794 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 49, NO. 4, APRIL 2001

Robust Filtering for a Class of Stochastic
Uncertain Nonlinear Time-Delay Systems via
Exponential State Estimation

Zidong Wang Member, IEEEand Keith J. Burnham

Abstract—in this paper, we investigate the robust filter design this problem, for the continuous-time case, a number of papers
problem for a class of nonlinear time-delay stochastic systems. have attempted to extend the classical Kalman filter to systems
The system under study involves stochastics, unknown state ., |ying norm-bounded uncertainties with respect to various
time-delay, parameter uncertainties, and unknown nonlinear filteri f iteri h ification. th
disturbances, which are all often encountered in practice and the ' .ermg per or.mance L 9”a’ such as the, specification, ) e.
sources of instability. The aim of this problem is to design a linear, Minimum variance requirement, and the so-called admissible
delayless, uncertainty-independent state estimator such that for variance constraint. For thié_, specification [3], [7], [9], [12],
all admissible uncertainties as well as nonlinear disturbances, the [15], [21], [28], [30], the H., norm of the transfer function
dynamics of the estimation error is stochastically exponentially o1 the noise input to the estimation error is minimized.

stable in the mean square, independent of the time delay. Sufficient . . .
conditions are proposed to guarantee the existence of desiredBy the minimum variance requirement [4], [5], [8], [10],

robust exponential filters, which are derived in terms of the [24], [25], [29], we mean that a minimal upper bound to the
solutions to algebraic Riccati inequalities. The developed theory is quadratic cost is guaranteed in spite of parameter uncertainties.

illustrated by numerical simulation. Concerning the admissible variance constraint [31]-[33], [35],
Index Terms—Algebraic Riccati inequalities, nonlinear sys- [36], the estimation error variance is required to be not more
tems, robust filtering, stochastic exponential stability, time-delay than the individual prespecified value, and the resulting design
systems. freedom is used to achieve other expected requireméhits (
performance, transient property, etc.).
I. INTRODUCTION On the other hand, it turns out that the delayed state is very
i often the cause for instability and poor performance of systems
S IS well known, for the purpose of analysis and contrgl g |ncreasing interests have recently been devoted to the ro-
/—\ design, estimating the state variables of a dynamic moqg|s and/ori .. controller design problems of the linear uncer-
is important in heping to improve our knowledge about differeqt;, state delayed systems. A great many papers have appeared
systems. Hence, state estimation has been one of the fungamis topic; see [22] for a survey. However, the “dual” filter/ob-
mentql issues in the contro_l area. There h_ave been a lot of wogks, oy design problems of uncertain time-delay systems have re-
following those of Kalman (in the stochastic framework [1]) andaivedmuch lessattention, although they are important in con-
Luenberger (in the deterministic one [23]), especially in signgly| gesign and signal processing applications. In [34], the ro-
processing applications. , _ bust H.. observer design problem has been studiedifser-

One of the problems with Kalman filters, which has beegjnistic time-delay systems. In the stochastic framework, the
well recognized now, is that the system under consideratigty, st Kalman filter design problem has been investigated in
has known dynamics described by a certain well-posed modgh) and [17] forlinear continuous- and discrete-time cases, re-
and its disturbances are Gaussian noises with known statistigs. .tively. A finite upper bound on the error covariance has been
These assumptions limit the application scope of the Kalmgliaranteed in [13] and [17]. It should be pointed out that in [13]
filtering techmque_ when there are uncertainties in either the, [17], only the asymptotical stability has been considered on
exogenous input signals or the system model. It has been knqyg fjjtering process, and therefore, a possibly long convergence
that the standard Kalman filtering algorithms will generally ng§me (aithough the steady-state covariance is bounded) may lead
guarantee satisfactory performance when there exists unGgraoor performance. Often, in practice, exponential stability is
tainty in the system model; see e.g., [1] and [6]. Motivated Byigh1y desired for filtering processes so that fast convergence
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[26] and [37]-[39]. Thus far, there have been very few papetsgether with the measurement equation

dealing with the exponential filter design problem fggneral

stochastictime-delay systems. Moreover, it seems more chal- y(t) = (C+ AC(t))z(t) + Eaw(?) (2.3)
lenging to consider the case where parameter uncertainty arE

nonlinear disturbance also exist in the system model, due to fiaere
(t) e R? state;

(t) e RP measurement output;
(-): R* — R™ unknown nonlinear disturbance input;

complexity of such a problem. This motivates us to investigate”
the multiobjective filter design problem for stochastic uncer- Yy
tain time-delay systems with stochastic exponential stabilityf
constraints. h unknownstate delay;

In this paper, we address the robust filter design problem for () N contmuousc\;/ector_ valueg_tlnltlal function.
a class of nonlinear time-delay stochastic systems. The Clggpﬁ[le’ w( ). IS @ Z€ro mean aussian White NOISe process
covariancel > 0. The initial stater(0) has the mean

of stochastic time-delay systems under study is described ﬂ} ) ) .
a state-space model with real time-varying norm-bounded pgo) and covarianceP(0) and is uncorrelated with(z).

