Sedentary time and cardiometabolic biomarkers

Association between total daily sedentary time and cardiometabolic biomarkers in older

adults: A systematic review and meta-analysis

- 4 Rebecca L Jones¹, Daniel L Cooper^{2,3}, Julia K Zakrzewski-Fruer⁴, and Daniel P Bailey^{2,3}
- 6 Health Advancement Research Team (HART), School of Psychology, Sport Science and Wellbeing,
- 7 University of Lincoln, Lincoln, UK
- 8 ² Department of Sport, Health and Exercise Sciences, Brunel University London, Uxbridge, UK
- ⁹ Centre for Physical Activity in Health and Disease, College of Health, Medicine and Life Sciences,
- 10 Brunel University London, Uxbridge, UK
- ⁴ Institute for Sport and Physical Activity Research, School of Sport Science and Physical Activity,
- 12 University of Bedfordshire, Bedford, UK

ABSTRACT

1

2

3

5

1314

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

Background: Older adults engage in the highest levels of sedentary behaviour across all age groups. Yet, the extent to which sedentary time is associated with cardiometabolic health in older adults is unclear. This systematic review and meta-analysis examined associations between daily sedentary time and cardiometabolic biomarkers in older adults. Methods: Peer-reviewed articles in participants aged ≥60 years that studied the association between daily sedentary time and ≥1 cardiometabolic biomarker were eligible. Five electronic databases (PubMed, CINAHL, Medline, Web of Science and PsycINFO) were searched. Screening, data extraction and study quality were undertaken independently by two reviewers. Meta-analyses were undertaken using random effects models based on correlation and regression coefficients. Methodological quality was assessed using the Joanna Briggs Institute checklist. Results: Twenty-eight articles were included with sample sizes ranging from 30 to 62,754 participants. Increasing daily sedentary time was adversely associated with body mass index (Hedge's g: 0.32; P=0.001), waist circumference (Hedge's g: 0.45; P<0.001), body fat percentage (Hedge's g: 0.61; P=0.012) and fat mass (Hedge's g: 0.30; P=0.018). There were also unfavourably associations with systolic blood pressure (Hedge's g: 0.37; P=0.047), blood glucose (Hedge's g: 0.30; P=0.044), triglycerides (Hedge's g: 0.36; P=0.039) and HDL cholesterol (Hedge's g: 0.34; P=0.034). Conclusions: Increased daily sedentary time is adversely associated with body composition, systolic blood pressure and blood biomarkers in older adults. Therefore, limiting sedentary behaviour should be considered an important target in this population group for improved cardiometabolic health.

1. INTRODUCTION

The global prevalence of diabetes is estimated at 10.5% (536.6 million people) in adults aged 20 to 79 years¹. There are an estimated 523 million prevalent cases of cardiovascular disease (CVD) and 19.8 million deaths worldwide due to CVD per annum².³. The risk of CVD and CVD-mortality increases with age⁴. Older adults have the highest prevalence of diabetes, affecting 24% of individuals aged 75 to 79 years¹, and nearly half of all individuals living with Type 2 diabetes mellitus (T2DM) aged ≥65 years⁵. Prevalence of hypertension also increases with age, affecting 75% of adults aged 60 years and over in the National Health and Nutrition Examination Survey⁶. Clinical guidelines emphasise lifestyle management as a priority for those with an elevated risk of cardiometabolic disease⁶. Despite the promotion of moderate to vigorous-intensity physical activity (MVPA)⁶, large proportions of older adults are physically inactive⁶¹¹¹¹.

Limiting sedentary behaviour may be more achievable than increasing MVPA and is now recommended in global physical activity guidelines for older adults⁸. Older adults engage in the highest levels of sedentary behaviour across all age groups^{12,13}, with studies demonstrating that this population group spend between 62 and 80% of their waking day sedentary^{14,15}. A large body of literature suggests that higher volumes of sedentary time are associated with an elevated risk of T2DM and CVD in the general population, and older adults^{16,17}. The increased risk of cardiometabolic diseases associated with higher sedentary time may be independent of physical activity¹⁶⁻¹⁸. To understand the mechanisms though which sedentary time increases cardiometabolic disease risk and to inform targeted interventions, it is pertinent to explore associations of this behaviour with individual and clustered CVD and T2DM biomarkers (i.e., metabolic syndrome risk factors). In community-dwelling adults aged ≥55 years, daily sedentary time was unfavourable associated with diastolic blood pressure (DBP) and high-density lipoprotein (HDL) cholesterol but was not associated with waist circumference or fasting glucose¹⁹. Inconsistent findings have also been reported in other studies of older adults for individual biomarkers and the metabolic syndrome^{20,21}. A synthesis of evidence is, therefore, warranted to overcome the limitations of drawing conclusions from individual studies and provide precise effects regarding the relationship between sedentary behaviour and cardiometabolic biomarkers in older adults.

An overview of systematic reviews examining sedentary behaviour and health in adults found that reducing or breaking up sedentary time may benefit markers of cardiometabolic risk²². That said, this included only one systematic review specific to older adults²³, which found mixed evidence across 26 studies with respect to

63 cardiometabolic biomarkers, and none included a meta-analysis. Furthermore, the metabolic and vascular

dysfunction that occurs with ageing may mean that findings in adults are not directly relevant to older adults²⁴.

- Thus, the association between sedentary time and cardiometabolic biomarkers in older adults remains unclear.
- Understanding this relationship is important to identify if sedentary behaviour should be a target for reducing
- 67 CVD and T2DM risk in this population.

68

64

- 69 The primary aim of this study was to provide an up-to-date systematic review and meta-analysis of evidence
- 70 concerning the association of daily sedentary time with traditional cardiometabolic biomarkers in older adults. A
- 71 secondary aim was to assess whether the associations observed were influenced by the method of exposure
- measurement, i.e. self-report versus device-assessed sedentary time.

73

74

75

2. METHODS

2.1. Review Protocol

- 76 This review was conducted and reported according to the Preferred Reporting Items for Systematic Reviews and
- 77 Meta-Analysis guidelines ²⁵. Ethical approval was obtained from the Institutional Ethics Committee (application
- 78 number: *anonymised*). The study protocol was registered with PROSPERO (*anonymised*).

79

80

2.2 Eligibility Criteria

- The search criteria used the Population, Intervention, Comparator, Outcomes and Study design framework ²⁶
- 82 (Table 1). Articles needed to report the association of daily sedentary time with at least one cardiometabolic
- 83 biomarker in older adults aged ≥60 years to be eligible. The cardiometabolic biomarkers of focus for this review
- 84 were traditional clinical metabolic syndrome risk factors and additional lipoprotein and body composition
- 85 outcomes. Cross-sectional or prospective studies were eligible, in addition to studies that undertook analysis of
- 86 baseline data from randomised controlled trials. Review articles, conference abstracts, and grey literature were
- 87 excluded. Articles were limited to English language only.

88

89

2.3 Information Sources

- 90 Five electronic databases (PubMed, CINAHL, Medline, SPORTDiscus and PsycINFO) were searched to identify
- original research articles published in peer-reviewed journals in the last 20 years up to 13th June 2024. A systematic

block search of Boolean terms was developed in PubMed and implemented in three blocks: sedentary time, cardiometabolic biomarkers and older adults (**Supplementary Material 1**). The reference lists of relevant articles and review articles were hand-searched to identify any further studies and were added to full-text screening manually. The results of the search were imported into rayyan²⁷ for eligibility screening.

2.4 Study Selection and Extraction of Data

Three reviewers (RLJ, LDC and DPB) undertook eligibility screening and data extraction. Following the removal of duplicates, each article title and abstract was screened independently by two reviewers. Full text articles were then assessed for eligibility independently by two reviewers. Discrepancies were resolved through discussion between the first and second reviewer, with any further disagreements being resolved by consulting a third reviewer. The following data was extracted from each eligible article independently by two authors: author, year of publication, study design, sample characteristics (age and sex), country of study, method of measuring sedentary time, cardiometabolic biomarker(s) assessed, confounders adjusted for in the analysis and results (correlation or regression coefficient including odds ratio, β coefficient, and r). Corresponding authors were contacted by email to acquire relevant data if necessary.

2.5. Study Quality

The methodological quality of the papers was assessed independently by two reviewers (DLC and JKZ) using the Joanna Briggs Institute checklist for analytical cross-sectional studies²⁸. Study quality criteria focused on definition of the inclusion criteria, description of the study sample and setting, measurements and outcomes being recorded in valid and reliable ways, identification of confounding factors, and appropriateness of statistical analysis. Each criterion was recorded as 'Yes', 'No', 'Unclear' or 'Not applicable' (**Table 3**). If more than 50% of items (>4 criterion) were recorded as 'No' or 'Unclear', papers were considered high risk of bias and excluded²⁹.

2.6. Data Synthesis

Data for the most adjusted correlation or regression coefficient was used for the meta-analysis. Where SD was not provided, this was estimated from standard error or 95% confidence intervals (CI). Standardised mean differences (SMDs) and Hedge's g effect sizes were calculated, which enabled dichotomised and continuous outcome data to be pooled³⁰. Hedge's g effect sizes of 0.2, 0.5 and 0.8 were considered small, moderate and large, respectively³¹. Data was pooled for meta-analysis when at least three studies reported data for the same cardiometabolic

biomarker. Random effects meta-analyses were conducted for each eligible outcome using Jamovi for Windows (Version 2.3, Sydney, Australia). Meta-analyses were conducted for all available data (overall effect), as well as separate models for self-reported and device-assessed sedentary time (subgroup analysis). Heterogeneity (I² statistic) for each outcome was categorised as low (\geq 30%) moderate (\geq 50%) or high (\geq 75%)³². High heterogeneity was also indicated from the pooled data with a Q statistic of P \leq 0.05. To assess publication bias, forest and funnel plots were developed with asymmetry being assessed using Egger's Regression Test (> 10 studies) or visual inspection (< 10 studies²⁸). Data is reported as Hedge's g effect sizes. Statistical significance was accepted at P \leq 0.05.

For the narrative synthesis, including biomarker outcomes that were not meta-analysed, data is presented in terms of the number of studies that did or did not observe significant associations between sedentary time and cardiometabolic biomarker outcomes. To provide a more coherent analysis, cardiometabolic biomarkers were grouped into body composition, blood pressure, glycaemic, lipid and other cardiometabolic biomarkers.

3. RESULTS

3.1 Article selection

- A total of 38,808 articles were identified from the search. Following duplicate removal, 23,174 articles remained for title and abstract screening, from which 23,064 studies were excluded. Full texts were retrieved for 110 articles
- and assessed for eligibility. Twenty-eight articles, including 82,806 participants, met the eligibility criteria and
- were included in this review (**Figure 1**).

