
Journal of Simulation

ISSN: 1747-7778 (Print) 1747-7786 (Online) Journal homepage: www.tandfonline.com/journals/tjsm20

Model input verification of large scale simulations

Rumyana Neykova & Derek Groen

To cite this article: Rumyana Neykova & Derek Groen (19 May 2025): Model input verification
of large scale simulations, Journal of Simulation, DOI: 10.1080/17477778.2025.2490133

To link to this article: https://doi.org/10.1080/17477778.2025.2490133

© 2025 The Author(s). Published by Informa
UK Limited, trading as Taylor & Francis
Group.

Published online: 19 May 2025.

Submit your article to this journal

Article views: 82

View related articles

View Crossmark data

Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalInformation?journalCode=tjsm20

https://www.tandfonline.com/journals/tjsm20?src=pdf
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/17477778.2025.2490133
https://doi.org/10.1080/17477778.2025.2490133
https://www.tandfonline.com/action/authorSubmission?journalCode=tjsm20&show=instructions&src=pdf
https://www.tandfonline.com/action/authorSubmission?journalCode=tjsm20&show=instructions&src=pdf
https://www.tandfonline.com/doi/mlt/10.1080/17477778.2025.2490133?src=pdf
https://www.tandfonline.com/doi/mlt/10.1080/17477778.2025.2490133?src=pdf
http://crossmark.crossref.org/dialog/?doi=10.1080/17477778.2025.2490133&domain=pdf&date_stamp=19%20May%202025
http://crossmark.crossref.org/dialog/?doi=10.1080/17477778.2025.2490133&domain=pdf&date_stamp=19%20May%202025
https://www.tandfonline.com/action/journalInformation?journalCode=tjsm20

REVIEW ARTICLE

Model input verification of large scale simulations
Rumyana Neykova and Derek Groen

Department of Computer Science, Brunel University London, London, UK

ABSTRACT
Reliable simulations require accurate input data. Invalid values, missing data, and format
inconsistencies can cause crashes or result distortions, compromising the findings. This paper
presents a methodology for verifying the validity of input data in simulations, a process we
term model input verification (MIV). We implement this approach in FabGuard, a toolset that
uses established data schema and validation tools for simulation modelling. We formalize MIV
patterns and create a verification pipeline for existing workflows. FabGuard’s applicability is
demonstrated across three domains: conflict-driven migration, disaster evacuation, and disease
spread models. We also explore Large Language Models (LLMs) for automating constraint
generation. In a migration simulation case study, LLMs correctly inferred 22/23 developer-
defined constraints, identified errors in existing constraints, and proposed new, valid ones. Our
evaluation demonstrates that MIV is feasible on large datasets, with FabGuard processing 300
input files in 140 seconds and maintaining consistent performance across file sizes.

ARTICLE HISTORY
Received 22 August 2024
Accepted 24 March 2025

KEYWORDS
Simulations; verification;
validation; schema inference
and generation; input data
verification

1. Introduction

Simulations have become an indispensable tool across
various scientific disciplines, offering insights into
complex systems ranging from epidemiology and
environmental science to social dynamics and engi-
neering in many different ways (Epstein, 2008). Recent
advancements in computational power and data ana-
lytics have enabled researchers to develop and apply
more realistic and actionable simulation approaches
that deliver benefits in a growing number of areas. For
instance, epidemiological simulations have been used
to inform public health interventions during the
COVID-19 pandemic on the national level (Ferguson
et al., 2020), as well as hospital-level allocation deci-
sions on the local level (Mahmood et al., 2022).
Furthermore, in environmental science, simulations
have provided insights into ecosystem interactions
and biodiversity under changing climate conditions
(Dada & Mendes, 2011; Geary et al., 2020; Jahani
et al., 2023).