rameter uncertainties and nonlinear disturbances meeting eAd_’ D, El’ C’_E2 are known constant matrices with ap-

boundedness condition. Here, attention is focused on the deg} ppriate _d|men3|o_nsAA(t)z AAq(t), AC(t.) are real-valued

of a linear, delayless, uncertainty-independent state estimatf e-varying matn_x _funct|ons _representmg norm-bounded

such that for all admissible uncertainties and nonlinear disuﬂgrameter uncertainties and satisfy

bances, the dynamics of the estimation error is stochastically ex-[ A At

ponentially stable in the mean square, independent of the time{ AC(t

delay. Sufficient conditions are proposed to guarantee the ex-

istence of desired robust exponential filters, which are derivedhere F'(t) € R/ is a real uncertain matrix with Lebesgue

in terms of the solutions to algebraic Riccati inequalities. Wmaeasurable elements and meets

demonstrate the usefulness and applicability of the developed

theory by means of a numerical simulation example. FYnF() <1 (2.5)
Notation: The notations in this paper are quite stand&d.

and R™*™ denote, respectively, the-dimensional Euclidean

space and the set of allx m real matrices. The superscripf™ ! . . .
P P A in F'(t) enter the nominal matrice$, 4,4, C. The uncertainties

denotes the transpose and the notaflor> Y (respectively, ) R
X > Y),whereX andY are symmetric matrices, which meanéA(t)’ Ada(t), _AQ(t) are said to be admissible if both (2.4)
and (2.5) are satisfied.

thatX — Y is positive semi-definite (respectively, positive def* ) . .
inite). I is the identity matrix with compatible dimension. We Remark 21 For brevity, We_have_ (_)mltted the known cpntrol
let h > 0 andC([—h, 0]; R") denote the family of contin- inputtermsin (2.1) and (2.3) since it is well known that this does

uous functions, from [—h, 0] to R™ with the norm||¢|| = nolt:zaffectktgezgirr\]erahty of t[]e d|scus;S|.o? or;thetfllter dc.-:‘sngzné.‘r
SUp_p.ca<o [¢(8)], where| - | is the Euclidean norm i, emark 2.2: The parameter uncertainty structure as in (2.4)

If 4 is a matrix, denote byl A|| its operator norm, i.ef|A|| = and (2.5) has been widely used in the problems of robust con-

sup{|Az|: |z] = 1} = v/ Amax( AT A), WhereA o ( - ) [respec- trol and robust filtering of uncertain systems (see, e.g., [14],

tively, Amin( - )] means the largest (respectively, smallest) eige?—sl' [35], and the referencgs Fhereln). Many pracucal systems
value ofA. 1[0, o] is the space of the square integrable vectdproSsess parameter uncertainties that can be either exactly mod-

Moreover, let(2, F, {F}:=0, P) be a complete probability eled or overbounded by (2.5). Observe that the unknown matrix

space with a filtration{ 7, },>¢ satisfying the usual conditionsF (t) in (2.4) can even be allowed to be state-dependent, i.e.,

: g : o . F(t) = F(t, 2(t)), as long as (2.5) is satisfied.
(i.e., the filtration contains alP-null sets and is right contin- )
uous). Denote by.%. ([—h, 0]; R) the family of all Fo-mea- Remark 2.3: Note that the system (2.1)—(2.3) can be used to

surableC([—h, 0]; R™)-valued random variables = {¢(6): repres(;anlt many important physmgl ;ystzms supjt_acF to mhlt_erent
—h < 6 < 0} such thatup_,, s, E|E(®)[" < oo, where state delays, parameter uncertainties, deterministic nonlinear

E{ -} stands for the mathematical expectation operator with rgLsturbapc_:es (Wh'Ch. may result from linearization process
spect to the given probability measufe Sometimes, the ar- of an orlgl_nally nonlinear plan_t or may be an gctual _external
guments of a function will be omitted in the analysis when nt&onllnear input), and stochastic exogenous noises with known

confusion can arise. statistics. _ . _
Throughout this paper, we make the following assumptions.

