-Net Colon Endoscopic 2D DS/IoU

USE-Net [161] 2019 U-Net Prostate MRI 2D DS

Swin UNETR [66] 2021 ViT Brain MRI 3D DS

Md-Unet [64] 2021 U-Net Bladder MRI 3D DS/IoU

nnU-Net [84] 2021 U-Net Multiple Multiple 2D/3D DS

Transclaw [30] 2021 CNN/ViT Multiple CT 3D DS/HD

nnFormer [220] 2021 CNN/ViT Multiple MRI/CT 3D DS/HD

UNETR in [67] 2022 ViT Multiple MRI/CT 3D DS

SwinBTS [91] 2022 CNN/ViT Brain MRI 3D DS/HD

[126] 2022 U-Net Multiple MRI 3D DS

[127] 2023 U-Net Multiple Multiple 3D DS

[146] 2024 U-Net Multiple MRI 3D DS

[78] 2024 U-Net Multiple Endoscopic 3D DS

[83] 2024 U-Net Multiple Multiple 3D DS

SegFormer3D [149] 2024 ViT Brain MRI/CT 3D DS

Table 2.1: A summary of previous work on specific models, listed in order of year
of publication, including the references, year, backbone, organ, modalities, image
dimensions, and evaluation metrics: Intersection over Union (IoU), Mean Difference
(MD), Dice Score (DS), Hausdorff distance (HD).
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2.3 Universal Model Approaches for Medical Im-

age Segmentation

Another way to reduce the domain shift between training and testing datasets,
thereby enhancing the model’s generalizability, is by increasing the diversity of the
training data through the integration of data from multiple diverse sources to build
a single universal model. In this section, we will briefly review some of these ap-
proaches based on their architectural backbone, in the following order: Convolu-
tional Neural Networks (CNNs), Vision Transformers (ViTs), and a combinations
of both in a hybrid model.

The generalizable multi-site training and testing of deep neural networks, aimed
at addressing high image variability and intensity differences across datasets col-
lected from various sites using different scanners, was presented in [141]. This ap-
proach modified U-Net to build a single segmentation model spanning data from
multiple sites. The U-Net architecture was enhanced by reducing the number of
max-pooling operations from four to three, resulting in a network with 18 convolu-
tional layers and 7,696,256 trainable parameters. A patch-based training approach
was adopted, using patches of 128 × 128 pixels. The algorithm was tested on 600
magnetic resonance (MR) prostate gland segmentation images from two different
sites.

Another CNN-based architecture was presented in [48] which built a single multi-
class segmentation model by combining several single-class datasets. This approach
proposed a unified and efficient framework for robust multi-class segmentation by
combining single-class datasets and conditioning a convolutional network for seg-
mentation tasks. The algorithm modified the U-Net backbone by incorporating a
conditioning module, making the model fully convolutional, simple, and efficient,
thereby avoiding performance overhead. Unlike other approaches that trained sep-
arate models for each class, this method inferred segmentations and captured rela-
tionships among multiple classes from single-class datasets, enabling a single model
to generate segmentations for all classes. The algorithm was evaluated on three
public datasets of abdominal CT volumes.

Similarly, another CNN-based architecture was presented in [171], which used
marginal loss and exclusion loss functions for multi-organ segmentation to train a
single multi-organ segmentation network using multiple datasets. This approach
modified the nnU-Net framework by incorporating these two loss functions. In
most annotated medical image datasets, only regions of interest (ROIs) are labeled,
while other areas are classified as background, often referred to as partially labeled
datasets. Combining data from multiple partially labeled datasets can create con-
flicts, where a region annotated in one dataset might be classified as background in
another. To address this, [171] proposed two loss functions: (i) the marginal loss,
which merges all unlabeled organs with the background by assuming a marginal
probability for combining the background label and can be incorporated into cross-
entropy (CE) loss Dice loss, and (ii) the exclusion loss, which enforces exclusivity
by ensuring a one-to-one mapping between each labeled pixel and its corresponding
label. The algorithm was evaluated on five benchmark organ segmentation datasets
from various sources, demonstrating its effectiveness.

Moving on another CNN-based architecture was proposed in [90]. This frame-
work introduced a continual semantic segmentation (CSS) approach that used a
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CNN encoder-decoder network architecture to sequentially learn a single multi-organ
segmentation model from multiple partially labeled datasets, one at a time. After
training on a specific dataset, the encoder was frozen, and decoders for other datasets
learned from the extracted feature maps. The outputs of these decoders were then
merged to create a single model, contributing to a universal organ segmentation
system. The model was initially trained on a specific dataset, optimizing both the
shared encoder and its associated decoder. Once trained, the dataset was no longer
accessible, and subsequent stages focus on training decoders for new datasets while
keeping the general encoder frozen. The predictions from all decoders were com-
bined, resulting in a model capable of multi-organ segmentation. This cycle was
repeated for all datasets. The framework was evaluated on 103 anatomical struc-
tures from one public and three private partially multi-organ datasets.

Another CNN-based approach aimed to address the issue of partially labeled
datasets was presented in the multi-organ segmentation via co-training weight-
averaged models from few-organ datasets [79]. This method introduced a unified
model that integrated data from multiple sources to tackle the challenges of limited
generalization and noisy pseudo labels. The method proposed co-training weight-
averaged models to train a multi-organ segmentation network from datasets with
annotations for only a few organs. The approach involved collaboratively train-
ing of two networks, which thought each other about unannotated organs. During
training, two networks were used, but only one was required for inference, ensur-
ing no additional computational or memory overhead at the inference stage. The
framework was evaluated on three publicly available single-organ datasets.

The Pyramid Input Pyramid Output Feature Abstraction Network (PIPO-FAN),
a CNN-based approach for multi-organ segmentation on partially labeled datasets
using multi-scale feature abstraction, was introduced in [55]. PIPO-FAN constructed
a single segmentation network by integrating pyramid inputs and feature analysis
into a U-Net backbone to achieve multi-scale feature abstraction. It employed an
equal convolutional depth mechanism to merge features from different scales, a deep
supervision mechanism to refine outputs at various scales, and an adaptive weighting
layer to automatically fuse the outputs. The architecture consists of three key com-
ponents which are: (i) a pyramid-input and pyramid-output network that condensed
multi-scale features and reduced the semantic gaps between features from different
scales, (ii) an image context-based adaptive weighting layer that fused segmenta-
tion features across multiple scales, and (iii) a target-adaptive loss integrated with
a unified training strategy to enable segmentation across multiple partially labeled
datasets using a single model. PIPO-FAN was evaluated on four publicly available
datasets.

Tgnet, a task-guided network architecture for multi-organ and tumor segmen-
tation from partially labeled datasets was presented in [194]. Tgnet built a single
segmentation model by efficiently learned task-specific features while preventing
the mixing of representations from different organs and tumors across tasks. The
approach enhanced the standard U-Net architecture by incorporating a modified
residual block and attention module to fuse image features with task-encoding con-
straints in a task-guided manner. Tgnet claimed it’s design effectively suppressed
irrelevant features and emphasized features relevant to each specific segmentation
task. The algorithm has an encoder-decoder structure, with a task-guided attention
module placed in the skip connections, using a global average pooling (GAP) mod-
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ule to capture global contextual information, task-guided residual blocks to mitigate
overfitting, task-encoding concatenation, and a convolutional layer with a sigmoid
activation function. The network was evaluated on seven partially labeled organ
and tumor datasets.

Another CNN-based approach to addressing the challenge of partially labeled
datasets was presented in DoDNet [209]. DoDNet constructed a sigle segmentation
model by learning to segment multi-organ and tumors from multiple partially labeled
datasets. The authors proposed a dynamic on-demand network (DoDNet), which
can be trained on partially labeled datasets for multi-organ and tumor segmentation.
DoDNet featured a U-Net like encoder-decoder architecture with a single, dynamic
head capable of performing tasks typically handled by multiple networks or a multi-
head network. The kernels in the dynamic head were generated adaptively by a
controller, conditioned on the input image and task. For each segmentation tasK,
task-specific priors guide the controller to generate kernels dynamic head. The
algorithm was evaluated across seven organ and tumor segmentation benchmarks.

Moving on, the Omni-Seg, a unified dynamic network for multi-label renal pathol-
ogy image segmentation using partially labeled data, was introduced in [44]. Inspired
by DoDNet [209], it extends the U-Net architecture with three key components which
are: (i) A Dynamic Multi-Label Modeling, which encoded class-specific information
for different tissue types into an m-dimensional one-hot vector. This vector was
merged with feature embeddings at the deepest layer of the residual U-Net helping
the network to learn domain-specific information for each class. (ii) A Dynamic Head
Mapping, which is a binary segmentation network that employed dynamic filters to
target specific tissue types. It optimized feature vectors and class-aware vectors,
using these to guide a lightweight dynamic head comprising three layers (two with
eight channels, and a final layer with two channels). And (iii) Residual connections
that featured multiple encoder-decoder blocks, arranged in a pyramid structure.
The decoder upscaled feature maps, combining them with low-level features from
the encoder using residual blocks, leading to refined high-level segmentation out-
puts. The method was experimented on 1,751 regions of interest (ROIs) from 459
whole slide imaging scans from 125 patients.

The Diverse Data Augmentation Generative Adversarial Network (DDA-GAN),
a CNN-based adversarial network approach was introduced in [38] for learning im-
age segmentation using cross-modality annotations. The approach trained a single
segmentation model for an unannotated target domain by utilizing information from
an annotated source domains. This was achieved by generating diverse augmented
data for the target domain through a one-to-many source-to-target translation tech-
nique. Key components of the framework includes: (i) An S-feature Encoders that
extracted structural information from both source and target domains. (ii) A-feature
encoders, that captured appearance information, using global average pooling and
fully connected layers that enhanced non-linear mapping and eliminated positional
variations. (iii) A decoder to generate images by fusing S-features and A-features
through residual and decoding blocks. (iv) A segmenter to annotate images based
on their S-features, using a similar architecture as the decoders. (v) An image dis-
criminators, that distinguished between real and generated images in both source
and target domains. And (vi) A feature discriminator to identify whether S-features
come from the source or target domain. DDA-GAN enabled effective single model
segmentation from diverse data sources by leveraging both structural and appear-
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ance features across different modalities. The framework was evaluated on two
datasets.

The Uncertainty-guided Multi-source Annotation Network (UMA-Net), a CNN-
based approach, was presented in [4] for developing a robust, universal medical im-
age segmentation model from multiple data sources. Built on the U-Net backbone,
UMA-Net integrated two key components that guided the training process using
uncertainty estimation at both the pixel and image levels. The first component, the
Annotation Uncertainty Estimation Module (AUEM), estimated pixel-wise uncer-
tainty for each annotation dataset, enabling the network to focus on reliable pixels
by applying a weighted segmentation loss. The second component, the Quality As-
sessment Module (QAM), evaluated the quality of the image using the pixel-wise
uncertainties assessed by the AUEM. UMA-Net was evaluated on three datasets,
demonstrating its capability to handle multi-source annotations effectively.

Transitioning from CNN to Vision Transformer (ViT) backbone models, the
MedFormer, a unified and data-scalable transformer model for medical image seg-
mentation, was introduced in [61]. MedFormer was designed for 3D medical image
segmentation, combining data from diverse sources, modalities, organs, and disease
types to create a universal model. It incorporated depth-wise separable convolution
within transformer blocks to embed desirable inductive biases. A key innovation
of MedFormer was the Bidirectional Multi-Head Attention (B-MHA) mechanism,
which reduced redundant tokens through low-rank projection, effectively lowering
the quadratic complexity of conventional self-attention to linear. This enabled ef-
ficient modeling of long-range relationships, capturing global interactions in high-
resolution token maps and improving detailed boundary modeling. Other notable
components of MedFormer included a Vision Transformer (ViT) for capturing long-
range dependencies, an efficient attention mechanism that reduced token numbers
via subsampling layers, a global multi-scale semantic fusion map for multi-scale fea-
ture integration, and a convolutional inductive bias to address the loss of local struc-
ture information inherent in transformers. During training, each pixel was treated
as a token, and the token map was flattened into a sequence for processing by the
transformer block. The model was validated on eight widely used public datasets
across various modalities and target structures, demonstrating its effectiveness.

The Mix Transformer (MiT-B3), a transformer based semantic segmentation
model originally designed for natural images, by incorporating cross-attention and
self-attention mechanisms to decouple feature queries, thereby improving general-
ization was presented in [198]. The Decoupled Feature Query (DFQ) framework, an
enhanced variant of the MiT-B3 for medical image segmentation was presented in
[17] to build a single model aimed at improving domain generalization in medical
image segmentation across multiple source and unseen target domains. The frame-
work focused on learning generalized representations through two key components:
(i) Learning from Decoupled Feature Queries, which leveraged long-range dependen-
cies in the self-attention mechanism to generate high-level feature queries from deep
features, while the corresponding keys and values were derived from shallow features;
and (ii) Decoding Generalized Representations, which fused the generalized features
using a linear layer, subsequently processed by the segmentation head to produce
final predictions. During training, DFQ used feed-forward layers and normaliza-
tion within Transformer blocks to ensure consistent shallow feature representations
across domains, facilitating the learning of robust and generalized features. The al-
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gorithm was evaluated on benchmark datasets for fundus and prostate segmentation,
demonstrating its effectiveness.

The CLIP-Driven Universal Model for organ segmentation and tumor detection
was presented in [110]. Drawing inspiration from the success of Transformer mod-
els in natural language processing (NLP) such as [2], [183], and [205]. The model
integrated text embeddings with voxel-level semantic segmentation, enabling seg-
mentation across various datasets, organs, tumors, tasks, and imaging modalities.
The framework consisted of two branches: a text branch and a vision branch. The
text branch generated CLIP embeddings for each organ and tumor using specialized
medical prompts, while the vision branch used both the images and the embeddings
to predict segmentation masks. To address label inconsistency, CLIP-driven Uni-
versal Model incorporated text embeddings and used a masked back-propagation
mechanism with binary segmentation masks. During training, the text branch pro-
duced CLIP embeddings based on medical prompts, which were concatenated with
global image features and passed into a multi-layer perceptron (MLP). The vision
branch processed CT scans by applying isotropic spacing and uniform intensity
scaling to reduce domain gaps between datasets. The scans were passed through an
encoder to extract feature maps, with the final layer generating predictions for each
class in a one-vs-all manner. The CLIP-Driven Universal Model was evaluated on
14 public datasets comprising 3,410 CT scans.

Moving on to the hybrid models, other researchers have explored the potentials
of a single hybrid models by combining CNN and ViT together. A combination of
a convolutional neural network and a Transformer (CoTr), in an encoder-decoder
structure for 3D medical image segmentation, was presented in [199]. The authors
enhanced the nnU-Net framework by integrating a convolutional neural network
(CNN) to extract feature representations and an efficient deformable Transformer
(DeTrans) to model long-range dependencies on the extracted feature maps. CoTr
consisted of a CNN encoder, a DeTrans encoder, and a CNN decoder. During train-
ing, the input images were flattened into a 1D vector, and a small set of key positions
in the image were passed through the deformable self-attention mechanism. This
approach reduced computational and spatial complexities, allowing for multi-scale
and high-resolution feature map processing. The Transformer dynamically adjusted
the receptive field based on the input content, enabling effective convolutional oper-
ations for modeling long-range dependencies. The algorithm was evaluated on the
Multi-Atlas Labeling Beyond the Cranial Vault (BCV) challenge dataset [203].

Similarly, the TransUNet, another unified hybrid model combining a convolu-
tional neural network (CNN) and a Transformer, was presented in [34]. Within an
encoder-decoder structure, the TransUNet used a CNN encoder to extract global
context feature maps, which were fed into a Transformer encoder for patch-based
tokenization. The decoder upsampled the encoded features and combined them
with high-resolution CNN feature maps to enhance pixel localization. The algo-
rithm was experimented on the Synapse multi-organ segmentation [177] and ACDC
[11] datasets. Other Variants of the TransUNet, have also been proposed for a sin-
gle model for medical image segmentation using multi-source datasets, which will
be reviewed as follows. A versatile medical image segmentation approach, leverag-
ing model self-disambiguation to learn from multi-source datasets, was presented in
[37]. Built on the TransUNet backbone, this method employed a hierarchical sam-
pling technique to generate training examples from multi-source and multi-modality
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datasets with ambiguous annotations. A 3D variant of TransUNet, referred to as 3D
TransUNet, was introduced in [33]. This model extracted per-voxel feature repre-
sentations from input volumes using the TransUNet backbone, which were processed
by a segmentation head to produce multi-channel predictions. The 3D TransUNet
incorporated prior knowledge through model self-disambiguation, encouraging con-
fident and informative predictions, and used a hierarchical sampling approach to
handle variations in imaging modalities, equipment, protocols, and patient demo-
graphics. During training, the model employed a multi-stage sampling strategy. It
began by selecting images based on the type of anatomical structure to narrow down
the eligible images. Next, images were sampled according to their modality from
the refined subset, followed by sampling based on their dataset of origin to ensure
equitable representation from diverse sources. Finally, an image is chosen from the
selected dataset for training. The framework was validated on 2,960 volumetric
images from eight multi-modal sources, including seven public datasets focused on
abdominal structures, demonstrating its effectiveness in multi-source medical image
segmentation.

Another hybrid approach to develop a universal model for medical image seg-
mentation across diverse data sources was presented in [111]. A key innovation of
the architecture was the integration of a cross-patch transformer module (CPTM)
into the nnU-Net framework. The CPTM enhances segmentation performance by
fusing information from adjacent image feature patches, by expanding the receptive
field, and improving long-range context modeling, which is crucial for accurate seg-
mentation. During training, a shared encoder extracted features from each patch,
which are then flattened into 1D vectors. The flattened features were processed
through multiple CPTMs for information fusion. The information from adjacent
patches were merged into a central patch, which was subsequently decoded for seg-
mentation prediction. The CPTM used two types of transformer blocks: one that
fused global information within a single patch and another that fused information
between adjacent patches. The model was trained on 33 anatomical categories
across 7 partially-labeled datasets, encompassing around 2,800 volumes from three
categories (3 pelvic bones, 5 abdominal organs, and 25 vertebrae).

Both CNN and ViT have demonstrated great success in medical image segmen-
tation. But one notable limitation of CNN and ViT based models is their reliance
on large training datasets. As demonstrated in [51], CNNs outperform ViTs when
trained on datasets of comparable size. This is expected, as Transformers lack cer-
tain inductive biases inherent to CNNs, such as translation equivariance and locality,
which enable CNNs to generalize better with limited data. However, when trained
on very large datasets, ViTs surpass CNNs in performance, leveraging their ability
to model long-range dependencies effectively. Another notable limitation is the im-
balance in dataset sizes and modalities. Since most datasets are sourced online and
collected from various medical centers, there is significant variability in their sizes,
leading to imbalances in both dataset size and modalities.
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Reference Year Backbone Organ Modalities Dimensions Metrics

UMA-Net [4] 2017 CNN Eye Fundus 2D Accuracy

[141] 2019 CNN Multiple MRI 3D DS

[48] 2019 CNN Multiple CT 3D DS

PIPO-FAN [55] 2020 CNN Heart CT 3D DS

[79] 2020 CNN Multiple CT 3D DS/HD

TransUNet [34] 2021 ViT Multiple MRI/CT 3D DS/HD

[171] 2021 CNN Multiple CT 3D DS/HD

DoDNet [209] 2021 CNN Multiple CT 3D DS/HD

DDA-GAN [38] 2021 CT Multiple MRI/CT 3D DS

Tgnet[194] 2022 CNN Multiple CT 3D DS/HD

MedFormer [61] 2022 ViT Multiple MRI/CT 2D/3D DS/HD

CoTr[199] 2021 CNN/ViT Multiple CT 3D DS

CPTM [111] 2022 CNN/ViT Multiple CT 3D DS/HD

CLIP-Driven [110] 2023 ViT Multiple CT 3D DS

[90] 2023 CNN whole-body CT 3D DS/HD

3D TransUNet [37] 2024 ViT Multiple MRI/CT 3D DS

[17] 2024 ViT Eye Fundus 2D DS/ASD

Table 2.2: A summary of previous work on universal models, listed in order of year
of publication, including the references, year, method, organ, image dimensions, and
evaluation metrics: Relative Absolute Volume Difference (RAVD), Accuracy, Dice
Score (DS), Hausdorff Distance (HD), and Average Surface Distance (ASD).
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2.4 Domain Adaptation Approaches for Medical

Image Segmentation

Most deep learning methods suffer from the domain shift problem, which occurs
when a model trained on one dataset (source domain) performs poorly when tested
on a new unseen dataset (target domain). This issue occurs because of the differences
in the data distributions between the source and target domains. One approach
to overcoming this challenge is to use Domain Adaptation (DA)techniques during
training. DA techniques help the model to capture domain-specific features while
sharing common features within a universal network, thereby enhancing the model’s
generalization ability. An illustration to tackle domain shift is shown in Figure 2.1.

Figure 2.1: Domain shifts across different medical sites (or domains) can impact
model performance. This diagram illustrates how the domain shift problem affects
a model’s performance. On the left, we have the source and target domains. Using
a classifier, we can identify misclassified targets in the target domain due to the
domain shift problem. However, after applying domain adaptation, we see on the
right that there are no misclassified targets between the source and target domains.

In this section, we provide a brief review of domain adaptation techniques in
deep learning methods, categorized based on the type of training label datasets:
supervised learning, where the entire training dataset is labeled, and semi-supervised
learning, where only a portion of the training dataset is labeled. We begin by
discussing supervised models, followed by semi-supervised models.

The 3D Md-Unet, a supervised learning model introduced in [109], was designed
for collaborative medical image segmentation across multiple datasets, with a fo-
cus on bladder cancer segmentation. Based on the Md-Unet backbone [64], the 3D
Md-Unet incorporates domain adaptation techniques, including (i) Shared-Specific
Adapter (SSA), which used pointwise group convolution for shared feature extrac-
tion across datasets, (ii) a shared branch that integrated common features extracted
from individual datasets, and (iii) an adaptive weight update strategy to address
uncertainty and class imbalance in multi-data collaborative training. These en-
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hancements enabled the 3D Md-Unet to extract and share both specific and com-
mon features from diverse datasets, including those targeting different organs. The
model processed inputs using 3D convolution and a dual-branch structure for fea-
ture extraction. The 3D Md-Unet was experimented on the Medical Segmentation
Decathlon (MSD) dataset [8].

Similarly, another supervised learning model the 3D U2-Net was introduced in
[76]. It is a universal 3D U-Net that uses domain adaptive techniques for multi-
domain medical image segmentation based on the concept of separable convolution,
where domain-specific spatial correlations in images are captured through channel-
wise convolution, while cross-channel correlations are handled using pointwise con-
volution. The 3D U2-Net modified the standard U-Net by incorporating (i) domain
adapters which allowed the model to capture domain-specific features while en-
abling efficient knowledge sharing across multiple domains, and (ii) domain sharing
parameters that stored and combined the shared pointwise convolution from indi-
vidual dataset. During training, the 3D U2-Net sampled batches from each dataset
in a round-robin manner, ensuring that every domain contributed to the shared
parameters. The 3D U2-Net was evaluated on five organ segmentation datasets.

Another, supervised learning model was presented in [186], which introduced a
multi-modal learning framework employing domain adaptation techniques for multi-
organ segmentation in CT and MRI scans. This approach integrated shared repre-
sentations within a dual-stream architecture based on a fully convolutional network
(FCN) to segment multiple organs across modalities. The shared representation
was designed to extract and share common features from multi-modal data, while
the dual-stream architecture consists of two components: the first stream that cap-
tured modality-specific features (from either CT or MRI), and the second stream
that facilitated the exchange of learned information between modalities, enhanc-
ing both segmentation accuracy and generalization. The dual-stream structure
effectively processed unpaired multi-modal images (where direct correspondences
between modalities are absent) while enabling information sharing within a single
network. The framework was evaluated on the segmentation of four abdominal
organs.

In [52], another multi-modal supervised learning model was introduced. It is an
unpaired segmentation via knowledge distillation that enabled information sharing
between different modalities. It used modality-specific internal normalization layers
to capture information for each modality, which was shared with other modalities
by constraining the Kullback–Leibler divergence between the prediction distribu-
tions of both modalities. Within the CNN backbone it incorporated two domain
adaptation techniques which were (i) Separate Internal Feature Normalization, that
normalized input from each modality separately using modality-specific encoders or
decoders, with either early or late fusion. It also used a single set of kernels to ex-
tract features from all modalities, which improved parameter efficiency and allowed
for the extraction of robust, universal representations. And (ii) a Knowledge Distil-
lation Loss, that enhanced knowledge transfer by applying temperature scaling to
pre-softmax activations, resulting in softer probability distributions across classes,
which facilitates cross learning. The method was implemented in both 2D and 3D
architectures and evaluated on two benchmark datasets.

Similarly, another, supervised learning model, DCAC a multi-source domain gen-
eralization model for medical image segmentation, based on Domain and Content
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Adaptive Convolution was introduced in [75] to tackle segmentation across different
imaging modalities. DCAC enhanced the standard U-Net architecture by incorpo-
rating domain adaptation techniques, including: (i) a Content Adaptive Convolu-
tion (CAC) module, that used a dynamic convolutional head conditioned to capture
global image features, enabling the model to adapt to the specific characteristics
of the test image; (ii) a Domain Adaptive Convolution, that dynamically adjusted
filters based on the input image domain, addressing discrepancies between source
domains and unseen target domains; (iii) Feature Aggregation, that integrated fea-
ture maps at each layer using Global Average Pooling (GAP); and (iv) a Domain
Predictor, that processed multi-scale encoder feature maps, aggregated them using
GAP, and concatenated the results into a vector. The DCAC model was evaluated
on three datasets across four tasks involving different modalities.

Moving on, the MS-Net, a multi-site supervised learning network designed to en-
hance prostate segmentation using heterogeneous MRI data, was proposed in [113].
This framework aimed to address limitations associated with single-site samples and
variability from different imaging protocols and scanners. Built on a convolutional
neural network (CNN) backbone, MS-Net integrated several key components: (i)
Domain-Specific Batch Normalization (DSBN), which allows the network to esti-
mate statistics and normalize features separately for each site, effectively addressing
inter-site variability; (ii) Auxiliary branches, where data from each site was assigned
to an auxiliary branch functioning as an independent feature extractor, enabling
the model to learn site-specific knowledge more effectively; (iii) a Universal Net-
work, where, in each iteration, knowledge learned from the auxiliary branches is
transferred to the universal network, encouraging shared kernels to capture broader
representations, and (iv) Multi-Site-Guided Knowledge Transfer, which enhanced
the network’s ability to extract generalizable representations from multi-site data,
thereby mitigating inter-site differences and improving robustness. The algorithm
was evaluated on three heterogeneous prostate MRI datasets from different sites.

DoFE, another supervised learning multi-site, single-modality model leveraging
domain adaptation techniques, was introduced in [192]. DoFE is a domain-oriented
feature embedding generalizable model using a Knowledge Pool for fundus image
segmentation. Within its CNN backbone, DoFE incorporated two domain adapta-
tion techniques: (i) a memory module, inspired by [117] and [166], that dynamically
enriched the semantic features of input images by leveraging prior domain knowledge
from multiple sources to enhance generalization, and (ii) a domain knowledge pool
that stored and retrieved information from various domains during feature embed-
ding, where each entry represents discriminative prototypes from specific training
datasets as domain-specific representations. DoFE augmented the input image’s
features with domain-oriented aggregated features derived from the knowledge pool
based on the similarity between the input image and images from multiple source
domains. The feature maps were processed through a prediction branch that em-
ployed an attention-guided mechanism to dynamically fuse the aggregated features
with the original semantic features. The DoFE framework was evaluated on two
segmentation tasks involving retinal fundus images from eight sites.

A supervised learning approach incorporating domain-specific batch normaliza-
tion layers within a convolutional neural network (CNN) backbone was proposed in
[94]. This method leveraged shared convolutional filters to facilitate the transfer of
learnable features across different domains. Two key domain adaptation techniques
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were integrated into the CNN backbone: (i) Using knowledge from prior domains
through trained domain-agnostic parameters, enabling rapid fine-tuning of a limited
set of domain-specific parameters with minimal risk of overfitting, and (ii) explic-
itly separating shared and domain-specific parameters, ensuring stable performance
on previously learned domains over time. To evaluate the framework, three model
variants were developed: (i) Individual Networks, where each domain was trained
separately; (ii) a Shared Network, that trained data from all domains using stan-
dard batch normalization; and (iii) a Lifelong Multi-Domain Learning Network, that
trained data from all domains using domain-specific batch normalization parame-
ters. The framework was tested on four publicly available datasets.

A multi-site supervised learning algorithm for robust white matter hyperinten-
sity segmentation on unseen domains was presented in [218]. The authors aimed
to address domain generalization by training the model on samples from various
distributions (sources) and testing it on a new, unseen distribution (target) from
a different site. The framework used a Mixup techniques that incoporated domain
specific adapters per domain to capture and share domain invariant information
within a common space. The model was evaluated on the multi-site White Matter
Hyperintensity Segmentation Challenge dataset and a private in-house dataset.

A supervised learning method combining domain adaptation (DA) with few-
shot learning, referred to as domain adaptation for medical image segmentation,
was introduced in [212]. This approach leveraged meta-learning to enable general-
ization across a diverse range of segmentation tasks. The method integrated domain
adaptation and meta-learning within the standard U-Net architecture. The meta-
learning component aligned source and target data in a domain-invariant discrimina-
tive shared feature space, leveraging the shared knowledge to improve segmentation
on domain specific tasks. The algorithm was evaluated on various segmentation
tasks from the Medical Segmentation Decathlon [8].

The Multi-Domain Vision Transformer (MDViT), a supervised learning transformer-
based backbone was introduced in [53] for small medical image segmentation datasets.
The framework employed multi-domain Vision Transformers (ViTs) with domain
adapters to reduce data dependency and mitigate Negative Knowledge Transfer
(NKT) by adaptively leveraging knowledge from multiple small datasets (domains).
Within the ViT backbone, MDViT incorporated a Mutual Knowledge Distilla-
tion (MKD) paradigm to enhance representation learning across domains, facilitat-
ing knowledge transfer between a universal network and auxiliary domain-specific
branches. The MDViT employed two key domain adaptation techniques. First, a
Domain Adapter (DA) which integrated domain-specific information into the Multi-
Head Self-Attention (MHSA) blocks. The DA employed an attention generation
technique to produce domain-aware vectors for each head and an information se-
lection mechanism to adaptively choose the most relevant information for each do-
main. Secondly, a Mutual Knowledge Distillation (MKD), that enabled bidirectional
knowledge transfer between domain-specific networks and the universal network,
promoting robust and generalized representations. The domain-specific networks
were trained on small, domain-specific datasets, while the universal network learned
from all domains. During training, MDViT used a universal network spanning mul-
tiple domains with auxiliary branches tailored to each domain. The DA mitigated
NKT within MHSA modules, while the MKD strategy facilitates the exchange of
domain-specific and shared knowledge, enhancing overall representation learning.
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MDViT was experimented on four skin lesion segmentation datasets.

Transitioning to semi-supervised learning the multi-Source domain adaptation
for medical image segmentation presented in [147]. The proposed method employed
a multi-level adversarial learning strategy to align features across different levels
between multiple source domains and the target domain, aiming to improve seg-
mentation accuracy. The model incorporated domain-specific adapters to capture
unique information for each domain and domain-shared adapters to share common
features among domains. The knowledge gained was used to generate pseudo-labeled
images from unseen datasets. The generated data, combined with the original la-
beled data, were used to train a U-Net-like segmentor, featuring an encoder-decoder
structure with skip connections at corresponding levels, in a supervised manner.
The framework was evaluated on cardiac and liver segmentation tasks using the
Cardiac Dataset [223] and the CHAOS dataset [95].

Similarly, a semi-supervised learning approach called Synergistic Image and Fea-
ture Adaptation (SIFA) was introduced in [32] to effectively address the challenge
of domain shift. SIFA combined adversarial learning with domain adaptation for
cross-modality medical image segmentation. The framework operated in two stages:
in the first stage, it incorporated domain adapters within the generator and discrim-
inator to capture domain-specific information, which was shared in a common space
across all domains. This process enhanced the domain invariance of the extracted
features, which were subsequently used for the segmentation task in the second
stage. The framework was evaluated on cross-modality medical image segmentation
of cardiac structures.