These simulations increasingly operate at large
scales, characterized by extensive computational
requirements, and in agent-based models, millions of
interacting agents. For example, epidemiological mod-
els on the city level or larger may track billions of
individual interactions (Epstein, 2008), while migration
simulations like Flee (Suleimenova et al., 2017) can
involve hundreds of thousands of agents moving across
multiple countries, and require thousands of input files

with location data and movement patterns when used
to account for different conflict and intervention sce-
narios. These simulations increasingly operate at large
scales, characterized by extensive computational
requirements, and in agent-based models, millions of
interacting agents. For example, epidemiological mod-
els on the city level or larger may track billions of
individual interactions (Epstein, 2008), while migration
simulations like Flee (Suleimenova et al., 2017) can
involve hundreds of thousands of agents moving across
multiple countries, and require thousands of input files
with location data and movement patterns when used
to account for different conflict and intervention
scenarios.

Particularly when simulation results inform critical
decision-making processes, their reliability and repro-
ducibility becomes of paramount importance (Coveney
et al., 2016). Here, the open-source software movement
has played a crucial role in promoting software sustain-
ability and reproducibility, particularly in scientific
simulations (Coveney et al., 2021). Free and Open
Source Software (FOSS) helps to facilitate reliable simu-
lation, because open source models can be freely scruti-
nized by the wider community. In addition, it stimulates
software sustainability in general because external main-
tainers and contributors deliver a public benefit when
contributing to a FOSS project (Coveney et al., 2021).
Initiatives such as the Journal of Open Source Software
(JOSS) (Smith et al., 2018) and the increasing number of
journals requiring code availability demonstrate the

CONTACT Rumyana Neykova rumyana.neykova@brunel.ac.uk Department of Computer Science, Brunel University London, Wilfred Brown
Building, Uxbridge, London UB8 3PH, UK

JOURNAL OF SIMULATION
https://doi.org/10.1080/17477778.2025.2490133

© 2025 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits
unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The terms on which this article has been published allow the posting
of the Accepted Manuscript in a repository by the author(s) or with their consent.

http://www.tandfonline.com
https://crossmark.crossref.org/dialog/?doi=10.1080/17477778.2025.2490133&domain=pdf&date_stamp=2025-05-19

scientific community’s recognition of the critical role
that software plays in research reproducibility. In the
context of simulation, open-source practices not only
facilitate peer review of the underlying code but also
enable researchers to verify and extend existing models,
fostering compounded scientific progress (Benureau &
Rougier, 2018). Significant challenges remain, however,
as a main barrier to reproducible research is that many
of the tools required for reproducibility, such as version
control, unit testing, and automation, are often seen as
being of interest only to professional coders (Alhozaimy
et al., 2017). This perception gap highlights the need for
solutions that can make these essential practices more
accessible, easy to use and relevant to domain experts
who may not have extensive software engineering
backgrounds.

While verification, validation and uncertainty
quantification have received clear attention from
researchers in recent years (see e.g., Coveney et al.
(2021)), a crucial and often overlooked aspect of
ensuring simulation reliability and reproducibility is
the process of validating and verifying model input
data. In particular, few generic approaches exist that
verify that model input data adheres to predefined
constraints that ensure correct simulation execution
and that it correctly represents the real-world scenar-
ios being modelled. We call this process Model Input
Verification (MIV). This step is essential in guarding
against simulation results being corrupted by human
data input errors or poorly formatted raw input, and
helps to prevent cascading errors or crashes that can
arise from such flawed or misrepresented inputs. The
implications of inadequate input verification in simu-
lations can be severe. For instance, in 1999 a mistaken
unit type in one of the ground software sub-models led
to the NASA Mars Climate Orbiter having an incor-
rect trajectory and burning up in the Martian atmo-
sphere (Stephenson et al., 1999). Similarly, in Flee
migration simulations it occasionally happens that
developers retrieve GPS coordinates for locations in
their simulation, and accidentally insert the coordi-
nates of identically named places that reside in an
entirely different country.