Assumption 2.1:The system matrixA is asymptotically
Il. PROBLEM FORMULATION AND ASSUMPTIONS stable.
We consider a class of nonlinear uncertain continuous-time~ASSumption 2.2:The matrix; is of full row rank. _
state delayed stochastic system represented by Assumption 2.3:There exists a known_real constant ma';nx
H € R™*™ such that the unknown nonlinear vector function
f(-) satisfies the following boundedness condition

and My, M,, N1, Ny are known real constant matrices of ap-
propriate dimensions that specify how the uncertain parameters

i(t) =(A+ AAQR))x(t) + (Aa + AAq(t))
z(t — h) + Df(z(t)) + Erw(t) (2.1) |f(z(®)] < [Hz(?)| (2.6)

z(t) = (), te—h, 0] (2.2) foranyz(t) € R™.
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It is noted that Assumption 2.2 does not lose any generalignd is exponentially stable in the mean square if there exist con-
In this paper, the full-order linear filter under consideration is aftantsae > 0 and/S > 0 such that

the form
. . 2 —4t 2
3(t) = Gi(t) + Ky(t) 2.7) Elzs(t; O < ac s E[£(0)]" (2.17)
where the constant matricésand K are filter parametersto be  Definition 2.2: We say that the filter (2.7) is exponential (re-
designed. spectively, asymptotic) if, for evegye L% ([—h, 0]; R*"), the
Letting the error state be corresponding augmented system (2.15) is exponentially stable
in mean square (respectively, asymptotically stable in the mean
e(t) = =(t) — 2(t) (2.8) square).
. The objective of this paper is to design an exponential filter
it then follows from (2.1)—(2.3) and (2.7) that for the uncertain nonlinear time-delay system (2.1)—(2.3). More

) specifically, we are interested in seeking the filter parameters
e(t) =Ge(t) + [(A+ AA(t)) — K(C+ AC(t)) = Glz(t) @ and K such that for all admissible parameter uncertainties

+ (Ag+ AA(E))x(t — h) + Df(x(t)) AA, AA,, AC and the nonlinear disturbance inpfitz(t)),
+ (B, — KE)w(®). (2.9) the augmented system (2.15) is exponentially stable in the mean
square, independent of timknowntime-delayh.
Now, define
0 2(t) s A 0 [ll. M AIN RESULTS AND PROOFS
T ey | T |A-G-KC @ A. Filter Analysis
Ay = [ Ag 0} (2.10) This subsection is devoted to the filter analysis problem.
/ | Aa O Specifically, assuming that the filter structure is known, we
will study the conditions under which the estimation error is
D B ‘ ) .
Dy = Dl Ef = B - KE stochastically exponentially stable in the mean square.
- ! 2 The following theorem shows that the exponential stability
My = My } (2.11) of a given filter for the uncertain nonlinear time-delay system
| My — KM, (2.1)—(2.3) can be guaranteed if a positive definite solution to
Np:=[Ny 0], AApt):= MsF(t)N; a modified algebraic Riccati-like matrix inequality (quadratic
M, matrix inequality) is known to exist. This theorem plays a key
Mas = | 3/ } (2.12) role in the design of the expected filters.
L Theorem 3.1:Let the filter parameterss and K be given.
Nygp:=[No 0], AAg(t) := Mg F(t) Ny If there exist positive scalaes, 2, €3, 4 > 0 and a positive
Fp:=[I 0]. (2.13) definite matrix? > 0 such that the following matrix inequality
Noting ATP 4 PA;+ Pl(e1 + ) +25M;MF + 72D, DT|P
x(t) = Fras(t) (2.14) +ep A Ay +e3 ' Nj Ny + es(HEy) T (HEy)

+ Amax(Mgs Mag)es ' Nig Nog < 0 (3.)
and combining (2.1)—(2.4) and (2.9), we obtain the following
auQmented system: holds, WhereAf, Adf, Mf, Nf, Df, Mdf, Ndf, Ff are defined
in (2.10)—(2.13) andd is defined in (2.6), then the augmented
dp(t) =(Af + AAp(t))as(t) + (Ags + AAgr(t))zp(t —h)  system (2.15) is exponentially stable in the mean square for all
admissible parameter uncertaintiasd, AA,;, AC and non-
T Dp ] (Epep(£) + Eyu?). (2.15) linear disturbance inpuf(x(t)), independent of the unknown
time-delayh.

Next, observe the augmented system (2.15), anchigt ¢) Proof: For simplicity, we make the definitions

denote the state trajectory from the initial datg8) = £(6)
on—h < 6 < 0in L% ([-h, 0]; R**). Clearly, the system
(2.15) admits a trivial solutior: ;(¢t; 0) = 0 corresponding Ai(t) ;= Ap+ AAp(t) = Ay + MF(t)N; (3.2)
to the initial data¢ = 0. We introduce the following stability A(8) = A AAL(D = A MaF(ON, 3.3
concepts, 1a(t) :=Agp + AAy(t) = Agp + Mays F(t)Ngg - (3.3)
Definition 2.1: For the system (2.15) and every hen th 21 -
¢ e Lffo([—h, 0l R2"), the trivial solution is asymptoti- and then the augmented system (2.15) can be rewritten as
cally stable in the mean square if
. T p(t) = A1)z p(t) + Ara(W)z p(t — h) + Dy f(Frap(t))
Jim Ela (¢ O =0 (2.16) + Eju(t). (3.4)
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Fix¢ € L% ([—h, 0]; R**) arbitrarily, and writer s(¢; ¢) =  that
zs(t). For (zs(t), t) € R*™ x R,, we define the Lyapunov