Another semi-supervised learning approach combining unsupervised domain adap-
tation (UDA) and zero-shot learning (ZSL) for multi-modality medical image seg-
mentation was presented in [18]. This method leveraged knowledge from a fully
annotated image modality to generalize and transfer visual semantics to a new
modality with minimal annotation. The framework operated in two stages: in the
first stage, a fully supervised model is trained on each modality. In the second stage,
a cross-modality adaptation technique was introduced, transferring shared informa-
tion between modalities using annotated classes. This enabled the zero-shot archi-
tecture to inherit relational prototypes from the prior model. The zero-shot model
subsequently learned unseen class prototypes and their relationships, enabling seg-
mentation on new modalities. The framework was evaluated on two cross-modality
datasets: the CHAOS Challenge [95], and a cardiac dataset from the MMWHS
Challenge [224].

Similarly another semi-supervised learning approach, the Prior-aware Neural
Network (PaNN) a partially-supervised multi-organ segmentation model, was in-
troduced in [221]. This approach addressed the challenge of background ambiguity
in partially labeled datasets by explicitly incorporating anatomical priors related to
abdominal organ sizes, leveraging domain-specific knowledge to guide the training
process. Within its CNN backbone, PaNN integrated domain-specific knowledge
adapters, functioning as auxiliary branches to capture organ-specific information.
The model was trained on thirteen CT anatomical structures and evaluated on the
MICCAI 2015 Multi-Atlas Labeling Beyond the Cranial Vault challenge dataset
[203].

One limitation of domain adaptation (DA) models is the absence of an effective
method to prevent the transfer of negative knowledge. Information that is beneficial
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in one domain but may adversely impact performance in another, leading to an
overall decline in the model’s performance.

Reference Year Approach Organ Modalities Dimensions Metrics

[94] 2018 Supervised Brain MRI 2D DS

[186] 2018 Supervised Multiple MRI /CT 3D DS

SIFA [32] 2019 Semi-supervised Heart MRI/CT 3D ASD

PaNN [221] 2019 Semi-supervised Multiple CT 2D/3D DS/HD

3D U2-Net [76] 2019 Supervised Multiple MRI/CT 3D DS

DoFE [192] 2020 Supervised Multiple Fundus 2D DS/HD

MS-Net [113] 2020 Supervised Prostate MRI 2D DS

[52] 2020 Supervised Multiple MRI/CT 2D/3D DS/HD

[18] 2021 Semi-supervised Multiple MRI/CT 3D DS/ASSD

[212] 2021 Supervised Multiple MRI 2D DS

DANN [218] 2021 Supervised Multiple MRI 3D DS/AVD

DCAC [75] 2022 Supervised Multiple Multiple 2D DS/ASD

3D Md-Unet [109] 2023 Supervised Multiple MRI/CT 3D DS

MDViT [53] 2023 Supervised Multiple Dermoscopy 2D DS/IoU

[147] 2023 Semi-supervised Multiple CT 3D DS/ASD

Table 2.3: A summary of previous work on domain adaptation models, listed in order
of year of publication, including the references, year, approach, organ, modalities,
image dimensions, and evaluation metrics: Dice Score (DS), average surface distance
(ASD), Hausdorff distance (HD), Average symmetric surface distance (ASSD), Ab-
solute volume Difference (AVD), Intersection over Union (IoU), Average Surface
Distance (ASD).
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2.5 Federated Learning Approaches for Medical

Image Segmentation

Federated learning in medical image segmentation allows distributed medical in-
stitutions to collaboratively train a shared model while maintaining data privacy.
By accessing data from multiple sources, each client can utilize diverse data distri-
butions, addressing the challenge of decentralized data. Information is exchanged
between clients in a privacy-preserving manner through an effective interpolation
mechanism in a continuous frequency space. The process involves communication
between a central server and local clients. In each round, the central server sends
global model weights to all clients, who then update the model locally using their
data for several epochs. These updated parameters are sent back to the server,
which aggregates them to refine the global model, repeating this process until con-
vergence. A visual example of federated learning is provided in Figure 2.2. Several
federated approaches have been proposed to tackle the challenge of domain shift in
medical image segmentation. Some of the key approaches will be briefly reviewed,
categorized by their training methodology, specifically whether or not they used gen-
erative adversarial networks (GANs). The review will begin with non-GAN based
approaches.

Figure 2.2: An illustration depicting Federated Learning (server-client learning).

Starting with the non-GAN based approaches, a federated domain generaliza-
tion (FedDG) approach for medical image segmentation using episodic learning in
continuous frequency space was introduced in [128]. A framework was presented
to train a federated model across multiple distributed source domains, enabling it
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to address the challenge of domain shift and generalize effectively to unseen target
domains. This approach was built on the widely used Federated Averaging (Fe-
dAvg) algorithm, originally developed for natural images and text datasets, which
aggregates local model parameters based on the size of each local dataset. The
standard FedAvg was enhanced with two key components: (i) continuous frequency
space interpolation, where information was shared in the frequency space rather
than raw images to preserve privacy, and (ii) boundary-oriented episodic learning,
which handled domain distribution shifts by implementing a specialized learning
scheme for local training, improving generalization. The method was evaluated on
two medical image segmentation tasks: optic disc and cup segmentation on retinal
fundus images, and prostate segmentation on T2-weighted MRI scans.

Several researchers have enhanced the Federated Averaging (FedAvg) algorithm
to propose non-GAN based approaches for addressing domain shift in medical image
segmentation, some of which will be reviewed briefly. The Auto-FedAvg, a learnable
federated averaging method, was introduced in [197] to dynamically adjust aggre-
gation weights based on data distributions across silos and the training progress
of the models. This approach was applied to COVID-19 lesion segmentation in
chest CT and pancreas segmentation in abdominal CT. Similarly, the Whole-brain
radiomics for clustered federated personalization in brain tumor segmentation was
proposed in [124]. Here the FedAvg was first used to build an initial global model
through several communication rounds, and applied within clusters to construct a
final model for each cluster of samples with homogeneous texture. The method was
evaluated on the FeTS2022 dataset [123]. Moving on, the FedDG, a federated do-
main generalization approach for medical image segmentation via episodic learning
in continuous frequency space, was presented in [112]. FedDG modified FedAvg by
transmitting distribution information across clients in a privacy-protecting manner
using an effective continuous frequency space interpolation mechanism. The FedDG
was evaluated on the BraTS AND Fundus datasets. The abdominal multi-organ
segmentation using federated learning, was another approach proposed in [204],
combining FedAvg with U-Net for segmenting multiple organs and structures in CT
and MRI scans. In this method, each client used a global model based on the U-Net
architecture as its local model. To address catastrophic forgetting [59], only the task
block of each client’s model was fine-tuned while keeping the representation block
frozen.

Another non-GAN-based federated learning approach for medical image seg-
mentation, FedSM, was introduced in [201] to address the domain shift problem
and reduced the generalization gap between the model and centralized training. A
technique called SoftPull was proposed for training federated models. The challenge
of domain shift in federated learning was tackled by incorporating an innovative
personalized federated learning optimization formulation, which substituted the lo-
cally trained model after each training round at the server within the FedAvg [128]
framework. The approach was validated on two benchmark datasets.

Similarly, another non-GAN based federated learning approach for distributed
medical databases using meta-analysis for large-scale subcortical brain data was
introduced in [174] to address the domain shift problem in medical image segmenta-
tion. The framework was composed of three main components: (i) a data standard-
ization step, which served as a pre-processing phase to enhance the stability of the
analysis and facilitate feature comparison across diverse datasets, (ii) a correction
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for confounding factors, employing the Alternating Direction Method of Multipliers
(ADMM) to estimate a matrix shared among centers, thereby accounting for con-
founding variables, and (iii) a variability analysis component, that used Federated
Principal Component Analysis (fPCA) to reduce data dimensionality while ensur-
ing privacy by avoiding the sharing of patient information. The framework was
evaluated on datasets collected from multiple medical centers.

Moving on, another non-GAN based a feasibility study on brain tumor segmenta-
tion, titled multi-institutional deep learning modeling without sharing patient data,
was introduced in [168] to address the problem of domain shift. Inspired by feder-
ated learning, a U-Net architecture was used as the backbone. The model accepted
a single-channel image as input and produced a binary mask of the same size, assign-
ing a class label to each pixel. Two models were proposed: the first, an Institutional
Incremental Learning (IIL), which is a collaborative learning approach allowing in-
stitutions to train a shared model sequentially. In IIL, each institution trained the
model only once using its local methods, requiring minimal bandwidth as the model
was transmitted once for training and received twice (once for training and once for
the final version). However, IIL faced two significant drawbacks: (a) performance
declines as the number of institutions increases, and (b) the risk of catastrophic
forgetting [59], where previously learned patterns are lost when new training data
replaced old data. The second approach, a Cyclic Institutional Incremental Learning
(CIIL), improved upon IIL by cycling through institutions repeatedly and fixing the
number of epochs for training at each institution to mitigate catastrophic forgetting.
In CIIL, each institution trained the model for a predefined number of epochs before
passing it sequentially to the next institution. These algorithms were evaluated on
the publicly available BraTS (Brain Tumor Segmentation) dataset [132].

Another non-GAN-based framework, the multi-task federated learning approach
for heterogeneous pancreas segmentation, was proposed in [169]. The framework
was built on two key innovative features. The first feature, the dynamic task prior-
itization (DTP), was implemented for multi-task learning by adjusting the weights
between different tasks based on an estimation of the key performance index (KPI).
Challenging tasks were prioritized by increasing their corresponding weights, while
the weights of easier tasks were reduced. The second feature, the dynamic weight
averaging (DWA), which served as an optimization approach for multi-task learning
tasks [114], focusing on server model aggregation rather than imposing constraints
on the loss function. The framework was evaluated on three public datasets.

Transitioning to GAN based approaches, the AsynDGAN, a synthetic learning
framework using distributed, asynchronous discriminator generative adversarial net-
works (GAN) without sharing medical image data, was proposed in [28]. A central
generator was trained to learn from distributed discriminators, using the generated
synthetic images exclusively to train a segmentation model. By combining GAN
with federated learning (FL), a generalizable model was constructed to address the
domain shift problem in medical image segmentation across multiple data sources
while preserving patient data privacy. The framework included two main compo-
nents: (i) a central generator, implemented as an encoder-decoder structure for seg-
mentation, incorporating strided convolutions, residual blocks, batch normalization,
and activation layers. And (ii) distributed discriminators, trained asynchronously
with access only to local data, ensuring data privacy. Each discriminator, deployed
at different medical entities (e.g., hospitals), learned to differentiate between real
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local images and synthetic images generated by the central generator. The central
generator, in turn, captured a joint distribution from the diverse datasets across cen-
ters, enabling training for specific segmentation tasks. The AsynDGAN framework
was evaluated on multiple datasets.

Similarly, GAN based approach, the Federated Simulation for medical imaging,
introduced in [105] to address the domain shift problem, combined Generative Ad-
versarial Networks (GAN) with federated learning for medical image segmentation.
It aimed to train a generative model that synthesizes CT volumes and correspond-
ing labels, allowing data sharing without compromising privacy. The framework has
two main components, (i) a generative model, that produced an organ shape and
material map, independent of imaging devices and (ii) a CT Simulation, which the
generated shape and material map are processed through a physics-based CT ren-
derer to create a voxelized label map, generating synthetic CT volumes with labels.
During training, the model learned the underlying distribution of the datasets and
generates realistic samples, which are then used as auxiliary labeled data for training
downstream machine learning models. The Federated Simulation was evaluated on
multiple CT datasets from different sites.

Another GAN based federated learning method, termed mixed supervised fed-
erated learning for medical image segmentation (FedMix), was introduced in [193]
. The FedMix proposed a label-agnostic unified federated learning framework de-
signed for medical image segmentation using mixed image labels to mitigate domain
shift problem. In this approach, each client updates the federated model by inte-
grating and effectively utilizing all available labeled data, which ranges from strong
pixel-level labels to weak bounding box labels. An adaptive weight assignment pro-
cedure was incorporated, allowing each client to learn its aggregation weight during
the global model update. FedMix dynamically adjusted each client’s aggregation
weight, resulting in a rich and discriminative feature representations that increased
the diversity and distribution of the model. The FedMix integrated two key features
into the U-Net backbone. First the Pseudo Label Generation and Selection (Sam-
ple and Refine), which amplified and filtered useful signals from pseudo-supervision
by generating pseudo labels through consistency regularization. The pseudo labels
were dynamically filtered and refined before being used for training. Secondly, the
adaptive aggregation for Federated Model Update (Aggregate), that ensured more
reliable clients are assigned higher weights, leading to better model convergence by
adjusting client weights based on data quantity and quality. The algorithm was
evaluated on two medical image segmentation tasks: breast tumor segmentation
(using three public breast ultrasound datasets) and skin tumor segmentation (from
four different sources).

Federated learning (FL) has demonstrated success in medical image segmenta-
tion, particularly in improving generalization, addressing domain shift, and, most
importantly, preserving data privacy. However, many of these methods are based
on complex frameworks that combine multiple algorithms, making them challenging
to adapt for specific use cases.
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Reference Year Approach Organ Modalities Dimensions Metrics

[128] 2017 non-GAN Brain/Eye MRI/Fundus 3D/2D HD

[168] 2019 non-GAN Brain MRI 3D DS

[174] 2019 non-GAN Brain MRI 3D HD

AsynDGAN [28] 2020 GAN Multiple MRI/CT 2D DS/HD

[105], 2020 GAN Multiple CT 3D DS

FedSM [201] 2022 non-GAN Multiple CT 2D DS

FedMix [193] 2022 GAN Multiple Multiple 2D DS

Auto-FedAvg [197] 2021 non-GAN Chest CT 2D Accuracy

[169] 2021 non-GAN Multiple CT 3D DS

FedDG [112] 2021 non-GAN Brain/Eye MRI/Fundus 2D/3D DS

[124] 2024 non-GAN Brain MRI 3D DS

[204] 2024 non-GAN MRI/CT Multiple 3D DS

Table 2.4: A summary of previous work on federated learning models, listed in order
of year of publication, including the references, year, approach, organ, modalities,
image dimensions, and evaluation metrics: , Hausdorff distance (HD), Dice Score
(DS), Accuracy and Intersection over Union (IoU).

50 Chapter 2 Ndipenoch, Nchongmaje



Advancing Medical Image Segmentation and Generalization by Capturing Global
Context and Mitigating Negative Knowledge Transfer Across Multi-Source Data

2.6 Foundation Model Approaches for Medical Im-

age Segmentation

Foundation models are large-scale, pre-trained models that serve as a base for a wide
range of downstream tasks. Trained on massive datasets, they learn general data
representations, making them adaptable to different tasks. After the initial train-
ing, these models can be fine-tuned using relatively small amounts of task-specific
data. Typically, foundation models have billions of parameters and are exposed to
extensive datasets, enabling them to capture broad patterns, structures, and repre-
sentations. Once pre-trained, they can be customized for various applications like
segmentation with smaller datasets. These models have shown significant promise
in overcoming challenges like generalization and domain shifts between different
datasets in medical image segmentation. In this section we will briefly review some
foundation models tailored for medical image segmentation categorized base on the
backbone: Segment Anything Model (SAM) and non SAM.

The Segment Anything Model (SAM), introduced by researchers at Meta in [97],
is a promptable model for image segmentation, trained on a large-scale dataset with
1 billion segmentation masks from 11 million images. It aimed to serve as a founda-
tion model that can generalize across various segmentation tasks through zero-shot
transfer. SAM’s approach revolves around three key components: task, model, and
data. (i) Task: Inspired by zero-shot and few-shot learning in NLP, the authors
proposed a promptable segmentation task, allowing SAM to adapt to diverse inputs
through prompting. (ii) Model: SAM was built to handle flexible prompts, gener-
ate segmentation masks in real-time, and manage ambiguous inputs. (iii) Dataset:
The model was trained on a massive dataset of 1 billion segmentation masks, en-
suring both privacy and scalability. The model architecture includes: (i) An image
Encoder, which is a Vision Transformer (ViT) [51] pre-trained with Masked Autoen-
coders (MAE) [69] that processed high-resolution images before receiving prompts.
(ii) A prompt encoder, that supported sparse prompts (points, boxes, text) using
positional encodings and dense prompts (masks) with convolutions, incorporating
CLIP’s text encoder [151] for text-based inputs. (iii) A mask decoder, that combined
image and prompt embeddings using Transformer blocks [27] with self-attention and
cross-attention to produce segmentation masks. SAM used a dynamic linear clas-
sifier to predict foreground probabilities and was evaluated on 23 unseen datasets.
Since its release, numerous SAM variants have been developed, specifically tailored
for medical image segmentation, some of which will be reviewed as follows.

The MA-SAM, a modality-agnostic adaptation of the Segment Anything Model
(SAM) tailored for 3D medical image segmentation, was introduced in [31]. SAM
was initially trained on 2D natural images, which limited its performance in the
medical imaging domain due to lack of the third dimension or temporal informa-
tion. To effectively adapt SAM to medical images, it is crucial to incorporate the
third dimensional information or temporal data during fine-tuning. By embedding a
series of 3D adapters into the transformer blocks of SAM’s image encoder, MA-SAM
allowed the model to extract 3D information from the input data. The framework
used a parameter efficient fine-tuning strategy that updated only a small portion
of weight increments while retaining the majority of SAM’s pre-trained weights.
To improve SAM’s output resolution, which was critical for capturing fine details in
medical images, MA-SAM introduced two key enhancements to the decoder: (i) Pro-
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gressive upsampling, which added transposed convolutional layers to restore feature
maps to the original input resolution and (2) A multi-scale fusion, that used skip
connections to combine feature maps from decoder layers with their corresponding
encoder layers. Fine-tuning was guided by a hybrid segmentation loss that combines
cross-entropy and Dice loss, with training using the Adam optimizer [96] and data
augmentation. The The MA-SAM was evaluated on 5 medical segmentation tasks
across 11 public datasets (including CT, MRI, and surgical videos).

Similarly, another SAM base model, the SAM-Med2D, a specialized variant of
the SAM for 2D medical image segmentation, was introduced in [39]. This adap-
tation aimed to bridge the gap between natural and medical images by fine-tuning
SAM for medical imaging tasks. The SAM-Med2D enhanced SAM’s capabilities by
incorporating a variety of prompts, including bounding boxes, points, and masks,
and fine-tuning both the encoder and decoder. One key modification was the adding
of an adapter to SAM’s encoder to better capture domain-specific features relevant
to medical imaging. SAM-Med2D improved segmentation performance by leveraging
SAM’s framework, extending its prompt capabilities, and using fine-tuning based on
simulated interactive segmentation. The model was trained using simulated interac-
tive segmentation, running through nine iterations per batch. To integrate domain
knowledge, the authors curated a dataset with over 4.6 million medical images and
19.7 million masks from both public and private sources and was evaluated on nine
medical image datasets

Moving on, the segment anything in medical images (MedSAM) framework, was
introduced in [122]. It is a foundation model designed for universal medical image
segmentation. It aimed to bridge the gap between general segmentation techniques
and the specific needs of medical image segmentation, offering adaptability through
user-provided prompts. MedSAM’s architecture is similar to the original SAM,
featuring an image encoder, a prompt encoder, and a mask decoder. The image
encoder mapped input images into a high-dimensional embedding space, while the
prompt encoder converts user prompts (e.g., bounding boxes) into feature repre-
sentations using positional encoding. The mask decoder then combined image and
prompt features through cross-attention to generate segmentation results. Built on
a Vision Transformer (ViT) backbone, MedSAM used 12 transformer layers with
multi-head self-attention and multilayer perceptron (MLP) blocks, all incorporating
layer normalization. It was trained on a large-scale medical dataset with 1,570,263
image-mask pairs, covering 10 imaging modalities and over 30 cancer types.

Another SAM based approach, the Localize Anything Model for 3D Medical
Images (MedLAM), a one-shot framework for organ and landmark localization in
volumetric medical images, was introduced in [102]. It used two self-supervised tasks:
Unified Anatomical Mapping (UAM) and Multi-Scale Similarity (MSS). MedLAM
was based on the observation that the spatial distribution of organs is consistent
across different individuals, and it assumes the existence of a standard anatomical
coordinate system in which the same anatomical part in different individuals shares
similar coordinates. Thus, it can localize the target anatomy in unannotated scans
using similar coordinates. The MedLAM model consisted of three main compo-
nents: a feature encoder, a multilayer perceptron (MLP), and a feature decoder.
The feature encoder and decoder each contained four convolutional blocks. Each
encoder block included two convolutional layers followed by downsampling, while
each decoder block included two convolutional layers followed by upsampling. The
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MLP was composed of three fully connected layers. The model was evaluated on
two datasets: (i) the mixed head and neck (HaN) CT StructSeg 2019 dataset [176],
which includes 165 volumes from three sources, and (ii) the pancreas CT dataset
[159], consisting of 82 volumes.

Similarly, another SAM based approach, the MedLSAM (Localize and Segment
Anything Model for 3D CT Images), was introduced in [103], to address the challenge
of slice-by-slice annotations typically required by SAM and its medical adaptations,
which can be time-consuming as dataset sizes grow. This approach combined Med-
LAM with SAM to create a 3D localization foundation model capable of identifying
any anatomical structure within the body. MedLSAM integrated MedLAM with
SAM by using minimal prompts, such as a few annotated extreme points across
three directions on template images. This allowed MedLAM to automatically lo-
cate the target anatomical region in the entire dataset, generating a 2D bounding
box for each image slice. SAM then used the bounding boxes for precise segmen-
tation. The fully automated pipeline involved two stages, first, MedLAM identified
the locations of target structures within volumetric medical images, and secondly
SAM segmented the structures using the provided bounding boxes. This approach
eliminated the need for manual intervention during segmentation. MedLSAM was
tested on two 3D datasets covering 38 different organs.

The SAMedOCT, an adaptation of the Segment Anything Model (SAM) specifi-
cally designed for 3D segmentation of Retinal Optical Coherence Tomography (OCT)
images, was introduced in [56]. The SAMedOCT improved SAM’s performance by
incorporating the Low-Rank Adaptation (LoRA) technique [103] into the query and
value projection layers of each transformer’s encoder block. Additionally, it mod-
ified the decoder’s segmentation head to customize the output for each segmented
class, allowing the model to deterministically predict each semantic class and the
background, enhancing interpretability and specificity. The fine-tuning process was
guided by a combination of cross-entropy and Dice losses, applied to downsampled
ground since SAMedOCT’s output has lower spatial resolution. The training process
used the AdamW optimizer [96], with a warm-up period and exponential learning
rate decay. SAMedOCT was evaluated on the MICCAI 2017 RETOUCH challenge
dataset [21], consisting of 112 OCT volumes.

The self-sampling meta SAM (SSM-SAM), was introduced in [104], to enhance
few-shot medical image segmentation through meta-learning for rapid online adapta-
tion. It was built on SAM’s feature extraction capabilities, leveraging its zero-shot
potential without requiring extensive training data. SSM-SAM used MAML++
[9], a meta-learning method originally trained on natural text and images, as its
foundation. The framework has three main modules which are (i) An online fast
gradient descent optimizer, that was enhanced with a meta-learner for quick adap-
tation to new tasks. (ii) A self-sampling module, that generated well-aligned visual
prompts to improve attention focus. (iii) An attention-based decoder, designed
to capture relationships between slices for effective few-shot segmentation. The
SSM-SAM’s structure was divided into two parts, the first part was a SS-SAM,
which is a modified version of SAM that replaced its prompt encoder and mask de-
coder with a self-sampling prompt encoder and a Flexible Mask Attention Decoder
(FMAD). It also included adapters in the image encoder to enhance learning from
new tasks, improving transferability. The second part, was the SSM-SAM, which
is built on SS-SAM by adding a meta-learning-based optimizer, further boosting
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SAM’s performance in few-shot segmentation tasks. During training, the SAM im-
age encoder remains frozen, with a learnable adapter added to each transformer
layer for parameter-efficient learning. A self-sampling operation refined image em-
beddings before passing them to the FMAD, that produced the predicted mask. The
MAML++ meta-learner optimized the initial parameters for quick adaptation to dif-
ferent organs. The framework was evaluated on abdominal CT and MRI datasets,
and experimental.

The medical SAM Adapter (Med-SA), introduced in [196], adapted the Segment
Anything Model (SAM) for medical image segmentation by incorporating domain-
specific knowledge using a lightweight adaptation approach. Instead of fine-tuning
all of SAM’s parameters, Med-SA retained most of SAM’s pre-trained weights and
introduced targeted adaptations. Med-SA’s key innovations include: (i) A space-
depth transpose (SD-Trans), that adapted SAM for 3D medical images by trans-
posing spatial dimensions into the depth dimension, allowing SAM’s self-attention
blocks to process 2D and 3D data. SD-Trans has two branches: the space branch to
capture spatial correlations and the depth branch to capture depth correlations, inte-
grating depth information into the spatial attention output. (ii) A hyper-prompting
adapter (HyP-Adpt), which is a prompt-conditioned adaptation that used visual
prompts to generate weight maps, enabling richer interactions between prompts
and model embeddings. During training, the Med-SA used click prompts (positive
for foreground and negative for background) and bounding boxes (BBox). It began
with random click sampling and used an iterative sampling method to simulate real
user interactions, placing new clicks in error regions to refine segmentation. Med-
SA was evaluated on 17 medical image segmentation tasks across various modalities,
including CT, MRI, ultrasound, fundus, and dermoscopic images.

The SAMAug another SAM based approach was introduced in [215], to enhance
medical image segmentation by using SAM-generated data for input augmentation.
While SAM’s initial segmentation for medical images may not be high-quality, the
masks, features, and stability scores it produces can improve other segmentation
models. SAMAug integrated these elements into a three-step process: First was
the segmentation and boundary prior maps, for which SAM-generated masks were
used to create boundary prior maps. Each training image is augmented by adding
the segmentation prior map as a second channel and the boundary map as a third
channel, forming an enriched training set. The second step was a model trained
with SAM-augmented images, the augmented images were used to train medical
segmentation models like U-Net, allowing them to benefit from both the raw image
data and the additional information provided by SAM’s masks. The final step was
the model deployment with SAM-augmented images. During testing, models trained
with SAM-augmented data processed test inputs similarly. If a model was trained
on both raw and augmented data, the outputs from both were averaged to improve
accuracy. The SAMAug was evaluated on three datasets for different segmentation
tasks.

Another SAM based method is the ESP-MedSAM framework, an efficient self-
prompting SAM designed for universal domain-generalized in medical image seg-
mentation, was introduced in [202]. This method addressed the high computational
costs, reliance on manual prompts, and challenges in generalization in clinical sce-
narios. The ESP-MedSAM, included several innovations to enhance performance
and generalization. First, it developed a Multi-Modal Decoupled Knowledge Distil-
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lation (MMDKD) strategy to construct a lightweight, semi-parameter-sharing image
encoder that generated discriminative visual features for multiple modalities. Next,
it introduced the Self-Patch Prompt Generator (SPPG), which automatically gen-
erated high-quality dense prompt embeddings to guide segmentation. Finally, it
designed the Query-Decoupled Modality Decoder (QDMD), that provided an inde-
pendent decoding channel for each modality to prevent conflicts during the segmen-
tation process. The ESP-MedSAM was evaluated on six medical imaging modalities.

Other methods that have employed SAM for medical image segmentation in-
cludes: An Extensive studies using datasets from various imaging modalities to
compare the performance of SAM variants was presented in [167]. This approach em-
ployed the two point-prompt strategies which are: (i) A multiple positive prompts,
where one prompt was placed near the centroid of the target structure, while others
were randomly positioned within the structure, and (ii) a combined positive and
negative prompts, where one positive prompt was placed near the centroid of the
target structure and two negative prompts were positioned outside it, maximizing
the distance from the positive prompt and each other. These strategies were eval-
uated on 24 unique organ-modality combinations across 11 publicly available MRI,
CT, ultrasound, dermoscopy, and endoscopy datasets. Additionally, the interac-
tive 3D medical image segmentation with SAM 2, combining zero-shot and SAM,
was proposed in [170] and evaluated on the BraTS2020 and MSD datasets. Another,
SAM-based image enhancement (SAM-IE), was introduced in [188], which leveraged
SAM-generated masks and features to enhance image quality for disease diagnosis,
by combining binary and contour masks generated by SAM. This method was tested
on four medical image datasets. Moving on, an experimental study was presented in
[125], that generated point and box prompts for SAM using a standard method sim-
ulating interactive segmentation. This study was evaluated on 19 medical imaging
datasets, and concluded that SAM demonstrated impressive zero-shot performance
on some datasets but moderate results on others. Next, a fine-tuning approach for
SAM using few examples, termed cheap lunch for medical image segmentation, was
proposed in [57]. The approach incorporated an exemplar-guided synthesis module
and Low-Rank Adaptation (LoRA) fine-tuning strategy. The algorithm was evalu-
ated on the MRI brain tumor (BraTS) and multi-organ CT segmentation (Synapse)
datasets. Moving on, the AdaptiveSAM was introduced in [144]. This approach
incorporated bias-tuning that required less than 2% of SAM’s trainable parameters
and negligible expert intervention, using free-form text prompts to segment objects
of interest. It was evaluated on three datasets from diverse modalities, including
ultrasound and X-ray. Finally, a comprehensive overview of recent efforts to ex-
tend SAM’s efficacy to medical image segmentation tasks, encompassing empirical
benchmarking and methodological adaptations, was presented in [214].

Transitioning to non-SAM approaches, the One-Prompt Model [195] was intro-
duced for universal medical image segmentation, combining the strengths of one-shot
and interactive models to address real-world clinical needs. The architecture con-
sisted of a standard CNN-based image encoder and a sequence of One-Prompt For-
mers for segmentation tasks. Three inputs were utilized: a query image, a template
image, and a prompt for the template, with the model predicting the segmentation of
the query image. Skip connections were employed to integrate multi-scale features in
both the encoder and decoder stages. Key components of the architecture included:
(i) an encoder that processed query and template images through the same U-Net
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encoder to extract features, (ii) a One-Prompt Former that combined downsam-
pled query features with prompt embeddings and template features using attention
blocks, (iii) a cross-attention mechanisms where the query branch integrated skip-
connected query embeddings while the template branch used a Prompt-Parser to
merge prompts with template features, (iv) a final cross-attention and Feedforward
Neural Network (FNN) that unified the two branches to transfer the template’s
segmentation to the query, and (v) a Prompt-Parser that generated an adaptive
attention mask to focus on the prompted target. The model was trained using 64
open-source medical datasets and over 3,000 clinician-labeled prompts.

Large foundation models in medical image segmentation have demonstrated sig-
nificant advancements in segmentation tasks. However, they often require substan-
tial computational resources, which are typically inaccessible to many researchers.
A notable limitation of these approaches is the lack of strategies to dynamically
reduce image resolution during training, which could effectively decrease space com-
plexity and improve computational efficiency. Additionally, most of these models
are trained on natural images or limited medical image datasets, leading to poor
generalization on downstream medical imaging tasks. Developing large foundation
models trained exclusively on diverse medical image datasets would be a significant
step forward in addressing these challenges.
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Reference Year Backbone Organ Modalities Dimensions Metrics

MedLAM [102] 2021 SAM Multiple CT 3D IoU

[57] 2023 SAM Multiple MRI/CT 2D DS/HD

SAM-Med2D [39] 2023 SAM Multiple Multiple 2D Accuracy

MedLSAM [103] 2023 SAM Multiple CT 3D DS/HD

SAMedOCT [56] 2023 SAM Eye OCT 3D DS/AVD

Med-SA [196] 2023 SAM Multiple Multiple 2D DS/IoU

SAMAug [215] 2023 SAM Multiple Multiple 2D DS

[144] 2024 SAM Multiple X-Ray/US 2D DS/IoU

One-Prompt [195] 2024 ViT/CNN Multiple Multiple 2D DS

MA-SAM [31] 2024 SAM Multiple MRI/CT 3D DS/HD

SSM-SAM [104] 2024 SAM MRI/CT Multiple 2D DS

MedSAM [122] 2024 SAM Multiple Multiple 2D/3D DS

ESP-MedSAM [202] 2024 SAM Multiple Multiple 2D DS/HD

[214] 2024 SAM Multiple Multiple 2D DS

[167] 2024 SAM Multiple Multiple 2D DS

[170] 2024 SAM Multiple MRI/CT 2D DS/HD

[188] 2024 SAM Multiple Multiple 2D AUC

[125] 2024 SAM Multiple Multiple 2D IoU

Table 2.5: A summary of previous work on foundation models, listed in order of
year of publication, including the references, year, method, organ, image dimensions,
and evaluation metrics: Intersection over Union (IoU), Dice Score (DS), Hausdorff
distance (HD), Accuracy, Absolute volume Difference (AVD), Area under the curve
(AUC).
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2.7 Fine-Tuning Approaches for Medical Image

Segmentation

Fine-tuning is a common strategy to improve the generalisation of deep learning
models, particularly when adapting a pre-trained model to specific tasks or datasets
in medical image segmentation. In this section, we will review several fine-tuning
approaches used to enhance medical image segmentation, organized by their archi-
tectural backbone: Convolutional Neural Networks (CNNs), Vision Transformers
(ViTs), and a hybrid combinations of both.