141

142

135

136

3.2 Study quality ^{33–36}

- 143 All 28 studies meeting eligibility criteria were also eligible for inclusion based on study quality assessment (Table
- 2). Common methodological issues across the studies included a) a lack of information about inclusion criteria,
- exclusion criteria or both $(k = 18^{20,33,35,37-51})$, and b) poor quality of exposure $(k = 6^{33,37-39,52,53})$ or outcome $(k = 6^{33,37-39,52,53})$
- 146 442,43,45,52) assessment (e.g., including a small number of valid days required for device-measured sedentary time
- assessment and self-reported measures to calculate BMI). The range for 'yes' responses was 4 to 8, median of 7.
- Reviewer agreement was 95%.

149

150

3.3 Study characteristics

- 151 Study characteristics are displayed in **Table 3**. All studies used a cross-sectional design and were conducted across
- 152 15 different countries (Australia [k = 4]; United States [k = 4]; Brazil [k = 3]; Portugal [k = 3]; United Kingdom
- 153 [k=3]; Finland [k=2]; Sweden [k=2]; Belgium and Hong Kong [k=1]; China [k=1]; Japan [k=1]; Korea [k=1]; Korea [k=1]; Korea [k=1]; Korea [k=1]; Lapan [k=1]; Lapan [k=1]; Korea [k=1]; Korea [k=1]; Lapan [k=1]; Lap
- 154 = 1]; Netherlands [k = 1]; Spain [k = 1]; Taiwan [k = 1]). Sample size ranged from 30 to 62,754 participants.
- Females and males were included in all but three studies, in which two reported only female data^{40,54} and one
- reported only male data⁴⁴. Mean age of the samples ranged from 65⁵⁵ to 84 years⁵⁶. Mean age was not stated in
- two studies, instead reporting \geq 65 years⁴⁵ or sub-grouped into 60-69 years⁴¹. All but one study⁵⁶ investigated
- younger older adults i.e., ages 60-80 years. A wide array of cardiometabolic biomarkers were assessed, the most
- common being BMI (k = 14), waist circumference (k = 10), HDL cholesterol (k = 7), metabolic syndrome (k = 6),
- triglycerides (k = 6), DBP (k = 5), and SBP (k = 5). The method of sedentary time measurement also varied across
- the 28 studies, with 19 studies using accelerometery to provide device-assessed data (only three used activPal to
- capture changes in posture) and nine studies employing a self-report assessment (the majority, six out of nine,
- used the International Physical Activity Questionnaire [IPAQ]). The procedures used to measure each outcome
- are shown in **Supplementary Material 3.**

3.4 Sedentary time and body composition

Meta-analyses revealed that daily sedentary time was adversely associated with BMI (Hedge's g: 0.32; P = 0.001), waist circumference (Hedge's g: 0.45; P < 0.001), body fat percentage (Hedge's g: 0.61; P = 0.012) and fat mass (Hedge's g: 0.30; P = 0.018). There was significant evidence of publication bias for BMI, waist circumference and body fat percentage (all $P \le 0.021$), but not fat mass (P = 0.512). High levels of heterogeneity (all $I^2 \ge 99.7\%$; P < 0.001) were evident across body composition outcomes. In the subgroup analysis, there was a significant association between device-assessed sedentary time being unfavourably associated with waist circumference (Hedge's g: 0.22; P < 0.021) and a trend for an adverse association with BMI (Hedge's g: 0.25; P = 0.061). Self-reported sedentary time was unfavourably associated with BMI (Hedge's g: 0.36; P = 0.004) and waist circumference (Hedge's g: 0.64; P < 0.001); **Figure 2**.

For outcomes not included in the meta-analysis, sedentary time was not associated with limb fat, subcutaneous fat, trunk fat and visceral fat mass⁵⁴. Sedentary time was positively associated with fat mass index⁴⁴.

Fourteen of 23 studies that assessed body composition outcomes observed a significant adverse association with sedentary time^{37,38,41,42,44–46,48,50,52,53,57,58}; see **Table 4** for individual study outcomes. Adjustment of physical activity did not appear to influence the presence of significant associations between sedentary time and body composition. Eight of 14 studies that reported significant associations adjusted for physical activity^{37,38,41,45,46,52,55,57}. Physical activity was adjusted for in four of nine studies that found no associations^{43,47,54,59} (**Supplementary Material 2**).

3.5 Sedentary time and blood pressure

Increasing daily sedentary time was unfavourably associated with SBP (Hedge's g: 0.37; P = 0.047) but not associated with DBP (Hedge's g: 0.18; P = 0.150). High levels of heterogeneity ($I^2 = 100\%$; P < 0.001) and publication bias (P < 0.001) were evident. Device-assessed sedentary time subgroup analysis revealed non-significant associations with both SBP (Hedge's g: 0.32; P = 0.215) and DBP (Hedge's g: 0.24; P = 0.382). Subgroup analysis for self-reported sedentary time revealed an unfavourable association with DBP (Hedge's g: 0.13; P < 0.001) but not SBP (Hedge's g: 0.39; P = 0.202); **Figure 3**. Men arterial pressure was reported in one study, which found no association with sedentary time⁵³.

.95	
.96	Two of seven studies that included blood pressure as an outcome observed an unfavourable association with
.97	sedentary time ^{41,47} ; these two studies included adjustment for physical activity ^{41,47} (Supplementary Material 2).
.98	Two of the five studies that did not observe significant associations adjusted for physical activity ^{46,56} .
.99	
200	3.6 Sedentary time and glycaemic biomarkers
201	Meta-analyses revealed that daily sedentary time was unfavourably associated with blood glucose (Hedge's g:
202	0.30; $P = 0.044$); Figure 4. Heterogeneity ($I^2 \ge 93.8\%$; $P < 0.001$) and publication bias ($P < 0.001$) were high.
203	
204	For outcomes not meta-analysed, sedentary time was positively associated with fasting insulin ⁴⁴ and glucose 120
205	min ⁵¹ . Sedentary time was positively associated with HbA1c in males, but not in females ⁴¹ .
206	
207	Four of eight studies that investigated sedentary time and glycaemic biomarkers reported significant adverse
208	associations ^{41,44,51,53} ; Table 4 . There was no clear indication that adjustment for physical activity influenced the
209	associations observed; two of four studies observed significant associations ^{41,51} and three of four studies did not
210	observe associations ^{37,46,47} adjusted for physical activity.
211	
212	3.7 Sedentary time and lipid biomarkers
213	Daily sedentary time was unfavourably associated with triglycerides (Hedge's g: 0.36; P = 0.039) and HDL
214	cholesterol (Hedge's g : 0.34; $P = 0.034$); Figure 4 . Heterogeneity ($I^2 \ge 100\%$; $P < 0.001$) and publication bias ($P = 0.034$); $P = 0.034$); $P = 0.034$); $P = 0.034$ 0; $P = $
215	< 0.001) were high for both outcomes. In subgroup analysis, self-reported sedentary time was unfavourably
216	associated with triglycerides (Hedge's g : 0.50; $P = 0.031$) and HDL cholesterol (Hedge's g : 0.45; $P = 0.022$).
217	There was insufficient data for subgroup analysis of device-assessed sedentary time.
218	
219	Sedentary time was unfavourably associated with lipid biomarkers that were not meta-analysed, including total
220	cholesterol ⁴⁹ , non-HDL cholesterol in males ⁴¹ and cholesterol ratio ³⁷ . There was no association with LDL ⁴⁹ , non-
221	HDL cholesterol in females ⁴¹ , apolipoprotein A-1, apolipoprotein B and apolipoprotein B:A-1 ratio ²⁰ .

Page | 8

There were significant adverse associations between sedentary time and lipid biomarkers in five of eight
studies ^{37,41,46,47,49} ; Table 4 . Adjustment for physical activity did not appear to influence associations as this was
adjusted for in four of five studies that reported significant associations ^{37,41,46,47} .
3.8 Sedentary time and metabolic syndrome
Increasing sedentary time was unfavourably associated with metabolic syndrome (Hedge's g : 0.56; $P = 0.003$);
Figure 4. There were high levels of heterogeneity ($I^2 \ge 100\%$; $P < 0.001$) and publication bias ($P < 0.001$). Device-
assessed sedentary time subgroup analysis revealed a non-significant association (Hedge's g : 0.44; $P = 0.07$).
There were significant adverse associations between sedentary time and metabolic syndrome in three of seven
studies ^{21,44,46} . Only two studies adjusted for physical activity; one reported a significant association ⁴⁶ and the
other reported no association with metabolic syndrome ³³ .

4. DISCUSSION

This is the first meta-analysis investigating the associations of daily sedentary time with cardiometabolic biomarkers in older adults. Increasing daily sedentary time was adversely associated with body composition, SBP, lipid and glycaemic biomarkers, and metabolic syndrome. Where there was sufficient data for exposure measurement subgroup analysis (BMI, waist circumference and blood pressure), self-reported sedentary time yielded stronger and more consistent associations with cardiometabolic biomarkers than device-assessed sedentary time.

The current study extends, and updates findings reported in a previous systematic review in which there was mixed evidence for associations between sedentary time and cardiometabolic biomarkers in older adults²³. Detrimental associations were reported more consistently across biomarkers in this review. This may be due to inclusion only of studies that measured daily sedentary time as the exposure, as opposed to multiple domains or contexts, such as TV viewing or leisure time²³. The increase in available evidence in recent years permitted meta-analyses for multiple biomarkers to provide an accurate estimate of effect in relation to risk associated with sedentary time. Despite there being high heterogeneity, significant detrimental associations were found for all cardiometabolic biomarkers, except DBP. These findings emphasise the potential importance of limiting daily sedentary time for promoting cardiometabolic health in older adults and supports the focus on sedentary behaviour in physical activity guidelines⁶⁰.

Unfavourable associations with biomarkers were present across 67% of studies that adjusted for physical activity, suggesting that sedentary time may be an independent risk factor related to cardiometabolic risk in older adults. However, measurement of physical activity varied widely (e.g. moderate-intensity, light-intensity, leisure time and METs), which may affect outcomes across studies. Engaging in high daily volumes of MVPA (60-75 and 30-40 minutes per day according to self-report and device-based methods, respectively) may offset the adverse association between high sedentary time and mortality in mixed samples of middle- and older-aged adults ^{61,62}. It was not possible to investigate the joint effects of sedentary time and physical activity in the current review due to the nature of the data reported within the included studies; therefore, the mediating role of MVPA in older adults remains unclear. Engaging in 30 to 75 minutes per day of MVPA is unfeasible for large proportions of the population, especially older adults who have unique barriers to physical activity such as pain and perceived risk

of injury⁶³. Therefore, limiting sedentary behaviour may be a more achievable strategy, initially, to improve cardiometabolic health⁶⁴.