function candidate 5t~ BYAAy(0) Pas(t) + 5 (P(A Ay (H)as(t ~ B)
t < eaat () P?xp(t) + 5 lAmaX(MdfMdf)a:f (t—h)
Vgt 1) =aF P+ [ af Qe ds @8 NEN. ), (3.9)

whereP is the positive definite solution to the matrix inequality Next, it results from
(3.1), and@ > 0 is defined by
Uy =y 2PMy — e, PNTFT (), Wl >0
Q =y "AL Agp + Anax(MG Myp)es "N Nog. (3.6) FTWF@) < I

By 1t0's formula (see, e.g., [20]), the stochastic derivative gf,
Y along a given trajectory is obtained as

d af (OI(AA; ()T P+ P(AAs ()]s ()
Yizs(®), 1) = 2F (O[(MpF(&)Np)T P + P(MpF(£)Np)Js(t)
=z} ()AL (¢ )P + PAL(t) + Q)z (1) < 2 (t)[esPMyMF P+ 5" NFFT (#)F(t)Nylas(t)
+ . (t = )ALy (t) Py () < e3x} () PMyMF Pay(t) + e5 ' af (6)NT Nyayp(t).
+ 2} (1) PA(t)a(t — h) — a7 (t — B)Qu p(t — I) (3.10)

+ fT(fof(t))Dfof(t) + xf(t)Pfo(fof(t))
+ 2% (t) PEsw(t)

=27 (AT P+ PA; + Q)ay(t) + =7 (D[(AA; ()P [gi/QfT(fof(t)) — e, el )PDf}
+ P(AA; (1)) p(8) + 25 (t — B) AL Py (t)
+ay () PAgxs(t — h)

Furthermore, from

[ Epg ) — 72 0PD,] 20

+af (t = h)(AAg ()T Pay(t) and Assumption 2.3, we have

+af (O P(AAgy (1)t~ h) . . .

— 2T (t = B)Qu s (t — h) + fT(Fpa () DF P 4(t) f (Ffwf(Tt))Df Pup(t) + o} (t)PDf{(I;fxf(t)) :

+2T(OPDf(Fras(t) + 225 () PEjw(t).  (37)  =&4f (Ffwf(t))f(Ffwf(l)) +ey xp (OPDrDy Pays(t)
N  =eafT (@) (=) + ey af () PD DY Pry(t)

Let e1, €2, €3, €4 be positive scalars. Then, the matrix in- < eq|He(t)]? + &7 % (t)PD;DF P ()
equality = csa () HT Hu(t) + 7 4T () PD s DY P (1)
[ () N _h)Agf} =€4wf( J(HE) (HFy)ay(t)
+e; 27 ()Y PDy DT Pry(t). (3.12)

T
: [g}/Qx?,C(t)P — V2Tt — h) AL, } >0
Noticing the inequality (3.1) and the definition (3.6), we de-

yields note
f (t = h)Ag P y(t) + 27 () PAgps(t — 1) I1:= AT P + PA;
<ewnf (P ap(t) +ep wp (t = h) Ay Agpup(t = ). +P[(e1 +e2)] + esMyMF + e Dy DY P
(38) —i—E;lAZ}Adf +E§1N};Nf +€4(HFf)T(HFf)

T —1 7T
Moreover, noting that\ Ay (t) = Myp F'(t) Ny and F2 () F (¢) + Amax(Mag Map)ey ™ NogNog < 0. (3.12)

< I, itfoll li I . .
= 4, (tioflows from Then, substituting (3.8)—(3.11) into (3.7) results in

(DA ()" (DA (1) d
< Amax(MGMyp )N (FT(£) F(t)) Ny 5 Y(@s(0), 1)
< Amax(ME Myp) N Ny < @y (s (t) + 227 (1) PEjw(t)
o < —Amin(—IDa} (D p(t) dt + 227 () PEsw(t) (3.13)
i 121 which means that the nonlinear uncertain stochastic time-delay
Uy =y wp (P -y 7= h)(AAg )" augmented system (2.15) is asymptotically stable (in the mean
v, vt >0 square), provided that the inequality (3.1) is met.
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Next, to show the expected exponential stability (in the me&otice thatl” > 0 is arbitrary, and letting

square) of the augmented system, some standard manipulations
will be made on (3.13) by exploiting the technique developed in

[19] and [20].
Let 3 be the unique root of the equation

)\min(_H) - /3)\ma.x(P)

wherell and@ are defined, respectively, in (3.12) and (3.8),
is the positive definite solution to (3.1), adis the unknown

time delay.
We can obtain from (3.13) that

d [”Y (z4(t), t)]
= PBY (w4 (1), t) dt 4+ dY (z (1), 1))

< Pt <_ [)\min(_H) - /3)\xnax(P)] |$f(t)|2

t
AR A Q) / |a:f(s)|2ds> dt
t—h
+2¢” 27 () PEpw(t) dt.