Annotated datasets from diverse sources often exhibit class overlaps due to in-
consistent label definitions, such as differing annotations for the same organ across
datasets. For instance, the heart’s annotation in one dataset may overlap with
the aorta in another. To address this challenge in medical image segmentation, a
CNN-based algorithm, MultiTalent, was proposed in [184], integrating three key
modifications into the nnU-Net framework. A class-adaptive loss function, combin-
ing Binary Cross-Entropy loss with Dice loss, was employed to manage overlapping
classes while preserving label properties. A one-hot label vector was introduced to
handle label contradictions by enabling independent class prediction. Additionally,
a sigmoid activation function was used to allow the prediction of multiple classes
per pixel, accommodating overlapping class representations. During training, the
model used a shared backbone with independent segmentation heads for each class,
preserving the unique characteristics of each dataset’s labels. MultiTalent supported
two primary scenarios: (i) Combined Multi-Dataset (MD) Training, that developed
a foundational model capable of segmenting all classes from partially annotated
datasets, and (ii) Pre-Training, that fine-tuned the foundational model’s learned
representations for new tasks. The framework was trained on 13 public abdominal
CT datasets comprising 1,477 3D images and 47 classes.

Similarly, another CNN-based algorithm, the Med3D, was introduced in [36] as
a transfer learning approach for 3D medical image analysis, aimed at developing
pre-trained models using diverse medical image datasets that could be fine-tuned
for downstream tasks. A heterogeneous Med3D network was designed to extract
general 3D features across varied medical domains. The Med3D focused on two main
objectives, the first was to build a comprehensive 3D medical dataset called 3DSeg-8
by aggregating smaller datasets from multiple medical domains. And the second, was
train baseline networks (pre-trained models) on this dataset for subsequent transfer
and fine-tuning to other tasks. The network was based on the ResNet architecture
[68], a variant of the U-Net with skip connections. An encoder-decoder structure
was employed, with the encoder connected to eight separate decoder branches, each
optimized for a specific dataset within 3DSeg-8. During training, only the decoder
branch relevant to the active dataset was used, while others remained inactive. For
testing, the decoder was removed, and the trained encoder was applied for transfer
learning to new tasks. Data augmentation techniques were used to balance smaller
datasets to match the size of the largest dataset. The pre-trained Med3D models
were evaluated on tasks such as lung segmentation, pulmonary nodule classification,
and liver segmentation.

Another CNN-based backbone, Models Genesis, was introduced in [222] as a
framework for training generic models for 3D medical imaging using a self-supervised
learning approach that does not require labeled data. Comprehensive image repre-
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sentations were learned through a combination of self-supervised tasks, consolidated
into a single image restoration task using an encoder-decoder architecture, making
the framework scalable and well-suited for transfer learning and fine-tuning across
various 3D medical imaging tasks. The primary goal was to develop transferable
image representations capable of generalizing across different diseases, organs, and
imaging modalities. The self-supervised training process involved cropping sub-
volumes from patient CT images, applying transformations to these sub-volumes,
and training the model to restore the transformed sub-volumes to their original
form. Using a 3D U-Net backbone, the framework incorporated four key compo-
nents: (i) an image restoration module that mapped transformed sub-volumes back
to their original state using an encoder-decoder network with skip connections, (ii)
a non-linear transformation that preserved the appearance of anatomical structures
with a monotonic intensity transformation function, (iii) a local pixel shuffling to
introduce texture variations and enhance boundary detection, and (iv) an outer and
inner cutouts that promoted contextual understanding by masking specific regions
while exposing others. Models Genesis was pre-trained on 623 chest CT scans from
the LUNA 2016 dataset [86].

Moving on, another CNN-based fine-tuning model, the Interactive Medical Im-
age Segmentation framework using deep learning with image-specific fine-tuning,
was proposed in [190]. This interactive framework was designed with a bounding
box and image-specific fine-tuning-based CNN segmentation network. Several key
innovations were incorporated into the framework as follows: (i) a bounding box and
scribble-based binary segmentation within the CNN backbone to extract the region
of interest (ROI), (ii) an image-specific fine-tuning to adapt the CNN model to each
test image independently, (iii) a weighted loss function that accounted for network
and interaction-based uncertainty during the image-specific fine-tuning process, and
(iv) a zero-shot learning technique for segmentation employed within the CNN back-
bone. A single model was trained, which was fine-tuned for different downstream
tasks by first using bounding boxes to extract the ROI and then applying zero-shot
learning for segmentation within the CNN backbone. The framework was evaluated
on several brain MRI datasets.

The 3D Anisotropic Hybrid Network (AH-Net), another CNN based approach,
was introduced in [115] as a fine-tuning transfer learning method in which convolu-
tional features learned from 2D images were transferred to 3D anisotropic volumes.
Strong generalization capabilities from features learned on B-scan slices were lever-
aged, and inter-slice information was effectively used through focal loss [158]. The
2D fully convolutional ResNet [148] (a U-Net variant with skip connections) was
extended into a 3D architecture by adding an extra dimension to the 2D kernel,
and skip connections were incorporated between the feature encoder and decoder.
To enable multi-scale feature extraction, a pyramid volumetric pooling module [217]
was integrated at the end of the decoder path, just before the classification layer.
AH-Net was evaluated on two datasets: a private Digital Breast Tomosynthesis
dataset and the public Liver Tumor Segmentation Challenge dataset [19].

The use of convolutional neural networks (CNNs) for medical image analysis with
fully fine-tuning was introduced in [179]. This approach was designed to analyze
how the availability of training samples influenced the decision between using pre-
trained CNNs or training CNNs from scratch. It was demonstrated that fine-tuning
a pre-trained CNN in a layer-wise manner resulted in incremental performance im-
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provements. The approach was validated on four medical image datasets.

The fine-tuning of U-Net for ultrasound image segmentation was proposed in [5].
In this approach, a large model was trained using both natural and medical images
and subsequently fine-tuned for medical image-specific segmentation tasks. The
standard U-Net architecture was modified by replacing the transposed convolutional
layers with bilinear upsampling followed by 2 × 2 convolution. The algorithm was
trained on a large dataset comprising natural images, breast ultrasound scans, and
chest X-rays. Data augmentation techniques were applied to increase the size of the
ultrasound and X-ray datasets to match the scale of the natural image dataset.

Transitioning to Vision Transformer-based architectures, the DAFT framework,
a data-aware fine-tuning approach for foundation models aimed at efficient and effec-
tive medical image segmentation, was proposed in [150]. Based on the demographic
characteristics of the input image, meta-learning was utilized to efficiently select the
most suitable pre-trained model for fine-tuning from a pool of 11 Vision Transformer
(ViT) pre-trained models. The DAFT framework was evaluated on multiple MRI
and CT medical image datasets.

Similarly, another Transformer based approach for fine-tuning was presented
in [211]. It is a deep stacked transformations model that can be fine-tuned for
downstream task-specific problems in medical image segmentation. The framework
applied a series of transformations to each image during network training to simu-
late domain shifts within specific medical imaging modalities. A pre-trained model
was trained on an augmented large dataset, termed BigAug. The pre-trained model
generalized effectively to unseen domains. The framework comprised of two key
components. The first was deep stacked transformations, where a sequence of image
transformations was applied, with each transformation characterized by a probabil-
ity of application and a magnitude function. The second component was a 3D deep
segmentation backbone based on Vision Transformers (ViT), which transferred deep
features learned from large-scale 2D images to a 3D encoder-decoder network. Dur-
ing training, transformations were applied to each mini-batch to simulate domain-
specific shifts, generating augmented data with corresponding annotations that al-
tered image quality, appearance, and spatial configurations. Sub-volumes were ran-
domly cropped from the whole volume and segmented into masks with one-channel
annotations. The sub-volumes were evenly distributed between the foreground and
background to enhance data diversity. At inference, a sliding window with overlap
was used across the entire 3D volume to produce the final segmentation. The algo-
rithm was evaluated on four publicly available 3D prostate MRI datasets, three 3D
heart MRI datasets, and one 3D ultrasound dataset

Another Vision Transformer-based approach, LiteMedSAM, a low-rank adap-
tation and multi-box efficient inference method for medical image segmentation,
was introduced in [116]. LiteMedSAM adjusted the probabilities of selecting each
modality during data loading to address severe imbalances in modality data, im-
proving segmentation performance for medical images with limited data in certain
modalities. Within the Vision Transformer backbone, LiteMedSAM incorporated a
low-rank adaptation technique into the multi-head attention and multilayer percep-
tron components to fine-tune the model for downstream medical image segmenta-
tion tasks. The approach was evaluated on a large dataset encompassing multiple
modalities, including MRI, CT, PET, Ultrasound, X-Ray, Dermotology, Endoscopy,
Fundus, and Microscopy.
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Transitioning to hybrid-based approaches, UniSeg, a method combining CNN
and Vision Transformer (ViT), was proposed in [207] as a prompt-driven universal
segmentation model and strong representation learner. This approach was designed
to fine-tune task-specific downstream medical image segmentation tasks, leveraging
the one-hot label vectors to create a single model capable of segmenting medical
images across diverse sources and modalities. Built for the segmentation of multiple
organs, tumors, and vertebrae in 3D medical images across various modalities and
domains, UniSeg introduced a learnable universal prompt to capture correlations
among all tasks. This universal prompt, combined with image features, was con-
verted into a task-specific prompt and fed into the decoder, allowing the model to
become task-aware early and enhancing task-specific training in the decoder. Based
on the nnU-Net backbone, UniSeg is comprised of a vision encoder, a fusion and se-
lection (FUSE) module, and a prompt-driven decoder. During training, the FUSE
module generated task-specific prompts, enabling the model to adapt to the on-
going task. The universal prompt and vision encoder features were passed to the
FUSE module, which selected the appropriate task-specific prompt based on the
current task. The task-specific prompt was later introduced in the decoder to im-
prove task-specific processing, allowing a single decoder and segmentation head to
predict various targets under their corresponding ground truths. The algorithm was
pre-trained on 11 upstream datasets containing 3,237 volumetric scans from three
modalities (CT, MR, and PET) with targets covering eight organs and fine-tuned
on two downstream datasets.

Similarly, another hybrid approach, Hermes, a context-prior learning framework
aimed at universal medical image segmentation, inspired by radiology residency
programs, was proposed in [60]. The framework sought to develop foundational
models for medical image segmentation that could be fine-tuned to downstream
tasks by leveraging the diversity and commonalities across various clinical targets,
body regions, and imaging modalities. Hermes addressed the challenges related
to data heterogeneity and annotation inconsistencies through a universal approach
that performed multiple tasks within a single model. The framework consisted of five
main components: (i) an oracle-guided context-prior learning that explicitly learned
context-prior knowledge alongside the segmentation backbone using diverse medical
imaging datasets, (ii) a task context prior that treated each task as a binary segmen-
tation task, enabling flexibility in handling diverse datasets, incomplete annotations,
and conflicting class definitions, (iii) a modality context prior that adapted to the
unique characteristics of medical images sourced from multiple modalities, (iv) a
conditioned segmentation that used a prior fusion module to merge context-prior
tokens with image features through attention mechanisms within CNN and Trans-
former architectures, employing bi-directional cross-attention, and (v) the hierar-
chical modeling that enhanced segmentation performance by integrating multi-scale
contextual prior knowledge from posterior prototypes at various scales. Hermes was
evaluated on 2,438 3D images from eleven diverse datasets across five modalities
(CT, PET, T1, T2, and cine MRI) covering multiple body regions for both standard
and pre-trained fine-tuning models.

Similar to foundation models, fine-tuning medical image segmentation models
has shown significant progress in advancing segmentation tasks. However, it often
demands substantial computational resources that are typically inaccessible to many
researchers. A notable limitation of these approaches is the absence of strategies
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to dynamically reduce the image resolution during training, which could effectively
lower space complexity and enhance computational efficiency.

Reference Year Approach Organ Modalities Dimensions Metrics

[179] 2016 CNN Multiple Multiple 2D AUC

[190] 2018 CNN Brain MRI 2D DS

AH-Net [115] 2018 CNN Multiple X-Ray/CT 3D DS

Med3D [36] 2019 CNN Multiple MRI/CT 3D DS

[5] 2020 CNN Multiple X-Ray 2D DS

BigAug [211] 2020 ViT Multiple MRI/US 2D/3D DS

Models Genesis [222] 2021 CNN CT Multiple 3D AUC

MultiTalent [184] 2023 CNN Multiple CT 3D DS/HD

UniSeg [207] 2023 CNN/ViT Multiple CT/MR/PET 3D DS

Hermes [60] 2024 CNN/ViT Multiple CT/MR/PET 3D DS

DAFT [150] 2024 ViT Multiple MRI/CT 3D DS

LiteMedSAM [116] 2024 ViT Multiple Multiple 2D/3D DS

Table 2.6: A summary of previous work on fine-tuning models in medical image
segmentation, listed in order of year of publication, including the references, year,
method, organ, image dimensions, and evaluation metrics: Area under the curve
(AUC), Dice Score (DS), Hausdorff distance (HD), Accuracy and Intersection over
Union (IoU).
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2.8 Publicly Available Multi-Source Datasets for

Medical Image Segmentation

Figure 2.3: An illustration showcasing the significant variability across datasets from
various organs and sources.

One of the main challenges in deep learning for medical imaging is the limited
availability of large annotated datasets. This is due to strict privacy regulations sur-
rounding medical data, as well as the labor-intensive and time-consuming nature of
annotating such datasets. However, numerous small annotated datasets from diverse
sources spanning various imaging modalities, organs, and disease types are publicly
available. An illustration showcasing the significant variability across datasets from
various organs and sources is shown in Figure 2.3. Some researchers have created
larger public datasets by combining data from these sources, and some of these will
be briefly discussed in this section.
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The 3DSeg-8 dataset [36] is composed of eight public medical datasets, covering
various organs and tissues, with either CT or MR scans. To expand the dataset,
three data augmentation techniques were applied: translation, rotation, and scaling.

The Multi-Modality Whole Heart Segmentation (MM-WHS) challenge dataset,
introduced in [225], consists of 120 multi-modality whole heart images collected from
various clinical sites. The dataset includes 60 cardiac CT and 60 cardiac MRI scans,
all captured in real clinical environments. The images encompass the entire heart,
extending from the upper abdomen to the aortic arch. The cardiac CT data were
acquired using two CT scanners (Philips Medical Systems, Netherlands) following a
standard coronary CT angiography protocol at two sites in Shanghai, China. The
cardiac MRI scans were obtained from two hospitals in London, UK: St. Thomas
Hospital using a 1.5T Philips scanner (Philips Healthcare, Best, The Netherlands)
and Royal Brompton Hospital using a Siemens Magnetom Avanto 1.5T scanner
(Siemens Medical Systems, Erlangen, Germany).

The whole-body FDG-PET/CT dataset with manually annotated tumor lesions,
introduced in [63], consists of 1,014 publicly available studies collected between 2014
and 2018 as part of a prospective registry study. These studies involve 900 patients,
with 501 cases featuring malignant lymphoma, melanoma, or non-small cell lung can-
cer (NSCLC), and 513 studies serving as negative controls, without PET-positive
malignant lesions. The dataset was acquired using a Biograph mCT PET/CT scan-
ner (Siemens, Healthcare GmbH, Erlangen, Germany) at the University Hospital
Tübingen in Germany, and annotations were provided by a radiologist and nuclear
medicine specialist in a clinical setting.

The Head and Neck Tumor Segmentation (HECKTOR) dataset, described in [7],
is a multi-center resource comprising of 883 3D PET and CT volumes. These im-
ages were collected from 9 medical centers across 4 countries (Canada, Switzerland,
France, and the USA) using 16 different imaging devices. The dataset includes an-
notations for three segments: background (value 0), primary Gross Tumor Volumes
(GTVp) (value 1), and nodal Gross Tumor Volumes (GTVn) (value 2), with lymph
nodes grouped under the same label. Additionally, the dataset contains patient
information such as age, gender, weight, tobacco and alcohol consumption, perfor-
mance status, HPV status, and details about treatments, including radiotherapy,
chemotherapy, and/or surgery.

The CTSpine1K dataset, introduced in [111], is curated from four open-source
datasets, comprising a total of 1,005 CT volumes (over 500,000 labeled slices and
more than 11,000 vertebrae) with diverse appearance variations. It includes 33
anatomical categories spanning 7 partially-labeled datasets with approximately 2,800
volumes. These 33 anatomies cover 3 pelvic bones, 5 abdominal organs, and 25 ver-
tebrae. The four datasets are:
1) COLONOG [92]: Consists of 825 CT scans collected from 15 medical sites world-
wide between February 2005 and December 2006.
2) HNSCC-3DCT-RT [15]: A subset of 31 head-and-neck squamous cell carcinoma
(HNSCC) patients with 3D CT scans taken pre-, mid-, and post-treatment, acquired
using a Siemens 16-slice CT scanner under standard clinical protocols. 3)Medical
Segmentation Decathlon (MSD) [8]: Contains ten distinct datasets.
4) COVID-19: Includes 40 chest CT scans from 632 COVID-19 patients. The im-
ages were acquired during an outbreak, with RT-PCR confirmation for SARS-CoV-2
infections.
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The AMOS dataset, a large-scale abdominal multi-organ benchmark for versatile
medical image segmentation, is introduced in [89]. It comprises 500 CT and 100 MRI
scans collected from multiple centers, vendors, modalities, and phases, featuring
patients diagnosed with abdominal tumors or abnormalities at Longgang District
People’s Hospital and Longgang District. Each scan includes voxel-level annotations
for 15 abdominal organs: spleen, right kidney, left kidney, gallbladder, esophagus,
liver, stomach, aorta, inferior vena cava, pancreas, right adrenal gland, left adrenal
gland, duodenum, bladder, and prostate/uterus.

SA-Med2D-20M, introduced in [206], is a large-scale dataset compiled from 140
public and private datasets across 10 medical centers. It includes 10 imaging modal-
ities, 4 anatomical structures and lesion types, and covers 31 major human organs.
In total, the dataset comprises 4.6 million 2D medical images and 19.7 million corre-
sponding masks with 219 labels, spanning nearly the entire body and demonstrating
extensive diversity. 3D volumes were sliced into 2D images, further expanding the
dataset size.

The Medical Segmentation Decathlon (MSD) dataset [8] is a publicly available
collection comprising ten distinct datasets, with a total of 2,633 images represent-
ing various anatomies and modalities from institutions worldwide. Each image is
annotated with one to three regions of interest (ROIs), covering a total of 17 target
areas. The datasets are individually annotated and include the following:
1) Brain: This dataset includes 750 multiparametric MRI scans from patients with
glioblastoma or lower-grade glioma. The imaging sequences are native T1-weighted
(T1), post-Gadolinium T1-weighted (T1-Gd), native T2-weighted (T2), and T2
Fluid-Attenuated Inversion Recovery (FLAIR). The target ROIs are the tumor sub-
regions: edema, enhancing tumor, and non-enhancing tumor. The data overlaps
with the 2016 and 2017 Brain Tumor Segmentation (BraTS) challenges [132], [13],
[14].
2) Heart: This dataset comprises 30 mono-modal MRI scans of the entire heart
taken during a single cardiac phase, using free breathing with respiratory and ECG
gating. The target ROI is the left atrium. This data was part of the 2013 Left Atrial
Segmentation Challenge (LASC) [181].
3) Hippocampus: This dataset contains 195 MRI images from 90 healthy adults
and 105 adults with non-affective psychotic disorders. The images are T1-weighted
MPRAGE scans, with the target ROIs being the anterior and posterior hippocam-
pus, including the hippocampus proper and parts of the subiculum. The data was
acquired at Vanderbilt University Medical Center, Nashville, US.
4) Liver: This dataset consists of 201 contrast-enhanced CT images from patients
with primary liver cancers and metastatic liver disease due to colorectal, breast, or
lung cancers. The target ROIs include the liver and tumors within it. The data
was obtained at IRCAD Hôpitaux Universitaires, Strasbourg, France, and includes
a subset from the 2017 Liver Tumor Segmentation (LiTS) challenge [19].
5) Lung: This dataset includes preoperative thin-section CT scans from 96 patients
with non-small cell lung cancer. The target ROI is the tumors within the lung. The
data was sourced from the Cancer Imaging Archive https://www.cancerimagingarchive.
net/.
6) Prostate: This dataset comprises 48 prostate multiparametric MRI (mp-MRI)
studies, including T2-weighted, Diffusion-weighted, and T1-weighted contrast-enhanced
series. The target ROIs are the prostate peripheral zone (PZ) and transition zone
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Figure 2.4: The Medical Segmentation Decathlon (MSD) dataset [8] provides a com-
prehensive collection of different target regions, imaging modalities, and challenging
characteristics. It is divided into seven known tasks (in blue, representing the de-
velopment phase: brain, heart, hippocampus, liver, lung, pancreas, prostate) and
three mystery tasks (in gray, representing the mystery phase: colon, hepatic vessels,
spleen). The dataset includes MRI (magnetic resonance imaging), mp-MRI (mul-
tiparametric MRI), and CT (computed tomography) scans. The image is sourced
from [8].

(TZ). The data was acquired at Radboud University Medical Center, Nijmegen,
Netherlands.
7) Pancreas: This dataset contains 420 portal-venous phase CT scans of patients
undergoing pancreatic mass resections. The target ROIs include the pancreatic
parenchyma and pancreatic masses (cysts or tumors). The data was collected at
Memorial Sloan Kettering Cancer Center, New York, US. 8) Colon: This dataset
includes 190 portal-venous phase CT scans of patients undergoing resection of pri-
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mary colon cancer. The target ROI is the primary colon cancer lesions. The data
was acquired at Memorial Sloan Kettering Cancer Center, New York, US.
9) Hepatic Vessels: This dataset consists of 443 portal-venous phase CT scans from
patients with various primary and metastatic liver tumors. The target ROIs are the
hepatic vessels and tumors within the liver. The data was sourced from Memorial
Sloan Kettering Cancer Center, New York, US.
10) Spleen: This dataset includes 61 portal-venous phase CT scans from patients
undergoing chemotherapy for liver metastases. The target ROI is the spleen. The
data was acquired at Memorial Sloan Kettering Cancer Center, New York, US.
A summary of the Medical Segmentation Decathlon (MSD) dataset is shown in
figure 2.4.

Reference Year Organ Modality Dimension Device Centre

3DSeg-8 [36] 2019 Multiple Multiple 3D Multiple Multiple

MM-WHS [225] 2019 Heart CT/MRI 3D Multiple Multiple

HECKTOR [7] 2021 Head/Neck PET/CT 3D Multiple Multiple

FDG-PET/CT [63] 2022 Whole body PET/CT 3D Single Single

CTSpine1K [111] 2022 Multiple CT 3D Multiple Multiple

AMOS [89] 2022 Multiple CT/MRI 3D Multiple Multiple

MSD [8] 2022 Multiple Multiple 3D Multiple Multiple

SA-Med2D-20M [206] 2023 Multiple Multiple 2D Multiple Multiple

Table 2.7: A summary table of publicly available large datasets from diverse sources,
listed in order of publication year. It includes information such as references, year,
target organ, imaging modality, image dimensions, number of vendor devices, and
the number of data collection centers.
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Reference Code

PaNN [221] https://github.com/DLTK/DLTK

3D U2-Net [76] https://github.com/huangmozhilv/u2net_torch/

Med3D [36] https://github.com/Tencent/MedicalNet

AsynDGAN [28] https://github.com/tommy-qichang/AsynDGAN

PIPO-FAN [55] https://github.com/DIAL-RPI/PIPO-FAN

[52] https://github.com/carrenD/ummkd

[105] https://nv-tlabs.github.io/fed-sim/

MS-Net [113] https://github.com/liuquande/MS-Net

TransUNet [34] https://github.com/Beckschen/TransUNet

MedLAM [102] https://github.com/LWHYC/RPR-Loc

SegFormer3D [149] https://github.com/OSUPCVLab/SegFormer3D

DANN [218] https://github.com/xingchenzhao/MixDANN

DoDNet [209] https://git.io/DoDNet

Omni-Seg [44] https://github.com/ddrrnn123/Omni-Seg

Swin UNETR[66] https://monai.io/research/swin-unetr

CoTr[199] https://github.com/YtongXie/CoTr

FedDG [112] https://github.com/liuquande/FedDG-ELCFS

FedMix [193] https://github.com/Jwicaksana/FedMix

UNETR [67] https://github.com/Project-MONAI/research-contributions

MedFormer [61] https://github.com/yhygao/CBIM-Medical-Image-Segmentation

DCAC [75] https://github.com/ShishuaiHu/DCAC/

CLIP-Driven [110] https://github.com/ljwztc/CLIP-Driven-Universal-Model

MDViT [53] https://github.com/siyi-wind/MDViT

MultiTalent [184] https://github.com/MIC-DKFZ/MultiTalent

UniSeg [207] https://github.com/yeerwen/UniSeg

[144] https://github.com/JayParanjape/biastuning

Hermes [60] https://github.com/yhygao/universal-medical-image-segmentation

[17] https://github.com/BiQiWHU/DFQ

One-Prompt [195] https://github.com/MedicineToken/one-prompt

Models Gen. [222] https://github.com/MrGiovanni/ModelsGenesis

FedSM [201] https://github.com/NVIDIA/NVFlare/examples/FedSM

MA-SAM [31] https://github.com/cchen-cc/MA-SAM

MedLSAM [103] https://github.com/openmedlab/MedLSAM

Med-SA [196] https://github.com/MedicineToken/Medical-SAM-Adapter

SAMAug [215] https://github.com/yizhezhang2000/SAMAug

[124] https://github.com/MatthisManthe/radiomics_CFFL

SSM-SAM [104] https://github.com/DragonDescentZerotsu/SSM-SAM

MedSAM [122] https://github.com/bowang-lab/MedSAM

ESP-MedSAM [202] https://github.com/xq141839/ESP-MedSAM

[214] https://github.com/YichiZhang98/SAM4MIS

[170] https://github.com/Chuyun-Shen/SAM_2_Medical_3D

Table 2.8: A summary table of authors who have made their code publicly available,
along with their corresponding GitHub links, is provided.
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2.9 Summary

In this section, we provided a brief overview of key approaches reflecting recent
advancements in medical image segmentation from diverse data sources for medi-
cal image analysis. These approaches are categorized into specific designed mod-
els, universal model approaches, domain adaptation techniques, federated learning,
foundation models, and fine-tuning methods. The reviewed literature highlights sig-
nificant progress in disease diagnosis, segmentation, and generalization using deep
learning methods, with notable commonalities across different domains. However,
there remain gaps within each category, which will be summarized as follows:
1) Specific designed models: This section provided brief overview of models tai-
lored or designed for a specific task. The approaches were categorized based on
the architectural backbone employed: CNN, U-Net, ViT, or a combination of these.
One notable limitation of this approach their task-specific nature. They will perform
well on a particular task, organ, or disease type but may struggle or perform poorly
when applied to other tasks or problem.
2) Universal Model: This section provided a brief overview of recent key ap-
proaches aimed at enhancing model generalizability by increasing the diversity of
training data through the integration of data from multiple diverse sources to develop
a single universal model. The approaches were categorized based on the backbone
architecture: convolutional neural network (CNN), vision transformer (ViT), or a
hybrid combination of both. Notable limitations of this approach include the size of
the training datasets and the imbalance in dataset sizes and modalities. As demon-
strated in [51], both CNNs and ViTs require a substantial amount of training data.
Additionally, since most datasets are sourced online and collected from various med-
ical centers, there is significant variability in their sizes, resulting in imbalances in
both dataset size and modalities.
3) Domain Adaptation: This section provided a brief overview of key medical
image segmentation techniques that have incorporated domain adaptation (DA)
strategies to address the domain shift problem when training on data from multiple
sources and applied the model to unseen data. The approaches were categorized
based on the training label datasets: supervised learning and semi-supervised learn-
ing. One notable limitation of this approach is the lack of an effective mechanism
to prevent the transfer of negative knowledge. Information that is beneficial in one
domain but detrimental in another, which can ultimately lead to a decline in the
model’s overall performance.
4) Federated learning: This section provided an overview of key approaches ad-
dressing domain shift in federated learning for medical image segmentation, en-
abling distributed medical institutions to collaboratively train a shared model while
preserving data privacy. The approaches were categorized based on the training
methodology: generative adversarial networks (GANs) and non-GANs based. One
notable limitation of this approach is that many of the methods are based on complex
frameworks that combine multiple algorithms, making them challenging to adapt for
specific use cases.
5) Foundation models: This section provides a brief overview of key founda-
tion models, which are large-scale, pre-trained models that serve as a base for a
wide range of downstream tasks in medical image segmentation categorized base on
the backbone: Segment Anything Model (SAM) and non SAM. These models are
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trained on massive datasets, enabling them to learn general data representations
and adapt to various tasks. However, this approach has several notable limitations:
(i) Foundation models often require substantial computational resources, which are
typically inaccessible to many researchers, (ii) many approaches lack strategies to
dynamically reduce image resolution during training, which could decrease space
complexity and improve computational efficiency, and (iii) most models are trained
on natural images or limited medical image datasets, resulting in poor generalization
to downstream medical imaging tasks.
6) Fine-tuning models: Fine-tuning is a widely used strategy to improve the gen-
eralization of deep learning models, particularly when adapting a pre-trained model
to specific tasks or datasets in medical image segmentation. This section provides a
brief review of key fine-tuning approaches used to enhance medical image segmen-
tation, organized by their architectural backbone: Convolutional Neural Networks
(CNNs), Vision Transformers (ViTs), and hybrid combinations of both. Similar
to foundation models, fine-tuning approaches for medical image segmentation have
notable limitations, including: (i) they often require substantial computational re-
sources, which are typically inaccessible to many researchers, and (ii) the lack of
strategies to dynamically reduce image resolution during training, which could lower
space complexity and improve computational efficiency. A table summarising the
approaches, gaps and limitations is provided in Table 2.9 provides a summary of the
approaches, gaps, and limitations.

Also, we have provided a summary of large benchmark medical image datasets
from diverse sources and links of GitHub repositories of researchers who have made
their code public.

In the next three chapters, we will explore potential solutions to enhance the
detection, segmentation, and generalizability of diseases in medical images across di-
verse data sources. Chapter 3 introduces a novel algorithm, nnUNet RASPP, which
integrates an Atrous Spatial Pyramid Pooling (ASPP) block to capture global con-
textual information and residual connections to address overfitting into the nnU-Net
framework for retinal disease segmentation. While Chapter 4, extends this concept
by incorporating into the baseline backbone three key innovations leading to the de-
velopment of a novel algorithm: Deep ResUNet++. Finally, Chapter 5, introduces
two novel algorithms: (i) MMIS-Net (MultiModal Medical Image Segmentation
Network): a transfer learning approach designed for medical image segmentation
across diverse data sources, modalities, organs, and disease types, and (ii) CVD Net
(Convolutional Neural Network and Vision Transformer with Domain-Specific Batch
Normalization): a hybrid combination of Convolutional Neural Networks for feature
extraction, and Vision Transformers to capture long-range dependencies, while in-
corporating domain-specific adapters to extract domain specific information and
address the challenge of negative knowledge transfer.
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Approaches Gaps Limitations

Specific
Designed Models

Models tailored for specific
tasks, categorized based on
architectural backbone: CNN,
U-Net, ViT, or combinations.

Task-specific nature models
perform well for particular tasks,
organs, or diseases but may
struggle with other applications.

Universal Model Enhances generalizability by
integrating diverse training data
from multiple sources.
Categorized based on backbone:
CNN, ViT, or hybrid.

Imbalances in dataset sizes and
modalities due to sourcing from
multiple medical centers [51]. It
also, requires substantial training
data,

Domain
Adaptation

Incorporates domain adaptation
(DA) strategies to mitigate do-
main shift issues in medical image
segmentation. Categorized based
on training labels: supervised and
semi-supervised learning.

Lack of an effective mechanism
to prevent negative knowledge
transfer, which can degrade the
model’s performance.

Federated
Learning

Addresses domain shift in
federated learning, allowing
distributed institutions to
collaboratively train models while
preserving privacy. Categorized
based on methodology:
GAN-based and non-GAN-based.

Complex frameworks combining
multiple algorithms, making
adaptation for specific use cases
challenging.