Recent years have seen a growing emphasis on
testing data and ensuring data quality, forming the
basis for test-driven data analysis and “unit tests” for
data (Schelter, Lange, et al., 2018). Libraries such as
Pandera,1 Great Expectations,2 and Cerberus3 have
emerged to verify data constraints and validate sche-
mas. These tools have proven valuable in fields such as
data science and business intelligence, where they help
maintain data integrity and detect errors early in the
analysis pipeline (Bantilan, 2020).

However, simulation development often occurs in
environments quite different from traditional software
engineering. Typically, these simulations are created
by domain experts—scientists, researchers, and

analysts—who, while highly skilled in their fields,
may not have extensive programming backgrounds
(Merali, 2010). This gap between domain expertise
and software engineering practices has long been
a challenge in ensuring the reliability and verifiability
of scientific simulations (Roy & Oberkampf, 2011;
Thacker et al., 2004). Moreover, the tools and
approaches for data validation have not been widely
translated to simulations, are often unavailable to
simulation practitioners, and the simulation inputs
often require constraints that go beyond simple data
validation. For example, in agent-based models of
population displacement, input verification must
ensure not only that population values are non-
negative but also that the sum of populations across
different locations matches the total simulated popu-
lation. Furthermore, temporal consistency in the input
data is crucial; in disease spread models, the order and
timing of intervention measures must be aligned with
the simulation timeline.

To address the aforementioned challenges and
improve the reliability of simulations, this paper
presents FabGuard,4 an integrated set of tools and
methods for Model Input Verification. Our work is
guided by several key research questions: How can
we effectively adapt existing data validation tools to
the unique needs of simulation modelling? What are
the types of input verification constraints that
a model should support? How can we incorporate
input verification into existing simulation work-
flows? How does the performance and scalability of
MIV tools hold up when processing large-scale
simulation datasets with varying complexities? To
what extent can Large Language Models help
domain experts adopt MIV by assisting with con-
straint generation? How does the performance and
scalability of MIV tools hold up when processing
large-scale simulation datasets with varying com-
plexities? To what extent can Large Language
Models help domain experts adopt MIV by assisting
with constraint generation?

In addressing these questions, our work offers sev-
eral novel contributions to the field.

§ 3.1 Introduces Fabguard, a streamlined verifica-
tion pipeline that can be easily integrated into CI/CD
workflows of simulation models, promoting auto-
mated input verification.

§ 3.2 Formalizes model input verification require-
ments for simulation modelling. We present
a framework categorizing constraint types across var-
ious dimensions of simulation input data, offering
a systematic approach to address verification needs.

§ 4 Demonstrates the practical applicability of
FabGuard across three diverse simulation domains:
conflict-driven migration, disaster evacuation, and
disease spread models. This showcases the adaptability

2 R. NEYKOVA AND D. GROEN

of off-the-shelf tools for input verification in complex
simulation scenarios.

§ 5 Presents the first exploration of LLMs Presents
the first exploration of LLMs for constraint generation
and inference in the context of Model Input
Verification, investigating their potential to assist
simulation practitioners with initial adoption.

§ 6 Evaluates FabGuard’s performance providing
insights into its scalability and efficiency in various
scenarios.

Section 2 discusses related work, and Section 7
concludes with a summary of contributions and future
directions.

2. Related work

The problem of reproducibility in computational
science has been identified as a critical issue
(Coveney et al., 2016), and there are ongoing efforts
to address it (Coveney et al., 2021). Automated testing
is needed to systematically verify computer simula-
tions, a precondition to ensuring that the results they
produce are sufficiently robust to inform decision-
making in the real world (Coveney & Highfield,
2021). This section contextualizes the role of input
verification within the broader domain of simulation
modelling and further explores solutions in the fields
of data analytics and data workflows, which face simi-
lar challenges.