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

264

265

As the meta-analyses demonstrated unfavourable associations with cardiometabolic biomarkers regardless of how sedentary time is measured, this provides strong support for limiting daily sedentary time in older adults. Yet, the subgroup analysis revealed stronger effects with self-reported versus device-assessed sedentary time for BMI, waist circumference and DBP. The high heterogeneity across studies could be a contributing factor explaining this disparity between exposure measurement methods. For example, there were two datasets with much stronger effect sizes for waist circumference when sedentary time was measured by self-report, therefore inflating the overall effect. It has also been widely reported among adults that self-report methods underestimate daily sedentary time compared with device methods, which may weaken the strength of associations⁶⁵. Further, the majority of the studies employing self-report (six out of nine) used the IPAQ, which neglects any time spent sedentary that does not align with sitting, potentially further contributing to under-reporting of total sedentary time. When comparing accelerometer and IPAQ data among older adults specifically, it has been suggested underreporting of sedentary behaviour at the individual-level may be improved by providing additional detail of types of daily activities that this population might undertake to improve recall, alongside examples of typical activities performed across the day⁶⁶. Although 19 of the 28 studies used accelerometery, only three of these studies used the activPal to capture changes in posture and, therefore, better discriminate sedentary behaviour from light, moderate or vigorous physical activity. The determination of posture is important as definitions of sedentary behaviour include both an energy expenditure element (≤ 1.5 METs) and a postural element (i.e., sitting, reclining or lying)⁶⁷. Further, a systematic review of accelerometery studies suggested that more data regarding the validity of accelerometery to determine sedentary time is needed in older adults, including population-specific recommendations for non-wear time classifications and the required number of hours and days for valid sedentary time estimates⁶⁸. As such, further research using activPal with consideration for older adult-specific sedentary time analysis methods would be useful in confirming the strength of associations with cardiometabolic biomarkers in this population.

290

291

292

293

Older adults have a higher prevalence of physical and psychological chronic conditions⁶⁹, yet the impact of chronic conditions on outcomes within the current review remains unclear partly due to the disparity in participant inclusion criteria. For example, Chastin et al.,⁵⁰ aligned to the 'healthy' definition of older adults proposed by

Greig et al.,⁷⁰ including the presence of metabolic disease, yet clear definitions were not presented across the literature. This heterogeneity could contribute to differences in findings between studies and, therefore, the effects sizes reported. Additionally, factors concerning the management of long-term health conditions requires consideration, especially in a population where medication is prevalent. Treatments for mental health conditions, for example, can cause fatigue or drowsiness, leading to increased sedentary behaviour⁷¹. Understanding the impact of chronic conditions and their management on the relationship between sedentary time and cardiometabolic health should be considered in future research.

The mechanisms through which sedentary time increases cardiometabolic risk may include prolonged periods of muscular inactivity, leading to reduced production of metabolites (e.g., nitric oxide) involved with downstream vasodilatory effects⁷². With respect to adiposity, sedentary behaviours require minimal energy expenditure, which, without a corresponding reduction in caloric intake, may result in an energy surplus⁷³. The consequential accumulation of body fat can act as a mediating pathway to impaired cardiometabolic health⁷³. High volumes of sedentary behaviour may also result in insufficient muscular activity to stimulate contraction-mediated glucose uptake pathways⁷⁴. Similarly, reduced muscle contractile activity has an inhibitory effect on the production of lipoprotein lipase, which is an essential enzyme in the lipolysis of triglycerides and production of HDL cholesterol⁷⁵.

Strengths and limitations

A strength of this study is the novel meta-analytic insight demonstrating unfavourable associations between daily sedentary time and cardiometabolic biomarkers in older adults. The findings strengthen the importance of including recommendations to limit sedentary time in physical activity and clinical care guidelines. Furthermore, rigorous methods were employed to assess article eligibility and risk of bias of included studies. A potential limitation was the variation across studies with regards to sample size. To account for this, Hedge's *g* effect sizes were calculated to adjust for small sample size bias⁷⁶. Heterogeneity remained significant, even with the application of random effect models. Study quality was acceptable for all eligible articles. Yet, the quality checklist revealed some notable limitations, including a lack of detailed description of the sample and settings to help determine which populations the findings are applicable. Sedentary time and outcomes were not always recorded in valid and reliable ways; for example, BMI was self-reported in some studies⁴⁵ and the device (accelerometery) methods did not consistently align with recommendations for valid wear time, with some studies

only requiring one valid day to be included in their analysis^{37,56}. There was also wide variation in the confounding factors included in the statistical models employed. Lastly, all but one study investigated younger older adults (60-80 years). Preliminary data in nonagenarians and centenarians showed that 91-94% of wake time was spent in sedentary behaviour. The findings of this review may, therefore, not be generalisable to the 'oldest' old adults⁷⁷.

Conclusion

This review demonstrates that increasing daily sedentary time is adversely associated with cardiometabolic biomarkers in older adults. The associations observed were present regardless of how sedentary time was measured, but with stronger effects for self-report versus device assessment. The unfavourable associations appeared to be largely independent from physical activity, suggesting that sedentary behaviour is an independent risk factor that should be targeted in public health initiatives for promoting cardiometabolic health in older adults. To generate more precise effects, future studies should employ recommended criteria for valid wear time when using device-based methods. Research investigating associations between sedentary time and cardiometabolic biomarkers in the oldest old is also needed to inform recommendations for this segment of the population.

Reference list

338

354

355

356357

358

359

360

361

362

363364

365

- 339 1. Sun H, Saeedi P, Karuranga S, et al. IDF Diabetes Atlas: Global, regional and country-level 340 diabetes prevalence estimates for 2021 and projections for 2045. *Diabetes Res Clin Pract*. 341 2022;183:109119. doi:10.1016/j.diabres.2021.109119
- 342 2. Mensah GA, Roth GA, Fuster V. The Global Burden of Cardiovascular Diseases and Risk Factors. *J Am Coll Cardiol*. 2019;74(20):2529-2532. doi:10.1016/j.jacc.2019.10.009
- Mensah GA, Fuster V, Roth GA. A Heart-Healthy and Stroke-Free World. *J Am Coll Cardiol*.
 2023;82(25):2343-2349. doi:10.1016/j.jacc.2023.11.003
- Benjamin EJ, Muntner P, Alonso A, et al. Heart Disease and Stroke Statistics—2019 Update: A
 Report From the American Heart Association. Circulation. 2019;139(10).
 doi:10.1161/CIR.00000000000000659
- 5. Bellary S, Kyrou I, Brown JE, Bailey CJ. Type 2 diabetes mellitus in older adults: clinical considerations and management. *Nat Rev Endocrinol*. 2021;17(9):534-548. doi:10.1038/s41574-021-00512-2
- Ostchega Y, Fryar CD, Nwankwo T, Nguyen DT. Hypertension Prevalence Among Adults Aged
 18 and Over: United States, 2017-2018.; 2020.
 - 7. Rosenzweig JL, Bakris GL, Berglund LF, et al. Primary Prevention of ASCVD and T2DM in Patients at Metabolic Risk: An Endocrine Society* Clinical Practice Guideline. *J Clin Endocrinol Metab.* 2019;104(9):3939-3985. doi:10.1210/jc.2019-01338
 - 8. Bull FC, Al-Ansari SS, Biddle S, et al. World Health Organization 2020 guidelines on physical activity and sedentary behaviour. *Br J Sports Med*. 2020;54(24):1451-1462. doi:10.1136/bjsports-2020-102955
 - 9. Guthold R, Stevens GA, Riley LM, Bull FC. Worldwide trends in insufficient physical activity from 2001 to 2016: a pooled analysis of 358 population-based surveys with 1·9 million participants. *Lancet Glob Health*. 2018;6(10):e1077-e1086. doi:10.1016/S2214-109X(18)30357-7
 - 10. Strain T, Fitzsimons C, Kelly P, Mutrie N. The forgotten guidelines: Cross-sectional analysis of participation in muscle strengthening and balance & co-ordination activities by adults and older adults in Scotland. *BMC Public Health*. 2016;16(1):1108. doi:10.1186/s12889-016-3774-6
- 367 11. Strain T, Fitzsimons C, Foster C, Mutrie N, Townsend N, Kelly P. Age-related comparisons by sex in the domains of aerobic physical activity for adults in Scotland. *Prev Med Rep.* 2016;3:90-97. doi:10.1016/j.pmedr.2015.12.013
- 370 12. Matthews CE, Chen KY, Freedson PS, et al. Amount of Time Spent in Sedentary Behaviors in the United States, 2003-2004. *Am J Epidemiol*. 2008;167(7):875-881. doi:10.1093/aje/kwm390
- 372 13. MATTHEWS CE, CARLSON SA, SAINT-MAURICE PF, et al. Sedentary Behavior in U.S.
 373 Adults: Fall 2019. Med Sci Sports Exerc. 2021;53(12):2512-2519.
 374 doi:10.1249/MSS.0000000000002751
- 375 14. Giné-Garriga M, Sansano-Nadal O, Tully MA, et al. Accelerometer-Measured Sedentary and 376 Physical Activity Time and Their Correlates in European Older Adults: The SITLESS Study.

- Newman A, ed. *The Journals of Gerontology: Series A.* 2020;75(9):1754-1762. doi:10.1093/gerona/glaa016
- Rosenberg D, Walker R, Greenwood-Hickman MA, et al. Device-assessed physical activity and sedentary behavior in a community-based cohort of older adults. *BMC Public Health*. 2020;20(1). doi:10.1186/s12889-020-09330-z
- 382 If. Zhang Y, Liu X. Effects of physical activity and sedentary behaviors on cardiovascular disease 383 and the risk of all-cause mortality in overweight or obese middle-aged and older adults. *Front* 384 *Public Health*. 2024;12. doi:10.3389/fpubh.2024.1302783
- 385 17. Bailey DP, Hewson DJ, Champion RB, Sayegh SM. Sitting Time and Risk of Cardiovascular 386 Disease and Diabetes: A Systematic Review and Meta-Analysis. *Am J Prev Med*. 2019;57(3):408-387 416. doi:10.1016/j.amepre.2019.04.015
- 388 18. Jia W, He W, Cui Q, Ye X, Qian H. The effect of sedentary time on cardiovascular disease risk 389 in middle-aged and elderly patients with type 2 diabetes mellitus. *Medicine*. 390 2023;102(45):e35901. doi:10.1097/MD.000000000035901