Foundation Models Large-scale, pre-trained models
serving as a base for diverse
downstream tasks. Categorized
based on backbone: SAM-based
and non-SAM-based models.

(i) Requires substantial
computational resources.
(ii) Lacks dynamic resolution
reduction strategies for training
efficiency.
(iii) Often trained on natural
images or limited medical
datasets, leading to poor
generalization.

Fine-tuning
Models

Fine-tuning improves model
generalization by adapting
pre-trained models to specific
medical segmentation tasks.
Categorized based on backbone:
CNN, ViT, and hybrid models.

(i) Requires substantial
computational resources.
(ii) Lacks strategies for dynamic
resolution reduction to improve
space complexity and efficiency.

Table 2.9: A comparative table summarizing the approaches, gaps, and limitations
discussed in this review.
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Chapter 3

Enhancing Retinal Disease
Detection, Segmentation, and
Generalization with an ASPP
Block and Residual Connections
Across Diverse Data Sources

Deep learning methods have been successful in the detection and diagnosis of dis-
eases in medical images. However, most of these methods are trained and tested
on data from the same sources, resulting in poor generalization performance when
applied to new, unseen data sources, as is often required in real-world scenarios.
One major cause of the lack of generalization is the high variability in the quality
of the images, stemming from diverse sources collected using different manufacturer
devices or scanners, following varying protocols, and by experts with varying levels
of expertise. One way to circumvent this challenge is to build a single, generalizable
model by combining data from multiple sources. In this chapter, we modified the
nnU-Net [84] architecture by integrating an Atrous Spatial Pyramid Pooling (ASPP)
block [35] to : (i) effectively capture structures of varying sizes within the images,
(ii) adapt more effectively to different dataset characteristics, such as variations in
resolution and noise, (iii) capture both local and global context, and (iv) reduce the
model’s over-reliance on features from any single scale. Adding residual connections
to address overfitting, proposing an enhanced variant termed nnUNet RASPP (nnU-
Net with Residual and Atrous Spatial Pyramid Pooling). Additionally, we conducted
a performance evaluation of the top teams in the RETOUCH challenge, highlighting
the different architectures employed. Assessing the advantages of nnUNet RASPP
over the original nn-UNet, the algorithms were validated on the MICCAI 2017 RE-
TOUCH challenge dataset, which includes data from three device vendors across
three medical centers, focusing on patients with two types of retinal diseases. Ex-
perimental results on the hidden test set show that the proposed nnUNet RASPP
outperformed the baseline nnU-Net, current state-of-the-art algorithms, and large
foundation models for medical imaging by a significant margin. It achieved a mean
Dice Score (DS) of 0.823 across the three retinal fluids, with scores of 0.84, 0.80, and
0.83 for intraretinal fluid (IRF), subretinal fluid (SRF), and pigment epithelium de-
tachment (PED), respectively. Additionally, we achieved a perfect Area Under the
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Curve (AUC) score of 1 for detecting the presence of fluid in all three fluid classes.
Furthermore, we currently hold the top rank on the MICCAI 2017 RETOUCH
challenge online leaderboard: https://retouch.grand-challenge.org/Results/,
with the best overall performance for both online and offline evaluations.

The work presented in this chapter is published in [138], and [136]. These
manuscripts are lead-authored by the author of this thesis, who made substantial
contributions to the conception, data collection, processing, and writing, as well as
sole contributions to the implementation and result analysis.

3.1 Introduction

Figure 3.1: An illustration of typical image variability across three manufacturers:
Cirrus, Spectralis, and Topcon, showing both a normal retina and a retina with
macular edema.

A recent study [106] indicates a rise in retinal diseases, including Age-related
Macular Degeneration (AMD) and Diabetic Macular Edema (DME), in Europe,
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with over 34 million people affected by AMD and 4 million by DME. AMD is most
common among individuals aged 50 and above, with early stages being asymp-
tomatic and progressing slowly to more severe stages. DME, characterized by reti-
nal thickening due to intraretinal fluid accumulation in the macula, is prevalent
among diabetic patients. Retinal Optical Coherence Tomography (OCT), a nonin-
vasive imaging technique, provides cross-sectional scans of the eye with qualitative
3D visualization of the retinal anatomy, aiding in the study of retinal structure and
the detection of diseases. OCT is the primary imaging tool for retinal analysis and
detecting diseases due to its high 3D quality. However, OCT images often suffer
from motion artifacts, which lower the signal-to-noise ratio (SNR) due to speckle
noise. Also, there is a trade-off between SNR and spatial resolution thus some man-
ufacturers acquire multiple B-scans at the same anatomical location to reduce noise
on the expense of producing fewer B-scans. To address this issue, device manufac-
turers must balance high SNR, image resolution, and scanning time, resulting in
varying image quality across different vendors. An illustration demonstrating the
high variability in image quality is shown in Figure 3.1.

To develop a high-performance automated model that generalizes well across im-
ages from various devices, we employ the nnU-Net framework [84] and an enhanced
version called nnUNet RASPP. Our main contributions are as follows:
1) We enhanced the nnU-Net architecture by integrating an Atrous Spatial Pyramid
Pooling (ASPP) block to: (i) effectively capture structures of varying sizes within
the images, (ii) adapt more effectively to different dataset characteristics, such as
variations in resolution and noise, (iii) capture both local and global context, and
(iv) reduce the model’s over-reliance on features from any single scale. Also, we
added residual blocks to address overfitting, thereby improving the model’s gener-
alization performance. These enhancements address the challenges of high image
variability associated with diverse, multi-source datasets, such as that of the Re-
touch challenge. As a result, nnUNet RASPP demonstrates improved robustness
and a greater ability to generalize across datasets with varying anatomical struc-
tures and image quality.
2) We conducted a performance evaluation of the top teams in the RETOUCH
challenge, highlighting the different architectures employed.

The remainder of this chapter is organized as follows: Section 3.2 introduces the
proposed nnUNet RASPP and highlights its differences from the standard nnU-Net.
Section 3.3 provides a brief overview of the leading methods in the RETOUCH
Grand Challenge. The dataset, experimental results, comparisons, and visualiza-
tions are presented in Section 3.4. Finally, the summary is presented in Section
3.5.
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3.2 Methods

In this section, we introduce the nnU-Net and our proposed enhanced variant,
nnUNet RASPP. We explain the modifications made, how they differ from the stan-
dard nnU-Net, and how these changes improve performance.

Figure 3.2: An illustration of the standard U-Net architecture used in nnU-Net.

3.2.1 U-Net

The U-Net is an end to end architecture for medical image segmentation. It consists
of 3 main parts: the encoder, the decoder and bottleneck between the encoder and
decoder. The encoder captures contextual information (or features extraction) and
reduces the size of the feature map by half after every convolutional block as we move
down the encoding path by implying strided convolutions. Pixels localisation is done
at the decoder through up-sampling. As we move up the decoder path the size of
the feature map is doubled after every convolutional block by implying transposed
convolutions, and for the reconstruction process features maps are concatenated
to the corresponding map in the encoder path using up-sampling operations. The
bottleneck serves as a bridge, linking the encoding and decoding paths together. It
consists of a convolutional block that ensures a smooth transition from the encoder
path to the decoder path. At the encoding path, decoding path and bridge layer
each convolutional block consists of a convolutional layer that converts the pixels of
the receptive field into a single value before passing it to the next operation followed
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by an instance normalisation to prevent over-fitting during training. This is followed
by a LeakyReLU activation function to diminish vanishing gradient. A high level
diagram to illustrate the architectural structure of the standard U-Net is shown in
Figure 3.2.

3.2.2 nnU-Net and nnUNet RASPP

Figure 3.3: A high level illustration of nnUNet RASPP architecture with B, a resid-
ual connection block [68] to address the vanishing gradient problem where X is an
input and F(X) is a function of X, and C, an ASPP block [35] of multiple parallel
filters at different dilating rates or frequencies to capture global information.

The nnU-Net [84] is a self-configuring and automatic pipeline for medical image
segmentation with the ability to automatically determine and choose the best model
hyper-parameters given the data and the hardware availability, thus alleviating the
problem of trial and error of manual parameters setting. Given a training data the
framework extracts the data-fingerprint such as modality, shape, and spacing and
base on the hardware (GPU memory) constraints the network topology, image re-
sampling methods, and input-image patch sizes are determined. After training is
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complete, the framework determines if post-processing is needed. The framework
uses the standard U-Net as the network’s architecture.
Inspired by the success of nnU-Net [84] we have introduced an enhanced architecture
nnUNet RASPP by incorporating an ASPP block [35] and residual connections in
the network’s architecture to solve the problem of data source variation.
1) ASPP: It is a technique used to extract or capture global contextual features by
applying parallel filters with different dilation rates to a given input filter. Incor-
porating, ASPP enables the nnUNet RASPP to: (i) effectively capture structures
of varying sizes within the images, (ii) adapt more effectively to different dataset
characteristics, such as variations in resolution and noise, (iii) capture both local
and global context, and (iv) reduce the model’s over-reliance on features from any
single scale. These improvements address the challenges of high image variabil-
ity associated with diverse datasets such a the Retouch dataset, thereby enhancing
nnUNet RASPP’s overall robustness and ability to generalize across diverse datasets
with varying anatomical structures and image quality. Within the nnUNet RASPP,
the ASPP block was incorporated at the input layer of the encoding path. Given the
high variability of fluid classes, where the three fluid types exhibit no fixed locations
or shapes, placing the ASPP block at the input layer is essential. This strategic
positioning enables the model to capture global contextual features early in the pro-
cess, before downsampling, thereby enhancing its ability to generalize across diverse
and unpredictable fluid patterns. The diagram of the ASPP block is demonstrated
in Figure 3.3.C.
2) Residual Connections: It is a technique used to address the problem of vanish-
ing gradients. The U-Net architecture employs the chain rule for backpropagation
during training, which can sometimes result in vanishing gradients. One way to
mitigate this issue is by introducing residual connections into the network’s archi-
tecture. These connections help reduce the training error rate as the network’s
depth increases. The nnU-Net automatically determines the optimal depth of the
network, and incorporating residual connections further decreases the training error
rate, enabling the network to learn complex features and enhancing overall perfor-
mance. Residual connections were integrated into every convolutional layer along
both the encoding and decoding paths to lower the training error rate, facilitate the
learning of complex features, and combat the problems of vanishing gradients and
overfitting. The diagram of residual connection is demonstrated in Figure 3.3.B.
Incorporating these techniques into the standard nnUNet improves the overall per-
formance of the network. The diagram of nnUNet RASPP is demonstrated in Figure
3.3.A.
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3.3 RETOUCH Grand Challenge Overview

The RETOUCH grand challenge [21] is a competition focused on the segmentation
and detection of three retinal fluids from retinal OCT images. The training dataset
comprises of 70 raw images with corresponding masks, while the testing dataset
includes 40 raw images without their corresponding masks. To ensure fairness in
comparison, the organizers employed a blinded evaluation by retaining the masks or
ground truth of the testing dataset, and participants can submit their predictions
via email for evaluation. In adherence to competition requirements, each submission
must be accompanied by a written paper explaining the methods employed. The
results of the submission are communicated to the teams via email and are also
published on the organizer’s website alongside the accompanying papers. The RE-
TOUCH challenge, initially organized in conjunction with MICCAI 2017 in Quebec,
Canada, featured the participation of eight teams. Subsequently, the competition
transitioned to an online format, and it remains ongoing, continuing to accept sub-
missions [156].
In this section we will provide a brief overview of other methods that are in the
leading positions from the RETOUCH competition.

3.3.1 SAMedOCT

The SAMedOCT [56] is inspired and adpated from the Segment Anything Model
(SAM) [97]. It is a foundation model for image segmentation developed by re-
searchers at Meta. SAM gained prominence for its ability to enable zero-shot trans-
fer to various segmentation tasks, having been trained on over 1 billion masks from
11 million diverse images. Due to its extensive training dataset, SAM demonstrates
the capability to generalize to new tasks beyond those encountered during training.
SAM comprises of three main components: (i) An Image Encoder built from the
Vision Transformer (ViT) [51], which preprocesses high-resolution inputs and runs
once per image. (ii) A Prompt Encoder embedding dense prompts (i.e., masks) us-
ing convolutions, which are then summed element-wise with the image embedding.
(iii) Mask Decoder that efficiently maps the image embedding, prompt embeddings,
and an output token to a mask. Focal and dice loss are employed during training.
SAMed, a variant of SAM adapted for medical segmentation, is introduced in [210].
SAMed is derived from SAM by freezing the image encoder and adopting a low-rank-
based fine-tuning strategy (LoRA) [73]. This strategy approximates the low-rank
update of the parameters in the image encoder and fine-tunes the lightweight prompt
encoder and the mask decoder of SAM. SAMed was evaluated on the Synapse multi-
organ segmentation dataset, achieving remarkable results. Building on the success
of SAMed, SAMedOCT was adapted from SAMed to address the challenges posed
by the RETOUCH grand challenge.

3.3.2 IAUNet SPP CL

IAUNet SPP CL, a combination of a graph-theoretic method, a fully convolutional
neural network (FCN), and curvature regularization loss function is presented in
[200]. The graph-theoretic method is employed in the preprocessing stage to de-
lineate layers and regions of interest (ROI), while the FCN is utilized for fluid seg-
mentation, employing the standard attention UNet as the backbone. The authors
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enhanced the architecture by introducing spatial pyramid pooling (SPP) modules
with four pooling maps at different scales in parallel, concatenating the original
input after bilinear interpolation to enhance the network’s capability to segment
multi-scale objects. The curvature regularization loss function is applied to smooth
boundaries and eliminate unnecessary holes within the predicted fluid lesions.

3.3.3 SFU

The SFU, a 3-part CNN-based and Random Forest (RF) framework is developed by
[118]. The first part of the framework is used for pre-processing of the images, the
second part consists of a 2D UNet architecture for the extraction of features and a
RF classifier to classify the pixels at the third part. At the segmentation layer, axial
motion between scans was corrected using cross-correlation by applying bounded
variation 3D smoothing. This correction aimed to reduce the effect of speckle while
preserving and enhancing the boundaries between retinal layers. To prevent overfit-
ting during training, a dropout layer was introduced before the 1 to 1 convolutional
layer. Additionally, to address data limitations, data augmentation techniques such
as flipping, rotation, and zooming were applied during preprocessing.

3.3.4 UMN

The UMN, a combination of CNN and graph-shortest path (GSP) method is pre-
sented in [152]. The CNN is used for the segmentation of region of interest (ROI)
and the GSP is further used for the segmentation of the layers and fluid from the
ROI. B-scans were extracted from the 3D volumes for training. At the segmentation
layer, the initial step involved segmenting the layers as ROI to efficiently detect the
presence of fluids. Extracting the ROI helped reduce training time, as training the
network on the entire image would be more time-consuming. The GSP was em-
ployed for pixel classification, mapping each pixel in the image to one node in the
graph. Only local relationships between pixels were considered, and an 8-regular
graph was constructed using the 8 neighbors of each pixel.

3.3.5 MABIC

The MABIC, a standard double-UNet architecture, is proposed in [93]. The method
utilizes two UNet architectures connected in series, where the output of the first
UNet serves as an input to the second UNet. The initial part takes raw images
as input to extract the ROI. Additionally, in this initial part, dropout and maxout
activation are applied at each layer to enhance accuracy and prevent overfitting.
The subsequent part takes the extracted ROI and the segmentation mask as input.
Importantly, there are no fully connected layers between encoding and decoding
layers in the latter part.
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3.3.6 RMIT

The RMIT, an approach using a combination of deep neural network and adversarial
loss function is presented in [180]. The authors adapted the architecture from the
standard UNet by incorporating a batch normalization layer in each block of con-
volutions. They introduced dropout at each skip connection to prevent overfitting
and incorporated an adversarial loss function to estimate the loss during training.

3.3.7 RetinAI

The RetinAI, introduced in [10], is a standard 2D UNet with residual connections.
The network was trained on B-scans. As part of the preprocessing, all the B-scans
were normalized to the same resolutions, and horizontal flip, shear, rotation, shift,
and Gaussian noise were applied for data augmentation. Categorical cross-entropy
was used as the loss function during training.

3.3.8 SVDNA

A noise adaptation approach based on singular value decomposition (SVDNA) [99] is
introduced as an unsupervised technique for noise transfer in the domain adaptation
of retinal OCT images. The pipeline comprises of two phases. In the first phase,
SVDNA is employed to generate masks, which are subsequently used to train a
supervised segmentation network in the second phase. The model’s performance
was evaluated online, achieving a mean DS of 0.71 on the hidden test dataset. The
authors didn’t publish the AVD scores.
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3.4 Experiments

3.4.1 Dataset

Figure 3.4: B-Scan examples of raw (column 1) and their corresponded annotated
mask (column 2) of OCT volumes taken from the 3 device vendors (rows): Cirrus,
Spectralis and Topcon. The classes are coloured as follows : Black for the back-
ground, blue for the Intraretinal Fluid (IRF), yelow for the Subretinal Fluid (SRF)
and red for the Pigment Epithelium Detachments (PED).

The methods were validated on the MICCAI 2017 RETOUCH grande challenge
dataset [21]. The dataset is publicly available and it consists of 112 OCT volumes of
patients suffering with early AMD and DME collected from 3 device manufacturers:
Cirrus, Spectralis and Topcon from 3 clinical centres : Medical University of Vienna
(MUV) in Austria, Erasmus University Medical Centre (ERASMUS) and Radboud
University Medical Centre (RUNMC) in the Netherlands. Examples of the dataset
are shown in Figure 3.4.

The dimensions of the OCT volumes per vendor machine are as follows : Each
volume of the Cirrus consists 128 B-Scans of 512×1024 pixels, Spectralis consists of
49 B-scans of 512× 496 pixels and 128 B-Scans of 512× 885 (T-2000) or 512× 650
(T-1000) pixels for Topcon.

The training set consists of 70 volumes of 24, 24, and 22 acquired with Cir-
rus, Spectralis, and Topcon, respectively. Both the raw and annotated mask of the
training set are made available to the public. The testing set consists of 42 OCT
volumes of 14 volumes per device vendor. The raw or input of the testing set is
available publicly but their corresponding annotated masks are held by the organiz-
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Figure 3.5: The three fluid types on an OCT slice (B-scan): Intraretinal Fluid (IRF)
in red, Subretinal Fluid (SRF) in blue, and Pigment Epithelium Detachment (PED)
in yellow. Volume rendering of different fluids inside the retina. Each subfigure
represents a different patient. Image taken from [21]

ers of the challenge. Submission and evaluation of prediction on the testing dataset
is arranged privately with the organizers and the results are sent to the participants.

Manual annotation was done by 6 grader experts from 2 medical centres : MUV
(4 graders supervised by an ophthalmology resident), and RUNMC (2 graders super-
vised by a retinal specialist). The dataset is annotated for 4 classes of 1 background
labelled as 0 and 3 fluids which are : Intraretinal Fluid (IRF) labelled as 1, Subretinal
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Fluid (SRF) labeled as 2 and Pigment Epithelium Detachments (PED) labelled as 3.
Intraretinal fluid (IRF) consists of contiguous fluid-filled spaces containing columns
of tissue. These spaces may appear as distinct hyporeflective cystoid pockets on
OCT, and are sometimes referred to as intraretinal cystoid fluid.
Subretinal fluid (SRF) is the accumulation of clear or lipid-rich exudate in the
subretinal space, located between the neurosensory retina and the underlying retinal
pigment epithelium (RPE).
Pigment Epithelial Detachment (PED) is specific to AMD and involves the de-
tachment of the retinal pigment epithelium (RPE), along with the overlying retina,
from the Bruch’s membrane due to fluid accumulation. PED can present as three
subtypes: serous, fibrovascular, or drusenoid, all of which are considered and anno-
tated as PED in the challenge.
A demonstration of these fluids are shown in Figure 3.5 and 3.4

The RETOUCH dataset is particularly interesting because of its high level of
variability. It was collected using multiple device vendors, the sizes and number of
B-Scans varies per device vendor, and it was collected and annotated in multiple
clinical centres. Also, for fair comparison the annotated testing set is held by the
organizers and submission is curbed to a maximum of 3 per participating team.

3.4.2 Training and Testing

Training was done on the 70 OCT volumes of the training set (both raw and mask
volumes). The estimated probabilities and predicted segmentation of the testing set
(42 raw volumes) were submitted to the challenge organizers for blinded evaluation
on the ground truth or masks. The shapes of the input images were the same as the
original image shape, as follows: 512×1024×128 for Cirrus, 512×496×49 for Spec-
tralis and 512×885×128 or 512×650×128 for Topcon. nnUNet RASPP leverages
nnU-Net [84] self-parameterizing preprocessing techniques. Given the datasets, it
extracts information such as modality, shape, and spacing (data fingerprint). Based
on hardware constraints (GPU memory), hyperparameters such as network topology,
image resampling methods, and input patch sizes are determined. During training,
other hyperparameters were fixed as follows: the learning rate was set to 0.01, with
a maximum of 1000 training epochs. The loss function was a combination of Cross
Entropy and Dice loss, optimized using ADAM. Data augmentation was done on
the fly, including random rotations, random scaling, random elastic deformations,
gamma correction, and mirroring. nnUNet RASPP was trained for 14 hours on an
NVIDIA RTX A5000 GPU workstation. The code was written in Python using the
PyTorch library.

Also, to further evaluate the robustness and generalisability of the methods, the
predicted segmentation of the algorithm was evaluated on OCT volumes from two
vendor devices and tested on the third. In this case OCT volumes from the third
vendor device weren’t seen during training. For this experiment, two sets of weights
were generated which are: (1) Training on 46 OCT volumes from both Spectralis (24
OCT volumes) and Topcon (22 OCT volumes) and evaluated on 14 OCT volumes
from the Cirrus testing set and (2) training on 48 OCT volumes from both Cirrus
(24 OCT volumes) and Spectralis (24 OCT volumes) and evaluated on 14 OCT
volumes from the Topcon testing set. Again the same environmental settings were
used to conduct all the experiments.
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In the detection task the estimated probabilities of presence of each fluid type
is plotted using the receiver operating characteristics (ROC) curve. The area under
the curve (AUC) which measures the ability of a binary classifier to distinguish
between classes is used as the evaluation matrice. The AUC gives a score between
0 and 1 with 1 being the perfect score and 0 is the worst.

For the segmentation task, two evaluation matrices are used to measure the
performance of the algorithms:

1. The Dice Score (DS) [26, 178, 134] which is twice the intersection, divided by
the union. It measures the overlapping of the pixels in the range from 0 to 1
with 1 being the perfect score and 0 being the worst.

2. The Absolute Volume Difference (AVD) [178] which is the absolute difference
between the predicted and the ground truth. The value ranges from 0 to 1
with 0 being the best result and 1 being the worst.

The equation to calculate the DS is shown on Eqn 3.1 and that for AVD in Eqn 3.2.
Where X is the raw input or raw image, Y is the ground truth, or mask, ∩ is the
intersection and || is the absolute value.

DS =
2|X ∩ Y |
|X|+ |Y |

(3.1)

AVD = |X| − |Y | (3.2)

We used the Friedman test, a non-parametric statistical test, to detect differences
in performance between the teams/algorithms evaluated on the segment classes.
We computed the Friedman test statistic to check for significant differences and
ranked the algorithms per segment class. The formula to calculate the Friedman
test statistic is provided in Eqn 3.3, that to compute the degrees of freedom in
Eqn 3.4 and that to compute the ranking in Eqn 3.5. A high-level interpretation of
the hypothesis is provided in 3.4.2.

Friedman Test Statistic:

We computed the Friedman test statistic as:

χ2
F =

12N

k(k + 1)

k∑
i=1

R2
i − 3N(k + 1) (3.3)

where: k =Number of algorithms, N =Number of segment classes, Ri =Average
rank of algorithm i.

Degrees of Freedom:

We computed the degrees of freedom as:

df = k − 1 (3.4)

where: df is the degrees of freedom, and k is the number of algorithms.
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Ranking Computation:

For each segment class j, we ranked the algorithms i based on performance. The
average rank for each algorithm across all classes is given by:

Ri =
1

N

N∑
j=1

rij (3.5)

where: Ri = Average rank of algorithm i, N = Number of segment classes, and
rij = Rank of algorithm i on segment class j.

Hypothesis Interpretation:

Null Hypothesis H0: This indicates there is no significant difference in the rank-
ings of the algorithms.
Alternative Hypothesis H1: This indicates that at least one algorithm performs
significantly differently.

If p < α (α = 0.05), we reject H0 and conclude that there is a significant
difference between the algorithms.

3.4.3 Results

In this section we report the performance for the detection task measured by the
Area Under the Curve (AUC), and the segmentation task measured by the Dice
Score (DS) and Absolute Volume Difference (AVD) for the nnUNet RASPP, and
baseline nnU-Net. We also compare our results to the current state-of-the-arts
(SOTA) architectures.

The segmentation performance grouped by segment classes per algorithm mea-
sured in DS is illustrated in Table 3.1 with the corresponding diagram in Figure 3.6,
and that measured in AVD is illustrated in Table 3.2 with corresponding diagram
in Figure 3.7.

We employed the Friedman test to assess the statistical significance of the algo-
rithms’ performance based on the combination of all three metrics: Dice Score (DS),
Average Volume Difference (AVD), and Area Under the Curve (AUC). The results,
including algorithm rankings and scores, are presented in Table 3.6.
According to the performance results, we noticed the following:

1. The nnUNet RASPP and nnU-Net outperform the current SOTA architectures
by a clear margin with a mean DS of 0.823 and 0.817 respectively. Also,
obtaining a mean AVD of 0.036 for nnU-Net and 0.041 for nnUNet RASPP.

2. Enhancing the nnU-Net improved the performance. The SRF class was the
most difficult to segment with nnUNet RASPP (the enhanced version of nnU-
Net) obtaining the best DS of 0.80 which is 2% higher than the standard nnU-
Net and and 5% higher than the best SOTA architecture. The nnUNet RASPP
also obtained the best SRF AVD of 0.016 compare to 0.017 of the baseline
nnU-Net or 0.026 of the best SOTA models.

3. The best mean AVD score of 0.032 is achieved by SAMedOCT.
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4. The nnU-Net and nnUNet RASPP possess the second and third-best mean
AVD scores, but they exhibit better IRF (0.019 and 0.021 compared to 0.042)
and SRF (0.017 and 0.016 compared to 0.020) AVD scores than SAMedOCT.

5. Apart from the IRF class, the nnUNet RASPP has the best DS in every single
class when compare to the other models/teams.

6. IAUNet SPP CL and nnUNet RASPP jointly achieve the second-best mean
AVD score of 0.036.

7. We observed that, overall, the CNN/DNN models exhibit slightly better per-
formance than the foundational model (SAMedOCT). We believe this is be-
cause SAMedOCT is constructed with ViT as a backbone, and ViTs are more
data-hungry than CNNs due to their ability to model long-range dependencies,
as explained in [51].

8. The Friedman test on the combination of all 3 metrics: Dice Score (DS),
Average Volume Difference (AVD), and Area Under the Curve (AUC) revealed
statistically significant differences between at least two algorithms, with a p-
values of 0.0099 and and a Friedman test statistic of 31.1602.

9. Based on the Friedman test rankings, nnU-Net was ranked first with the high-
est score, followed by nnU-Net RASPP.

A detail break down of the DS and AVD per vendor device trained on the entire 70
volumes and tested on the holding 42 cases of the testing set is shown in Table 3.4
with the corresponding diagrams in Figure 3.9. We noticed the following:

1. nnUNet RASPP outperformed the baseline nnU-Net and the state-of-the-arts
models in two (Cirrus and Spectralis) of the 3 devices in both DS and AVD.
The nnUNet RASPP model came in second place on the third device (Topcon)
with a marginal difference from the baseline model, nnU-Net.

2. The nnUNet RASPP and nnU-Net were the only two algorithms to maintain
constant high level performance and generalisability across all classes and data
sources in both DS and AVD. Both models constantly occupied the top 2 spots
in performance per segment classes and vendor devices.

The generalization performance, measured in DS and AVD, is presented in Ta-
ble 3.5 with its corresponding diagrams in Figure 3.11. It shows the results when
trained on 2 vendor devices from the training set and tested on the third device
from the holding testing set measured in DS and AVD. In this case because of the
constraint of the evaluation submission (curb to 3 maximum per team) of the pre-
dicted segmentation on the testing set, results for nnU-Net are unavailable. Here
we noticed that

1. nnUNet RASPP outperformed the current SOTA architecture scoring a mean
DS of 0.86 (10% higher than the second best) on the Cirrus device and 0.81
(6% higher than the second best) on the Topcon device.

2. nnUNet RASPP also obtained the best AVD scores, scoring a mean of 0.0114
and 0.0878 on the Cirrus and Topcon devices respectively.
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3. nnU-Net RASPP still maintained its high level of robustness and generalis-
ability with a consistently high level of performance measure in DS and AVD.

The RETOUCH online competition is still ongoing. At the time of writing, our
nnUNet RASPP is currently ranked first among 216 participants from both online
and offline submissions. Details of the competition, including the leaders table,
number of participants and other statistics, are availabe at: 1. Also, we have made
the source code of the implementation publicly available with free distribution under
the Apache-2.0 license at 2

The detection performance grouped by segment classes per algorithm measured
by the AUC is illustrated in Table 3.3 with the corresponding diagram in Figure
3.8. Here the nnU-Net obtained a perfect AUC score of 1 for all three fluid classes
and nnUNet RASPP obtained an AUC score of 0.93, 0.97, and 1.0 for the IRF, SRF,
and PED respectively.
The visualizations using orange arrows to highlight the fine details capture by
nnUNet RASPP when trained on two vendor devices from the training set and
tested on the third from the training set are illustrated in Figure 3.13, 3.14, and
Figure 3.15.

Methods IRF SRF PED Mean

nnUNet RASPP 0.84 0.80 0.83 0.823
nnU-Net 0.85 0.78 0.82 0.817
SFU 0.81 0.75 0.74 0.78
SAMedOCT [56] 0.77 0.76 0.82 0.78
IAUNet SPP CL [200] 0.79 0.74 0.77 0.77
UMN 0.69 0.70 0.77 0.72
MABIC 0.77 0.66 0.71 0.71
SVDNA [99] 0.80 0.61 0.72 0.71
RMIT 0.72 0.70 0.69 0.70
RetinAI 0.73 0.67 0.71 0.70
Helios 0.62 0.67 0.66 0.65
NJUST 0.56 0.53 0.64 0.58
UCF 0.49 0.54 0.63 0.55

Table 3.1: Segmentation table of the Dice Scores (DS) by segment classes (columns)
and teams (rows) for training on the entire 70 OCT volumes of the training set and
tested on the holding 42 OCT volumes from the testing set.

1https://retouch.grand-challenge.org/Results/
2https://github.com/ndipenoch/nnUNetRASPP.git
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Figure 3.6: Performance comparison of segmentation measure in DS of the proposed
methods: nnUnet RASPP and nnU-Net, together with the current-state-of-the arts
algorithms grouped by the segment classes when trained on the entire 70 OCT
volumes of the training set and tested on the holding 42 OCT volumes from the
testing set.

Methods IRF SRF PED Mean

SAMedOCT [56] 0.042 0.020 0.033 0.032
nnU-Net 0.019 0.017 0.074 0.036
IAUNet SPP CL [200] 0.021 0.026 0.061 0.036
nnUNet RASPP 0.023 0.016 0.083 0.041
SFU 0.030 0.038 0.139 0.069
UMN 0.091 0.029 0.114 0.078
MABIC 0.027 0.059 0.163 0.083
RMIT 0.040 0.072 0.182 0.098
RetinAI 0.077 0.041 0.237 0.118
Helios 0.051 0.055 0.288 0.132
NJUST 0.113 0.096 0.248 0.153
UCF 0.272 0.107 0.276 0.219

Table 3.2: Segmentation table of the Absolute Volume Difference (AVD) by segment
classes (columns) and teams (rows) for training on the entire 70 OCT volumes of
the training set and tested on the holding 42 OCT volumes from the testing set.
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Figure 3.7: Performance comparison of segmentation measure in AVD of the pro-
posed methods: nnUnet RASPP and nnU-net, together with the current-state-of-the
arts algorithms grouped by the segment classes when trained on the entire 70 OCT
volumes of the training set and tested on the holding 42 OCT volumes from the
testing set.