Before discussing specific approaches, we clarify
key terms as they are used in this paper, following
established ASME5 definitions. Verification is “the
process of determining that a computational model
accurately represents the underlying mathematical
model and its solution”. Validation refers to “deter-
mining the degree to which a model accurately
represents the real world”. Uncertainty quantifica-
tion involves “identifying, quantifying, and asses-
sing the impact of uncertainty sources in
simulation”. While these processes form an inter-
connected framework for simulation reliability, our
work focuses on input verification as
a foundational step.

Verification of simulations is crucial for ensur-
ing that computational models accurately represent
real-world scenarios and for enhancing reproduci-
bility. Various approaches and tools have been
developed to enhance this process. Code verifica-
tion focuses on identifying programming errors
and verifying numerical algorithms through
Software Quality Assurance (SQA) procedures,
ensuring software reliability and consistency
(Thacker et al., 2004). Comprehensive frameworks
for Verification, Validation, and Uncertainty
Quantification (VVUQ) further improve predictive
capabilities by incorporating methods to estimate
and propagate uncertainties through models (Roy

& Oberkampf, 2011). Several frameworks and large
toolkits have been developed to address these chal-
lenges. For example, the VECMA toolkit (Groen
et al., 2021) offers a suite of tools for verification,
validation, sensitivity analysis, and uncertainty
quantification. Within VECMAtk, EasyVVUQ
(Wright et al., 2020) streamlines VVUQ for com-
putationally expensive simulations and extensive
sampling spaces. FabSim3 (Groen et al., 2023),
a Python-based automation toolkit, reduces
human effort in simulation-based research and pro-
vides an auto-validation tool for comparing simula-
tion accuracy. The Model Verification Tools
(MVT) framework (Russo et al., 2022) offers
mechanisms for VVUQ assessment of agent-based
models, including sensitivity analysis techniques.
Uncertainpy (Tennøe et al., 2018) facilitates robust
simulation modelling by offering uncertainty quan-
tification and sensitivity analysis using quasi-Monte
Carlo and polynomial chaos expansions methods.
For a comprehensive overview of many works on
verification, validation and especially for uncer-
tainty quantification, readers are directed to
(Coveney et al., 2021).

Beyond these specific tools, there are more gen-
eral works addressing various aspects of simulation
verification and validation. Gundersen (Gundersen,
2021) emphasize the importance of transparency
and openness as key drivers for reproducibility
(Roungas et al., 2018). address the challenge of
selecting appropriate V&V methods due to the
abundance of available techniques, proposing
a methodology for choosing the optimal methods
based on simulation characteristics. In the realm of
high-performance computing, Encinas et al.
(Encinas et al., 2019) present a simulation model
of HPC I/O systems using Agent-Based Modelling
and Simulation (ABMS), providing insights into I/
O performance behaviour in different configura-
tions. Farrell et al. (Farrell et al., 2011) highlight
the importance of automated continuous testing in
numerical modelling, demonstrating significant
improvements in code quality and programmer
efficiency (Sinisi et al., 2021). address interoperabil-
ity challenges in Cyber-Physical System (CPS)
simulation, presenting an implementation of FMI
2.0 functions for improving efficiency in simula-
tion-based V&V. These diverse approaches collec-
tively contribute to ongoing efforts to improve the
reliability, efficiency, and reproducibility of simula-
tion-based research across various domains.

Despite these advancements, there remains
a notable gap in addressing model input verification.
Most existing tools and frameworks focus on verifying
simulation code, quantifying uncertainties, or validat-
ing outputs, rather than verifying input data. The
current paper addresses this crucial aspect of

JOURNAL OF SIMULATION 3

simulation reliability by focusing specifically on model
input verification, thus complementing existing
VVUQ approaches.