392393

394

395

396

397

398

399

400

401

402

403

404

405

- McAlister KL, Rubin DA, Fisher KL. A Cross-Sectional Examination of Patterns of Sedentary Behavior and Cardiometabolic Risk in Community-Dwelling Adults Aged 55 Years and Older. J Aging Res. 2020;2020:1-9. doi:10.1155/2020/3859472
 - 20. Howard BJ, Hurtig-Wennlöf A, Olsson LA, Nilsson TK, Dunstan DW, Wennberg P. Self-Reported Sitting Time, Physical Activity and Fibrinolytic and Other Novel Cardio-Metabolic Biomarkers in Active Swedish Seniors. *PLoS One*. 2016;11(9):e0163409. doi:10.1371/journal.pone.0163409
 - 21. Freire YA, Cabral LLP, Browne RAV, et al. Daily step volume and intensity moderate the association of sedentary time and cardiometabolic disease risk in community-dwelling older adults: A cross-sectional study. *Exp Gerontol*. 2022;170:111989. doi:10.1016/j.exger.2022.111989
 - 22. Saunders TJ, McIsaac T, Douillette K, et al. Sedentary behaviour and health in adults: an overview of systematic reviews. *Applied Physiology, Nutrition, and Metabolism.* 2020;45(10 (Suppl. 2)):S197-S217. doi:10.1139/apnm-2020-0272
- 23. Wirth K, Klenk J, Brefka S, et al. Biomarkers associated with sedentary behaviour in older adults: A systematic review. *Ageing Res Rev.* 2017;35:87-111. doi:10.1016/j.arr.2016.12.002
- 407 24. Costantino S, Paneni F, Cosentino F. Ageing, metabolism and cardiovascular disease. *J Physiol.*408 2016;594(8):2061-2073. doi:10.1113/JP270538
- 409 25. Page MJ, McKenzie JE, Bossuyt PM, et al. The PRISMA 2020 statement: an updated guideline 410 for reporting systematic reviews. *BMJ*. Published online March 29, 2021:n71. 411 doi:10.1136/bmj.n71
- 412 26. Amir-Behghadami M, Janati A. Population, Intervention, Comparison, Outcomes and Study
 413 (PICOS) design as a framework to formulate eligibility criteria in systematic reviews. *Emergency*414 *Medicine Journal*. 2020;37(6):387-387. doi:10.1136/emermed-2020-209567
- Ouzzani M, Hammady H, Fedorowicz Z, Elmagarmid A. Rayyan—a web and mobile app for systematic reviews. *Syst Rev.* 2016;5(1):210. doi:10.1186/s13643-016-0384-4

- 417 28. Moola S, Munn Z, Tufanaru C, et al. Chapter 7: Systematic reviews of etiology and risk. In: *JBI*418 *Reviewer's Manual*. JBI; 2019. doi:10.46658/JBIRM-17-06
- 419 29. Azmiardi A, Murti B, Febrinasari RP, Tamtomo DG. Low Social Support and Risk for Depression 420 in People With Type 2 Diabetes Mellitus: A Systematic Review and Meta-analysis. *Journal of* 421 *Preventive Medicine and Public Health*. 2022;55(1):37-48. doi:10.3961/jpmph.21.490
- 422 30. Ofuya M, Sauzet O, Peacock JL. Dichotomisation of a continuous outcome and effect on meta-423 analyses: illustration of the distributional approach using the outcome birthweight. *Syst Rev*. 424 2014;3(1):63. doi:10.1186/2046-4053-3-63
- 425 31. Cohen J. Statistical Power Analysis for the Behavioral Sciences. Routledge; 2013. 426 doi:10.4324/9780203771587
- 427 32. Higgins JPT, Thompson SG. Quantifying heterogeneity in a meta-analysis. *Stat Med.*428 2002;21(11):1539-1558. doi:10.1002/sim.1186
- 429 33. Bankoski A, Harris TB, McClain JJ, et al. Sedentary activity associated with metabolic syndrome independent of physical activity. *Diabetes Care*. 2011;34(2):497-503. doi:10.2337/dc10-0987

432

433

434

438

439

440

441

442

443

444445

446

447

- 34. Cheng SWM, Alison JA, Stamatakis E, Dennis SM, McKeough ZJ. Patterns and Correlates of Sedentary Behaviour Accumulation and Physical Activity in People with Chronic Obstructive Pulmonary Disease: A Cross-Sectional Study. *COPD*. 2020;17(2):156-164. doi:10.1080/15412555.2020.1740189
- 435 35. Júdice PB, Silva AM, Santos DA, Baptista F, Sardinha LB. Associations of breaks in sedentary time with abdominal obesity in Portuguese older adults. *Age (Omaha)*. 2015;37(2):23. doi:10.1007/s11357-015-9760-6
 - 36. M. Silva F, Petrica J, Serrano J, et al. The Sedentary Time and Physical Activity Levels on Physical Fitness in the Elderly: A Comparative Cross Sectional Study. *Int J Environ Res Public Health*. 2019;16(19):3697. doi:10.3390/ijerph16193697
 - 37. Stamatakis E, Davis M, Stathi A, Hamer M. Associations between multiple indicators of objectively-measured and self-reported sedentary behaviour and cardiometabolic risk in older adults. *Prev Med (Baltim)*. 2012;54(1):82-87. doi:10.1016/j.ypmed.2011.10.009
 - 38. Sohn M, Cho KH, Han KD, Choi M, Kim YH. Sitting Time and Obesity or Abdominal Obesity in Older South Koreans: Korean National Health and Nutrition Examination Survey 2013. Behavioral Medicine. 2017;43(4):251-258. doi:10.1080/08964289.2015.1135101
 - 39. Silva R de M, Cabral LLP, Browne RAV, et al. Joint associations of accelerometer-measured physical activity and sedentary time with cardiometabolic risk in older adults: A cross-sectional study. *Exp Gerontol*. 2022;165:111839. doi:10.1016/j.exger.2022.111839
- 450 40. Nilsson A, Wåhlin-Larsson B, Kadi F. Physical activity and not sedentary time per se influences 451 on clustered metabolic risk in elderly community-dwelling women. Stokes K, ed. *PLoS One*. 452 2017;12(4):e0175496. doi:10.1371/journal.pone.0175496
- 453 41. Koyama T, Kuriyama N, Ozaki E, et al. Sedentary Time is Associated with Cardiometabolic Diseases in A Large Japanese Population: A Cross-Sectional Study. *J Atheroscler Thromb*. 455 2020;27(10):1097-1107. doi:10.5551/jat.54320

- 42. Koolhaas CM, van Rooij FJA, Schoufour JD, et al. Objective Measures of Activity in the Elderly:
 Distribution and Associations With Demographic and Health Factors. J Am Med Dir Assoc.
 2017;18(10):838-847. doi:10.1016/j.jamda.2017.04.017
- 459 43. Júdice PB, Silva AM, Sardinha LB. Sedentary bout durations are associated with abdominal obesity in older adults. *J Nutr Health Aging*. 2015;19(8):798-804. doi:10.1007/s12603-015-0501-461

463464

465

469

470

471

472

473

474

475

476

477478

479

480

481

482

483

484

485

486 487

- 44. Jefferis BJ, Parsons TJ, Sartini C, et al. Does duration of physical activity bouts matter for adiposity and metabolic syndrome? A cross-sectional study of older British men. *International Journal of Behavioral Nutrition and Physical Activity*. 2016;13(1):36. doi:10.1186/s12966-016-0361-2
- 45. Hsueh MC, Liao Y, Chang SH. Are Total and Domain-Specific Sedentary Time Associated with
 Overweight in Older Taiwanese Adults? *Int J Environ Res Public Health*. 2015;12(10):12697 12705. doi:10.3390/ijerph121012697
 - 46. Gardiner PA, Healy GN, Eakin EG, et al. Associations Between Television Viewing Time and Overall Sitting Time with the Metabolic Syndrome in Older Men and Women: The Australian Diabetes Obesity and Lifestyle Study. *J Am Geriatr Soc.* 2011;59(5):788-796. doi:10.1111/j.1532-5415.2011.03390.x
 - 47. Figueiró TH, Arins GCB, Santos CES dos, et al. Association of objectively measured sedentary behavior and physical activity with cardiometabolic risk markers in older adults. López Lluch G, ed. *PLoS One*. 2019;14(1):e0210861. doi:10.1371/journal.pone.0210861
 - 48. Van Dyck D, Barnett A, Van Cauwenberg J, Zhang CJP, Sit CHP, Cerin E. Main and interacting effects of physical activity and sedentary time on older adults' BMI: The moderating roles of socio-demographic and environmental attributes. Senechal M, ed. *PLoS One*. 2020;15(7):e0235833. doi:10.1371/journal.pone.0235833
 - 49. Danésio de Souza J, Queiroz Ribeiro A, Oliveira Martinho K, et al. Lipid Profile and Associated Factors Among Elderly People, Attended at The Family Health Strategy, Viçosa/Mg. *Nutr Hosp*. 2015;32(2):771-778. doi:10.3305/nh.2015.32.2.8875
 - 50. Chastin SFM, Ferriolli E, Stephens NA, Fearon KCH, Greig C. Relationship between sedentary behaviour, physical activity, muscle quality and body composition in healthy older adults. *Age Ageing*. 2012;41(1):111-114. doi:10.1093/ageing/afr075
 - 51. Länsitie M, Kangas M, Jokelainen J, et al. Association between accelerometer-measured physical activity, glucose metabolism, and waist circumference in older adults. *Diabetes Res Clin Pract*. 2021;178:108937. doi:10.1016/j.diabres.2021.108937
- 489 52. Rosenberg D, Cook A, Gell N, Lozano P, Grothaus L, Arterburn D. Relationships between sitting 490 time and health indicators, costs, and utilization in older adults. *Prev Med Rep.* 2015;2:247-249. 491 doi:10.1016/j.pmedr.2015.03.011
- 492 53. Park SK, Larson JL. The Relationship Between Physical Activity and Metabolic Syndrome in 493 People With Chronic Obstructive Pulmonary Disease. *Journal of Cardiovascular Nursing*. 494 2014;29(6):499-507. doi:10.1097/JCN.0000000000000006

495 54. Chen K, He Q, Pan Y, Kumagai S, Chen S, Zhang X. Short Video Viewing, and Not Sedentary
496 Time, Is Associated with Overweightness/Obesity among Chinese Women. *Nutrients*.
497 2022;14(6):1309. doi:10.3390/nu14061309

- 755. Rosique-Esteban N, Babio N, Díaz-López A, et al. Leisure-time physical activity at moderate and high intensity is associated with parameters of body composition, muscle strength and sarcopenia in aged adults with obesity and metabolic syndrome from the PREDIMED-Plus study. *Clinical Nutrition*. 2019;38(3):1324-1331. doi:10.1016/j.clnu.2018.05.023
 - 56. Rosenberg DE, Bellettiere J, Gardiner PA, Villarreal VN, Crist K, Kerr J. Independent Associations Between Sedentary Behaviors and Mental, Cognitive, Physical, and Functional Health Among Older Adults in Retirement Communities. *J Gerontol A Biol Sci Med Sci*. 2016;71(1):78-83. doi:10.1093/gerona/glv103
 - 57. Reid N, Healy GN, Gianoudis J, et al. Association of sitting time and breaks in sitting with muscle mass, strength, function, and inflammation in community-dwelling older adults. *Osteoporosis International*. 2018;29(6):1341-1350. doi:10.1007/s00198-018-4428-6
 - 58. Savikangas T, Tirkkonen A, Alen M, et al. Associations of physical activity in detailed intensity ranges with body composition and physical function. a cross-sectional study among sedentary older adults. *European Review of Aging and Physical Activity*. 2020;17(1):4. doi:10.1186/s11556-020-0237-y
 - 59. Gianoudis J, Bailey CA, Daly RM. Associations between sedentary behaviour and body composition, muscle function and sarcopenia in community-dwelling older adults. *Osteoporosis International*. 2015;26(2):571-579. doi:10.1007/s00198-014-2895-y
 - 60. Bull FC, Al-Ansari SS, Biddle S, et al. World Health Organization 2020 guidelines on physical activity and sedentary behaviour. *Br J Sports Med*. 2020;54(24):1451-1462. doi:10.1136/bjsports-2020-102955
 - 61. Ekelund U, Steene-Johannessen J, Brown WJ, et al. Does physical activity attenuate, or even eliminate, the detrimental association of sitting time with mortality? A harmonised meta-analysis of data from more than 1 million men and women. *The Lancet*. 2016;388(10051):1302-1310. doi:10.1016/S0140-6736(16)30370-1
 - 62. Ekelund U, Tarp J, Fagerland MW, et al. Joint associations of accelerometer-measured physical activity and sedentary time with all-cause mortality: a harmonised meta-analysis in more than 44 000 middle-aged and older individuals. *Br J Sports Med.* 2020;54(24):1499-1506. doi:10.1136/bjsports-2020-103270
 - 63. McGowan LJ, Devereux-Fitzgerald A, Powell R, French DP. How acceptable do older adults find the concept of being physically active? A systematic review and meta-synthesis. *Int Rev Sport Exerc Psychol.* 2018;11(1):1-24. doi:10.1080/1750984X.2016.1272705
- 530 64. Dogra S, Copeland JL, Altenburg TM, Heyland DK, Owen N, Dunstan DW. Start with reducing 531 sedentary behavior: A stepwise approach to physical activity counseling in clinical practice. 532 Patient Educ Couns. 2022;105(6):1353-1361. doi:10.1016/j.pec.2021.09.019