Then, integrating both sides from 016> 0 and taking the

expectation result in
EY (24(T), T)
< Pmax(P) + hAmax(Q)] sup  E[E(6))°

—h<8<0

T
- [)‘min(_H) - ﬂ)‘max(P)]lE / e’6t|‘Tf(t)|2 dt
0

T t
/ et / |z ¢(s)]? ds dt.
0 t—h
Note that

/ / |z(s)|? dsdt
min(s+h,T)
g/ / it | [ p(s)|2 ds
—h max(s,0)

T
< hePEH) | (5)]2 ds
—I

T 0
< heft / Pt p(8)|? dt + heP / |€(6)|2 de.
0

—h

+ /3)\111ax(Q)IE

Then, considering the definition @gfin (3.14), we have

HTEY (2(T), T)
< Pmax(P) + hAmax(Q)] sup  EJE(0)]?

—1<6<0
+ Bhmax(Q)R2e”* sup  E|£(0))?
—h<6<0
and
()
< AZL(P) ([Amw) MA@ sup EJEO)
—h<6<0

+/3)\1nax(Q)hQ Sh sup |E|§(9)|2> C_’Bh,

—h<8<0

— BhAmax(@Q)e? =0 (3.14)

= )\;lln(P) [/\max(P) + h)‘max(Q)(l + he@h)]

the definition of exponential stability in (2.17) is then satisfied,
and this completes the proof of Theorem 3.1. O

Remark 3.1: Theorem 3.1 offers the analysis results for the
exponential stability (in the mean square) of a class of non-
linear uncertain time-delay stochastic systems. The results may
be conservative due to the use of the inequalities (3.8)—(3.11).
However, such conservativeness can be significantly reduced by
appropriate choices of the parameterses, 3, €4 in @ matrix
norm sense. The relevant discussion and corresponding numer-
ical algorithm can be found in [36] and references therein.

Remark 3.2:The result of Theorem 3.1 can be readily
extended to the multiple state delayed case. Consider the
following nonlinear uncertain continuous-time multidelay
stochastic system:

() = (A-+ AAD)2(0) + (s + Ada()alt — hy)

i=1
+ D f(x(t)) + Erw(t) (3.15)
z(t) =p(t), €[-h,0, O0<h= max (h;) (3.16)

where the uncertainties satisfy

3] ] o

AAy(t)

fori =1, 2, ---, r.We may obtain an augmented system that is
similarto (2.15). Then, instead of (3.5), we define the Lyapunov
function

Y (ap(t), t) = 2§ () Py (t +Z/

Following the same line of the proof of Theorem 3.1, a par-
allel result can be easily obtained for the multidelay case. The
reason why we discuss the single delay case is to make our
theory more understandable and to avoid unnecessarily compli-
cated notations.

The following corollary, which results easily from [20], re-
veals that for the linear delay stochastic system (2.15), the ex-
ponential stability in the mean square implies the almost surely
exponential stability.

Corollary: Under the conditions of Theorem 3.1, the un-
certain time-delay system (2.15) is almost surely exponentially
stable in mean square for all admissible parameter uncertainties
AA, AA4, AC and nonlinear disturbance inpftz(t)), inde-
pendent of the unknown time-delay i.e.,

=M F(t)Ngyg FY@®)F@) <I

szf( )

_ 1. B
thjgosup ; log |z 4(t; €)| < 3

almost surely holds for alf € L%, ([—h, 0]; R**), where
B > 0is the unique root of (3.14).
B. Filter Design

This subsection is devoted to the design of filter paraméters
andK by using the resultin Theorem 3.1. We derive ¢ixplicit
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expressions of the expected filter parameters in terms of the pasd setting
itive definite solutions of two Riccati-like matrix inequalities.

The following lemma is easily accessible and will be used in P= [Pl 0 } >0 (3.26)
the proofs of our main results in this paper.

Lemma 3.1: For a given negative definite matrik < 0(T &
R™*™), there always exists a mattike R**?(p < n) such that
T+ 55T <.

Prior to stating the main results of this paper, we give th&n = A Pr+ P A
following definitions for the sake of simplicity: + Py [(e1 + e2)] + esMiM{ +e,'DDT| P,

we have

A=A+esMMIP +e7'DDTP (3.17) + 26 AgAdat+eg NNy +esHTH

O = C + esMyMI P (3.18) + Amax( M Myg)e3 ' N3 No (3.27)
=0 +egMaMy I .