Data validation and verification have gained sig-
nificant attention in the data science and machine
learning communities. Schelter et al. (Schelter,
Lange, et al., 2018) introduced the concept of “unit
tests” for data, providing a framework for describing
data constraints. This has led to research on data
schema generation, inference, and validation techni-
ques for complex machine learning applications
(Hynes et al., 2017; Pimentel et al., 2017; Schelter,
Böse, et al., 2018). Modern machine learning plat-
forms now incorporate explicit data validation com-
ponents, addressing issues such as data drift, model
performance degradation, and input data quality
(Jha, 2019; Patel et al., 2023; Shankar et al., 2023;
Siddiqi et al., 2023; Smith et al., 2018; Wong et al.,
2023).

The growing emphasis on data quality and
schema verification has led to the development of
several tools and libraries aimed at streamlining
these processes. Great Expectations (Great
Expectations Team, 2024) has emerged as
a popular tool for data validation and documenta-
tion, allowing users to express their data expecta-
tions in a declarative manner and facilitating
automated testing of data quality. Pandera
(Bantilan, 2020) provides a flexible and expressive
API for performing data validation on pandas
DataFrames, enabling the definition of schemas
with column-level and dataframe-level validation
rules, including complex statistical checks. Other
tools like Cerberus (Iarocci, 2024) offer similar
functionality, reflecting a broader trend towards
more robust, automated approaches to data valida-
tion across various domains. The TDDA Python
module6 supports test-driven data analysis through
various tools, including Reference Testing for
managing complex data analysis pipeline tests and
tools for discovering, validating and detecting
anomalies in data constraints.

These developments in data validation techniques
and tools provide a strong foundation for addressing
similar challenges in the simulation domain. While
the focus of these works has primarily been on data
science and machine learning applications, many of
these approaches and tools can be adapted or repur-
posed for simulation input verification. In the con-
text of the extensive literature on VVUQ for
simulations, input verification is acknowledged but
still not deeply explored. However, as simulations
become more complex and reproducibility becomes
a more pressing concern in scientific research, the
role of input verification will become increasingly
prominent.

3. MIV overview

This section provides an overview of Model Input
Verification, its importance in simulation modelling,
and introduces FabGuard as a comprehensive toolset
for implementing MIV. We begin by explaining the
concept and significance of MIV. We then present
a formalism for categorizing different types of input
verification tasks, which serves as a framework for
understanding and implementing MIV processes.
Finally, we introduce FabGuard, detailing its architec-
ture and key features.

Model Input Verification is an important step in the
simulation modelling process, ensuring that input data
adhere to specified constraints and accurately represent
the real-world scenarios being modelled. In essence,
MIV allows users to write tests that check whether
input files meet specific requirements and satisfy a set
of predefined constraints. These tests help prevent cas-
cading errors that can arise from flawed or misrepre-
sented inputs, enhancing the reliability and
reproducibility of simulation results. Common MIV
tasks include checking data types, value ranges, inter-
column relationships, and cross-file consistency.

To illustrate our approach and the main ideas
behind model input verification, we use as a running
example an agent-based simulation, called Flee
(Suleimenova et al., 2017). Flee is designed for model-
ling displacement and migration patterns, enables
researchers to create simulations based on conflict
and disaster scenarios and helps to predict how popu-
lations move in response to various crises. It has been
applied in major research initiatives such as the EU-
funded HiDALGO7 and ITFLOWS8 projects. the EU-
funded HiDALGO9 and ITFLOWS10 projects. Within
Flee, agents move across a location graph defined by
two primary input CSV files: locations.csv, which
defines the nodes of the graph representing various
locations such as towns, camps, and conflict zones,
and routes.csv, which defines the edges of the graph,
representing possible paths between locations.

3.1. MIV workflow

In Figure 1 we present the high-level methodology for
writing MIV tests. Here the first two stages, selecting
input files and identifying dependencies, are manual
processes performed by the user. These manual steps
are important for establishing the context and scope of
the verification process, while FabGuard is designed to
support and automate the subsequent stages, provid-
ing a plugin-based architecture that accommodates
various input file formats and validation methods.