533	65.	Prince SA, Cardilli L, Reed JL, et al. A comparison of self-reported and device measured
534		sedentary behaviour in adults: a systematic review and meta-analysis. International Journal of
535		Behavioral Nutrition and Physical Activity. 2020;17(1):31. doi:10.1186/s12966-020-00938-3

- 66. Cleland C, Ferguson S, Ellis G, Hunter RF. Validity of the International Physical Activity Questionnaire (IPAQ) for assessing moderate-to-vigorous physical activity and sedentary behaviour of older adults in the United Kingdom. *BMC Med Res Methodol*. 2018;18(1):176. doi:10.1186/s12874-018-0642-3
- 540 67. Tremblay MS, Aubert S, Barnes JD, et al. Sedentary Behavior Research Network (SBRN) –
 541 Terminology Consensus Project process and outcome. *International Journal of Behavioral*542 *Nutrition and Physical Activity*. 2017;14(1):75. doi:10.1186/s12966-017-0525-8
 - 68. Heesch KC, Hill RL, Aguilar-Farias N, van Uffelen JGZ, Pavey T. Validity of objective methods for measuring sedentary behaviour in older adults: a systematic review. *International Journal of Behavioral Nutrition and Physical Activity*. 2018;15(1):119. doi:10.1186/s12966-018-0749-2
 - 69. Maresova P, Javanmardi E, Barakovic S, et al. Consequences of chronic diseases and other limitations associated with old age a scoping review. *BMC Public Health*. 2019;19(1):1431. doi:10.1186/s12889-019-7762-5
 - 70. Greig CA, Young A, Skelton DA, Pippet E, Butler FMM, Mahmud SM. Exercise studies with elderly volunteers. *Age Ageing*. 1994;23(3):185-189. doi:10.1093/ageing/23.3.185
 - 71. Dempsey PC, Biddle SJH, Buman MP, et al. New global guidelines on sedentary behaviour and health for adults: broadening the behavioural targets. *International Journal of Behavioral Nutrition and Physical Activity*. 2020;17(1):151. doi:10.1186/s12966-020-01044-0
 - 72. Dempsey PC, Larsen RN, Dunstan DW, Owen N, Kingwell BA. Sitting Less and Moving More. *Hypertension*. 2018;72(5):1037-1046. doi:10.1161/HYPERTENSIONAHA.118.11190
 - 73. Luo L, Liu M. Adipose tissue in control of metabolism. *Journal of Endocrinology*. 2016;231(3):R77-R99. doi:10.1530/JOE-16-0211
 - 74. Quan M, Xun P, Wu H, et al. Effects of interrupting prolonged sitting on postprandial glycemia and insulin responses: A network meta-analysis. *J Sport Health Sci.* 2021;10(4):419-429. doi:10.1016/j.jshs.2020.12.006
 - 75. Bey L, Hamilton MT. Suppression of skeletal muscle lipoprotein lipase activity during physical inactivity: a molecular reason to maintain daily low-intensity activity. *J Physiol*. 2003;551(2):673-682. doi:10.1113/jphysiol.2003.045591
 - 76. Cummings G. Understanding the New Statistics: Effect Sizes, Confidence Intervals, and Meta-Analysis. . Routledge; 2012.
- Hernández-Vicente A, Santos-Lozano A, Mayolas-Pi C, et al. Physical Activity and Sedentary
 Behavior at the End of the Human Lifespan. J Aging Phys Act. 2019;27(6):899-905.
 doi:10.1123/japa.2018-0122

536537

538

539

543544

545

546547

548

549

550

551

552

553

554

555556

557

558

559560

561

562

563

564

565

Table 1. Population, intervention or exposure, comparator, outcomes, and study design (PICOS) criteria

Population, int	tervention or exposure, comparator, outcomes, and study design (PICOS) criteria
Population	Individuals were required to be aged ≥ 60 years with no upper age limit. Studies were excluded where older adults were included but did not report data distinctly for that age group.
Intervention or Exposure	Daily sedentary time assessed by self-report or device methods. Studies were excluded if there was no differentiation between sedentary time and other types of activity (e.g., lying down, sleeping, light physical activity).
Comparator	Studies of all older adults living in any setting and of any health status were eligible.
Outcomes	Studies reported associations (correlation or regression coefficient) of daily sedentary time with at least one cardiometabolic biomarker regardless of assessment method for the exposure or outcome variables. Studies were excluded when no statistical test assessing the association between sedentary time and a cardiometabolic biomarker was present.
Study design	All study designs were included; as such, data was extracted from observational studies that were cross-sectional or prospective, and randomised controlled trial studies in which associations within baseline data were reported.

Table 2. Check list for study quality from Joanna Briggs Institute for Cross-sectional studies; scoring yes = +, no = -, unsure = ?

Study	Were the criteria for inclusion in the study clearly defined?	Were the study subjects and the setting described in detail?	Was the exposure measured in a valid and reliable way?	Were objective; standard criteria used for measureme nt of the condition	Were confoundin g factors identified?	Were strategies to deal with confoundin g factors stated	Were the outcomes measured in a valid and reliable way?	Was appropriate statistical analysis used?	Overall appraisal
Bankoski et al. ³³	-	+	?	+	+	+	+	+	Include
Chastin et al. ⁵⁰	-	-	+	+	-	-	+	+	Include
Chen et al. ⁵⁴	+	+	+	+	+	+	+	+	Include
Cheng et al. ³⁴	+	+	+	+	-	-	+	+	Include
Danésio de Souza et al. ⁴⁹	-	+	+	+	+	+	+	+	Include
van Dyck et al. ⁴⁸	-	+	+	+	+	+	+	+	Include
Figueiró et al. ⁴⁷	-	+	+	+	+	+	+	+	Include
Freire et al. ²¹	+	+	+	+	+	+	+	+	Include
Gardiner et al. ⁴⁶	?	+	+	+	+	+	+	+	Include
Gianoudis et al. ⁵⁹	+	+	+	+	+	+	+	+	Include
Howard et al. ²⁰	?	+	+	+	+	+	+	+	Include
Hsueh et al. ⁴⁵	-	+	+	+	+	+	?	+	Include
Jefferis et al. ⁴⁴	-	+	+	+	+	+	+	+	Include
Júdice et al. ³⁵	-	+	+	+	+	+	+	+	Include
Júdice, Silva, and Sardinha ⁴³	-	?	+	+	+	+	?	+	Include
Koolhaas et al. ⁴²	-	+	+	+	+	+	?	?	Include
Koyama et al. ⁴¹	-	?	+	+	+	+	+	?	Include
Lansitie et al. ⁵¹	-	?	+	+	+	+	+	+	Include
Nilsson et al. ⁴⁰	?	+	+	+	+	+	+	+	Include
Park and Larson ⁵³	+	+	?	+	+	+	+	+	Include
Reid et al. ⁵⁷	+	+	+	+	+	+	+	?	Include
Rosenberg et al. ⁵²	+	+	?	+	+	+	?	+	Include
Rosenberg et al. ⁵⁶	+	+	+	+	+	+	+	+	Include

Rosique-Esteban et al. ⁵⁵	+	+	+	+	+	+	+	+	Include
Savikangas et al. ⁵⁸	+	+	+	+	+	-	+	-	Include
Silva et al. ³⁹	-	+	?	+	+	+	+	+	Include
Sohn et al. ³⁸	-	+	?	+	+	+	+	+	Include
Stamatakis et al. ³⁷	-	+	?	+	+	+	+	+	Include

575 **Table 3.** Study characteristics

Study, country	Study design	Sample	Sedentary time	Cardiometabolic biomarker outcomes
			measurement method	
Bankoski et al. ³³ ,	Cross-sectional	Metabolic Syndrome:	Accelerometery, ActiGraph	Metabolic syndrome (NCEP ATP III definition)
United States		N = 665 (61.6% female)	AM-7164	
		Mean age = 71 ± 7.4 years		
		No Metabolic Syndrome:		
		N = 702 (50.7% female)		
		Mean age = 71 ± 8 years		
Chastin et al. ⁵⁰ ,	Cross-sectional	Females:	Accelerometery, activPAL	Body fat (%)
United Kingdom		N = 14		
		Mean age = 79.3 ± 3.4 years		
		Males:		
		N = 16		
		Mean age = 79 ± 3.9 years		
Chen et al. ⁵⁴ ,	Cross-sectional	N = 1105 (100% female)	Accelerometery, ActiGraph	BMI (kg/m²), Body fat (%), Body fat mass (kg), Limb
China		Mean age $= 65$ years	wGT3X-BT	fat mass (kg), Subcutaneous fat mass (kg), Trunk fat
				mass (kg), Visceral fat mass (kg)
Cheng et al. ³⁴ ,	Cross-sectional	N = 39 (49% female)	Accelerometry, activPAL3	BMI (kg/m²)
Australia		Mean age = 74 ± 10 years		
Danésio de Souza et al. ⁴⁹ ,	Cross-sectional	N = 402 (60.4% female)	Self-reported, IPAQ	HDL cholesterol (mg/dL), LDL cholesterol (mg/dL),
Brazil		Mean age = 72.2 ± 7 years		Total cholesterol (mg/dL), Triglycerides (mg/dL)

van Dyck et al. ⁴⁸ ,	Cross-sectional	N = 829 (61.35% female)	Accelerometery, ActiGraph	BMI (kg/m²)
Belgium, Hong Kong		Mean age = 74.83 ± 6.18 years	GT3X and GT3X+	
Figueiró et al. 47,	Cross-sectional	N = 425 (59.8% female)	Accelerometery, ActiGraph	DBP (mmHg), Fasting glucose (mg/dL), HDL
Brazil		Mean age = 73.9 years	GT3X and GT3X+	cholesterol (mg/dL), SBP (mmHg), Triglycerides
				(mg/dL), Waist circumference (cm)
Freire et al. ²¹ ,	Cross-sectional	N = 248 (78% female)	Accelerometery, ActiGraph	Metabolic syndrome (number)
Brazil		Mean age = 66 ± 4.6 years	GT3X+	
Gardiner et al. 46,	Cross-sectional	Whole sample:	Self-reported, IPAQ	Blood pressure (mmHg), Fasting glucose (mmol/L),
Australia		N = 1958 (54% female)		HDL cholesterol (mmol/L), Metabolic syndrome
		Mean age $= 69$ years		(number), Triglycerides (mmol/L), Waist
				circumference (cm)
		Females with Metabolic		
		Syndrome:		
		N = 642		
		Mean age = 68.9 years		
		Females with Metabolic		
		Syndrome:		
		N = 460		
		Mean age = 69.3 years		
		Males without Metabolic		
		Syndrome:		
		N = 487		
		Mean age = 69.7 years		
		- •		