Methods IRF SRF PED Mean

nnU-Net 1.0 1.0 1.0 1.0
SFU 1.0 1.0 1.0 1.0
nnUNet RASPP 0.93 0.97 1.0 0.97
Helios 0.93 1.0 0.97 0.97
UCF 0.94 0.92 1.0 0.95
MABIC 0.86 1.0 0.97 0.94
UMN 0.91 0.92 0.95 0.93
RMIT 0.71 0.92 1.0 0.88
RetinAI 0.99 0.78 0.82 0.86
NJUST 0.70 0.83 0.98 0.84

Table 3.3: Detection table of the Area Under the Curve (AUC) by segment classes
(columns) and teams (rows) for training on the entire 70 OCT volumes of the training
set and tested on the holding 42 OCT volumes from the testing set.
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Figure 3.8: Detection performance comparison by DS of the nnU-Net RASPP and
baseline nnU-Net, together with the state-of-the-arts algorithms grouped by the
segment classes when trained on the entire 70 OCT volumes of the training set and
tested on the holding 42 OCT volumes from the testing set.
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Cirrus

Methods IRF SRF PED
nnU-Net RASPP 0.91 0.00670 0.80 0.00190 0.89 0.021700

nnU-Net 0.91 0.00850 0.80 0.00190 0.88 0.02060
SFU 0.83 0.020388 0.72 0.008069 0.73 0.116385
UMN 0.73 0.076024 0.62 0.007309 0.82 0.023110

MABIC 0.79 0.018695 0.67 0.008188 0.73 0.091524
RMIT 0.85 0.037172 0.64 0.005207 0.76 0.079259
RetinAI 0.77 0.046548 0.66 0.008857 0.82 0.040525
Helios 0.70 0.038073 0.66 0.008313 0.69 0.097135
NJUST 0.57 0.077267 0.55 0.024092 0.69 0.144518
UCF 0.57 0.174140 0.54 0.028924 0.66 0.215379

Spectralis

Methods IRF SRF PED
nnUNet RASPP 0.89 0.030100 0.68 0.008400 0.81 0.068600

nnUNet 0.89 0.031400 0.62 0.012600 0.80 0.073600
SFU 0.87 0.033594 0.73 0.020017 0.76 0.135562
UMN 0.76 0.072541 0.72 0.013499 0.74 0.121404

MABIC 0.83 0.036273 0.59 0.033384 0.75 0.181842
RMIT 0.69 0.121642 0.67 0.026377 0.70 0.228323
RetinAI 0.77 0.026921 0.65 0.036062 0.71 0.120528
Helios 0.61 0.030149 0.53 0.035625 0.63 0.330431
NJUST 0.60 0.080740 0.38 0.076071 0.52 0.412231
UCF 0.41 0.407741 0.31 0.155769 0.52 0.414739

Topcon

Methods IRF SRF PED
nnU-Net RASPP 0.72 0.032500 0.93 0.037800 0.78 0.157300

nnU-Net 0.74 0.015900 0.92 0.036300 0.78 0.127700
SFU 0.72 0.039515 0.80 0.085907 0.74 0.164926
UMN 0.59 0.125454 0.77 0.066680 0.76 0.197794

MABIC 0.68 0.025097 0.73 0.134050 0.65 0.215687
RMIT 0.63 0.072609 0.78 0.094004 0.60 0.404842
RetinAI 0.66 0.045674 0.70 0.171808 0.60 0.385178
Helios 0.56 0.086773 0.81 0.119888 0.65 0.435057
NJUST 0.52 0.181237 0.66 0.188827 0.70 0.187733
UCF 0.48 0.235298 0.76 0.134283 0.61 0.200602

Table 3.4: Segmentation table of the Dice Score (DS) and Absolute Volume Differ-
ence (AVD) by segment classes (columns) and teams (rows) for training on the entire
70 OCT volumes of the training set and tested on the holding 42 OCT volumes from
the testing set per device.
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Figure 3.9: Performance comparison of segmentation measure in DS of the proposed
methods: nnUnet RASPP and nnU-net, together with the current-state-of-the arts
algorithms grouped by the segment classes when trained on the entire 70 OCT
volumes of the training set and tested on the holding 42 OCT volumes from the
testing set per device.
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Figure 3.10: Performance comparison of segmentation measure in AVD of the pro-
posed methods: nnUnet RASPP and nnU-net, together with the current-state-of-the
arts algorithms grouped by the segment classes when trained on the entire 70 OCT
volumes of the training set and tested on the holding 42 OCT volumes from the
testing set per device.
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Cirrus

Teams IRF SRF PED Mean
nnUNet RASPP 0.90 0.0122 0.78 0.0031 0.89 0.019 0.86 0.0114

SFU 0.83 0.0204 0.72 0.0081 0.73 0.1164 0.76 0.0483
UMN 0.73 0.0760 0.62 0.0073 0.82 0.0231 0.72 0.0355

MABIC 0.79 0.0187 0.67 0.0082 0.73 0.0915 0.73 0.0395
RMIT 0.85 0.0372 0.64 0.0052 0.76 0.0793 0.75 0.0406
RetinAI 0.77 0.0466 0.66 0.0089 0.82 0.0405 0.75 0.0320
Helios 0.70 0.0381 0.66 0.0083 0.69 0.0971 0.68 0.0478

SVDNA [99] 0.61 – 0.66 – 0.74 – 0.67 –
NJUST 0.57 0.0773 0.55 0.0241 0.69 0.1446 0.60 0.0820
UCF 0.57 0.1741 0.54 0.0289 0.66 0.2154 0.59 0.1395

Topcon

Teams IRF SRF PED Mean
nnUNet RASPP 0.72 0.0201 0.93 0.0298 0.78 0.2119 0.81 0.0873

SFU 0.72 0.0395 0.80 0.0859 0.74 0.1649 0.75 0.0968
UMN 0.59 0.1255 0.77 0.0667 0.76 0.1978 0.71 0.1300

SVDNA [99] 0.61 – 0.80 – 0.72 – 0.71 –
MABIC 0.68 0.0251 0.73 0.1341 0.65 0.2157 0.69 0.1250
RMIT 0.63 0.0726 0.78 0.0940 0.60 0.4048 0.67 0.1905
RetinAI 0.66 0.0457 0.70 0.1718 0.60 0.3852 0.65 0.2009
Helios 0.56 0.0868 0.81 0.1199 0.65 0.4351 0.67 0.2139
NJUST 0.52 0.1812 0.66 0.1888 0.70 0.1877 0.63 0.1859
UCF 0.48 0.2353 0.76 0.1343 0.61 0.2006 0.62 0.1900

Table 3.5: Generalisation table of the DS and AVD by segment classes (columns)
and teams (rows) trained on 48 OCT volumes from 2 device sources and evaluated
on 14 OCT volumes from the testing set on the third device that wasn’t seen at
training.
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Figure 3.11: Generalisation performance comparison of segmentation measure in
DS of the propose nnUnet RASPP, together with the current-state-of-the arts algo-
rithms group by the segment classes train on 46 OCT volumes from both Spectralis
(24 OCT volumes) and Topcon (22 OCT volumes) and evaluated on the holding
testing set (cirrus top and Topcon below).
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Figure 3.12: Generalisation performance comparison of segmentation measure in
AVD of the propose nnUnet RASPP, together with the current-state-of-the arts al-
gorithms group by the segment classes train on 46 OCT volumes from both Spectralis
(24 OCT volumes) and Topcon (22 OCT volumes) and evaluated on the holding
testing set (cirrus top and Topcon bottom).

96 Chapter 3 Ndipenoch, Nchongmaje



Advancing Medical Image Segmentation and Generalization by Capturing Global
Context and Mitigating Negative Knowledge Transfer Across Multi-Source Data

Number of segment classes: 3
Number of algorithms : 10
Degrees of freedom: (9, 2)
Significance level (alpha): 0.05
p-value: 0.0099
Friedman statistic: 21.6951
Hypothesis: Alternative Hypothesis
Significant: There is a significant difference between at least two
algorithms (p-value < 0.05).

Rank Algorithm Ranking Score
1 nnU-Net 1.33
2 nnUNet RASPP 1.67
3 SFU 2.33
4 UMN 4.33
5 MABIC 4.67
6 Helios 5.67
7 RMIT 6.00
8 RetinAI 6.67
9 UCF 7.33
10 NJUST 8.33

Table 3.6: The ranking (from best to worst) of the teams/algorithms based on the
combination of all 3 metrics: Dice Score (DS), Average Volume Difference (AVD),
and Area Under the Curve (AUC), using the Friedman test (a non-parametric test)
indicates a significant difference between at least two of the algorithms, with a p-
value of 0.0099 < 0.05 and a Friedman test statistic of 31.1602.
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Figure 3.13: Examples of B-Scans to illustrate the visualization output/predicted of
nnUnet RASPP, in order of the raw/input, label/annotation and predicted/output
in columns when trained on the training set of two vendor devices and tested on the
training set of the third vendor device (Cirrus). Fine details capture by the model
are indicated with orange arrows.
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Figure 3.14: Examples of B-Scans to illustrate the visualization output/predicted of
nnUnet RASPP, in order of the raw/input, label/annotation and predicted/output
in columns when trained on the training set of two vendor devices and tested on the
training set of the third vendor device (Topcon). Fine details capture by the model
are indicated with orange arrows.
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Figure 3.15: An example of a B-Scan to illustrate the visualization output/predicted
of nnUnet RASPP, in order of the raw/input, label/annotation and predicted/out-
put when zoom out to highlights the fine details capture by the model using orange
arrows. This is demonstrated when trained on the Spectralis training set and tested
on Topcon, and vice versa.
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3.5 Summary

In this chapter, we have investigated the problem of detection and segmentation
of multiple fluids in retinal OCT volumes acquired from multiple device vendors.
We improved the segmentation and generalization performance by enhancing the
standard nnU-Net, to develop a novel algorithm called nnUnet RASPP by incorpo-
rating an Atrous Spatial Pyramid Pooling (ASPP) block to : (i) effectively capture
structures of varying sizes within the images, (ii) adapt more effectively to different
dataset characteristics, such as variations in resolution and noise, (iii) capture both
local and global context, and (iv) reduce the model’s over-reliance on features from
any single scale. Also, we added residual blocks to address overfitting, thereby im-
proving the model’s generalization performance. These enhancements address the
challenges of high image variability associated with diverse, multi-source datasets,
such as that of the Retouch challenge. As a result, nnUNet RASPP demonstrates
improved robustness and a greater ability to generalize across datasets with varying
anatomical structures and image quality. Additionally, we conducted a performance
evaluation of the top teams in the RETOUCH challenge, highlighting the different
architectures employed

Both nnU-Net and nnUnet RASPP were evaluated on the MICCAI 2017 RE-
TOUCH challenge dataset. We submitted predictions for both architectures and
experimental results on the hidden test set show that the nnUnet RASPP outper-
formed the current state-of-the-arts architectures and baseline nnU-Net by a clear
margin as it occupy the first place of the challenge. Further more we are ranked first
in the RETOUCH challenge with an overall best performance for both the online
and offline results.

Our main contributions are as follows: (i) We enhanced the nnU-Net architec-
ture [84] by incorporating an Atrous Spatial Pyramid Pooling (ASPP) block [35]
at the input layer and residual blocks within the network’s architecture. These
modifications address the challenges of high variability in image quality, thereby im-
proving robustness and generalization across diverse, multi-source datasets for this
specific problem. (ii) We conducted a performance evaluation of the top teams in
the RETOUCH challenge, highlighting the different architectures employed.

The propose algorithms provide useful information for further diagnosis and
monitoring the progress of retinal diseases such as AMD, DME and Glaucoma.
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Chapter 4

Dynamic Network for Global
Context-Aware Disease
Segmentation in Retinal Images
Using Multiple ASPP and SE
Blocks

In Chapter 3, we explored the potential of using an Atrous Spatial Pyramid Pooling
(ASPP) block [35] to capture global contextual information at the input layer, just
before the down-sampling path. Given the high variability of diseases and image
quality, in this chapter, we aim to improve segmentation in retinal images by using
a dynamic network with ASPP blocks [35] at multiple locations: input, bridge, and
output layers along with Squeeze-and-Excitation (SE) blocks [74] and a dense layer.
Integrating multiple ASPP blocks alongside SE blocks enables the model to capture
global contextual features at varying rates and across different locations within the
network, spanning multiple resolutions and depths. This approach captures more
detailed and comprehensive spatial dependencies in the input image, significantly
enhancing the model’s segmentation accuracy and generalization performance. We
propose a novel algorithm termed Deep ResUNet++, which enhances the ResUNet
backbone by incorporating multiple ASPP blocks at the input, bridge, and output
layers, along with Squeeze-and-Excitation (SE) blocks and a dense layer to capture
global contextual information while dynamically adjusting the kernels size and depth
of the network depending on the input image size. Deep ResUNet++ provides an
automated solution for the simultaneous segmentation of retinal layers and fluid
regions in OCT scans. It integrates three key components into the network’s back-
bone: (i) multiple ASPP and SE blocks to effectively capture global context, (ii)
a dense layer for pixel segmentation and further capturing global information, and
(iii) a mechanism to dynamically adjust the kernel size and depth of the network,
enabling it to capture multi-scale information, fine details, and broader context.
These innovations improve the network’s overall performance and generalizability.
Deep ResUNet++ was evaluated on two benchmark datasets: the Annotated Reti-
nal OCT Images (AROI) and the Duke DME datasets collected from patients suf-
fering from two disease types. It demonstrated superior performance, surpassing
the baseline ResUNet++ and state-of-the-art algorithms. On the AROI dataset,
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it achieved a mean Dice score of 0.98, outperforming the second-best model by
0.01(1%), and consistently achieving over 0.90 across all classes. On the Duke DME
dataset, it achieved a mean Dice score of 0.88, surpassing the second-best model by
0.02(2%). Deep ResUNet++ demonstrates significant advancements in automated
retinal OCT analysis, offering robust solutions for the diagnosis and monitoring of
retinal diseases such as and Age-related Macular Degeneration (AMD) and Diabetic
Macular Edema (DME).

The work presented in this chapter is published in [140], and [139]. These manuscripts
are lead-authored by the author of this thesis, who made substantial contributions to
the conception, data collection, processing, and writing, as well as sole contributions
to the implementation and result analysis.

4.1 Introduction

In Chapter 3, we introduced Age-related Macular Degeneration (AMD) as the lead-
ing cause of severe vision impairment and blindness. Another eye diseases that
do manifest in the retina is Diabetic retinopathy (DR). DR is a disease that dam-
ages the blood vessels in the retina, and it is the leading cause of blindness among
working-aged adults in the United States [42]. Approximately 21 million people
affected by DR also develop diabetic macular edema (DME) [22]. DME results from
the accumulation of fluid in the macula, the central part of the retina where vision
is sharpest, due to prolonged high blood sugar levels.

Currently, an effective treatment for these retina diseases is available in the
form of anti-vascular endothelial growth factor (anti-VEGF) therapy [172], [23].
However, the effectiveness of this treatment depends on early diagnosis and frequent
monitoring of the disease’s progression, as this allows ophthalmologists to advise
patients on behavioral changes such as diet change and doing regular exercise, which
can help slow down the progression and, in some cases, prevent the disease from
moving to later and more severe stage. Additionally, anti-VEGF drugs are expensive
and require regular administration thus posing a soci-economic burden to both the
patient and the healthcare system. Monitoring the progress of these diseases is
crucial, however, the process is mostly manually done, which is time-consuming,
labor-intensive, and prone to errors. Therefore, there is a need for an automated
tool to diagnose and monitor retinal morphology and fluid accumulation accurately.

Optical Coherence Tomography (OCT) is a high-resolution, non-invasive imag-
ing modality that provides qualitative information and visualizations of the retinal
structure by acquiring a series of cross-sectional slices (B-scans). Developing an
automated method to study the retina’s anatomy from OCT B-scans and evaluate
eye conditions like DME and AMD would be highly valuable.

To address these issue, we present a novel algorithm Deep ResUNet++ developed
in this chapter for simultaneously segmenting layers and fluids in retinal OCT B-
scans. Unlike the common approach of treating retinal layers and fluid regions
separately, this approach aim to provide an automatic solution for the simultaneous
segmentation of both.

The rest of the chapter is organized as follows. A brief review of the previous
studies is provided in Section 4.2. The proposed method is presented in 4.3. The ex-
periments and result analysis are presented in 4.4. Finally, the summary is presented
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in Section 4.5.

4.2 Background

The segmentation of retinal images has been a topic of great interest for several
decades. Various methods have been explored to tackle this problem, ranging from
traditional approaches such as graph-cut [164], [165], Markov Random Fields [163],
[189] and level set methods [50], [49] to more recent deep learning techniques
Optical Coherence Tomography (OCT) is the current image-guided standard to
analysis, diagnose and monitor the pathological changes in the retina. OCT was
developed in the 1990s [77], but it only became commercially available in 2006. It
allows for fast image acquisition and successful quantitative analysis due to its high
quality and resolution. Some of the earliest segmentation approaches for retinal im-
ages include:Segmentation of retinal layers in OCT images using the graph method
[62], segmentation of fluid in the retina in patients suffering from Macular Edema
(ME)[1], and segmentation of fluid using the active contours approach [58]. Some of
the recent approaches to segment retinal diseases in OCT images includes [21] for
the segmentation of 3 fluids in retinal OCT images, [160] for the segmentation of
retinal layers and fluids, [56] a large foundation model for the segmentation of three
retinal diseases and many more.

4.3 Method

In this section, we introduce our proposed novel architecture, Deep ResUNet++, an
enhanced version of ResUNet++ [87]. We detail the modifications we made, their
functionalities, how Deep ResUNet++ differs from the original ResUNet++, and
how the modifications would improve the model’s generalization ability. We inte-
grated three key innovations into the network’s backbone: (1) An Atrous Spatial
Pyramid Pooling (ASPP) blocks at multiple locations (input, bridge, and output
layers) to: (i) effectively capture structures of varying sizes within the images, (ii)
adapt more effectively to different dataset characteristics, such as variations in res-
olution and noise, (iii) capture both local and global context, and (iv) reduce the
model’s over-reliance on features from any single scale. (2) A dense layer at the clas-
sification layer to further improve the network’s ability to capture global contextual
features and for pixels classification. (3) A mechanism to dynamically adjust the
kernel size and depth of the network based on the input image size, allowing the
network to adapt to different feature scales, capturing both fine details and broader
context. In the following subsections, we will provide a detailed outline of the com-
ponents of Deep ResUNet++. A high-level diagram demonstrating the architecture
is shown in Figure 4.1.

4.3.1 Deep ResUNet++

Encoding and Decoding Paths

The Deep ResUNet++ model is fundamentally similar to the 2D U-Net architecture
[157], featuring both an encoding and decoding path. The encoder phase captures

104 Chapter 4 Ndipenoch, Nchongmaje



Advancing Medical Image Segmentation and Generalization by Capturing Global
Context and Mitigating Negative Knowledge Transfer Across Multi-Source Data

Figure 4.1: Structure of Deep ResUNet++ demonstrating the Atrous Spatial Pyra-
mid Pooling (ASPP) blocks along with Squeeze-and-Excitation (SE) to capture
global features and the dense layer for pixel classification at the classification layer.

Figure 4.2: The ASPP captures global information by using multiple parallel filters
with varying dilation rates.

local contextual information, while the decoder phase enables precise pixel localiza-
tion, with a bridge layer connecting the two phases.

The encoder consists of convolutional blocks, each containing three sequential
layers: batch normalization, ReLU activation, and convolution layer. Batch nor-
malization helps prevent overfitting during training. Instead of the fixed 3 × 3
square kernels used in ResUNet++, we employ a strategy that dynamically adjusts
the kernels size to match the image dimensions enabling the network to adapt to dif-
ferent feature scales, capturing both fine details and broader context. Zero padding
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is applied to ensure that the feature map dimensions remain consistent before and
after convolution, and a stride of one is used to avoid overlapping in the feature map
construction.

The decoder also comprises of convolutional blocks consisting of, a batch normal-
ization, ReLU activation, convolution layer, upsampling, and concatenation. The
upsampling layer captures spatial information from the feature map, while the con-
catenation layer combines images from the encoder phase with their corresponding
decoder phase, ensuring that the input and output image sizes match. The first
three layers in the decoder follow the same setup as in the encoder.

The Bridge Layer

An Atrous Spatial Pyramid Pooling (ASPP) block serves as a bridge between the
encoding and decoding phases. ASPP is an upsampled filtering technique used to
capture global information within a feature map. It consists of multiple parallel
atrous convolutional layers with different dilation rates. These blocks are designed
to perform convolution with upsampled filters, allowing them to capture global
contextual features efficiently while maintaining computational efficiency.

In contrast to ResUNet++, which employs three parallel filters with dilation
rates of 6, 12, and 18, the Deep ResUNet++ utilizes four parallel filters with dilation
rates of 6, 12, 18, and 24. This adjustment accommodates the increased image
capacity of the model, enhancing its ability to capture global information. The
inclusion of the ASPP block is crucial for this task due to the variability in fluid
types present in B-Scans, with at least one fluid type often absent in some scans.
The ASPP block used in the Deep ResUNet++ architecture is illustrated in Figure
4.2.

Deep Residual Learning

In a neural network, adding more layers and using activation functions like Sigmoid
which compresses large input values into smaller values between 0 and 1 can cause
the gradients of the loss function to approach zero. This phenomenon makes the
network difficult to train and is known as the vanishing gradient problem in deep
learning. One effective way to address this issue is by using skip or residual connec-
tions. These connections allow some layers to bypass the activation functions during
training, thereby reducing the extent to which derivatives are diminished. This ap-
proach is crucial in Deep ResUNet++ because increasing its depth heightens the
likelihood of encountering the gradient problem.

Squeeze and Exciting Block

The Squeeze-and-Excitation (SE) block [74] leverages Global Average Pooling (GAP)
to capture global context by averaging spatial information across feature maps. In
the encoding path, GAP blocks are placed between convolutional layers to extract
global contextual information. SE blocks dynamically recalibrate channel-wise fea-
ture responses, amplifying the most relevant features while suppressing less signifi-
cant ones. When incorporated at multiple locations within the network, SE blocks
enhance feature representations at various stages, improving feature discrimination
and overall segmentation performance.
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Dense Layer

Unlike ResUNet++, which uses 2D convolutions in the final layer of the decoding
phase just before the output layer, the Deep ResUNet++ incorporates a Dense layer
in this position. This modification allows the network to learn and integrate infor-
mation from all preceding features, enhancing its ability to capture global context.
This is particularly advantageous for our problem, as fluid regions exhibit significant
variability and lack the consistency seen in retinal layers.

Classification Layer

The classification layer is tasked with determining the class for each voxel or pixel in
the final feature map. The Deep ResUNet++ uses the SoftMax activation function
to classify each pixel or voxel in the input feature map, assigning it to one of the
classes or labels.

Dynamic Network

Unlike ResUNet++, which uses fixed kernel sizes and network depth, Deep ResUNet++
dynamically adjusts the kernel size and network depth, allowing the architecture to
adapt and capture multi-scale features, fine details, and broader context based on
the shape and size of the input image. For square images, a 3 × 3 kernel is used
to match the image’s symmetrical structure, while for rectangular images, a 7 × 3
kernel is applied to better capture elongated spatial features. The network depth
is also adjusted based on dataset size. For datasets with fewer than 1,000 samples,
the depth is set to 4, whereas for datasets exceeding 1,000 samples, the depth is set
to 5 to enhance feature representation and learning capacity. Given the high vari-
ability of retinal diseases and image quality, this flexibility is particularly useful for
detecting small abnormalities (diseases/fluids) as well as larger structures (layers) in
retinal images, thereby improving the model’s overall performance, generalizability,
and robustness.

Hyperparameter Settings

The encoder path consists of convolutional blocks, each containing a 7×3 (can change
depending of the shape of the input image) convolutional layer, Batch Normalization
(BN), ReLU activation, max pooling, and padding is (kernel size − 1)/2 with a
stride of 1. The decoder path mirrors the encoder path’s structure but replaces max
pooling with upsampling and includes concatenation with corresponding encoder
features for precise reconstruction. The network’s depth was set to a maximum of
5 (can vary depending on the size of the dataset), corresponding to an input size
of 1024 × 512 pixels. The ASPP blocks consist of 4 parallel filters with dilation
rates of 6, 12, 18, and 24. K-fold cross-validation was employed with the value of K
set to 6, Categorical Cross-Entropy was the loss function used, with AdaBound as
the optimizer, the initial learning rate was set to 0.001, and the batch size was set
to 4. The maximum training epoch was set to 200 with early stopping to prevent
overfitting.

In Chapter 3, a single ASPP block was employed, whereas in this chapter, mul-
tiple ASPP and SE blocks are integrated at various locations within the network.
This configuration enables the model to capture global contextual features at varying
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rates and across different locations, encompassing multiple resolutions and depths.
Such an approach allows the network to improve the model’s generalizability by:
(i) effectively capturing structures of varying sizes within the images, (ii) adapting
more effectively to diverse dataset characteristics, such as variations in resolution
and noise, (iii) capturing both local and global context for a more comprehensive
understanding of the data, and (iv) reducing the model’s dependence on features
from any single scale, thereby significantly improving segmentation accuracy and
generalization performance.

4.4 Experiments

Deep ResUNet++ was evaluated on two benchmark public datasets: the Annotated
Retinal OCT Images (AROI) [131] and the Duke DME [40] datasets. The following
subsections provides detailed information about these datasets.

4.4.1 Annotated Retinal OCT Images (AROI) Dataset

Figure 4.3: An example of annotation of the layers and fluids in the AROI dataset.
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The Annotated Retinal OCT Images (AROI) database was collected using the
Zeiss Cirrus HD OCT 4000. It consists of 128 B-scans per OCT image for each of
the 25 patients with wet AMD, totaling 3,200 B-scans. Among these, 1,136 B-scans
from 24 patients are annotated, and this subset was used for the experiments. The
resolution of the B-scans is 1024× 512 pixels, with a pixel size of 1.96× 11.74 µm.
In total, eight labels or classes were identified, and the number of labels per B-
scan depends on the presence or absence of fluids. Subretinal fluid or subretinal
hyperreflective material (SRF/SRHM) and Intraretinal fluid (IRF) are not present
in all OCT volumes. SRF is absent in patients 13, 17, and 19, while SRF/SRHM
are absent in patients 3, 4, 6-9, 17, 20-22, and 24.

The B-scans were labeled based on three categories: layer, fluids, and back-
ground. Historically, the retinal is consists of 10 layers, but for simplicity, these
layers are grouped into three distinct classes: 1) Internal Limiting Membrane (ILM):
Which is the area between the ILM and the Inner Plexiform Layer (IPL)/Inner Nu-
clear Layer (INL) boundaries, 2) Inner Plexiform Layer and Inner Nuclear Layer
(IPL/INL): which is the area between the IPL/INL and the Retinal Pigment Ep-
ithelium (RPE) boundaries, and 3) Retinal Pigment Epithelium/Bruch’s Membrane
Complex (RPE/BM) which is the area between the RPE and BM boundaries.

Four main retinal fluids were identified and categorized into three classes: 1)
Intraretinal Fluid (IRF), 2) Subretinal Fluid (SRF) and Subretinal Hyperreflective
Material (SRHM), which are grouped together as SRF since they are located in the
same area, and 3) Retinal Pigment Epithelial Detachment (PED).

Two background categories were identified: The area above the Internal Limiting
Membrane (ILM), and The area below the Bruch’s Membrane (BM). The classes
are color-coded as follows: Black represents the area above the ILM, Red denotes
the ILM layer, Yellow indicates the area between the IPL and INL layers, White
is used for the RPE and BM layers, Blue denotes the area under the BM, Light
Blue represents the PED fluid, Pink represents the SRF/SRHM fluids, and Green
signifies the IRF. An example of the labeling and annotation of retinal layers and
fluids is shown in Fig. 4.3.

4.4.2 Duke DME Dataset

The Duke DME dataset [40], consists of 110 B-scans from 10 patients with severe
DME pathology and was collected using the standard Spectralis (Heidelberg Engi-
neering, Heidelberg, Germany). The volumetric scans have a configuration of 61
B-scans and 768 A-scans, with an axial resolution of 3.87 µm/pixel, a lateral reso-
lution ranging from 11.07 to 11.59 µm/pixel, and an azimuthal resolution ranging
from 118 to 128 µm/pixel.

The images were annotated by two human experts across three categories (layer,
fluid, and background), resulting in 10 classes: 1 fluid, 2 backgrounds, and 7 layers.
Traditionally, retinal OCT includes 10 layers; however, for clarity, these layers are
grouped into 7 distinct classes in this dataset: Inner Limiting Membrane (ILM),
Nerve Fiber Layer to Inner Plexiform Layer (NFL-IPL), Inner Nuclear Layer (INL),
and Outer Plexiform Layer (OPL).

The fluid class was identified, and the two background classes are the area above
and below the retina. In this work, the classes are annotated with the following
colors: Black for the area above and below the retina, Light Green for the ILM
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Figure 4.4: Annotation and labeling of the 10 segments (7 retinal layers, 2 back-
grounds, and 1 fluid) in the Duke DME dataset.

layer, Yellow for the area between the NFL and IPL layers, Blue for the INL, Pink
for the OPL layer, Light Blue for the area between the ONL and ISM layers, Green
for the ISE layer, White for the RPE, and Red for the fluid.

An example of the annotation and labeling of classes is shown in Figure 4.4.
It is important to note that the Duke DME dataset was collected for two specific
problems: layer and fluid segmentation. Additionally, the fluid class exhibits high
variability and is not present in some B-scans for certain patients, adding to the
dataset’s complexity.

4.4.3 Training and Testing

It is common practice to separate the segmentation of regular retinal layers from
the detection of fluids, but in this work, we aim to perform both tasks simultane-
ously. K-fold cross-validation was used for training, validation, and testing for each
dataset. The Dice score was the evaluation metric used to measure the performance
of the algorithm. It is a similarity measure often used in the segmentation of med-
ical images. The Dice score is the percentage of pixels or voxels in an image that
are classified correctly per class or segment. It is calculated by taking twice the
intersection and dividing it by the union for each class or segment as demonstrated
in in Eqn (3.1). In this section, we will also refer to the proposed Deep ResUNet++
as Proposed.

1) Annotated Retinal OCT Images (AROI):
For the AROI dataset, to ensure a fair comparison, we used the same data splits
as in the baseline model [130]. Each fold consists of B-scans from 4 patients. For
example, the first fold includes patients 1, 2, 3, and 4, the second fold includes
patients 5, 6, 7, and 8, and so on. Splitting B-scans from the same patient across
training, validation, and test sets is not recommended, as adjacent B-scans are
similar and could introduce bias. The test set comprises approximately 15% of the
dataset. For all experiments, the parameters were set as follows, consistent with
the baseline study:the value of K was 6, the original image size was 1024 × 512
pixels, and the loss function used was categorical cross-entropy, which estimates the
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probability between the predicted voxels and the ground truth. The batch size was
set to 4, AdaBound was used as the optimizer, the learning rate was 0.001, and early
stopping was employed to prevent overfitting.

During testing, the Dice score was calculated for each patient in the test fold
(4 patients per fold), and the mean value was taken across patients in each fold,
considering only those patients with segmentation references. At least one of the
IRF or SRF fluids is missing in some patients (both fluids were missing in patient 17,
and one fluid is missing in patients 3, 9, 13, 16, 20, 21, 22, and 24). Therefore, during
testing, for patients with at least one missing fluid in the B-scans, the Dice score for
that class and that patient was excluded to avoid overestimation or underestimation.
In cases where at least one fluid was missing in some B-scans but not all of them,
the Dice score for those scans was set to zero. The Dice score was calculated per
patient because mixing adjacent B-scans of the same patient with those of other
patients could lead to overestimation.

2) Duke DME:
For the Duke DME, training and testing were conducted using annotations from
Expert 2. Training was carried out on 55 B-scans, with no data augmentation ap-
plied. B-scans were used instead of entire volumes due to the anisotropic resolution
of OCT volumes and the potential presence of motion artifacts across B-scans. To
ensure fairness, the parameters and environmental settings were kept consistent for
both the proposed model and the comparison models. Each fold consisted of B-scans
from 5 patients, with patients 1-5 in the first fold and patients 6-10 in the second
fold. To avoid bias, adjacent B-scans were not used across training, validation, and
testing.
For all experiments, the parameters were set as follows, in line with the comparison
models: the value of K was set to 2, and the B-scans were resized to 512 × 512
pixels. The loss function used was categorical cross-entropy. The batch size was set
to 4. The cost function was optimized using AdaBound and backpropagation with
the chain rule. The model was trained for 200 epochs, with early stopping employed
to prevent overfitting.