R :=esMyMy (3.19) Xr=(A-G- KO Py

. + Py [esMy (M, — KM)Y +e7'DDT P, (3.28
@::C+53M2M1TP2_ (3.20) 1[3 1( 1 2) 4 ] 2 ( )

_ T
The following theorem shows that the desired filter parame-222 =G P+ RG
+ P2 [(61 + 62)_[ + Eg(Ml - KMQ)(Ml — KMQ)T

ters can be obtained in terms of the positive definite solutions to
two quadratic matrix inequalitie$QMIs). +5Q1DDT] P, (3.29)
Theorem 3.2:1f there exist positive scalaes, s, €3, €4 >

0 such that the following two QMIs It follows directly from (3.21) that:;; < 0. By resorting to

ATP, 4 PLA+ P[(e1 + e2)] + esMiMF + et DDY|P, G = A— KC and the definitions ot and®, we have
+ 2 P AT Ay + e 'NT Ny + e, HTH R - R R
F han MMy )es ' NEN, <0 (321) D =(A-KOTP+ B(A-KC)

N ANT T
T .= (A_EngM'QTR—lc) P2 +P2 [(51 +€2)I+€3M1M1
. . —esM MIKT — es KM>MY
+ Py (A= eaMy M R7C) Fatiiiy A~ e MM
+€3KM2M2K +€4 DD ]PQ
+ P [(e1 + e2) + esMi M{ + e, " DDT
—EngMQTR_lMQMlT]

P-CTR™C <0 (3.22)

=ATP, + PA
+ P [(e1 + e2)] + esMi M{ + ' DD P,

respectively, have positive definite solutiodd > 0 and — (P2K) (O+53M2M1TP2)

P, > 0, where the matrices, C, R are defined, respectively,

in (3.17)—(3.19), then the filter (2.7) with parameters — (O + 53M2M1TP2)T(P2K)T
K =P [0"R™ + SUR™/?] (3.23) + (PoK) (esMy MT) (PK)T
G=A-KC (3.24) =ATP, + P,A

where© is defined in (3.20)[/ € RP*? is arbitrary orthogonal
(i.e.,UUT = 1), S € R™*? is an arbitrary matrix meetint§ +

+ P [(e1 + e2)] + esM M{ + e, ' DDT| P
— (PK)6 — 07 (PK)Y 4 (PK)R(P,K)"

SST < 0,andY is defined in (3.22), will be such that the aug-
mented system (2.15) is exponentially stable in the mean square
for all admissible parameter uncertaintidst, AA,;, AC and
the nonlinear disturbance inpfitz(¢)), independent of the un-
known time-delayh.

Proof: First of all, it follows from Assumption 2.2 that
R~ > 0 exists. Defining

=ATP, + PA
+ P [(e1 + e2)] + esMi MT + ;' DDT| P
—oTR'0 + [(PQK)RU2 - @TR_l/Q}
: [(PQK)RI/Q . @TR*V?}T. (3.30)
L :=A7;P+ PAsf
+ P [(er +e2)] +esMpM] 4+, Dy DT P
e Al Ay + €5 NF Ny + es(HF) (HFY)
+ Amax (Mg Map)ey " Njz Nog

— [211 E12}
TS Ea

In the light of (3.23) and the orthogonality &f, it is easy to
see that

|:(P2K)R1/2 _ @TR—1/2} [(PQK)R1/2 _ @TR_1/2:|T

(3.25) — (SUY(SU)T = 557 (3.31)
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Considering the definition o in (3.20), it follows from the filtering error transfer function by solving an unconstrained

(3.30) and (3.31) that parametric optimization problem over the set of filters.
~ AT
Yoo = (A - nglMQTR—lc) P IV. NUMERICAL SIMULATION
+ P (/1 _ EngMQI“R—IC«) In this_ sgction, for the purpose of il!ustrgting the usefulness
) and flexibility of the theory developed in this paper, we present
+ Py [(e1 + €2)] + esMi M{ + e, DD” a simulation example, focus on the steady-state exponentially
—e2M MI R M, MIT] Py filtering and proceed to determine the filter parameters.

Consider the nonlinear uncertain stochastic state-delayed

AT p—1A T _ T
CTRTCH 55 T+553 (332) system (2.1) and (2.2) with parameters as follows:

whereT is defined in (3.22). Recall thaf € R™*? is an ar-

bitrary matrix meetingl’ + $S7 < 0. Then, (3.22) leads to —25 02 -02
Sy < 0. A=1-03 -3 -04
Moreover, substituting (3.24) into (3.28) immediately yields L 15 04 =5
312 = 0, and therefore} < 0. Finally, it follows from [ 0.03 0.01 0.01
Theorem 3.1 that the augmented system (2.15) is exponen- 4, — 0.01 —0.04 0
tially stable in the mean square for all admissible parameter —0.01 0.01 —0.02
uncertaintiesA A, AA,;, AC and nonlinear disturbance input i _
f(z(¢)), independent of thenknowrtime-delayh. This proves 0 01 0.1
Theorem 3.2. O D=101 01, B =01
Remark 3.3: Theorem 3.2 provides a quadratic matrix in- 102 0.2 0.1]
equality (QMI) approach to the design of robust filters for a class r0.01 10 0]
of nonlinear uncertain time-delay systems. When we cope with E,=|001|, oc=|0 1 0
the QMIs (3.21) and (3.22), the local numerical searching al- 0.01 0 0 1
gorithms suggested in [2] and [11] are effective for a relatively - -
low-order model. With respect to thyeneralexistence condi- 0.1sina, 045 0 0.05
tions of the positive definite solutions to the QMIs and rele- f(z) = [dlsina: } , M= 0 045
. . . - 2
vant algorithms, see [27]. It is seen that the existence of a pos- 015 0 015
itive definite solution to (3.21) means that the system matrix - . e
. . . 0 0.65 0.05
must be asymptotically stable, i.e., Assumption 2.1 holds. More M= 005 0 035
specifically, since the QMIs (3.21) and (3.22) have the similar S )
. . o . 0.28 0.18 0
form, we now briefly discuss the conditions for the existence of L .
the positive definite solutions to the QMI (3.21). It is easily ac- [0.02 0.02 0
cessible from [14] that there exists a positive definite solution N, = 0 0 0.02
to QMI (3.21) if and only if 0 002 O
1/2 —1a1/2 0 0.06 0
HF/ (s = 47 AY Hoo<1 No=| 0 0 006
0.02 0 0
where - -
[ 0.3 0 0.01
=2 AT A+ e 'NI Ny +esHTH H=|0 02 0
T Aax (M(}}Mdf) 52_1N2TN2 10.01 0O 04
A:=(e; +ex)] +esMiMF +e7'DDT. F(t)=sintl;, h=0.1, ¢()=0.1L

Remark 3.4: Note that there exist marfyeedesign parame-  Inthis example, we are interested in designing a linear, delay-
ters in the expression of expected filters. For example, we cass, uncertainty-independent state estimator (2.7) such that for
choose free parametessmeetingY + SS% < 0 and orthog- all admissible uncertainties as well as the nonlinear disturbance
onal matrixJ in (3.23). Therefore, the set of the desired filtemput, the dynamics of the estimation error is stochastically ex-
parameters, when it is not empty, must be very large, and mymtnentially stable in the mean square, independent of the time
explicit freedom is subsequently offered. This gives the possielay.
bility for directly achieving further performance requirements To show the flexibility of the proposed design method, we
on the filtering process such as the transient propéftynorm  will discuss two cases by using the design freedom in choosing
constraint, and reliability behavior, which requires further invegarameters; (i = 1, 2, 3, 4), S andU, as discussed in Remark
tigations. It is remarkable that in [16], a similar freedom on aB.4.
arbitrary orthogonal matrix in the parameterization of the set of Case 1: We sete; = 0.1, 2 = 0.2, g3 = 0.6, andey =
filters was successfully employed to minimize tHe norm of 2.5. Then, we can obtain a positive definite solutiBnto the
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quadratic matrix inequality (3.21) and, subsequently, the ma-
trices A, C, andR, as follows:

[ 13.9428
0.0181
| —7.3328

P

[—1.1179
—0.3564
1.8065

[0.9911
0.0706
| 0.8702

[0.2550
0.0105
| 0.0702

0.0181

14.0227

2.0288
0.309

—1.2239
—0.1672

2.4701
1.0735
0.7340

0.0105
0.0750
0.0084

—7.3328
2.0288
27.2244

8 0.3116
0.0724
—3.7662

0.4676 ]
0.8041
1.2303 |

0.0702 ]
0.0084 | .
0.0665 |

Furthermore, a positive definite solution to the quadratic ma-
trix inequality (3.22) and the matriX are calculated as

P

T =

[ 16.9752

3.8009
—0.9295

[—0.4196
—0.1362
—0.2034

3.8009
22.8890
4.1436

—0.1362
—1.3213
—1.3975

—0.9295
4.1436
30.2289

—0.2034
—1.3975
—2.6507

Next, we choose the matrik meetingY + 557 < 0 and an
orthogonal matrixXU as

S =061,

U= Is

and therefore, we obtain the expected filter parameters from
(3.23) and (3.24) as the following:

K =

G =

Denote the error states = z; —

[—0.4468
1.1347
| —0.3599

[ —2.7760
—1.2538
0.9390

0.0342
0.5619
0.6406

—0.3933
—4.4048
—0.9603

2.4116
—0.3067 | ,
1.3549

—2.4740
—0.5326
—5.7798

# (i = 1,2,3). The

responses of error dynamics to initial conditions are shown in
Fig. 1, and the real statg (respectivelyzs, z3) and its estimate
21 (respectivelyts, £3) are displayed in Fig. 2 (respectively,

Figs. 3 and 4). The simulation results imply that the desired

goal is well achieved.