		Males with Metabolic		
		Syndrome:		
		N = 409		
		Mean age = 69.4 years		
Gianoudis et al. ⁵⁹ ,	Cross-sectional	N = 162 (74% female)	Self-reported, validated	BMI (kg/m²), Body fat mass (kg)
Australia		Mean age = 67.5 ± 6 years	seven-day recall	
			questionnaire	
Howard et al. ²⁰ ,	Cross-sectional	N = 364 (72% female)	Self-reported, IPAQ	ApoA-1 (g/L), ApoB (g/L), ApoB : ApoA-1 ratio
Sweden		Mean age = 74 ± 6.8 years	modified for the elderly	(g/L), BMI (kg/m 2), DBP (mmHg), HDL cholesterol
				(mmol/L), High sensitivity CRP (g/L), LDL
				cholesterol (mmol/L), SBP (mmHg)
Hsueh et al. ⁴⁵ ,	Cross-sectional	N = 1046 (53.1% female)	Self-reported, validated	BMI (kg/m²)
Taiwan		Age > 65 years	seven-day recall	
			questionnaire	
Jefferis et al. ⁴⁴ ,	Cross-sectional	N = 1078 (0% female)	Accelerometery, ActiGraph	BMI (kg/m²), Fasting insulin (mmol/L), Fat mass
United Kingdom		Mean age = 78.5 ± 4.7 years	GT3X	index (kg/m²), Metabolic syndrome (number) Waist
				circumference (cm)
Judice et al. ³⁵ ,	Cross-sectional	N = 301 (63.1% female)	Accelerometery, ActiGraph	Waist circumference (cm)
Portugal		Mean age = 75 ± 6.8 years	GT1M	
Judice, Silva & Sardinha ⁴³ ,	Cross-sectional	N = 351 (65.5% female)	Accelerometery, ActiGraph	Waist circumference (cm)
Portugal		Mean age = 74.6 ± 7 years	GT1M	
Koolhaas et al. ⁴² ,	Cross-sectional	N = 1210 (51.9% female)	Accelerometery,	BMI (kg/m²)
Netherlands		Mean age = 77.5 ± 5 years	Activinsights GeneActiv	

Koyama et al. ⁴¹ ,	Cross-sectional	60-69 years:	Self-reported, IPAQ	BMI (kg/m²), DBP (mmHg), HbA1c (%), HDL
Japan		N = 62,754 (55.5% female)		cholesterol (mg/dL), non-HDL cholesterol (mg/dL),
		Age range = $60 - 69$ years		SBP (mmHg), Triglycerides (mg/dL)
Lansitie et al. ⁵¹ ,	Cross-sectional	N = 702 (58.3% female)	Accelerometery, Polar	Glucose 120 min (mmol/L)
Finland		Mean age = 68.9 ± 0.6 years	Electro Polar Active	
Nilsson et al. ⁴⁰ ,	Cross-sectional	N = 120 (100% female)	Accelerometery, ActiGraph	DBP (mmHg), Fasting glucose (mmol/L), HDL
Sweden		Mean age = 67.5 ± 1.6 years	GT3X	cholesterol (mmol/L), Metabolic syndrome (z-score),
				Metabolic syndrome minus Waist circumference (z-
				score), SBP (mmHg), Triglycerides (mmol/L), Waist
				circumference (cm)
Park and Larson 53,	Cross-sectional	N = 223 (48.9% female)	Accelerometery, ActiGraph	Fasting glucose (mmol/L), HDL cholesterol
United States		Mean age = 70.1 ± 8.7 years	7164	(mmol/L), MAP (mmHg), Metabolic syndrome
				(number), Triglycerides (mmol/L), Waist
				circumference (cm)
Reid et al. ⁵⁷ ,	Cross-sectional	N = 124 (63% female)	Accelerometery, activPAL 3	Body fat (%), Body fat mass (kg)
Australia		Mean age = 70.9 ± 4.2 years		
Rosenberg et al. ⁵² ,	Cross-sectional	N = 3538 (49% female)	Self-reported, IPAQ	BMI (kg/m²)
United States		Mean age = 72.6 ± 6 years		
Rosenberg et al. ⁵⁶ ,	Cross-sectional	N = 307 (72.3% female)	Accelerometery, ActiGraph	DBP (mmHg), SBP (mmHg)
United States		Mean age = 83.6 ± 6.4 years	GT3X	
Rosique-Esteban et al. ⁵⁵ ,	Cross-sectional	N = 1539 (48% female)	Self-reported, Nurses' Health	BMI (kg/m²), Body fat mass (kg), Waist
Spain		Mean age = 65.3 ± 5 years	Study questionnaire for	circumference (cm)
			Sedentary Behaviours	
Savikangas et al. ⁵⁸ ,	Cross-sectional	N = 293 (58% female)	Accelerometery, UKK	Body fat (%)
Finland		Mean age = 74.4 ± 3.8 years	RM42	

Silva et al. ³⁹ ,	Cross-sectional	N = 83 (67.5% female)	Accelerometery, ActiGraph	BMI (kg/m²)
Portugal		Mean age = 72.1 ± 5.6 years	GT1M	
Sohn et al. ³⁸ ,	Cross-sectional	Females:	Self-reported, IPAQ	BMI (kg/m²), Waist circumference (cm)
South Korea		N = 906		
		Mean age = 70 ± 7 years		
		Males:		
		N = 656		
		Mean age = 69.4 ± 6.7 years		
Stamatakis et al. ³⁷ ,	Cross-sectional	Sitting time lowest tertile:	Accelerometery, ActiGraph	BMI (kg/m²), Cholesterol Ratio (mmol/L), HbA1c
United Kingdom		N = 213 (61 % female)	GT1M	(%), Waist circumference (cm)
		Mean age = 67.8 ± 6.3 years		
		Sitting time middle tertile:		
		N = 217 (60.4% female)		
		Mean age = 69.3 ± 6.9 years		
		Sitting time highest tertile:		
		N = 216 (43.5 % female)		
		Mean age = 72.5 ± 8.1 years		

⁵⁷⁶ ApoA-1, Apolipoprotein A-1; ApoB, Apolipoprotein B; BMI, Body Mass Index; CRP, C-reactive protein; DBP, Diastolic blood pressure; HbA1c, Glycated haemoglobin

A1c; HDL, High-density lipoprotein; IPAQ, International Physical Activity Questionnaire; LDL, Low-density lipoprotein; MAP, Mean arterial pressure; NCEP ATP III, National Cholesterol Education Program Adult Treatment Panel III; SBP, Systolic blood pressure. 577

⁵⁷⁸

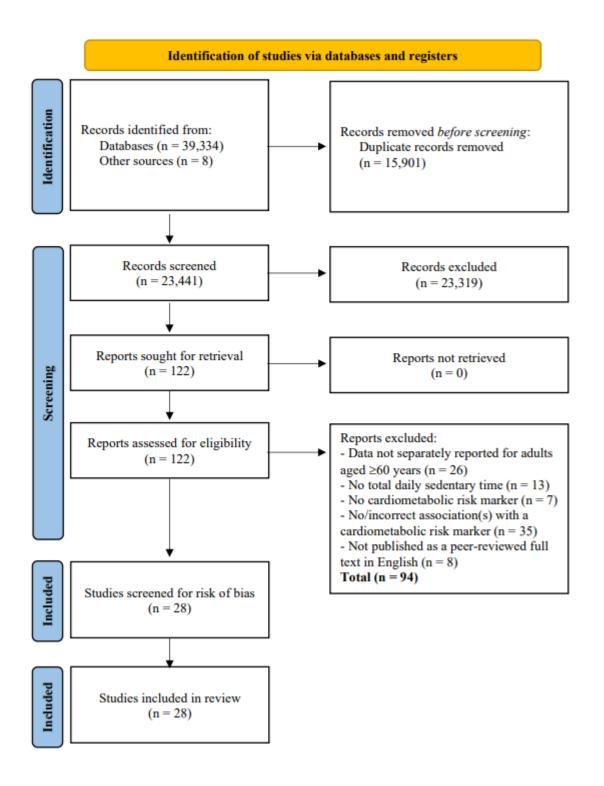
Table 4. Associations between daily sedentary time and cardiometabolic biomarkers for each included study

Study	Sample size and grouping	Cardiometabolic biomarkers	Statistic	Effect size (95% CI)	P value
Bankoski et al. ³³	Whole sample	Metabolic syndrome	Odds ratio	1.16 (0.77, 1.74)	0.25
	(n = 1,367)	(NCEP ATP III definition)			
Chastin et al. ⁵⁰	Females	Body fat (%)	Pearson's correlation	0.382	0.276
	(n = 14)				
	Males	Body fat (%)	Pearson's correlation	0.382	0.042
	(n = 16)				
Chen et al. ⁵⁴	Whole sample	BMI (kg/m²)	Standardised β	-0.09 (-0.26, 0.30)	0.292
	(n = 1,105)	Body fat (%)		0.01 (-0.30, 0.31)	0.970
		Body fat mass (kg)		0.02 (-0.33, 0.38)	0.894
		Limb fat mass (kg)		0.06 (-0.09, 0.20)	0.442
		Subcutaneous fat mass (kg)		0.03 (-0.23, 0.29)	0.827
		Trunk fat mass (kg)		-0.03 (-0.25, 0.19)	0.774
		Visceral fat mass (kg)		-0.01 (-0.10, 0.09)	0.880
Cheng et al. ³⁴	Whole sample	BMI (kg/m2)	Simple correlation	-0.01	> 0.05
	(n = 39)				
Danésio de Souza et	Whole sample	HDL cholesterol (mg/dL)	Standardised β	-0.01 (-0.10, 0.08)	Not reported
al. ⁴⁹	(n = 402)	LDL cholesterol (mg/dL)	Standardised β	-0.09 (-0.13, 0.06)	0.10
		Total cholesterol (mg/dL)	Standardised β	-0.09 (-0.18, 0.009)	0.03
		Triglycerides (mg/dL)	Standardised β	-0.09 (-0.25, 0.06)	Not reported
van Dyck et al.48	Whole sample	BMI (kg/m²)	Standardised β	0.493 (0.299, 0.686)	< 0.001
	(n = 829)				
Figueiró et al. ⁴⁷	Whole sample	DBP (mmHg)	Standardised β	-0.01 (-0.01, 0.01)	0.672
	(n = 425)	Fasting glucose (mg/dL)		0.01 (-0.01, 0.03)	0.229