In both datasets, the training and testing split was performed on a per-patient
basis to prevent the mixing of B-scans from the same patient across both sets,
thereby reducing the risk of overfitting. In the AROI dataset, the number of B-
scans varies per patient, with the hold-out set consisting of B-scans from 4 patients
(unseen patients at training), while B-scans from the remaining 20 patients were
used for training. In the Duke DME dataset, a 50-50 split was applied, where B-
scans from 5 unseen patients (55 B-scans) were used as the hold-out set, and the
remaining 55 B-scans from another 5 patients were used for training.

The fluid class was absent in some B-scans for certain patients. Consequently,
during testing, the Dice score calculation for the fluid class was excluded for B-scans
that lacked fluid references for that patient, to avoid overestimation or underesti-
mation.

The Friedman test was used to detect differences in performance between the al-
gorithms evaluated on the segment classes. We computed the Friedman test statistic
to check for significant differences and ranked the algorithms per segment class.

Deep ResUNet++ was trained for 2 hours on an NVIDIA RTX A5000 GPU
workstation. The code was implemented in Python, using the Keras library with
the TensorFlow backend.
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4.4.4 Results

The experimental results are presented for each dataset as follows:

1) Annotated Retinal OCT Images (AROI):
Here, we report the performance measured by the Dice score for each segment
class and method, including the Inter-observer, the baseline U-Net, the proposed
Deep ResUNet++, and other state-of-the-art architectures (nnUNet RASPP, Re-
sUNet, and ResUNet++) in this domain.
The segmentation performance, grouped by segment class, is illustrated in Fig. 4.5,
and the corresponding Dice scores are presented in Table 4.1. Examples of the
segmentation results are shown in Fig. 4.6, alongside the original input images and
their annotations. We performed the Friedman test to determine whether the results
were statistically significant and ranked the algorithms based on segment classes,
obtaining a p-value of 0.0142 and a Friedman test statistic of 14.2381. The result,
including algorithm rankings and scores, are presented in Table 4.3.
From these results, we observe the following:

1. The proposed model Deep ResUNet++ achieved a mean Dice score of 0.98
outperforming the second best architecture by 0.02 (2%).

2. The proposed model Deep ResUNet++ outperforms the baseline (U-Net), and
current state-of-the-art models (nnUNet RASPP, ResUNet, and ResUNet++)
in every single class, achieving a Dice score above 0.90.

3. The IRF class was the most difficult to segment, with the Deep ResUNet++
achieving a Dice score of 0.91, which is 11.5% higher than that achieved by
the second-best model, ResUNet++, for that class.

4. An increase in performance is observed from the standard U-Net to more com-
plex architectures, in the order of ResUNet, nnUNet RASPP, ResUNet++,
and Deep ResUNet++.

5. It is also observed that the Deep ResUNet++ obtained an overall mean Dice
score of 0.98, which is 0.1(10%) higher than the human experts’ annotation
results of 0.88.

6. The Dice scores for the background classes and the layer classes (except RPE/BM)
were consistently very high for all the models. This was expected, as the
background classes occupy most of the image, and the two other layers, ex-
cept RPE/BM, are made up of three or more thick retinal layers, whereas the
RPE/BM consists of two thin retinal layers.

112 Chapter 4 Ndipenoch, Nchongmaje



Advancing Medical Image Segmentation and Generalization by Capturing Global
Context and Mitigating Negative Knowledge Transfer Across Multi-Source Data

Table 4.1: Table of Dice Scores organized by segment classes (rows) and models
(columns).

Inter Ob. U-Net ResUNet ResUNet++ nnUNet RASPP
Deep ResUNet++

(Proposed)

Above ILM 0.982 0.995 0.9991 0.9996 0.9991 0.9998
ILM 0.95 0.95 0.9859 0.9953 0.9892 0.9973
IPL INL 0.948 0.923 0.9843 0.9947 0.9723 0.9956
RPE BM 0.699 0.669 0.8907 0.9599 0.9212 0.9640
Under BM 0.989 0.988 0.9993 0.9997 0.9991 0.9998
PED 0.860 0.638 0.9594 0.9846 0.9741 0.9902
SRF SRHM 0.876 0.531 0.8805 0.9543 0.882 0.9615
IRF 0.735 0.48 0.7233 0.794 0.7757 0.9098

Mean 0.88 0.77 0.93 0.96 0.94 0.98
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Figure 4.5: Performance comparison (measured by Dice scores) of the pro-
posed Deep ResUNet++ (Proposed) method, the baseline U-Net model, the Inter-
Observer (by human experts), and other state-of-the-art models: UNet ASPP, Re-
sUNet, and ResUNet++ in this domain. The results are grouped by segment class.
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Figure 4.6: Examples of segmentation results, shown from left to right, include
the inputs, annotations, and outputs for the Baseline U-Net, three state-of-the-art
models, and the Deep ResUNet++ (Proposed).

Chapter 4 Ndipenoch, Nchongmaje 115



Advancing Medical Image Segmentation and Generalization by Capturing Global
Context and Mitigating Negative Knowledge Transfer Across Multi-Source Data

2) Duke DME:
Here, we present and analyze the segmentation class results measured by the Dice
score for the Deep ResUNet++(Proposed) on the Duke DME dataset. We compare
these results to those of the comparison models (state-of-the-art models, ReLayNet,
and the baseline U-Net), as well as to the human expert annotations (inter-observer)
for this dataset.
The Dice scores are presented in Table 4.2, and the corresponding bar chart, grouped
by segment classes, is shown in Figure 4.7. Examples of the visualization results,
along with their annotations, are illustrated in Figure 4.8. A zoomed-in example of
a visualization output from Deep ResUNet++(Proposed) is provided in Figure 4.9.
For the visualization results, orange arrows are used to highlight fine details in the
annotated B-scans that were identified by the algorithms. Analysis of our results
shows that:

1. The proposed model, Deep ResUNet++, outperforms, the baseline (U-Net),
and the current state-of-the-art model, ReLayNet, in every single class by a
clear margin.

2. Deep ResUNet++ achieved a Dice Score of 0.77, which is 0.19(19%) higher
than the inter-observer Dice Score from human experts for the fluid class,
which was the most challenging to segment.

3. Deep ResUNet++ achieved a Dice Score of 0.90 or higher in 8 out of the 10
classes.

4. All the models achieved a perfect Dice Score of 1 for both background classes
(the areas above and below the retina).

5. Deep ResUNet++ achieved an overall mean Dice Score of 0.88, which is 0.8
higher than the 0.80 obtained from human experts’ annotations (inter ob-
server).

Table 4.2: Segmentation performance, measured by Dice Scores, organized by seg-
ment classes (rows) and models (columns).

Inter Obs. U-Net ResUNet++ nnUNet RASPP ReLayNet
Deep ResUNet++

(Proposed)

Fluid 0.58 0.70 0.71 0.72 0.75 0.77
NFL 0.86 0.85 0.82 0.84 0.88 0.90
GCL IPL 0.89 0.90 0.87 0.89 0.92 0.93
INL 0.77 0.77 0.76 0.78 0.82 0.83
OPL 0.72 0.74 0.73 0.76 0.80 0.82
ONL ISM 0.87 0.88 0.87 0.89 0.91 0.93
ISE 0.85 0.86 0.86 0.88 0.92 0.93
OS RPE 0.82 0.84 0.81 0.85 0.89 0.91

Mean 0.80 0.82 0.80 0.83 0.86 0.88
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Figure 4.7: Bar chart comparison of Dice score performance, grouped by segment
class, for inter-observer, U-Net, ResUNet, ResUNet++, ReLayNet, and the pro-
posed Deep ResUNet++ (Proposed) model.
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Number of segment classes: 3
Number of algorithms : 6
Degrees of freedom: (5, 2)
Significance level (alpha): 0.05
p-value: 0.0142
Friedman statistic: 14.2381
Hypothesis: Alternative Hypothesis
Significant: There is a significant difference between at least two
algorithms (p-value < 0.05).

Rank Algorithm Ranking Score
1 Deep ResUNet++ 1.00
2 ResUNet++ 2.33
3 nnUNet RASPP 2.67
4 ResUNet 4.00
5 Inter Ob. 5.33
6 U-Net 5.67

Table 4.3: The ranking (from best to worst) of the teams/algorithms based on
the Dice Score (DS), using the Friedman test (a non-parametric test) indicates a
significant difference between at least two of the algorithms, with a p-value of 0.0142
< 0.05 and a Friedman test statistic of 14.2381.
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Figure 4.8: Examples to illustrate the visualisation output of the top three best
performing algorithms: U-Net, ReLayNet and Deep ResUNet++ (Proposed), in
order of the inputs, annotations and outputs with orange arrows to demonstrate
fine details picked up by the models.
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Figure 4.9: A zoom-in of the B-scan from Figure 4.8, highlighting the fine details
identified by Deep ResUNet++(Proposed) using orange arrows.

120 Chapter 4 Ndipenoch, Nchongmaje



Advancing Medical Image Segmentation and Generalization by Capturing Global
Context and Mitigating Negative Knowledge Transfer Across Multi-Source Data

4.5 Summary

In this chapter, we investigated the simultaneous segmentation of retinal layers and
diseases or fluid regions in retinal OCT images. To address this, we proposed a novel
architecture, Deep ResUNet++, by enhancing the ResUNet architecture. The en-
hancements involved: (i) dynamically adjusting the kernel size and network depth
based on the input image size, and (ii) integrating multiple Atrous Spatial Pyra-
mid Pooling (ASPP) blocks at the input, bridge, and output layers, along with
Squeeze-and-Excitation (SE) blocks and a dense layer. The modifications allowed
the network to effectively capture global contextual information at varying rates and
across different locations, spanning multiple resolutions and depths. This approach
enhanced the model’s generalizability by: (i) effectively capturing structures of vary-
ing sizes within the images, (ii) adapting to diverse dataset characteristics, such as
variations in resolution and noise, (iii) capturing both local and global context for
a more comprehensive understanding of the data, and (iv) reducing the model’s
dependence on features from any single scale. As a result, Deep ResUNet++ sig-
nificantly improves segmentation accuracy and generalization performance. The
algorithm was evaluated on two publicly available benchmark datasets, representing
patients with two types of diseases: age-related macular degeneration (AMD) from
the AROI dataset and diabetic macular edema (DME) from the Duke dataset. Ex-
perimental results demonstrate that Deep ResUNet++ outperformed the baseline
U-Net and other state-of-the-art methods on both datasets. The method presented
in this chapter has practical applications for the structural analysis of OCT retinal
images and for monitoring the progression of eye diseases such as AMD and DME.
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Chapter 5

Enhancing Medical Image
Segmentation Through Knowledge
Transfer with Domain-Specific
Adapters Across Diverse Data
Sources

In Chapters 3 and 4, we explored the potential of incorporating Atrous Spatial
Pyramid Pooling (ASPP) blocks at various positions in the Convolutional Neural
Network (CNN) backbone to capture global contextual information and improve
the model’s generalization performance, while overlooking the combined potential
of other available annotated datasets. One approach to improve the generalization
performance on unseen datasets is to build a single, diverse model by integrating
data from multiple sources, organs, modalities, and disease types. While numer-
ous small annotated medical image datasets are publicly available across various
modalities, organs, and diseases, naively combining data from diverse sources can
negatively impact the model performance due to the transfer of negative knowledge
from one dataset to another. In this chapter, we explore the synergistic potential of
combining data from multiple diverse sources, modalities, organs, and disease types
to build a single, generalizable model. To mitigate negative knowledge transfer,
we employ domain-specific knowledge transfer adapters. In deep learning, the two
predominant approaches for medical image segmentation are Convolutional Neu-
ral Networks (CNNs) and Vision Transformers (ViTs). This chapter introduces
two novel methods that leverage knowledge transfer and domain-specific adapters.
The first algorithm utilizes a CNN, while the second combines CNNs with ViTs
in a hybrid approach to demonstrate the effectiveness of domain-specific adapters
in multi-source medical image segmentation and detection. These methods are:
1) MMIS-Net (MultiModal Medical Image Segmentation Network), which incorpo-
rates Similarity Fusion blocks to use supervision and pixel-wise similarity for feature
map fusion for knowledge transfer into a CNN backbone. To address inconsistent
class definitions and label contradictions, we developed a one-hot label space to
handle classes absent in one dataset but annotated in another. This approach pre-
serves distinct annotation protocols for the same target structure during training.
2) CVD Net (Convolutional Neural Network and Vision Transformer with Domain-
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Specific Batch Normalization), which combines CNNs for feature extraction, Vision
Transformers for capturing long-range dependencies, and to address negative knowl-
edge transfer, within the network we integrated domain-specific adapters to capture
and share domain specific information across all domains, hence reducing nega-
tive knowledge transfer between domains. Both approaches were evaluated on two
dataset groups. The first group comprises of 10 benchmark datasets covering 19
organs across 2 modalities, and the second group is the HECKTOR 2022 dataset
collected from 9 medical centers worldwide. Experimental results show that: (i) On
the RETOUCH Grand Challenge hidden test set MMIS-Net outperformed state-
of-the-arts (SOTA) architectures and large foundation models for medical image
segmentation, achieving a mean Dice score (DS) of 0.83 and an absolute volume
difference (AVD) of 0.035 for retinal fluid segmentation, as well as a perfect area un-
der the curve (AUC) of 1.0 for fluid detection. (ii) CVD Net achieved a mean Dice
score of 0.77492, comparable to state-of-the-art performance, on the HECKTOR
2022 hidden dataset, which includes data from two new medical centers not seen
during training. Both models also demonstrated high generalization performance
when tested on independent data from new sources not seen during training.

Some of the work presented in this chapter is currently under review for a jour-
nal publication under the title “ MMIS-Net for Retinal Fluid Segmentation and
Detection” and a conference paper published in [137]. The manuscripts are lead-
authored by the author of this thesis, who made substantial contributions to the
conception, data collection, processing, and writing of the manuscripts, as well as
sole contributions to the implementation and result analysis.
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5.1 Introduction

Image segmentation is a widely studied problem in the deep learning community
and is paramount in medical image analysis, diagnostics, and monitoring the pro-
gression of pathogens/diseases. Medical image segmentation tasks involve diverse
modalities such as Optical Coherence Tomography (OCT), Computed Tomography
(CT), Positron Emission Tomography (PET), Magnetic Resonance Imaging (MRI),
Ultrasound, X-ray, and many more, incorporating various anatomical structures such
as the retina, brain, neck, fetal tissues, chest, abdomen, cells, and more. Several
small datasets with their corresponding annotations/labels from different modali-
ties and anatomic regions are available in the public domain. This availability has
sparked the development of numerous deep learning algorithms for lesion segmen-
tation in medical imaging. However, most of these algorithms are typically trained
on a single modality for a specific anatomic structure or problem, leading to chal-
lenges in generalization to new, unseen datasets like in real-world scenarios. One
of the main causes of this issue is the high variability in image quality stemming
from different modalities, collected across various medical centers using machines
from different manufacturers and annotated by radiologists with varying levels of
experience. One approach to circumventing this problem is to increase the diver-
sity of the training set by combining images from various modalities, representing
different anatomic structures, and collected across different medical centers using
devices from various vendors. The two most common approaches for medical image
segmentation are Convolutional Neural Networks (CNN) and, more recently, Vision
Transformers (ViT). According to [51], CNN demonstrates superior performance on
smaller datasets, while ViT tends to outperform CNN on larger datasets due to
their intrinsic ability to model long-range dependencies, although they require more
data. We aim to construct a universal model that generalizes across multiple data
sources by integrating datasets from various domains. However, naively combin-
ing datasets from different sources can improve performance on one dataset while
potentially reducing it on another, a phenomenon known as Negative Knowledge
Transfer (NKT) [3], [213]. To mitigate the risks associated with NKT and to ad-
dress variations in image quality, thereby enhancing generalization across diverse
data sources. We have incorporated Domain-Specific Adapters (DSA) [29] into the
network’s architecture. In this chapter our main contributions are as follows:

1) We introduce MMIS-Net, a novel algorithm designed to train a single model to
segment multiple lesions from various body structures across diverse image modal-
ities simultaneously. MMIS-Net incorporates similarity fusion blocks into its ar-
chitecture, utilizing supervision and pixel-wise selection knowledge for feature map
fusion. This approach reduces irrelevant and noisy signals in the output.

2) We efficiently created a one-hot label space to address the inconsistent class
definitions and label contradiction problem, covering diverse modalities and body
regions in a multiclass segmentation problem. This strategy effectively manages
classes that are absent in one dataset but annotated in another during training.
Also, it retains different annotation protocol characteristics for the same target
structure and allows for overlapping target structures with different levels of detail,
such as liver, liver vessels, and liver tumors.

3) We introduce CVD Net, a novel architecture combining CNNs for feature ex-
traction, ViTs for capturing long-range dependencies, and domain-specific adapters
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to capture and share domain specific information across all domain. This reduces
negative knowledge transfer between domains while enhancing the model’s general-
ization ability.

The rest of this chapter is organized as follows. The proposed methods are detailed
in Sections 5.2 and 5.3. Section 5.4 discusses the datasets, experiments, results, and
visualizations. Finally, the summary is provided in Section 5.5.

5.2 MMIS-Net Method

Figure 5.1: A high-level illustration of the MMIS-Net architecture demonstrating
the contracting and expanding paths, residual connections, and the similarity fusion
blocks. Further details of the fusion block, illustrating the feature map fusion us-
ing supervision and pixel-wise similarity selection of images at different smoothing
scales, is shown at the bottom.

In a collection of multiple datasets, each pixel is assigned to a segmentation class
with corresponding label pairs. For each dataset in the collection, every pixel within
the raw image is associated with a segmentation class, which is then mapped to a
label value in the annotated dataset for that specific dataset.
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We combined all the label images into a single one-hot label space for all the
datasets and each class is assigned a unique label value as demonstrated in Table
5.3. Combining partially annotated datasets presents its own challenges, and here
are some: 1) Label Index Inconsistency: The same organ can be labeled with differ-
ent indexes in different datasets. 2) Background Inconsistency: An organ is marked
as background in one dataset but as foreground in another. For example, in the
Pancreas-CT dataset [142], the pancreas is marked as foreground, but it is marked
as background in the MSD Spleen dataset [129]. 3) Absent of Organ Labels: The
same organ is labeled in one dataset but absent in another dataset that also contains
the organ. For example, in the MSD Liver dataset, both the liver and liver tumor are
segmented. In contrast, in the MSD Hepatic Vessels dataset, the labeled targets are
the vessels and tumors within the liver, but not the liver itself. 4)Organ overlapping.
There is overlap between sub-structures and organs. For example, in one dataset,
the Hepatic Vessel, a sub-structure of the Liver, is segmented separately from the
Liver, while in another dataset, both the Hepatic Vessel and the Liver are anno-
tated as separate organs. A similar case occurs with the Kidney and Kidney Tumor.
Various methods, such as [110], have tried to address these challenges by combining
labels with text embedding and adopting a masked back-propagation mechanism.
In this work, we use labels only and enhance the network architecture to effectively
address the partially labeled class problem, where certain classes are labeled in one
dataset but not in another for the same organ during training. Our strategy also
mitigates the issue of overlapping target structures, such as the liver, liver vessels,
and liver tumors, by preserving the unique characteristics of different annotation
protocols for the same target structure. This approach ensures that, in cases where
one or more classes from different datasets refer to the same structure, the network
treats them as distinct. This accounts for the unknown and potentially variable
annotation protocols and labeling characteristics across datasets. Consequently, the
network must be able to predict multiple classes for a single voxel/pixel to accommo-
date these inconsistent class definitions. To address the label contradiction problem,
unlike the commonly used Softmax, we employed the Sigmoid activation function to
separate the outputs for each class. During training, each class was assigned an inde-
pendent segmentation head with parameters that share a common backbone within
the network. This enhancement enables the architecture to segment overlapping
classes while preserving all label properties from each dataset by assigning multiple
segmentation classes to a single pixel. At the classification layer, this adjustment
can be thought of as a binary segmentation problem.

The MMIS-Net (MultiModal Medical Image Segmentation Network) is composed
of five main components: a contracting path (the encoder), an expansion path (the
decoder), the similarity fusion block, residual connections, and a class-adaptive loss
function.
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The Contracting Path

The contracting path is used to capture contextual information and as we go down
the contracting path the image is halved after every convolutional block. Each
block consists of two 3x3 convolutions followed by a ReLU (Rectified Linear Unit)
activation function and next is followed by a 2x2 max-pooling, which reduces the
feature map by half.

The Expanding Path

The expanding path is used for pixel localization. As we go up the expanding path,
the feature map is doubled after every convolutional block by concatenating the
feature map of the expanding path with its corresponding map in the contracting
path. Each block in the expanding path is composed of a 2x2 transpose convolution,
followed by a concatenation, two 3x3 convolutions, and a ReLU activation function.

Similarity Fusion Blocks

The Similarity Fusion is a technique aimed at capturing cross-dimensional depen-
dencies in feature maps and handling datasets with inconsistent labels. This ap-
proach effectively models complex relationships across input dimensions, facilitating
improved representation learning and feature extraction by exploiting correlations
between spatial, temporal, or channel-wise relationships. Unlike the standard fu-
sion module [80], which achieves feature fusion through pixel-wise summation or
channel-wise concatenation, the similarity fusion block uses supervision and selec-
tion similarity knowledge to reduce irrelevant and noisy signals in the output. This
is crucial for capturing the synergistic potential of diverse datasets from multiple
modalities, encompassing different organs with various diseases, and for mitigating
negative knowledge transfer during training. Given an input image, we enhance its
quality and remove noise by applying a Gaussian filter [85] at various smoothing
rates using different sigma values, producing three new images. To further reduce
the noise, we use the Euclidean distance similarity measure [191] at the pixel level
to calculate the similarity. Pixels from the same position on all three images are
grouped together. Each group contains three pixels, one from each of the three
different feature maps. The pixel similarity is measured at the group level. Within
each group, the pixel that is most similar to the other two is chosen, while the
other two are excluded. The similarity is measured by finding the pixel with the
shortest distance to the other two. The similarity fusion block is integrated into
the network’s architecture before and after every convolutional block in both the
contracting and expanding paths. It is also used in the bridge layer. A high level
diagram to demonstrate the similarity block is shown at the bottom of Figure 5.1
and a snippet of the similarity fusion pseudocode is shown in Listing 1.
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Algorithm 1 Snippet of the Similarity Fusion Pseudocode

1: for each fusion map do
2: Generate three fusion maps at different smoothing scales
3: for each pixel do
4: for each position along the Z-axis do
5: Compute the similarity between pixels using the distance matrix
6: Select the two pixels with the shortest(minimum) distance
7: Fuse selected pixels across the Z-axis using Euclidean distance
8: Compute Euclidean distances:
9: d1 =

√
(O1 −O2)2 + (G1 −G2)2 + (Y1 − Y2)2

10: d2 =
√

(O1 −O3)2 + (G1 −G3)2 + (Y1 − Y3)2

11: d3 =
√

(O2 −O3)2 + (G2 −G3)2 + (Y2 − Y3)2

12: Select minimum distance:
13: dmin = min(d1, d2, d3)
14: end for
15: end for
16: end for

The Residual Connection

Residual connection [68] is a skip connection that enables the network to learn resid-
ual mappings instead of directly fitting the desired underlying mapping. Traditional
deep networks aim to approximate the underlying mapping H(x) using stacked lay-
ers. However, during training, it can be challenging for deeper networks to learn
these mappings effectively. Residual learning introduces the concept of learning
residual functions, denoted as F (x) = H(x)−x, where H(x) is the desired mapping
and x is the input to a certain layer. The residual connection is incorporated into the
network’s architecture at every level in both the contracting and expanding paths
to mitigate the problem of vanishing gradients.

The Class-adaptive Loss Function

The loss function used is a combination of cross-entropy and Dice loss. We employed
binary cross-entropy loss and a modified Dice loss.The regular dice loss is calculated
individually for each image in a batch, whereas we jointly calculate the dice loss for
all images in the input batch. This approach helps regularize the loss when only a
few voxels of one class appear in one image, while a larger area is present in another
image of the same batch. Consequently, inaccurate predictions of a few pixels in one
image have a limited impact on the overall loss.

Between the contracting and expanding paths is a bridge layer composed of a
similarity fusion block to ensure a smooth transition from one path to the other.
At the end of the expanding path is a classification layer to classify each pixel as
belonging to the background or one of the segmented classes.

Hyperparameter Settings

The encoder path consists of convolutional blocks, each containing a 3 × 3 × 3
convolutional layer, Batch Normalization (BN), ReLU activation, max pooling with
a 2 × 2 × 2 kernel, and zero padding with a stride of 2. The decoder path mirrors
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the encoder’s structure but replaces max pooling with upsampling and includes
concatenation with corresponding encoder features for precise reconstruction. The
network depth was set to 4, corresponding to an input size of 512×512×432 pixels.
The Similarity Fusion Blocks utilized Euclidean distance for pixel selection. The loss
function was a combination of cross-entropy and Dice loss, the learning rate was set
to 0.1, the batch size was 4, the optimizer used was Adam, and the maximum
training epoch was set to 1000, with early stopping used to avoid overfitting.

5.3 CVD Net Method

Figure 5.2: A high-level illustration of the CVD Net architecture. The convolutional
blocks at the CNN encoder for feature map extraction are shown in gray, those at
the CNN decoder for upsampling in green, and the Transformer blocks to capture
long-range dependencies at the encoder in yellow. F stands for flattening the maps
before feeding into the Transformer encoder, and R stands for reshaping the maps
before feeding into the CNN decoder.

CVD Net is composed of four main components: a CNN encoder, a domain-
specific batch normalization, a Transformer encoder, and a CNN decoder as demon-
strated in Figure 5.2. Details of these components are as follows.

CNN Encoder

The CNN Encoder is used to extract features from the input images and it is com-
posed of three convolutional blocks in series with residual connections. Each of the
block is followed by a batch normalization and and Rectified Linear Unit (ReLU)
activation. Given a raw image X ∈ RH×W×D whose spatial resolution is H × W and
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the depth (number of slices) D. The feature maps produced by the CNN Encoder
(F CNN) can be formally expressed as :

{f}Ll=1 = F l
CNN(x; Θ) ∈ RC×D× 2

l
×H× 2

l+1
×W× 2

l+1 (5.1)

where {f}Ll=1 is the feature map produced by the CNN Encoder, x is the input
image, L indicates the number of feature levels, Θ denotes the parameters of the
CNN encoder, and C denotes the number of channels.

Domain-specific Batch Normalization (DSBN)

The DSBN [29] is the batch normalization technique used at every convolutional
block within the CNN encoder to capture domain-specific information. The DSBN
consists of several batch normalization layers, each reserved for a specific domain
and a shared parameter backbone that retains common shared parameters to learn
general features applicable across all domains. By leveraging the generalizable fea-
tures learned by the shared backbone, and effectively mitigating negative knowledge
transfer, DSBN ensures that the model is not biased toward dominant domains and
enhances the model’s ability to generalize across diverse domains, thereby improving
its overall generalization capability.

Transfomer Encoder

The Transformer encoder is used to capture long-range dependencies from the ex-
tracted features. It is composed of an input-to-sequence layer and stacked de-
formable Transformer layers. The extracted features from the CNN encoder are
flattened into a 1D vector before being fed into the Transformer encoder. Due to
this, they lose some spatial information. To mitigate this problem, we employ sine
and cosine functions with different frequencies [187] to compute the positional coor-
dinates of each dimension. The Transformer encoder consists of transformer blocks
stacked in series. Each transformer block employs the self-attention mechanism
[219] to capture long-range dependencies by computing the weighted sum of the
input data based on the similarity between the input features. The self-attention
mechanism generates a trainable associative memory with a query (Q) and a pair
of key (K)-value (V) pairs to produce an output by linearly transforming the input.
This is represented as follows:

Attention(Q,K, V ) = Softmax

(
QKT

√
d

)
V (5.2)

where
√
d is a scaling factor based on the depth of the network. The output is

normalized and fed through a feed-forward multi-layer perceptron (MLP). Skip con-
nections are employed to avoid the vanishing gradient problem.

CNN Decoder

The output of the transformer encoder is fed to a CNN decoder. The CNN decoder
progressively upsamples the feature map through a series of convolutional blocks
consisting of a convolutional layer, normalization layer, and a ReLU activation us-
ing residual connections. At the end of the decoder path is a classification layer
for pixel classification. Assuming there are k classes, including the background,
the classification layer predicts k semantic masks. Ŝl ∈ Rh×w×k simultaneously,
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corresponding to each semantic label as demonstrated on Eqn (5.3)

Ŝ = argmax(Softmax(Ŝl, d = −1), d = −1) (5.3)

Where d = −1 indicates the Softmax and argmax operations performed across the
last dimension (the channel dimension). The loss functions is the sum of the cross
entropy and Dice loss which is express as follows :

L = λ1CE(Ŝ, D(S)) + λ2Dice(Ŝ, D(S)) (5.4)

Where CE and Dice represents cross entropy loss and Dice loss, respectively. D
denotes as the downsample operation. λ1 and λ2 represent the loss weights.

CVD Net was evaluated on the first task of the second edition of the HEad and
neCK TumOR (HECKTOR) challenge [7]. This task involves the automatic seg-
mentation of Head and Neck primary Gross Tumor Volume (GTVt) in PET/CT
images. The offline version of the challenge attracted 103 teams, resulting in 448
submissions. Here, we review some of the methods used by the top teams in the first
task of this challenge. Team Pengy secured the first position, achieving a mean Dice
score of 0.778. They utilized nnUNet [84], a self-configuring pipeline for medical
image segmentation. SJTU [6] ranked second with a mean Dice score of 0.7733.
Their method employed ResUNet [45] as a backbone, comprising three parts: the
first part for extracting the region of interest (ROI), the second part for training a
model based on the ROI, and the third part for refining the trained model. HiLab
[119] presented an ensemble of five deep learning methods and an attention mech-
anism, achieving a mean Dice score of 0.773. BCIOqurit [208] extended nnUNet
[84] by incorporating squeeze and excitation normalization [82] into the algorithm
backbone, achieving a mean Dice score of 0.7709. Another nnUNet based method
was presented by team Aarhus Oslo [153], achieving a mean Dice score of 0.779.
Team Aarhus Oslo obtained the best DS but also had a high rate of missing predic-
tions on one or multiple patients, hence it was ranked fifth by the organizers. The
Fuller MDA [135] introduced an ensemble of 3D residual U-Nets trained on a 10-fold
cross-validation and majority voting, obtaining a mean dice score of 0.7702.

Hyperparameter Settings

The CNN encoder path consists of 4 convolutional blocks, each containing a 3×3×3
convolutional layer, Batch Normalization (BN), ReLU activation, max pooling with
a 2 × 2 × 2 kernel, and zero padding with a stride of 2. The extracted feature
maps are then flattened into a 1D vector and passed into the Vision Transformer
(ViT) encoder. The output is then reshaped back into 3D convolutions before being
fed into the CNN decoder. The CNN decoder path mirrors the CNN encoder’s
structure but replaces max pooling with upsampling and includes concatenation
with corresponding encoder features to enhance spatial information reconstruction.
The DSBN consists of self-attention layers, normalization layers, and a Multi-Layer
Perceptron (MLP). The network depth was set to 4, corresponding to an input size
of 512× 512× 128 pixels. The loss function was a combination of cross-entropy and
Dice loss, the learning rate was set to 0.1, with a batch size of 4, and the optimizer
used was Adam. The maximum training epoch was set to 1000, with early stopping.
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5.4 Experiments

5.4.1 Dataset

In this chapter, two groups of datasets were used. The first group is a multi-
organ dataset which comprises of 10 benchmark datasets covering 19 organs across
2 modalities, while the second group is the HECKTOR 2022 benchmark dataset,
collected from 9 medical centers around the world.

Multi-organ

Figure 5.3: An illustration of B-Scans from different datasets of the Multi-organ
dataset, showcasing various organs, modalities, and diseases, highlighting the high
diversity of the datasets.