Case 2: In this case, we seleef = 0.3,s2 = 0.1, e3 = 0.8,

andey = 4.5, and then get

[ 10.4585
—0.0382
| —5.6468

Py

[—1.1255
—0.3314
1.8702

>

—0.0382
10.5764
1.7530

0.3066
—1.2553
—0.2612

—5.6468 ]
1.7530
21.4049 |

0.2408 ]
—0.0170
—4.2050 |

Casa1: Responses of Error Oynamics to (nitiat Conditions
T T T

Amplitude

R

-2F

3k

A, .

V‘.‘\\/7 e

3
time (second)
Fig. 1. ey (solid), ez (point), es (dashed).

Case1: the Real state x1 and its Estimate

time (second)

Fig. 2. x; (dashed)#, (solid).

Case1: the Real state x2 and its Estimate

N )
had Ay oA

2, ) 2
ST

v ~." Yy W T
!
‘

>

: 2
Fig. 3.
[0.9781

0.0636
| 0.8620

[ 12.8515
2.6431

. )
4 5
time (second)

x, (dashed)i, (solid).

2.4853 0.5273
1.0829 0.8467
0.7404 1.2636

2.6431
17.5561

| —0.9593  4.0617
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802
Case1: the Real state x3 and its Estimate 2 Case2: the Real stata x1 and its Estimate
05 T T T 1.
)“.A [
R i \'ﬂm“\'&‘ R P B W
/ WAA T Pl RV il
'
o5k 1 o8 Y,
¢ ‘S“;
06
ok W
" 04 u' |
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a ) e )
3 ! ) .
< -2-: E H , Mfl{‘ FA .lj“ih"i\
) 'Q. b 1 vy >
3 q
25 L4 M " LY *‘«‘nl
- ! ] \
! 0.2 v i ‘[,‘( X y
| I
o -04
f
|
-35F b ~06
o 1 2 3 4 5 6 o8 ; é 3 4 5 6
time {second) time (second}
Fig. 4. x5 (dashed)is (solid). Fig. 6. x; (dashed)i; (solid).
Case2: the Real state x2 and its Estimate
Case2: Responses of Error Dynamics to initial Conditions 3 T T T
3 T T T T
1
25}, 4
r .
|
2y
v
o 15 \
3 A
3 \
S £ ¥
H ! 1 \
/ Y
! 4
ot F L
1 i 0.5 ¥ =
i A n
o i ¢
i s . WL RN LA
-2H hid COANA T T T LR, v vy
i LR R T
'
i
I ) ) 0% 1 2 3 . 5 6
0 9 2 3 4 5 time {second)
time (second)
) ) ) Fig. 7. x, (dashed);- (solid).
Fig. 5. e1 (solid),e> (point),e; (dashed).
Case2: the Real state x3 and its Estimate
05 T T T T

For this case, the matrig meetingY + SS7 < 0 and an
orthogonal matriX/ are chosen as

S =0.51,

U=

—I

and it follows from (3.23) and (3.24) that

[ —0.5973
1.1558
| —0.3226

K=

[ —2.6567
—1.2456
1.1852

G:

0.0945
0.3441
0.6482

—0.1230
—4.2959
—0.9852

2.4471
—0.2764
1.1128

—2.6164
—0.5686
—5.9899

Amplitude

-1k

—1.5-,‘

3
time (second)

For the error states, = x; — #; (i = 1, 2, 3), the responses Fig. 8. 5 (dashed)z, (solid)
of error dynamics to initial conditions are shown in Fig. 5, and
the real stater; (respectivelyrz, x3) and its estimate; (re-
spectivelyzs, Z3) are displayed in Fig. 6 (respectively, Figs. 7 The problem of robust filtering for a class of nonlinear un-
and 8). The simulation results demonstrate that the estimatimartain stochastic time-delay systems has been addressed in this
error is exponentially stable in the mean square, and thus, faper. A linear filter has been designed to achieve the prescribed
prescribed performance requirements on the filtering procesbust exponential stability constraints (in the mean square), re-
are guaranteed by the developed theory. gardless of the admissible parameter uncertainties, the bounded

V. CONCLUSIONS
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nonlinear disturbance input, and the unknown state delay. Bothe]
the filter analysis and design issues have been discussed in detalil
by means of quadratic matrix inequalities. The existence condp ;
tions as well as the analytical expression of desired filters have
been parameterized. We have demonstrated that the desired ro-
bust exponential filters for this class of nonlinear time-delay sys-
tems, when they exist, are usually a large set, and the remainingp]
freedom can be used to meet other expected performance re-
quirements. 20]

One of the future research topics is the development of etl-
ficient algorithms with guaranteed convergence. Finally, in ouf21]
opinion, the idea introduced in this paper can also be applief;z]
to design robust filters for more complex systems such as sam-
pled-data systems and stochastic parameter systems.

(23]
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