3.1.1. Selection of input files
In this initial stage the user selects input files to verify.
The format and content will vary and are simulation-

4 R. NEYKOVA AND D. GROEN

specific. The files are categorized into configuration
files, which provide necessary settings for running
simulations, and input files that supply the data
required to execute processes. For instance, in the
Flee simulation tool, the input files might include
locations.csv and routes.csv which contain tabular
data, while the configuration file is simsettings.yml
and contains key-value pairs of simulation parameters.

3.1.2. Identifying dependencies
In the next stage, the user must identify dependencies
that are essential for parameterizing the inputs. This
involves configurations that require specific settings,
supplementary input files that provide context, and
external resources such as databases or APIs needed
for validation. For example, if simsetting.yml sets the
simulation to start on January 1 2023, any closure
events in closures.csv with earlier dates should be
flagged as invalid.

3.1.3. Selecting MIV patterns
After identifying input files and their dependencies,
users should determine which MIV patterns (as for-
malized in Section 3.2) are appropriate for their ver-
ification needs. For example, when verifying a single
column in a tabular file, pattern MIV 1.A.i might be
suitable. For checks involving configuration files, pat-
terns like MIV 4.C.ii would be more appropriate. This
pattern selection guides the type of specifications to be
generated and helps ensure coverage of verification
requirements. For instance, in Flee, verifying popula-
tion values in locations.csv would use pattern MIV 1.
A.i, while checking route consistency between loca-
tions.csv and routes.csv would require pattern MIV 2.
A.ii. The chosen patterns inform both the verification
approach and the tools needed for implementation.
After identifying input files and their dependencies,
users should determine which MIV patterns (as for-
malized in Section 3.2) are appropriate for their ver-
ification needs. For example, when verifying a single
column in a tabular file, pattern MIV 1.A.i might be

suitable. For checks involving configuration files, pat-
terns like MIV 4.C.ii would be more appropriate. This
pattern selection guides the type of specifications to be
generated and helps ensure coverage of verification
requirements. For instance, in Flee, verifying popula-
tion values in locations.csv would use pattern MIV 1.
A.i, while checking route consistency between loca-
tions.csv and routes.csv would require pattern MIV 2.
A.ii. The chosen patterns inform both the verification
approach and the tools needed for implementation.

3.1.4. Generating specifications
Once the user has identified the input files for verifica-
tion and their potential dependencies, they can begin
writing input verification tests. FabGuard supports
two off-the-shelf libraries for schema validation
(which is a type of verification and should not be
confused with the validation in a simulation context),
depending on the type and format of the data—
Pandera and jsonschema. The former is a library for
defining schemas and validating pandas DataFrames;
which allows users to define column-level and data-
frame-level validation rules, including data types,
value ranges, and custom checks. The latter is
a lightweight way to test your YAML/JSON files
based on how they conform to a defined schema.
FabGuard provides a thin wrapper over both
Pandera and jsonschema libraries, enabling integra-
tion with simulation tools, LLMs, and providing con-
sistent documentation. Users can start writing tests
using the library that best suits their case.

However, writing these tests can be a tedious pro-
cess that requires programming skills, potentially hin-
dering the tool’s applicability. To address this, we have
explored two potential ways to bootstrap this stage:

(1) Schema Generators: FabGuard supports built-
in schema generators—a custom YAML
schema generator, and a Pandera inference
module. These tools can automatically infer
basic constraints such as data types, minimum

Figure 1. Methodology for model input files verification.

JOURNAL OF SIMULATION 5

and maximum values for most files. While not
comprehensive, they create useful scaffolding
that can later be refined by users. For instance,
a schema generator might infer that the “popu-
lation” column in locations.csv should contain
non-negative integers.

(2) Large Language Models (LLMs): As reported in
Section 5, we have explored the use of LLMs for
constraint generation and inference. Our find-
ings indicate that LLMs can not only create the
scaffolding of the main tests but also suggest
and infer novel constraints. For example, an
LLM might suggest that the sum of populations
across all locations should match the total
simulation population, a constraint that might
not be immediately obvious to users.