		HDL cholesterol (mg/dL)		-0.02 (-0.02, 0.01)	0.019
		SBP (mmHg)		-0.03 (-0.05, -0.01)	0.017
		Triglycerides (mg/dL)		0.04 (-0.01, 0.08)	0.179
		Waist circumference (cm)		0.02 (-0.01, 0.03)	0.079
Freire et al. ²¹	Whole sample	Metabolic syndrome (number)	Standardised β	0.09 (0.03, 0.15)	0.03
	(n = 248)				
Gardiner et al.46	Females	High blood pressure (mmHg)	Odds ratio	1.29 (0.88, 1.87)	> 0.05
	(n = 1,062)	Glucose intolerance (mmol/L)		1.17 (0.81, 1.71)	> 0.05
		Low HDL cholesterol (mmol/L)		1.27 (0.81, 1.99)	> 0.05
		Metabolic syndrome (number)		1.56 (1.09, 2.24)	< 0.05
		High triglycerides (mmol/L)		1.66 (1.14, 2.41)	< 0.01
		High waist circumference (cm)		1.81 (1.21, 2.70)	< 0.01
	Males	High blood pressure (mmHg)	Odds ratio	0.87 (0.55, 1.39)	> 0.05
	(n = 896)	Glucose intolerance (mmol/L)		0.92 (0.60, 1.40)	> 0.05
		Low HDL cholesterol (mmol/L)		1.78 (1.05, 3.02)	< 0.05
		Metabolic syndrome (number)		1.57 (1.02, 2.41)	< 0.05
		High triglycerides (mmol/L)		1.61 (1.01, 2.58)	< 0.05
		High waist circumference (cm)		1.52 (0.94, 2.45)	> 0.05
Gianoudis et al. ⁵⁹	Whole sample	BMI (kg/m²)	Standardised β	0.04 (-0.30, 0.22)	> 0.05
	(n = 162)	Body fat mass (kg)		0.29 (-0.24, 0.82)	> 0.05
Howard et al. ²⁰	Whole sample	ApoA-1 (g/L)	Standardised β	-0.02 (-0.10, 0.06)	0.676
	(n = 364)	ApoB (g/L)		-0.03 (-0.09, 0.03)	0.374
		ApoB:ApoA-1 ratio (g/L)		-0.03 (-0.08, 0.02)	0.255
		BMI (kg/m²)		1.12 (-0.01, 2.25)	0.056
		DBP (mmHg)		0.13 (-3.09, 3.35)	0.938

		HDL cholesterol (mmol/L)		0.95 (0.88, 1.01)	0.120
		LDL cholesterol (mmol/L)		-0.12 (-0.40, 0.16)	0.408
		SBP (mmHg)		1.04 (0.99, 1.09)	0.085
Hsueh et al. ⁴⁵	Whole sample	High BMI (kg/m²)	Odds ratio	1.51 (1.03, 2.20)	0.03
	(n = 1,046)				
Jefferis et al. ⁴⁴	Sub-sample (n = 1,019)	BMI (kg/m²)	Standardised β	0.011 (0.008, 0.013)	< 0.05
	Sub-sample $(n = 966)$	Fasting insulin (mmol/L)	Standardised β	0.009 (0.004, 0.014)	< 0.05
	Sub-sample $(n = 962)$	Fat mass index (kg/m²)	Standardised β	0.009 (0.006, 0.011)	< 0.05
	Sub-sample $(n = 907)$	Metabolic syndrome (number)	Odds ratio	1.004 (1.002, 1.006)	< 0.05
	Sub-sample ($n = 1,023$)	Waist circumference (cm)	Standardised β	0.034 (0.025, 0.042)	< 0.05
Júdice et al. ³⁵	Females	High waist circumference (cm)	Odds ratio	1.00 (0.99, 1.04)	0.297
	(n = 190)	Waist circumference (cm)	Unstandardised β	0.01 <u>+</u> 0.01	0.297
	Males	High waist circumference (cm)	Odds ratio	1.00 (0.99, 1.01)	0.251
	(n = 111)	Waist circumference (cm)	Unstandardised β	0.001 ± 0.001	0.251
Júdice, Silva, &	Whole sample	Waist circumference (cm)	Standardised β	0.02 (-0.12, 0.16)	0.789
Sardinha ⁴³	(n = 351)				
Koolhaas et al. ⁴²	Females	BMI (kg/m²)	Standardised β	0.90 <u>+</u> 0.14	< 0.001
	(n = 582)				
	Males	BMI (kg/m²)	Standardised β	0.96 <u>+</u> 0.18	< 0.001
	(n = 628)				
Koyama et al. ⁴¹	Females - 60-69 years	BMI (kg/m²)	Standardised β	0.034	0.004
	(n = 11,510)	DBP (mmHg)		0.057	< 0.001
		HbA1c (%)		-0.003	0.815
		HDL cholesterol (mg/dL)		0.042	0.001
		non-HDL cholesterol (mg/dL)		0.021	0.080

		SBP (mmHg)		0.056	< 0.001
		Triglycerides (mg/dL)		0.045	< 0.001
	Males - 60-69 years	BMI (kg/m²)	Standardised β	0.058	< 0.001
	(n = 10,994)	DBP (mmHg)		0.047	< 0.001
		HbA1c (%)		0.024	0.044
		HDL cholesterol (mg/dL)		-0.016	0.171
		non-HDL cholesterol (mg/dL)		0.039	0.001
		SBP (mmHg)		0.042	< 0.001
		Triglycerides (mg/dL)		0.054	< 0.001
Lansitie et al. ⁵¹	High waist circumference	Glucose 120 min (mmol/L)	Standardised β	0.14 (0.02, 0.26)	0.022
	tertile (men > 104 cm;				
	women > 94 cm) (n = 189)				
Nilsson et al. ⁴⁰	Whole sample	DBP (mmHg)	Standardised β	-0.06 (-0.30, 0.18)	> 0.05
	(n = 113)	Fasting glucose (mmol/L)		0.01 (-0.01, 0.03)	> 0.05
		HDL cholesterol (mmol/L)		0.00 (-0.02, 0.00)	> 0.05
		Metabolic syndrome (z-score)		0.02 (0.00, 0.03)	> 0.05
		Metabolic syndrome without waist			
		circumference (z-score)		0.02 (0.00, 0.03)	> 0.05
		SBP (mmHg)		0.12 (-0.31, 0.54)	> 0.05
		Triglycerides (mmol/L)		0.00 (-0.02, 0.00)	> 0.05
		Waist circumference (cm)		0.09 (-0.20, 0.39)	> 0.05
Park and Larson ⁵³	Whole sample	Fasting glucose (mg/dL)	Unstandardised β	0.02	< 0.05
	(n = 223)	HDL cholesterol (mmol/L)	Unstandardised β	0.01	> 0.05
		MAP (mmHg)	Unstandardised β	0.01	> 0.05
		Metabolic syndrome (number)	Odds ratio	2.46 (0.79, 7.64)	> 0.05


		Triglycerides (mmol/L)	Unstandardised β	-0.08	> 0.05
		Waist circumference (cm)	Unstandardised β	0.02	< 0.05
Reid et al. ⁴⁷	Whole sample	Body fat (%)	Unstandardised β	1.07 (0.21, 1.92)	< 0.05
	(n = 123)	Body fat mass (kg)		1.93 (0.71, 3.15)	< 0.01
Rosenberg et al. ⁵²	Whole sample	BMI (kg/m²)	Unstandardised β	0.82 (0.53, 1.10)	< 0.001
	(n = 3,538)				
Rosenberg et al. ⁵⁶	Whole sample	DBP (mmHg)	Standardised β	0.77 <u>+</u> 0.58	0.19
	(n = 307)	SBP (mmHg)		0.78 <u>+</u> 1.10	0.48
Rosique-Esteban et al. ⁵⁵	Whole sample	BMI (kg/m²)	Standardised β	0.25 (0.16, 0.35)	< 0.001
	(n = 1, 539)	Body fat mass (kg)		0.47 (0.30, 0.65)	< 0.001
		Waist circumference (cm)		0.60 (0.35, 0.83	< 0.001
Savikangas et al. ⁵⁸	Whole sample	Body fat (%)	Pearson's correlation	0.251	< 0.001
	(n = 293)				
Silva et al. ³⁹	Whole sample	BMI (kg/m²)	Pearson's correlation	0.146	0.187
	(n = 83)				
Sohn et al. ³⁸	Female	High BMI (kg/m²)	Odds ratio	1.19 (0.86, 1.51)	> 0.05
	(n = 906)	BMI (kg/m^2)	Standardised β	0.100 ± 0.035	0.002
		High waist circumference (cm)	Odds ratio	1.19 (0.87, 1.53)	> 0.05
		Waist circumference (cm)	Standardised β	0.033 ± 0.100	0.318
-	Male	High BMI (kg/m²)	Odds ratio	1.54 (1.09, 2.16)	< 0.05
	(n = 656)	BMI (kg/m^2)	Standardised β	0.105 + 0.035	0.007
		High waist circumference (cm)	Odds ratio	1.38 (0.88, 1.81)	> 0.05
		Waist circumference (cm)	Standardised β	0.109 + 0.109	0.006
Stamatakis et al. ³⁷	Whole sample $(n = 649)$	BMI (kg/m²)	Unstandardised β	0.160 (-0.021, 0.342)	> 0.05
	Sub-sample ($n = 333$)	Cholesterol Ratio (mmol/L)	Unstandardised β	0.060 (0.000, 0.121)	< 0.05
			Unstandardised β		> 0.05

Sub-sample ($n = 333$)	HbA1c (%)	Unstandardised β	0.008 (-0.024, 0.040)	< 0.05
Whole sample $(n = 649)$	Waist circumference (cm)		0.633 (0.173, 1.093)	

Bold indicates significant association. ApoA-1, Apolipoprotein A-1; ApoB, Apolipoprotein B; BMI, Body Mass Index; DBP, Diastolic blood pressure; HbA1c, Glycated haemoglobin A1c; HDL, High-density lipoprotein; LDL, Low-density lipoprotein; MAP, Mean arterial pressure; NCEP ATP III, National Cholesterol Education Program

Adult Treatment Panel III; SBP, Systolic blood pressure.