The Multi-organ dataset consist of a total of 10 datasets originating from the
Medical Segmentation Decathlon (MSD) [129], Pelvis [177], Pancreas CT [142],
KiTS19 [98], and RETOUCH [21], datasets. The datasets were annotated for 19
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anatomic structures, consisting of 1337 volumes across 2 modalities: computed to-
mography (CT) and optical coherence tomography (OCT). These datasets cover 19
segmentation tasks and one detection task. The MSD datasets used are as follows:
Liver: This dataset consists of 201 contrast-enhanced CT images from patients with
primary cancers and metastatic liver disease. The segmented regions of interest are
the liver and tumors inside. It was acquired at the IRCAD Hopitaux Universitaires,
Strasbourg, France. Pancreas: This dataset consists of 421 CT scans of of patients
undergoing resection of pancreatic masses. The segmented regions of interest are the
pancreatic parenchyma and pancreatic mass (cyst or tumor). It was acquired at the
Memorial Sloan Kettering Cancer Center, New York, USA. Hepatic Vessels: This
dataset consists of 443 CT scans of patients with a variety of primary and metastatic
liver tumors. The segmented regions of interest are the vessels and tumors within
the liver. It was acquired at the Memorial Sloan Kettering Cancer Center, New
York, US. Lung: This dataset consists of 96 CT scans of patients with non-small
cell lung cancer, and the segmented region of interest is the lung tumors. It was
collected from the Cancer Imaging Archive [24]. Spleen: This dataset consists of 61
CT scans of patients undergoing chemotherapy treatment for liver metastases, and
the segmented region of interest is the spleen. It was acquired at the Memorial Sloan
Kettering Cancer Center, New York, USA. Colon: This dataset consists of 190 CT
scans of patients undergoing resection of primary colon cancer, and the segmented
region of interest is the primary colon cancer. It was acquired at the Memorial Sloan
Kettering Cancer Center, New York, USA. KiTS19 [98]: This dataset consists of
300 CT scans. The segmented regions of interest are the kidneys and kidney tu-
mors. They were acquired at the University of Minnesota Medical Center, USA.
Pelvis [177]: This dataset consists of 50 CT scans, and the segmented regions of
interest are the uterus, bladder, rectum, and bowel. The dataset was acquired from
the Vanderbilt University Medical Center (VUMC), USA, and the Erasmus Medi-
cal Center (EMC) Cancer Institute in Rotterdam, the Netherlands. Pancreas CT
[142]: This dataset consists of 82 CT scans, and the segmented region of interest is
the pancreas. The dataset was acquired from the National Institutes of Health [142].
RETOUCH [21]: This dataset consists of 112 retinal optical coherence tomogra-
phy (OCT) scans of patients with early age-related macular degeneration (AMD)
and diabetic macular edema (DME), collected from three device vendors: Cirrus,
Spectralis, and Topcon. For a fair comparison, the training set consisting of 70 scans
is available to the public, and the testing set consisting of 42 hidden scans is held by
the organizers. Submission and evaluation of predictions on the testing dataset are
arranged privately with the organizers, and the results are sent to the participants.
The dataset was segmented for three regions of interest: intraretinal fluid (IRF),
subretinal fluid (SRF), and pigment epithelium detachments (PED). The dataset
was acquired from the Medical University of Vienna (MUV) in Austria, Erasmus
University Medical Centre (ERASMUS), and Radboud University Medical Centre
(RUNMC) in the Netherlands. Examples of the datasets are shown in Figure 5.3,
and further details about the datasets’ composition are provided in Table 5.1.
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Datasets Modality Labels Training Shape Spacing [mm]

Liver [129] CT Liver, L. Tumor 131 432x512x512 (1, 0.77, 0.77)
Lung [129] CT Lung nodules 63 252x512x512 (1.24, 0.79, 0.79)
Pancreas [129] CT Pancreas, P. Tumor 281 93x512x512 (2.5, 0.80, 0.80)
H. Vessels [129] CT H. vessels, H. Tumor 303 49x512x512 (5, 0.80, 0.80)
Spleen [129] CT Spleen 41 90x512x512 (5, 0.79, 0.79)
Colon [129] CT Colon cancer 126 95x512x512 (5, 0.78, 0.78)
Pelvis [177] CT Ut, Bl, Rec, Bow 30 180x512x512 (2.5, 0.98, 0.98)
Pancreas CT [142] CT Pancreas 82 217x512x512 (1, 0.86, 0.86)
KiTS19 [98] CT Kidney, K.Tumor 210 107x512x512 (3, 0.78, 0.78)
RETOUCH [21] OCT IRF, SRF, PED 70 128 x512x512 (0.01, 0.01, 0.05)
Total 1337

Table 5.1: Summary table of the datasets used, showing the modalities, anatomic
structures, number of training cases, median shapes, and image spacings. The ab-
breviations used in this table are L. Tumor, Liver Tumor; P. Tumor , Pancreas
Tumor; H. Vessels, Hepatic Vessels; H. Tumor, Hepatic Tumor; Ut, Uterus; Bl,
Bladder; Rec, Rectum; and Bow, Bowel.

HECKTOR 2022

Head and Neck (H&N) cancer is one of the most common worldwide and the fifth
leading cause of death globally [145], accounting for 4% of all cancer deaths in the
USA [173]. The head and neck squamous cell carcinoma (HNSCC) are the most
common form of H&N cancers, typically originating in the squamous cells lining
the mucosal surfaces of the mouth, throat, and voice box. Although head and neck
cancers can also develop in the salivary glands, sinuses, or muscles and nerves in the
head and neck, these types of cancer are much less prevalent than squamous cell
carcinomas [41], [175]. Effective treatment plans for H&N cancers exist in the form
of surgery, radiation therapy, chemotherapy, targeted therapy, immunotherapy, or
a combination of these treatments. However, the effectiveness of these treatments
depends on frequent monitoring and early detection of the disease.

The algorithms were evaluated on the HEad and neCK TumOR (HECKTOR)
2022 challenge benchmark dataset [7]. The dataset consists of 883 cases of PET/CT
images collected from 9 medical centers from 4 different countries using 12 different
medical devices. The dataset is split into 524 training cases from 7 different centers
and 359 hidden test cases from 3 different centers, 2 of which are new centers not
included in the training sets. The datasets were annotated by human experts for
three classes: 0 for background, 1 for primary tumors (GTVp), and 2 for Gross
Tumor Volumes (GTVn). A summary of the dataset is shown in Table 5.2. An
illustration depicting the high variability in image quality among images sourced
from the seven medical centers in the training set is shown in Figure 5.4.
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Figure 5.4: An example of a sagittal plane taken from each of the eight medical
centers in the training dataset of the HECKTOR 2022 dataset highlighting the high
variability in the image quality of the dataset. The GTVp is marked in red, and the
GTVn is marked in green
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Center Acronym Scanners
Training
Cases

Testing
Cases

Hôpital général juif,
Montréal,
Canada

HGJ
Discovery ST
GE Healthcare

55 None

Centre hospitalier universitaire
de Sherbooke, Sherbrooke,

Canada
CHUS

GeminiGXL 16
Philips

72 None

Hôpital Maisonneuve-Rosemont,
Montréal,
Canada

HMR
Discovery STE
GE Healthcare

18 None

Centre hospitalier de l’Université
de Montréal, Montréal,

Canada
CHUM

Discovery STE,
GE Healthcare

56 None

Centre Hospitalier
Universitaire Vaudois,

Switzerland
CHUV

Discovery D690 TOF
GE Healthcare

53 None

UniversitätsSpital Zürich,
Switzerland

USZ
Discovery HR, RX,

LS, TE, 690
None 101

Centre Henri Becquerel,
Rouen,
France

CHB
GE710

GE Healthcare
None 38

Centre Hospitalier
Universitaire de Poitiers,

France
CHUP

Biograph mCT 40 ToF
GE Healthcare

72 None

MD Anderson Cancer Center,
Houston, Texas,

USA
MDA

Discovery HR, RX,
ST, STE

198 200

Total 524 359

Table 5.2: The HECKTOR 2022 dataset [7] consists of 883 cases (524 for training
and 359 for testing) collected from 9 medical centers using 12 different scanners
across 4 different countries. The test dataset was collected from 3 different medical
centers, of which 2 were not used in the training set.
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5.4.2 Training and Testing

MMIS-Net

In the MMIS-Net all datasets were combined into a one-hot label space as demon-
strated in Table 5.3. This approach effectively handles annotations present in one
dataset but missing in another. For instance, in this work, there are two different
pancreas datasets: [129], which includes segmentations for the pancreas and pancreas
tumor, and [142], which includes segmentations only for the pancreas. The one-hot
label space efficiently separates these as different labels without overlap. During
training, MMIS-Net leverages the synergistic potential of one dataset to improve
the performance of the other and vice versa. It also supports overlapping target
structures, such as vessels or cancer classes within an organ, and retains different
annotation protocol characteristics for the same target structure. During training,
the following parameters were used: the learning rate was set to 0.1, the optimizer
was Adam [46], the maximum epoch was set to 1000, the sigma parameters were
fixed, and early stopping was used to avoid overfitting. The loss function used was
a combination of cross-entropy and Dice loss. Here we aimed to improve the seg-
mentation and detection performance on retinal OCT fluids. For this, we trained
the algorithm by combining the 1337 publicly available volumes of the training sets
of all 10 datasets and evaluated the results on the 42 volumes of the hidden test set
of the RETOUCH [21] dataset set. Three evaluation metrics were used: Dice Score
(DS): This measures the overlap between the predicted and ground truth segments,
calculated as twice the intersection divided by the union. It ranges from 0 to 1,
with 1 being the perfect score and 0 being the worst. Absolute Volume Difference
(AVD): This is the absolute difference between the predicted and ground truth vol-
umes. The value ranges from 0 to 1, with 0 being the best result and 1 being the
worst. Area Under the Curve (AUC): This measures the ability of a binary classifier
to distinguish between classes. The AUC score ranges from 0 to 1, with 1 being
the perfect score and 0 being the worst. The DS and AVD were used to evaluate
the segmentation of the retinal fluids on OCT scans, while the AUC was used to
evaluate the detection of fluids on the retinal OCT scans. For fair comparison, we
used the DS, AVD, and AUC evaluation metrics as they were the same evaluation
metrics used by the organizers of the RETOUCH grand challenge for the retinal
OCT dataset. Submissions are sent to the organizers, and the results are published
on the challenge website and also sent to the teams. Submissions are limited to
a maximum of three per team. The experimental setup was the same for all the
experiments. The algorithm was written in Python using PyTorch backend libraries.

CVD Net

The CVD Net was trained for maximum of 1000 epochs with early stopping [107]
to avoid over-fitting. Adam was the optimizer, and the learning rate was set to
0.01.The sum of the cross-entropy and Dice loss was taken as the loss function. For
a fair comparison of the performance of the CVD Net with other SOTA algorithms,
our model was evaluated on a blind test set on the organizer’s website. The ground
truth for this test set is held by the organizers and is not available to the public.
The hidden test set includes data from three medical centers, two of which are
new centers not used during training. CVD Net was trained on the entire training
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Assigned Value Region

0 Background
1 Liver
2 Liver tumor
3 Pancreas
4 Pancreas tumor
5 Hepatic vessels
6 Hepatic vessels tumor
7 Lung tumor
8 Spleen
9 Colon cancer
10 Bladder
11 Ulterus
12 Rectum
13 small bowel
14 Pancreas
15 Kidney
16 Kidney tumor
17 Intraretinal Fluid (IRF)
18 Subretinal Fluid (SRF)
19 Pigment Epithelium Detachments (PED)

Table 5.3: Table summarizing the labeling of the datasets in the one-hot label space.
The segmentation tasks are labeled from 0 to 19.

set of 524 volumes and tested on 359 volumes of the hidden test set from 3 medical
centers of which two were not seen at training. To further evaluate the generalization
performance of the CVD Net, the training dataset was split into two subsets: a
training subset and a testing subset. The testing subset consists of data from medical
centers not used in the training subset. The evaluation metric used was the Dice
Score (DS), which is twice the intersection divided by the union. It measures the
overlapping of the pixels, ranging from 0 to 1, with 1 being the perfect score and 0
being the worst. DS was the evaluating metric used by the challenge organizers, so
for fair comparison, we have used DS.

The Friedman test was used to detect differences in performance between the
algorithms evaluated on the segment classes per dataset. We computed the Fried-
man test statistic to check for significant differences and ranked the algorithms per
segment class.)

The models were implemented in Python using the PyTorch library, and were
trained on a GPU server with NVIDIA RTX A6000 48GB.

138 Chapter 5 Ndipenoch, Nchongmaje



Advancing Medical Image Segmentation and Generalization by Capturing Global
Context and Mitigating Negative Knowledge Transfer Across Multi-Source Data

5.4.3 Results

This section presents a comparison of our results with other state-of-the-art (SOTA)
architectures. Both methods were evaluated on the hidden test sets of the RE-
TOUCH and HECKTOR 2022 challenges. For the MMIS-Net, we employed the
Friedman test to assess the statistical significance of the algorithms’ performance
based on the combination of all three metrics: Dice Score (DS), Average Volume
Difference (AVD), and Area Under the Curve (AUC). The results, including algo-
rithm rankings and scores, are presented in Table 5.6. Also, the results for both
algorithms are published online on the respective challenge websites and are com-
pared with the SOTA models or leading teams in each competition. RETOUCH
wesite1 HECKTOR website2 .

Multi-organ

From the experimental results we observed the following:

1. The MMIS-Net outperformed the SOTA algorithms on the segmentation task
with a clear improvement in both DS and AVD, obtaining a mean of 0.83 and
0.035, respectively, on the RETOUCH retinal OCT hidden test set.

2. The MMIS-Net obtained the best DS score in all three fluid classes and the
best AVD in two out of the three classes for the segmentation task on the
RETOUCH retinal OCT hidden test set.

3. The MMIS-Net achieved a perfect AUC score of 1 alongside two other SOTA
algorithms for the detection task on the RETOUCH retinal OCT hidden test
set.

4. CVD Net obtained the best mean AVD of 0.031 on the RETOUCH retinal
OCT hidden test set.

5. CVD Net obtained the best AVD of 0.032 for the segmentation of the PED
fluid on the RETOUCH retinal OCT hidden test set.

6. For the RETOUCH retinal OCT segmentation and detection tasks, as well as
the segmentation task, we notice a constant and steady high performance of
the MMIS-Net algorithm, highlighting its robustness and generalizability.

7. The Friedman test on the combination of all 3 metrics: Dice Score (DS),
Average Volume Difference (AVD), and Area Under the Curve (AUC) revealed
statistically significant differences between at least two algorithms, with a p-
values of 0.0041 and a Friedman test statistic of 27.3192.

Segmentation measured in DS and AVD on the RETOUCH retinal OCT hidden
test set is highlighted in Table 5.4, and the detection task measured in AUC is
highlighted in Table 5.5, with their corresponding bar charts in Figure 5.5 and
Figure 5.6, respectively. To further demonstrate the high performance of the MMIS-
Net, a visualization comparison of the predicted output of 5-fold cross validation on
the RETOUCH training dataset is demonstrated in Figure 5.7.

1https://retouch.grand-challenge.org/Home/
2https://hecktor.grand-challenge.org/Overview/
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Methods/Teams
Dice Score (DS) Absolute Volume Difference (AVD)

IRF SRF PED Avg. IRF SRF PED Avg.

MMIS-Net 0.85 0.81 0.83 0.83 0.018 0.015 0.071 0.035
nnUNet RASPP 0.84 0.80 0.83 0.823 0.023 0.016 0.083 0.041
nnU-Net 0.85 0.78 0.82 0.817 0.019 0.017 0.074 0.036
CVD Net 0.78 0.77 0.83 0.79 0.039 0.021 0.032 0.031
SFU 0.81 0.75 0.74 0.78 0.030 0.038 0.139 0.069
SAMedOCT 0.77 0.76 0.82 0.78 0.042 0.020 0.033 0.032
IAUNet SPP CL 0.79 0.74 0.77 0.77 0.021 0.026 0.061 0.036
UMN 0.69 0.70 0.77 0.72 0.091 0.029 0.114 0.078
MABIC 0.77 0.66 0.71 0.71 0.027 0.059 0.163 0.083
SVDNA 0.80 0.61 0.72 0.71 – – – –
RMIT 0.72 0.70 0.69 0.70 0.040 0.072 0.1820 0.098
RetinAI 0.73 0.67 0.71 0.70 0.077 0.0419 0.2374 0.118
Helios 0.62 0.67 0.66 0.65 0.0517 0.055 0.288 0.132
NJUST 0.56 0.53 0.64 0.58 0.1130 0.0968 0.248 0.153
UCF 0.49 0.54 0.63 0.55 0.2723 0.1076 0.2762 0.219

Table 5.4: Performance evaluations of methods/teams, grouped by segmented classes
and averages (Avg.), on the hidden test set of the RETOUCH grand challenge,
measured in Dice Score (DS) and Absolute Volume Difference (AVD).

Figure 5.5: Comparison of performance evaluations for methods/teams, categorized
by segmented classes and averages (Avg.), on the hidden test set of the RETOUCH
grand challenge, measured with Dice Score (DS) and Absolute Volume Difference
(AVD), presented in bar charts.
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Methods IRF SRF PED Avg.

MMIS-Net 1.0 1.0 1.0 1.0
nnUNet 1.0 1.0 1.0 1.0
SFU 1.0 1.0 1.0 1.0
nnUNet RASPP 0.93 0.97 1.0 0.97
CVD Net 0.92 0.96 1.0 0.96
Helios 0.93 1.0 0.97 0.97
UCF 0.94 0.92 1.0 0.95
MABIC 0.86 1.0 0.97 0.94
UMN 0.91 0.92 0.95 0.93
RMIT 0.71 0.92 1.0 0.88
RetinAI 0.99 0.78 0.82 0.86
NJUST 0.70 0.83 0.98 0.84

Table 5.5: Evaluation performance of the fluids detection, measured in Area Under
the Curve (AUC), grouped by segmented classes with their averages in columns and
teams in rows on the hidden test set of the RETOUCH grand challenge.

Figure 5.6: Performance evaluation of fluid detection, measured by Area Under the
Curve (AUC), categorized by segmented classes and their averages, and grouped by
teams on the hidden test set of the RETOUCH grand challenge.
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Number of segment classes: 3
Number of algorithms : 12
Degrees of freedom: (11, 2)
Significance level (alpha): 0.05
p-value: 0.0041
Friedman statistic: 27.3192
Hypothesis: Alternative Hypothesis
Significant: There is a significant difference between at least two
algorithms (p-value < 0.05).

Rank Algorithm Ranking Score
1 MMIS-Net 1.33
2 nnU-Net 2.33
3 nnUNet RASPP 2.67
3 CVD Net 2.67
4 SFU 3.67
5 UMN 6.00
6 MABIC 6.33
7 Helios 7.00
8 RMIT 7.67
9 RetinAI 8.33
10 UCF 9.00
11 NJUST 10.00

Table 5.6: The ranking (from best to worst) of the teams/algorithms based on the
combination of all 3 metrics: Dice Score (DS), Average Volume Difference (AVD),
and Area Under the Curve (AUC), using the Friedman test (a non-parametric test)
indicates a significant difference between at least two of the algorithms, with a p-
value of 0.0041 < 0.05 and a Friedman test statistic of 27.3192.
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Figure 5.7: A visualization of B-Scans demonstrating the performance of MMIS-Net
on the training set of the Retouch dataset using a 5-fold cross-validation. Orange
arrows highlight details captured by MMIS-Net.
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HECKTOR 2022

Evaluation results on the hidden HECKTOR 2022 testing dataset from from three
medical centers, of which two medical centers are new and not in the training set,
show that CVD Net obtained a mean dice score of 0.77492 (0.77603 for GTVp and
0.77382 for GTVn) and MMIS-Net achieved a mean Dice score of 0.7734 (0.7740 for
GTVp and 0.7737 for GTVn) as demonstrated in Table 5.7 with the corresponding
bar chart in Figure 5.8. To further illustrate the generalization ability of our
algorithm, we trained the CVD Net on a subset of the training dataset and evaluated
the performance on a holding subset from independent medical center not seen
during training. Additionally, we provide comparisons of our proposed CVD Net to
other SOTA specialized and foundational models in this domain. This is illustrated
in Table 5.8. B-Scans of the coronal view showing the raw data, annotated/ground
truth, and corresponding predictions from different models are illustrated in Figure
5.9, demonstrating the slight performance advantage of CVD Net.

Methods/Teams GTVp GTVn Mean

NVIDIA(Nvauto) [133] 0.80066 0.77539 0.78802
CVD Net 0.77603 0.77382 0.77492
MMIS-Net 0.77340 0.77400 0.77370
nn-UNet [84] 0.77485 0.76938 0.77212
MA-SAM [31] 0.67052 0.74453 0.70753

Table 5.7: Segmentation table of the Dice Scores (DS) by segment classes: primary
tumors (GTVp) and Gross Tumor Volumes (GTVn) in columns, and algorithm-
s/teams in rows. The evaluation performance by training on the entire training set
from six medical centers and testing on the holding testing set from three medical
centers, including two new independent medical centers not included in the training
set.

Figure 5.8: A visualisation comparison measured in Dice Scores (DS) by segment
classes: primary tumors (GTVp) and Gross Tumor Volumes (GTVn), grouped by
algorithms/teams. The evaluation performance by training on the entire training set
from six medical centers and testing on the holding testing set from three medical
centers, including two new independent medical centers not included in the training
set.
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Methods Training Testing GTVp GTVn Mean

CVD Net
CHUM, CHUP, CHUS,
CHUV, MDA, HGJ

HMR 0.7628 0.7781 0.7705

nnUNet [84]
CHUM, CHUP, CHUS,
CHUV, MDA, HGJ

HMR 0.7598 0.7758 0.7678

MA-SAM [199]
CHUM, CHUP, CHUS,
CHUV, MDA, HGJ

HMR 0.5718 0.5879 0.5799

CVD Net
CHUM, CHUP, CHUS,
CHUV, MDA, HMR

HGJ 0.7891 0.7634 0.7763

nnUNet [84]
CHUM, CHUP, CHUS,
CHUV, MDA, HMR

HGJ 0.7807 0.7597 0.7702

MA-SAM [199]
CHUM, CHUP, CHUS,
CHUV, MDA, HMR

HGJ 0.6710 0.5781 0.6255

CVD Net
CHUM, CHUP, CHUS,
CHUV, MDA, HGJ

CHUV 0.7781 0.7672 0.7727

nnUNet [84]
CHUM, CHUP, CHUS,
CHUV, MDA, HGJ

CHUV 0.7719 0.7596 0.7658

MA-SAM [199]
CHUM, CHUP, CHUS,

HGJ, MDA, HMR
CHUV 0.6212 0.5949 0.6081

Table 5.8: A table comparing the generalizability performance of segmentation in
Dice Scores (DS) by segment classes (columns) and algorithms (rows) for training
on the training subset from five medical centres and testing on the holding testing
set from an independent centre not seen during training.
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Figure 5.9: Coronal planes visualization comparing predictions from different ar-
chitectures to the ground truth/human annotations and raw images. The GTVp is
marked in red, and the GTVn is marked in green.
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5.5 Summary

In this chapter, we have investigated the problem of knowledge transfer by combining
datasets from multiple data sources, modalities, organs, and disease types. We used
domain knowledge and similarity knowledge adapters to combat the problems of
negative knowledge transfer and generalizability. We propose two novel algorithms
which are MMIS-Net, and CVD Net.

1) MMIS-Net is designed to segment multiple lesions from various organs across
diverse image modalities using a single model. To address the issue of negative
knowledge transfer, MMIS-Net introduces Similarity Fusion Blocks within its archi-
tecture. These blocks utilize supervised and selective knowledge transfer for feature
map fusion at the pixel level, effectively reducing irrelevant and noisy signals in the
output. Additionally, we efficiently created a one-hot label space to address the
inconsistent class definitions and label contradictions from diverse modalities and
body regions.

2) CVD Net (Convolutional Neural Network and Vision Transformer with Domain-
Specific Batch Normalization), which combines CNNs for feature extraction, Vision
Transformers for capturing long-range dependencies, and domain-specific adapters,
to extract domain specific features and share common features across domain, reduc-
ing negative knowledge transfer thereby improving the overall model’s generalization
ability.
Both algorithms were evaluated on the multi-organ and HECKTOR 2022 datasets.
Results on the hidden test sets of the RETOUCH and HECKTOR challenges show
that:

1. MMIS-Net achieved a top mean Dice score (DS) of 0.83 and an absolute vol-
ume difference (AVD) of 0.035 for the retinal fluids segmentation task, along
with a perfect Area Under the Curve (AUC) of 1 for the fluid detection task,
outperforming state-of-the-art, specially designed algorithms and large foun-
dation models for medical image segmentation on the RETOUCH hidden test
set.

2. On the HECKTOR hidden test set, MMIS-Net achieved a mean Dice score
of 0.774, which is comparable to state-of-the-art, specially designed models
and outperforms large foundation models for medical image segmentation by
a clear margin.

3. CVD Net achieved the best mean absolute volume difference (AVD) of 0.031
on the RETOUCH retinal OCT hidden test set..

4. CVD Net achieved the best absolute volume difference (AVD) of 0.032 for the
segmentation of PED fluid on the RETOUCH retinal OCT hidden test set.

5. CVD Net achieved a mean Dice score of 0.77492 on the RETOUCH hidden test
set, which is comparable to specifically designed state-of-the-art architectures
and exceeds the performance of large foundation models for medical image
segmentation by a clear margin.

6. We have demonstrated the high generalizability of the CVD Net by training
on a subset from the training set, comprising data from six centers, and test-
ing it on data from a new center (a holding subset of the training dataset).

Chapter 5 Ndipenoch, Nchongmaje 147



Advancing Medical Image Segmentation and Generalization by Capturing Global
Context and Mitigating Negative Knowledge Transfer Across Multi-Source Data

We achieved state-of-the-art (SOTA) performance, surpassing that of large
foundation models while using fewer resources.

7. We have demonstrated that while large foundation models, show promising
generalization performances for this specific problem, specifically tailored deep
networks such as MMIS-Net, CVD Net, and nnUNet still offer a slight advan-
tage for addressing these particular problems.

We believe the superior performance of both algorithms can be attributed to the
following factors:

MMIS-Net: The integration of two key features into the CNN backbone: (i)
Similarity Fusion blocks for supervision and similarity-based knowledge selection,
which enhance feature map fusion, and (ii) a one-hot label space to address in-
consistent class definitions and label contradictions. This label space allows for
handling of classes that are present in one dataset but absent in another while pre-
serving distinct annotation protocol characteristics for the same target structure
during training.

CVD Net: The use of a hybrid backbone combining a Convolutional Neural
Network (CNN) for feature extraction and a Vision Transformer (ViT) to capture
long-range dependencies, along with Domain-Specific Batch Normalization to ad-
dress negative knowledge transfer.

MMIS-Net and CVD Net complement each other and should be used in different
scenarios for future research depending on the size of the dataset. MMIS-Net is
built on a CNN backbone, and CNNs are known for their ability to capture local
contextual features [51]. Therefore, it would be suitable for projects with small or
medium-sized datasets. On the other hand, CVD Net is a hybrid combination of
CNN and ViT (Transformers). Transformers are known for their ability to capture
long-range dependencies [51] and would be suitable for projects with very large
datasets.
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Chapter 6

Discussion and Conclusion

6.1 Introduction

This work has presented novel approaches to enhance the detection, segmentation,
and generalization of diseases in medical images, focusing on both specifically de-
signed architectures and universal/general architectures. This chapter evaluates the
methods, contributions, and outcomes of these approaches, with reference to the
research objectives outlined in Section 1.1.

This chapter is organized as follows: Section 6.3 provides an overview of the
research, summarizing the introduction from Chapter 1, the literature review from
Chapter 2, and the key contributions and innovations presented in Chapters 3, 4,
and 5. Next, Section 6.5 highlights the practical implications of the work. Finally,
Section 6.4 outlines the limitations of the study, followed by Section 6.6, which offers
suggestions for future research directions.

6.2 Summary of the Thesis and Main Findings

Deep learning methods have been successful in the segmentation and detection of
diseases in medical images. However, most of these methods are trained and tested
on data from the same sources, hence fail to generalize to new, unseen data like
in real-world scenarios. One of the main reasons for this limitation is the domain
shift between training and testing datasets. A potential solution to this problem
is to develop a single, universal, and generalizable model by combining data from
diverse sources, modalities, organs, and disease types. However, simply merging
these diverse datasets can lead to another challenge known as Negative Knowledge
Transfer, where knowledge gained from one domain or dataset negatively impacts
others, ultimately degrading the overall model performance. In this thesis, we pro-
pose novel architectures to enhance the generalization performance of deep learning
models for the segmentation and detection in medical image and it is summarized
as follows:

First Chapter 1 introduces this work, outlining its aim and objectives, the thesis
structure, the significance of the study, its practical implications, scope, and data
collection process.

Chapter 2 provides a comprehensive review of recent advancements in the field,
categorized into 6 main areas: Specific Models, Domain Adaptation, Universal
Model, Federated Learning, Fine-tuning, and Foundation models. Additionally, it
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summarizes several large publicly available annotated medical image datasets from
various sources.

Our first contribution is presented in Chapter 3 : Enhancing Retinal Disease
Detection, Segmentation, and Generalization with an ASPP Block and Residual
Connections Across Diverse Data Sources. Here, we proposed a novel architecture
termed nnUNet RASPP, for the detection, segmentation, and generalization of 3
retinal diseases from diverse data sources collected using 3 different manufacturer
devices. nnUNet RASPP was evaluated on the RETOUCH challenge dataset [21],
and experimental results on the hidden test set demonstrate that nnUNet RASPP
outperforms current state-of-the-art (SOTA) architectures, including large founda-
tion model for medical image segmentation by a clear margin. nnUNet RASPP is
currently the winner of both the online and offline versions of the challenge. The
work is published in [136].

In Chapter 4 we present our second contribution : Dynamic Network for Global
Context-Aware Disease Segmentation in Retinal Images Using Multiple ASPP and
SE Blocks. In this chapter, we propose a novel architecture called Deep ResUNet++.
The algorithm was evaluated on 2 benchmark datasets: the Annotated Retinal OCT
Images (AROI) [131] and the Duke DME [40] dataset. Experimental results show
that Deep ResUNet++ outperforms the current SOTA algorithms by a clear margin
on these benchmarks. This work presented is published in [140], and [139].

Our third and final contribution is presented in Chapter 5:Enhancing Medical
Image Segmentation Through Knowledge Transfer with Domain-Specific Adapters
Across Diverse Data Sources. Here, we propose two novel algorithms: a pure Con-
volutional Neural Network (CNN) called MMIS-Net and a hybrid model combining
CNN and Vision Transformer (ViT) called CVD Net. Both architectures were eval-
uated on two sets of datasets. The first set consists of 19 benchmark datasets across
two modalities, while the second set is the HEad and neCK TumOR (HECKTOR)
challenge 2022 dataset [7] collected from 9 medical centers across the world for 2
modalities. Experimental results on the hidden test set of the RETOUCH Grand
Challenge dataset show that MMIS-Net outperforms the current SOTA algorithms,
including large foundation models for medical image segmentation, by a clear mar-
gin. Also, results on the hidden test set of the HECKTOR dataset indicate that
CVD Net achieves performance comparable to SOTA algorithms. The CVD Net is
published in [137], while MMIS-Net is currently under review for journal publication.
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6.3 Contributions

This research focuses on enhancing disease/pathogen detection, segmentation, and
generalization in medical images. The key contributions are summarized as follows:
Enhancing Retinal Disease Detection, Segmentation, and Generalization
with an ASPP Block and Residual Connections Across Diverse Data
Sources:
Chapter 3 investigates the potential of capturing global contextual features at vary-
ing rates to enhance segmentation and generalization performance in a specifically
designed architecture. This is achieved by incorporating an Atrous Spatial Pyramid
Pooling (ASPP) block just before the input layer within the nn-UNet architec-
ture [84], resulting in a novel algorithm termed nnUNet RASPP. The ASPP was
used to : (i) effectively capture structures of varying sizes within the images, (ii)
adapt more effectively to different dataset characteristics, such as variations in res-
olution and noise, (iii) capture both local and global context, and (iv) reduce the
model’s over-reliance on features from any single scale. Adding residual connec-
tions to address overfitting. Additionally, we conducted a performance evaluation of
the top teams in the RETOUCH challenge, highlighting the different architectures
employed. The nnUNet RASPP was evaluated on the MICCAI 2017 RETOUCH
Grand Challenge benchmark dataset [21], which was acquired from multiple sources
using three vendor devices. Experimental results on the hidden test set demon-
strated that nnUNet RASPP outperformed state-of-the-art specific designed archi-
tectures and large foundation models for medical image segmentation by a clear
margin. Additionally, nnUNet RASPP exhibited excellent generalization perfor-
mance on new, unseen data. The results are published on the organizer’s website 1,
and we are the current winners of both the online and offline challenge.
Dynamic Network for Global Context-Aware Disease Segmentation in
Retinal Images Using Multiple ASPP and SE Blocks :
Chapter 4 explores the potential of capturing global contextual features at vary-
ing rates to enhance the segmentation and generalization of diseases/pathogens
in medical images, to propose a novel algorithm, called Deep ResUNet++. The
Deep ResUNet++ integrates multiple Atrous Spatial Pyramid Pooling (ASPP) and
Squeeze-and-Excitation (SE) blocks at various locations to effectively capture global
contextual features. Additionally, residual connections are incorporated in both the
encoding and decoding paths to address the vanishing gradient problem. The ar-
chitecture is built on a dynamic convolutional neural network (CNN) backbone
that adjusts its kernel size and network depth based on the input, providing en-
hanced adaptability and performance. The use of multiple ASPP and SE blocks in
a CNN segmentation network offers a more detailed and effective method for feature
extraction, context aggregation, and feature recalibration. Deep ResUNet++ was
evaluated on two benchmark datasets: the Annotated Retinal OCT Images (AROI)
dataset and the Duke DME dataset, which were collected from patients with two
different disease types. Experimental results demonstrate that Deep ResUNet++
significantly outperformed current state-of-the-art architectures by a clear margin.
On the AROI dataset, Deep ResUNet++ achieved a mean Dice score of 0.98, sur-
passing the second-best model by 0.01 (1%) and consistently scoring above 0.90
across all classes. On the Duke DME dataset, it achieved a mean Dice score of 0.88,

1https://retouch.grand-challenge.org/Home/
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outperforming the second-best model by 0.02 (2%).
Enhancing Medical Image Segmentation Through Knowledge Transfer
with Domain-Specific Adapters Across Diverse Data Sources:
Chapter 5 addresses the challenge of limited annotated medical datasets by combin-
ing multiple small annotated datasets from various sources, modalities, and disease
types to build a unified model with high generalizability. We propose two novel
algorithms utilizing knowledge transfer and domain-specific adapters:
1) MMIS-Net (MultiModal Medical Image Segmentation Network): This approach
tackles label inconsistency from multiple data sources by creating effective one-hot
labels and incorporating similarity fusion blocks into the U-Net architecture.
2) CVD Net (Convolutional Neural Network and Vision Transformer with Domain-
Specific Batch Normalization): Building on the previous methods, CVD Net inte-
grates Domain-Specific Batch Normalization (DSBN) with a combination of CNN
and Transformer architectures. The DSBN was used to capture and share domain-
specific context within a shared parameter backbone, thereby reducing the transfer
of negative knowledge and improving the model’s generalization ability.