883	Figure captions.
584	
585	Fig. 1 Flow diagram of the article selection process
886	
887	Fig. 2 Forest plot for the random-effect meta-analysis for body mass index, waist circumference, body fat
888	percentage and fat mass. SE, standard error; CI, confidence interval.
889	
590	Fig. 3 Forest plot for the random-effect meta-analysis for diastolic and systolic blood pressure. SE, standard
591	error; CI, confidence interval.
592	
593	Fig. 4 Forest plot for the random-effect meta-analysis for blood glucose, triglycerides, high-density lipoprotein
594	cholesterol and metabolic syndrome. SE, standard error; CI, confidence interval.

Body mass index		Hedge's g	SE	Lower 95%CI	Upper 95%CI
Gianoudis et al. ⁵⁹	1	0.09	0.005	0.08	0.10
Howard et al. ²⁰		■ 1.14	0.043	1.06	1.23
Hsuch et al.45	H	0.83	0.018	0.80	0.87
Koyama et al. ⁴¹ ⋈		0.11	0.001	0.11	0.11
Koyama et al.41		0.08	0.001	0.08	0.08
Rosenberg et al. ⁵²	•	0.39	0.005	0.38	0.4
Rosique-Esteban et al.55	 ∳	0.29	0.005	0.28	0.31
Sohn et al. ³⁸	1	0.15	0.004	0.14	0.16
Sohn et al. ³⁸	1	0.15	0.003	0.14	0.15
Self-reported -	-i+i	0.36	0.126	0.11	0.61
Chen et al. ⁵⁴		-0.09	0.002	-0.09	-0.08
Cheng et al. ³⁴ →		-0.02	0.002	-0.02	-0.01
van Dyck et al.48		0.06	0.001	0.06	0.06
Jefferis et al. ⁴⁴ →		0.29	0.023	0.25	0.34
Silva et al. ³⁹	•	0.75	0.021	0.71	0.79
Savikangas et al.58	•	0.53	0.013	0.51	0.56
Device-assessed		0.25	0.135	-0.01	0.52
Combined effect	+	0.32	0.091	0.14	0.50

-0.2

0.0

0.0

0.0

0.2

0.2 0.4

0.4

0.6 0.8

0.2

0.4

0.6

Self-reported: Z = 2.84, P = 0.004Device-assessed: Z = 1.87, P = 0.061Combined effect: Z = 3.48, P < 0.001**Heterogeneity:** $I^2 = 100\%$, P < 0.001

Waist circumference				Hedge's g	SE	Lower 95%CI	Upper 95%CI
Gardiner et al.46		-	-	0.84	0.020	0.80	0.88
Gardiner et al.46		1		1.00	0.022	0.95	1.04
Rosique-Esteban et al.55		1++1		0.64	0.011	0.62	0.66
Sohn et al.38	×	1		0.16	0.004	0.15	0.17
Self-reported		+ +		0.64	0.187	0.28	1.01
Figueiró et al.47	•			0.07	0.002	0.06	0.07
Jefferis et al.44		:		0.08	0.002	0.08	0.09
Júdice et al.35		: -		0.55	0.037	0.47	0.62
Júdice et al.35		:		0.55	0.028	0.49	0.60
Nilsson et al.40	101			0.14	0.009	0.12	0.16
Device-assessed	→			0.22	0.095	0.03	0.41
Combined effect	-	-		0.45	0.116	0.22	0.67
	0.0 0.2	0.4 0.6 0	.8 1.0	1.2	Self-rep	oorted: Z = 3.	43, P < 0.00

0.8

1.0

1.2

Device-assessed: Z = 2.19, P = 0.021 Combined effect: Z = 3.84, P < 0.001 Heterogeneity: I² = 100%, P < 0.001

Body fat percentage		Hedge's g	SE	Lower 95%CI	Upper 95%CI
Chastin et al.50	-	0.77	0.154	0.44	1.10
Chastin et al.50	; ⊢	1.23	0.228	0.74	1.71
Chen et al.54	•	0.06	0.001	0.06	0.06
Savikangas et al.58	144	0.52	0.021	0.47	0.56
Combined effect	<u> </u>	0.61	0.243	0.13	1.09

0.8

1.0

1.0 1.2 1.4 1.6 1.8

1.2

Combined effect: Z = 2.51, P = 0.012Heterogeneity: $I^2 = 99.7\%$, P < 0.001

Fat mass					Hedge's g	SE	Lower 95%CI	Upper 95%CI
Chen et al.54	•			_	0.07	0.001	0.07	0.07
Gianoudis et al.59		,			0.33	0.018	0.30	0.37
Rosique-Esteban et al.55			!	++1	0.51	0.009	0.49	0.53
Combined effect	1		-	Ī	0.30	0.128	0.05	0.55
	0.0	0.2	0.4	0.6	0.8		effect: $Z = 2$. eitv: $I^2 = 99.9$	

Diastolic Blood Pres	sure				Hedge's g	SE	Lower 95%CI	Upper 95%CI
Howard et al.20		*			0.18	0.007	0.16	0.19
Koyama et al.41		•			0.10	0.001	0.09	0.10
Koyama et al.41		•			0.11	0.001	0.10	0.11
Self-reported		+			0.13	0.026	0.08	0.18
Figueiró et al.47		-			-0.01	0.0003	-0.01	-0.01
Nilsson et al.40		-			-0.06	0.004	-0.07	-0.05
Rosenberg et al.52		!	++1		0.80	0.032	0.74	0.87
Device-assessed	_	- +			0.24	0.279	-0.30	0.79
Combined effect	_	+	1		0.18	0.128	-0.07	0.44
	-0.4	0.1	0.6	1.1	1.6	Self-repo	rted: Z = 4.9	4, P < 0.001

Device-assessed: Z = 0.87, P = 0.382 Combined effect: Z = 1.44, P = 0.150 Heterogeneity: I² = 100%, P < 0.001

				recerogeneity. 1 10070,1 < 0					
ire				Hedge's g	SE	Lower 95%CI	Upper 95%CI		
		:	→	1.07	0.040	0.99	1.14		
	١٠			0.09	0.001	0.09	0.09		
	•	!		0.10	0.001	0.10	0.11		
		•	Ī	0.39	0.308	-0.21	1.00		
	•			-0.03	0.001	-0.03	-0.03		
	H			0.17	0.011	0.14	0.19		
		! ⊷		0.81	0.033	0.75	0.88		
-	-	<u> </u>		0.32	0.254	-0.18	0.81		
	$\overline{}$	<u> </u>		0.37	0.185	0.01	0.73		
-0.4	0.1	0.6	1.1	1.6	Device-asse Combined e	ssed: Z = 1.2 ffect: Z = 1.9	4, P = 0.215 9, P = 0.047		
	-		HI		1.07 0.09 0.10 0.39 -0.03 0.17 0.81 0.32 0.37	Hedge's g SE 1.07 0.040 0.09 0.001 0.10 0.001 0.39 0.308 0.39 0.308 0.17 0.011 0.81 0.033 0.32 0.254 0.37 0.185 0.4 0.1 0.6 1.1 1.6 Self-report Device-asse Combined et	Hedge's g SE Lower 95%CI 1.07 0.040 0.99 0.09 0.001 0.09 0.10 0.001 0.10 0.39 0.308 -0.21 -0.03 0.001 -0.03 0.17 0.011 0.14 0.81 0.033 0.75 0.32 0.254 -0.18 0.37 0.185 0.01		

Blood glucose								Hedge's g	SE	Lower 95%CI	Upper 95%CI
Figueiró et al.47		•						0.06	0.002	0.06	0.06
Gardiner et al.46					1+1			0.64	0.014	0.62	0.67
Gardiner et al.46					101			0.51	0.012	0.48	0.53
Nilsson et al.40				!				0.06	0.004	0.05	0.07
Combined effect		$\overline{}$		$\overline{}$	Ī			0.30	0.151	0.01	0.60
	-0.2	0.0	0.2	0.4	0.6	0.8	1.0	1.2			2.01, P = 0.04 .8%, P < 0.00

		Hedge's g	SE	Lower 95%CI	Upper 95%CI
•	:	0.09	0.003	0.08	0.10
	; ⊷	0.89	0.021	0.85	0.93
		0.91	0.020	0.88	0.95
	:	0.10	0.001	0.10	0.10
	1	0.09	0.001	0.09	0.10
×		0.05	0.003	0.04	0.06
-	•	0.36	0.172	0.02	0.69
	:) ++1 ++1	■ 0.09 0.89 0.91 0.10 0.09 0.05	● 0.09 0.003 ● 0.89 0.021 ● 0.91 0.020 • 0.10 0.001 • 0.09 0.001 ■ 0.05 0.003	Hedge's g SE 95%CI 0.09 0.003 0.08 0.89 0.021 0.85 0.91 0.020 0.88 0.10 0.001 0.10 0.09 0.001 0.09 0.05 0.003 0.04

0.0 0.2 0.4 0.6 0.8 1.0 1.2 Combined effect: Z = 2.06, P = 0.039 Heterogeneity: I² = 100%, P < 0.001

High-density lipoprotein chol	esterol	Hedge's g	SE	Lower 95%CI	Upper 95%CI	
Danésio de Souza et al.49	1		-0.01	0.0003	-0.01	-0.01
Koyama et al.41	١.		0.09	0.001	0.09	0.09
Koyama et al.41	•		-0.02	0.0001	-0.02	-0.02
Howard et al.20			0.98	0.036	0.91	1.05
Gardiner et al.46		· +++	0.70	0.015	0.67	0.73
Gardiner et al.46			0.98	0.023	0.93	1.03
Self-reported	_		0.45	0.198	0.07	0.84
Figueiró et al.47	*	:	0.05	0.003	0.04	0.06
Nilsson et al.40	•		-0.02	0.001	-0.02	-0.02
Combined effect	_		0.34	0.162	0.03	0.66

0.8

1.0

1.2

-0.2

0.0

0.2

0.4

0.6

Self-reported: Z = 2.29, P = 0.022Combined effect: Z = 2.12, P = 0.034Heterogeneity: $I^2 = 100\%$, P < 0.001

Metabolic Syndrome									1	Hedge's g	SE SE	Lower 95%CI	Upper 95%CI
Bankoski et al.33		Τ,	,		:					0.08	0.002	0.001	0.001
Freire et al.21					:					0.14	0.006	0.01	0.01
Jefferis et al.44					÷					0.55	0.01	0.02	0.02
Nilsson et al.40		×			1					0.07	0.005	0.01	0.01
Park and Larson ⁵³					1			-	•	1.35	0.06	0.12	0.12
Device-assessed		+		_	-					0.436	0.245	0.48	0.48
Gardiner et al.46					:	+ +				0.86	0.02	0.04	0.04
Gardiner et al.46						₩1				0.86	0.02	0.04	0.04
Combined effect			—		•					0.557	0.19	0.37	0.36
	-0.2	0.0	0.2	0.4	0.6	0.8 1	.0	1.2	1.4		Device-asse		78, P = 0.075

Device-assessed: Z = 1.78, P = 0.075Combined effect: Z = 3.00, P = 0.003Heterogeneity: $1^2 = 100\%$, P < 0.001