Both MMIS-Net and CVD Net were trained on two groups of datasets. The first
group consisted of 10 benchmark datasets covering 19 organs across two modali-
ties, while the second group included the HECKTOR 2022 dataset, collected from 9
medical centers around the world. For a fair comparison, MMIS-Net and CVD Net
were evaluated on hidden test datasets. Experimental results demonstrated that
both algorithms outperformed state-of-the-art, task-specific algorithms and large
foundation models by a significant margin. Additionally, MMIS-Net and CVD Net
exhibited high generalizability on new, unseen data. The results are published on
the respective challenge websites: RETOUCH wesite2 and HECKTOR website3 .
To effectively detect, diagnose, and monitor diseases and pathogens in medical im-
ages, it is crucial to understand human organ anatomy, structure, the changes caused
by disease, imaging techniques, their effects, and their consequences. The appendix
provides a brief review of the anatomical structures, diseases, and imaging tech-
niques related to the primary organs studied.

2https://retouch.grand-challenge.org/Home/
3https://hecktor.grand-challenge.org/Overview/
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6.4 Limitations

Despite the success and advancements of deep learning methods for medical im-
age segmentation, and the contributions of this research, certain limitations remain,
some of which are briefly discussed below.

1. Network Dimensional Adaptability: In Chapter 3, we introduced
nnUNet RASPP, a 3D algorithm that outperformed state-of-the-art 3D meth-
ods on the RETOUCH dataset. However, as demonstrated in Chapter 4, its
performance did not translate effectively when evaluated on 2D B-Scans. We
attribute this limitation to the lack of the third dimension in 2D B-Scans,
which otherwise provides valuable spatial correlation between scans in volu-
metric images. Consequently, when transitioning from 2D to 3D, nnUNet RASPP
creates an artificial third dimension, which may introduce additional noise into
the dataset, ultimately leading to poorer performance.

2. Manual Parameter Setting: In Chapter 4, we introduced Deep ResUNet++,
in which key hyper-parameters, such as batch size and learning rate, were set
manually (trying an error). This approach does not guarantee optimal perfor-
mance.

3. Data Hunger: In Chapter 5, we introduced CVD Net, a hybrid approach
that combined convolutional neural networks (CNNs) and vision transformers
(ViTs). As demonstrated in [51], ViTs are more data-hungry than CNNs, and
therefore, a sufficiently large dataset is required to combine both backbones
efficiently.

4. Limited Computational Resources: Also, in Chapter 5, we introduced
MMIS-Net, that combined data from diverse sources, modalities, organs, and
disease types to significantly minimize the domain shift gap and increase the
size of the training set. This, in turn, demands substantial computational
power, which stretched our computational resources and limited our ability to
train models on larger datasets.

5. Imbalanced Dataset Size: Furthermore, in Chapter 5, there was variation
in the size of datasets within the multi-organ dataset, for training, smaller
datasets were augmented to match the size of the larger ones. This process
can introduce additional noise into the training dataset.

6. Evaluation Metrics: In Chapter 2, various evaluation metrics such as Dice
Score (DS), Intersection over Union (IoU), Absolute Volume Difference (AVD),
and accuracy are used to assess model performance. However, these metrics
each rely on different evaluation techniques, and different researchers may
prioritize different metrics. This lack of standardization complicates direct
comparison between models, making it difficult to achieve a fair assessment of
state-of-the-art algorithms.

7. Dynamic Network Adjustment: In Chapter 4, we introduced
Deep ResUNet++, a dynamic network that adapts based on the input image
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shape and dataset size. This approach can be further improved by adjusting
the network based on the disease.

8. Generalization Beyond Evaluated Datasets: Although the work pre-
sented in this thesis was trained on 11 benchmark datasets covering 20 seg-
mentation tasks across 2 modalities, the architectures were tested on 2 datasets
across 3 modalities. Expanding the testing datasets to include more structures
and modalities would further validate and demonstrate the generalization per-
formance of the models.

9. Limited Image Modality: The work presented in this thesis was evaluated
on three imaging modalities: CT, PET, and OCT. Expanding the number of
modalities to include others such as X-ray, MRI, and ultrasound would further
increase the model’s diversity and enhance its generalization ability.

10. Limited Test Submissions: Two of the datasets used in this work were
obtained from online competitions/challenges. These competitions provide a
fair comparison platform for participants by keeping the labels of the testing
datasets hidden from the public. However, one limitation of this approach is
the restricted number of submissions allowed per participant, which limits the
number of experiments that could be conducted for each dataset.

11. Lack of Automation: In this work, we have proposed 4 separate novel
approaches. However, one limitation is the absence of a unified framework that
integrates all 4 algorithms. Such a framework could automatically determine
the most suitable algorithm for a given dataset or problem.

12. Exploration of Other Backbones: Although this work has reviewed and
explored the two most predominantly used backbones in deep learning: CNN
and ViT. It did not explore other backbones, such as Mamba[121] from state-
space models, or hybrid combinations of Mamba, CNN, and ViT.

Addressing these limitations is crucial for further advancing in deep learning
models in medical image segmentation and generalization.
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6.5 Significance and Impacts

The models developed in this work can be directly applied to diagnose and monitor
disease progression in medical images. Given their high performance and generaliza-
tion capability, these models can assist in diagnosing diseases at early stages, even
when they are not easily detectable by human experts. This makes them valuable
decision-support tools, providing a reliable second opinion.

Also, the the Deep ResUNet++ demonstrated an overall performance higher
than the inter-observer variability (agreement between human expert annotators),
indicating that the model can handle less complex, time-consuming tasks, allowing
doctors to focus on more challenging cases.

In addition, the models require fewer computational resources compared to large
foundation models, making them reliable, portable, and deployable. This ensures
their applicability even in areas with limited internet access.

Furthermore, significant work has been done in the diagnosis and segmentation
of diseases in medical imaging using deep learning methods. However, most of these
approaches are task-specific, with limited emphasis on generalization across multiple
and diverse data sources. This research addresses that gap by contributing models
designed to generalize effectively across diverse datasets, organs, disease types, and
modalities.

Our work is published on the public domain and provides a new benchmark for
further research and comparison in the in the generalization and segmentation of
diseases in medical images. In addition, we have compiled and shared resources
and links to large multi-source datasets and public code bases for medical image
segmentation tasks providing valuable resources for researchers in the field.

The models developed in this work have the potential to improve patient care by
facilitating early and accurate disease detection while reducing the socio-economic
burden on both patients and healthcare systems.
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6.6 Future Research Directions

While the research presented in this thesis shows promising results and lays a strong
foundation for further exploration, several key areas deserve focus in future work:

Self-Parameterize: In the future, we plan to transform the Deep ResUNet++
into a self-parameterizing framework, addressing the issue of manual parameter
setting (trying an error). This modification would enable the model to automatically
select the optimal parameters for a given dataset.

Cropping The Region of Interest: One way to reduce space complexity is by
reducing the size of the images. In the future, for the MMIS-Net network, we plan
to incorporate a pre-processing step that identifies and crops the region of interest.
This enhancement would ensure that only a subset of the image is used for training,
thereby reducing the computational resources required for training.

Imbalanced Dataset Size: In MMIS-Net, to address the issue of imbalanced
dataset sizes, we augmented the smaller datasets to match the size of the largest
dataset using standard deep learning data augmentation techniques such as flipping,
cropping, and rotation. However, these approaches can introduce additional noise
into the dataset. In the future, we plan to leverage the presence of unlabeled datasets
on public domain and use Generative Adversarial Networks (GANs) to generate
labeled data from unlabeled datasets, thereby increasing the size of smaller datasets
more effectively.

MMIS-Net with Domain Adaption: In Chapter 5, we introduced MMIS-
Net, a CNN-based backbone architecture that combined multiple datasets into a
single label space. In the future, we plan to explore the potential of handling each
domain separately by incorporating domain-specific adapters into the network, with
each per domain and a shared parameter space to share knowledge common across
all domains. This approach would be similar to CVD Net but without the inclusion
of transformers.

Combining Image and Tabular Data: So far, all the models presented in
this research have been trained exclusively on image data. However, most of the
datasets used also include tabular data with attributes such as patient demographics,
which could be valuable for training. In the future, we plan to explore the potential
of integrating both tabular and image data for training to improve the model’s
performance.

New Test Cases : Broadening the scope of the testing dataset to include sam-
ples from different organs, modalities, and disease types would further validate the
generalizability and robustness of our algorithms. In the future, we plan to evaluate
our algorithms to more datasets once they are publicly available.
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Appendix A

Overview of Anatomical
Structures

To effectively diagnose and monitor diseases using medical images, it is essential to
understand the general structure, anatomy, and morphological changes of the human
body. This research focuses on two key anatomical regions: the eye, and head and
neck. In this section, we provide a brief overview of the anatomy, morphology, and
common pathological changes associated with these areas.

A.1 Human Eye Anatomy Overview

Figure A.1: An illustration depicting the primary components of the human eye.
Image taken from [81]
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Sight is one of the most important human senses, and the eye is the primary
organ responsible for it. The human eye is composed of many parts, some of which
are briefly discussed below:
Retina: The layer of cells at the back of the eye that converts light into electrical
signals, which are sent to the brain, allowing us to see images.
Macula: The central area of the retina responsible for central vision.
Fovea: A small depression inside the macula where vision is the sharpest.
Choroid: Located between the retina and the sclera (the white part of the eye), it
contains blood vessels that provide nutrients to the eye.
Optic Disc: The area where the retina connects to the optic nerve, which is critical
for vision as it transmits visual information to the brain.
Blood Vessels: The blood vessels that support the inner retina. The central
retinal artery and its branches supply the retina with oxygen and nutrients, while
the central retinal vein and its branches remove carbon dioxide and waste.
Light rays entering the eye are focused on the retina, which senses the light and
converts it to electrical impulses. These impulses are sent through the optic nerve
to the brain, which interprets them as the images we see. The retina consists of
hundreds of millions of neurons, many of which are photoreceptors that detect and
respond to light. There are two types of photoreceptors: rods and cones. Rods
detect motion and enable vision in dim lighting conditions. They are distributed
throughout the retina, with a concentration along its periphery. Cones allow us to
see color and detail; they are concentrated in the macula, a small area in the central
part of the retina.
An illustration showing the main components and structure of the human eye is
provided in Figure A.1.
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Retinal Structure Analysis

Figure A.2: A scan of the eye illustrating the retinal at the top and it’s corresponding
layers at the bottom.

The retina is a light-sensitive layer of nerve tissue at the back of the eye that
receives images and sends them as electric signals through the optic nerve to the
brain. The structure of the eye, as depicted in [155], shows the layers of the retina, as
demonstrated in Figure A.2. The retina comprises several layers, generally classified
into 10 distinct layers:
1) Inner limiting membrane (ILM): The innermost surface bordering the neural
retina and vitreous humor, containing astrocytes and the end feet of Muller cells.
2) Nerve fiber layer (NFL): The second innermost layer of the retina, consisting
of nerve fibers from the ganglion cells.
3) Ganglion cell layer: Contains the retinal ganglion cells (RGCs) and displaced
amacrine cells.
4) Inner plexiform layer: Composed of a dense network of interlaced dendrites
from RGCs and cells of the inner nuclear layer.
5) Inner nuclear layer: Contains the cell bodies of bipolar cells, horizontal cells,
and amacrine cells.
6) Outer plexiform layer (OPL): Features neuronal synapses between rods and
cones and the footplates of horizontal cells.
7) Outer nuclear layer (ONL): Contains the rod and cone granules that sense
photons, as well as extensions from the rod and cone cell bodies.
8) External limiting membrane (ELM) : Includes the bases of the rod and cone
photoreceptor cell bodies.
9) Layer of rods and cones: Contains the photoreceptor cells (rods and cones)
themselves.
10) Retinal pigmented epithelium (RPE): A single layer of cells tightly joined
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to form a barrier between the retina and the underlying choroid, supporting the
retina.

Retinal Diseases

Figure A.3: A scan of the retina illustrates fluid leakage affecting the retina due
to neovascularization in age-related macular degeneration (AMD) at the top, vision
loss in AMD at the bottom right, and vision loss in diabetic macular edema (DME)
at the bottom left. Images taken from [154]
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Many eye diseases manifest in the retina, including age-related macular degen-
eration (AMD) and diabetic macular edema (DME), both of which can severely
impair vision. AMD and DME are leading causes of vision impairment in developed
countries [108]. AMD predominantly affects older patients, while DME is common
among working-age individuals.
Macular edema: This is the swelling of the central retina caused by leakage from
the retinal capillaries and the subsequent accumulation of fluid within the intercel-
lular spaces of the retina. This condition leads to sudden and severe vision loss and
often occurs secondary to retinal diseases such as AMD and DME.
Age-related macular degeneration (AMD): This is an eye disease that blurs
central vision. It primarily affects older adults and is a leading cause of vision loss
in this demographic. While AMD does not cause complete blindness, it can severely
impair central vision. AMD is painless and does not affect the appearance of the
eyes. There are two types of AMD:
1) Dry AMD (atrophic AMD): This is an early stage of AMD which is more com-
mon, less severe, and progresses slowly over several years. It is characterized by the
thinning of the macula and the presence of drusen (yellow deposits). A few small
drusen might not affect your vision initially, but as they increase in size and number,
they can cause vision to dim or become distorted.
2)Wet AMD (neovascular AMD): It is an advanced stage of AMD that is less com-
mon, more severe and leads to faster vision loss. It occurs when unstable blood
vessels grow beneath the macula. These vessels leak blood and fluid into the retina,
causing vision distortion. This condition can also result in blind spots and loss of
central vision. Over time, the bleeding and abnormal blood vessels can form a scar,
leading to permanent central vision loss.
Some of the symptoms of AMD include blurred or reduced central vision, difficulty
recognizing faces, and a dark or empty area in the center of vision.
Diabetic macular edema (DME): This involves the accumulation of excess fluid
in the extracellular space within the retina, causing swelling in the macular area.
This condition leads to blurred vision and is common among diabetic patients and
working-age adults.
The symptoms of DME can vary but commonly include: Blurred Vision: Especially
in the central visual field. Distorted Vision: Straight lines may appear wavy. Color
Perception Changes: Colors may appear washed out or less vibrant. Floaters: Small
spots or strings floating in your vision. Difficulty Reading or Seeing Faces: Due to
the central vision impairment.
Diabetic retinopathy(DR): This occurs when damaged blood vessels in the eye
leak blood or fluid into the retina, a condition caused by the accumulation of sugar
in the blood due to diabetes. DR severely impairs vision and is common among
working-age adults. Initially, diabetic retinopathy may cause no symptoms or only
mild vision problems, but it can eventually lead to blindness.
Diabetic retinopathy(DR):
1)Non-Proliferative Diabetic Retinopathy (NPDR): Early stage, where blood vessels
weaken and leak fluid or blood.
2)Proliferative Diabetic Retinopathy (PDR): Advanced stage, where new, abnormal
blood vessels grow, leading to severe vision problems.
Common symptoms of DR include: Spots or dark strings floating in vision, blurred
vision, fluctuating vision, and vision loss.
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Retinal detachment (RD): This occurs when the retina is pulled away from its
normal position at the back of the eye. Although it can be repaired with surgery,
prompt detection and treatment are crucial to prevent sight loss in the affected eye.
There are three types of retinal detachment:
1)Rhegmatogenous: Caused by a tear or break in the retina.
2)Tractional: Occurs when scar tissue pulls on the retina.
3) Exudative: Fluid accumulates under the retina without a tear or break.
The most common symtoms of DR include, Sudden flashes of light, floaters, a shadow
or curtain over a part of the visual field. An example demonstrating the changes
in retinal structure caused by swelling and fluid leakage, along with vision loss in
AMD and DME, is illustrated in Figure A.3.

Retinal Disease Treatment Options

Currently, there is no cure for these diseases. Treatment for retina diseases varies
depending on the specific condition and its severity. Common treatments include:
Anti-VEGF Injections: Medications like ranibizumab, aflibercept, or bevacizumab
are injected into the eye to inhibit vascular endothelial growth factor (VEGF), re-
ducing abnormal blood vessel growth and leakage.
Corticosteroids: Injections or implants, such as dexamethasone or fluocinolone,
can reduce inflammation and swelling.
Laser Photocoagulation: Uses laser energy to seal leaking blood vessels and reduce
fluid accumulation.
Surgery: Vitrectomy might be necessary in severe cases to remove vitreous gel and
scar tissue affecting the macula.
The effectiveness of these treatments depend on early diagnosis and effective moni-
toring of the disease progression. Early diagnosis allows doctors to advise patients
on behavioral changes, such as change of diet and engaging in regular exercise, which
can slow the disease’s progression or even prevent it from advancing to more severe
stages. Currently, much of this work is done manually, which is time-consuming and
prone to error. Additionally, anti-VEGF drugs are expensive and must be adminis-
tered frequently over an extended period, posing a socio-economic burden on both
patients and the healthcare system. Hence the need to develop an automated tool
for the diagnosis and monitoring of the disease progress.
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Retinal Imaging Techniques

Figure A.4: A fundus photograph showing the Macular, Fovea, Blood vessels, optic
disc and optic cup.

The two most commonly used retinal imaging techniques are fundus photography
and optical coherence tomography (OCT).
Fundus photography: The back part of the inside of the eye is called the fundus.
It is where the retina, macula, fovea, choroid and optic disc, as well as blood vessels,
are located. Fundus photography employs multiple lenses and a camera to capture
2D images of the fundus. The first commercially available fundus camera produced
by Carl Zeiss in 1926 [143].

Optical Coherence Tomography (OCT) : Optical Coherence Tomography
(OCT) is a 3D, non-invasive imaging technique that provides detailed cross-sectional
scans of the eye, revealing the retinal structure and anatomy and can be used to
analyze and monitor the presence of pathogens or diseases in the retina. OCT
uses light waves, typically in the near-infrared spectral range, to measure retinal
thickness and distinct layers, with a penetration depth of several hundred microns
in tissue [20]. The backscattered light is captured using an interferometric setup to
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reconstruct the depth profile of the sample at the selected location. By acquiring a
series of cross-sectional slices (B-scans), OCT produces high-resolution 3D images
of the retina quickly, non-invasively, and painlessly. [77], [72]. OCT is similar to
ultrasound imaging, but it uses light instead of sound. Developed in the 1990s [77],
OCT became commercially available in 2006.

Figure A.5: An example of the retina Optical coherence tomography (OCT) volume.

Figure A.6: OCT acquisition and the coordinate system: 1D axial scans (A-scans,
purple) are combined to create 2D cross-sectional slices (B-scans, red) by scanning
through the volume in a raster scan pattern (blue). Multiple B-scans are then
compiled to form a complete OCT volume. Image taken from [21]

The OCT imaging technique involves multiple steps and a specific coordinate
system, as illustrated in Figures A.6 and A.7 and briefly discussed:
A-scan (Axial Scan): The fundamental unit of OCT imaging is the A-scan, a one-
dimensional depth scan that measures the reflection of light at different depths in
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Figure A.7: An example illustration of a retina Optical Coherence Tomography
(OCT) image showing an A-scan, B-scan, and 3D views. Image taken from [162]

the retina. Each A-scan captures the reflectivity profile along a single line through
the tissue, providing information about the internal structure of the retina along
that line. In diagrams, A-scans are often represented in purple.
B-scan (Cross-Sectional Scan): Multiple A-scans are combined side-by-side to
create a two-dimensional cross-sectional image, known as a B-scan. This 2D slice
provides a detailed view of the retina’s layers and any abnormalities present within
that plane. B-scans are typically represented in red. The B-scan is generated by
moving the OCT beam across the retina in a linear fashion, collecting a series of
adjacent A-scans.
Raster Scan Pattern: To form a three-dimensional (3D) volume, the OCT sys-
tem performs multiple B-scans in a systematic manner, often following a raster scan
pattern. In this pattern, the OCT beam is moved in a grid-like fashion across the
retinal surface, capturing a series of B-scans that cover the entire area of interest.
This process is shown in blue in illustrations.
OCT Volume: The complete OCT volume is constructed by stacking these se-
quential B-scans together. This 3D representation allows for the examination of
the retinal structure in great detail, providing valuable insights into various retinal
conditions and diseases.
The coordinate system for OCT imaging typically includes:
X-axis: Represents the lateral (horizontal) dimension within the plane of the retina,
corresponding to the direction of the B-scan.
Y-axis: Represents the axial (depth) dimension, corresponding to the direction of
the A-scan.
Z-axis: Represents the second lateral (vertical) dimension, perpendicular to the
direction of the B-scan, and it corresponds to the stacking of multiple B-scans to
create the volume.
The detailed 3D visualization provided by OCT allows for early detection and mon-
itoring of diseases such as Age-related Macular Degeneration (AMD) and Diabetic
Macular Edema (DME). An illustration of the OCT scan is shown in Figure A.5.
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OCT Device Manufacturers

Optical Coherence Tomography (OCT) devices are manufactured by several compa-
nies, each offering unique technological features and specifications tailored for oph-
thalmic imaging. Here’s an overview of some prominent OCT device manufacturers:

Carl Zeiss Meditec
Device Series: Cirrus OCT
Features: Cirrus OCT systems are known for their high-resolution imaging capa-
bilities, offering detailed visualization of retinal layers and structures. They use
spectral domain OCT (SD-OCT) technology, which provides faster image acquisi-
tion and higher axial resolution compared to earlier time domain OCT (TD-OCT)
systems.

Heidelberg Engineering
Device Series: Spectralis OCT
Features: Spectralis OCT systems combine OCT with confocal scanning laser
ophthalmoscopy (cSLO). This integration allows simultaneous imaging of retinal
structures and fundus autofluorescence (FAF). Spectralis devices are noted for their
depth-resolved imaging and tracking features, enabling precise alignment for follow-
up scans over time.

Topcon
Device Series: Topcon OCT
Features: Topcon offers a range of OCT systems catering to different clinical needs.
Their devices utilize spectral domain OCT (SD-OCT) technology, providing high-
resolution cross-sectional images of the retina. Topcon OCT systems are recognized
for their ease of use, advanced image processing, and comprehensive analysis soft-
ware.
Each manufacturer may have multiple models within their OCT device series, vary-
ing in features such as scan speed, resolution, depth penetration, and additional
functionalities like angiography or widefield imaging capabilities. These devices
play a critical role in diagnosing and monitoring various retinal diseases, including
diabetic retinopathy, age-related macular degeneration, and glaucoma, by providing
detailed structural information of the retina non-invasively and in real-time.

Differences Between Retinal Fundus and OCT Images

Retinal fundus photography and retinal Optical Coherence Tomography (OCT) are
two distinct imaging techniques used in ophthalmology for evaluating the retina,
each offering unique perspectives and information. Here are some of the key differ-
ences and complementarities between these imaging techniques:

Nature of Imaging:
Fundus Photography: Provides a wide-angle, 2D view of the retina, including
the optic disc, macula, and peripheral retina.
OCT: Produces high-resolution, 3D cross-sectional images of retinal layers and
structures, offering detailed information about retinal thickness and morphology.
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Information Provided:
Fundus Photography: Offers a panoramic view useful for identifying surface-level
abnormalities like hemorrhages, drusen, and vascular changes.
OCT: Enables visualization of individual retinal layers, allowing detection of subtle
changes such as fluid accumulation, retinal thinning, or thickening.

Clinical Use:
Fundus Photography: Commonly used for screening, monitoring diabetic retinopa-
thy, hypertensive retinopathy, and macular degeneration.
OCT: Essential for diagnosing and managing diseases affecting retinal structure,
including macular edema, retinal detachment, and glaucoma.

Resolution and Depth:
Fundus Photography: Lower resolution compared to OCT, but captures a wide
field of view in a single image.
OCT: Higher resolution and depth-resolved images, providing quantitative data on
retinal thickness and pathology.

Complementarity:
Fundus Photography: Provides context and overview of retinal health, guiding
the need for further OCT examination.
OCT: Offers detailed structural information not visible with fundus photography
alone, supporting precise diagnosis and treatment monitoring.

In clinical practice, these techniques are often used complementarily: fundus photog-
raphy for initial screening and broad assessment, and OCT for detailed evaluation
of specific retinal structures and pathology. Together, they provide comprehensive
insights into retinal health and pathology, aiding in the management of various eye
diseases.
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A.1.1 Head and Neck Cancer Overview

Figure A.8: An illustration showing the head and neck cancer regions. Image taken
from [70]
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Head and neck cancer is a broad term encompassing various cancers in the larynx,
throat, lips, mouth, nose, and salivary glands. These cancers typically originate in
the squamous cells lining the mucosal surfaces of these areas, such as the inside of
the mouth, throat, and voice box, and are known as squamous cell carcinomas of
the head and neck. Although it is less common, head and neck cancer can also begin
in the salivary glands, sinuses, muscles, or nerves in these regions. Head and neck
cancers are among the most common cancers globally, ranking as the 5th leading
cancer by incidence [41], [175], [47]. Some of the most common forms of head and
neck cancers include:
Oral cancer: Forms in the lips, tongue, gums, the lining of the cheeks and lips, the
roof and floor of the mouth, or behind the wisdom teeth.
Oropharyngeal cancer: Affects the middle part of the throat (oropharynx), with
tonsil cancer being the most common type.
Hypopharyngeal cancer: Affects the bottom part of the throat (hypopharynx).
Laryngeal cancer: Affects the voice box (larynx), which houses the vocal cords.
Nasopharyngeal cancer: Affects the upper part of the throat (nasopharynx).
Salivary gland cancer: Affects the salivary glands, which produce saliva.
Nasal cavity and paranasal sinus cancer: Forms in the hollow area inside the
nose (nasal cavity) or the hollow spaces in the bones surrounding the nose (paranasal
sinuses).
Head and neck cancer sometimes spread to the lymph nodes in the upper part of
the neck. Despite their locations, brain, eye, esophageal, and thyroid cancers aren’t
typically considered head and neck cancers, as they require different treatments from
those used for head and neck cancer. An illustration of the head and neck cancer
regions is shown in Figure A.8
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Symptoms of Head and Neck Cancer

Figure A.9: A diagram summarizing the symptoms of head and neck cancer.

The symptoms of head and neck cancer vary depending on the location where
the cancer originates. Some of the most common symptoms include:
Lumps or Swelling: A persistent lump or swelling in the neck, throat, or jaw that
does not go away. A lump or sore inside the mouth.
Sore Throat: A persistent sore throat or the feeling that something is caught in
the throat. Pain or difficulty swallowing (dysphagia).
Voice Changes: Hoarseness or changes in the voice that last more than two weeks.
Persistent cough or coughing up blood.
Mouth Issues: Red or white patches in the mouth or on the tongue. Unexplained
bleeding in the mouth. Persistent sores or ulcers in the mouth that do not heal.
Nasal Symptoms: Nasal congestion or blocked sinuses that do not clear. Frequent
nosebleeds or unusual nasal discharge. Pain around the upper teeth or problems with
dentures.
Ear Pain: Ear pain or trouble hearing. Ringing in the ears (tinnitus).
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Weight Loss: Unexplained weight loss.
Difficulty Breathing: Shortness of breath or noisy breathing.
Facial Pain or Numbness: Persistent pain or numbness in the face or neck.
Difficulty Moving the Jaw: Problems with jaw movement or pain when opening
the mouth. A summary of the symptoms of head and neck cancer is illustrated in
Figure A.9
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A.2 Treatment for Head and Neck Cancer

Effective treatments for head and neck cancer include surgery, radiation therapy,
and chemotherapy, either individually or in combination. The specific treatment
plan depends on various factors including the cancer’s stage and location. Early de-
tection and ongoing monitoring are crucial for successful treatment outcomes. These
methods will be briefly discussed.
Surgery: There are three main types of surgery used to treat head and neck cancer,
Tumor Resection: Removal of the tumor and some surrounding healthy tissue.
Neck Dissection: Removal of lymph nodes if the cancer has spread.
Reconstructive Surgery: To restore function and appearance after tumor removal.
Radiation Therapy: High-energy beams are used to destroy cancer cells. Can
be used alone or in combination with surgery and/or chemotherapy. Types include
external beam radiation and brachytherapy.
Chemotherapy: Uses drugs to kill cancer cells or stop them from growing. Often
combined with radiation therapy (chemoradiation) for greater effectiveness. The
two main types of chemotherapy are:
Targeted Therapy: Drugs designed to target specific molecules involved in cancer
cell growth. Examples include monoclonal antibodies and tyrosine kinase inhibitors.
Immunotherapy: Boosts the body’s immune system to fight cancer. Checkpoint in-
hibitors are a common type used in head and neck cancer.

Head and Neck Cancer Imaging Techniques

Imaging techniques for head and neck cancers are crucial for diagnosis, staging, treat-
ment planning, and monitoring response to therapy. Some of the primary imaging
techniques include:
Computed Tomography (CT) Scan: Provides detailed cross-sectional images
of the head and neck region, aiding in determining the size, shape, and location of
tumors. It is useful for detecting lymph node involvement and assessing the extent
of the disease.
Magnetic Resonance Imaging (MRI): Offers high-resolution images of soft tis-
sues, making it superior for evaluating the extent of tumor invasion into surrounding
tissues such as muscles, nerves, and blood vessels. It is particularly useful for cancers
in complex anatomical areas like the base of the skull.
Positron Emission Tomography (PET) Scan: Often combined with CT (PET/CT)
to provide both metabolic and anatomical information. It helps detect metastases,
evaluate the metabolic activity of the tumor, and is useful for staging and assessing
treatment response.
Ultrasound: Used to evaluate cervical lymph nodes and guide fine-needle aspira-
tion biopsies. It is non-invasive and readily available.
X-rays: Generally used for initial assessment and in conjunction with other imaging
modalities. Panoramic dental X-rays can help detect oral cancers involving the jaw.
Endoscopy: Involves inserting a flexible tube with a camera (endoscope) through
the nose or mouth to visualize internal structures. It is useful for direct visualization
and biopsy of tumors in the upper aerodigestive tract.
Barium Swallow: A specialized X-ray procedure where the patient swallows a
barium-containing liquid. It helps visualize the esophagus and detect abnormalities
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related to swallowing issues.
Sialography: An imaging technique used to evaluate the salivary glands. It in-
volves injecting a contrast agent into the salivary ducts followed by X-ray imaging.
These imaging techniques provide critical information that aids in the comprehensive
management of head and neck cancers, from initial diagnosis to treatment planning
and follow-up.
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