These automated approaches serve as a starting point,
providing a basic scaffolding which can then be
refined and expanded by domain experts. This stage
significantly lowers the barrier to entry for using
FabGuard, making it more accessible to researchers
who may not have extensive programming experience.

3.1.5. Refining specifications
The test should be further refined, and most impor-
tantly, themselves verified. This stage is important,
especially if automated inference tools were used in
the previous steps. As outlined in Section 5, some
constraints, although they can be inferred, may
require adjustments to accurately reflect the simula-
tion’s requirements. For example, in Flee, an inferred
constraint might correctly identify that the “popula-
tion” field should be non-negative, but may need
refinement to specify that conflict zones must have
a non-zero population while other location types can
have zero population.

The aforementioned previous stages of automated
inference are optional, as developers could write all
tests from scratch, tailoring them precisely to their
simulation’s needs. Alternatively, they could write cus-
tom checks for specific validation scenarios not cov-
ered by standard tools or inferred constraints. For
instance, in Flee, a custom check might be needed to
ensure that all routes listed in routes.csv correspond to
actual connections between nodes specified in loca-
tions.csv, a relationship that may not be captured by
automated inference tools.

3.1.6. Running tests
FabGuard input verification tests can be run in several
ways, as it is integrated with FabSim3 (Groen et al.,
2023), a Python-based automation toolkit for scientific
simulation and data processing workflows. This inte-
gration allows users to run FabGuard tests as part of
simulation workflows within FabSim3 or execute them
independently for focused input verification.

Furthermore, FabGuard tests can be incorporated
into Continuous Integration/Continuous
Deployment (CI/CD) pipelines, such as GitHub
Actions, enabling ongoing automated validation.

3.1.7. Report generation
In the final stage, FabGuard generates a report detail-
ing test results, including the number of passed and
failed tests. Counterexamples for failing tests are pro-
vided, highlighting where and why certain tests failed
and providing insights to guide corrective actions. If
locations.csv fails validation due to missing entries, the
report pinpoints these omissions, as well as the the
exact rows and values which do not satisfy the
constraints.

3.2. MIV conceptual overview

The MIV workflow described above encompasses
a wide range of verification tasks, each with its own
characteristics and requirements. To systematically
address these diverse needs, we have developed
a formalism that categorizes MIV tasks based on
their sources, templates, and targets. This formalism
not only provides a common language for discussing
MIV tasks but also helps to identify patterns and best
practices across different simulation domains.

In this formalism, we define MIV as the act of
synthesizing data from one or more different Sources
to dynamically generate a verification Template, which
defines the content pattern required to pass verifica-
tion. This verification Template is in turn applied to
an input file (the Target) to perform the actual verifi-
cation, returning a correct outcome if a match is
achieved, and an error if not. Now the MIV task can
be performed in different ways, and we provide
a simple formalism in Figure 2 to help understand
the different patterns that can be created.

Here, each pattern is described with a dot-delimited
code, consisting of three components: the Source (or
sources) using an Arabic numeral symbol, the
Template Type using a capitalized letter symbol and
the Target using a Roman numeral symbol. We pro-
vide two example pattern definitions in Figure 2. For
instance, a MIV 1.A.i pattern could be a check that all
locations in a geographic location file have
a population of at least 0, while a pattern of type
MIV 4.C.ii might (i) check whether the simulation is
configured to explicitly model flooding events and
then (ii) check whether locations in that same geo-
graphic file have, for example, an altitude and water
holding capacity value defined if this is the case.

Sources that may be used to generate the template
may be content from the target file itself (1, as in our
MIV 1.A.i example), from other input files (2), exter-
nal reference information such as a lookup table or
calendar (3) or simulation configuration files (4, as in

6 R. NEYKOVA AND D. GROEN

our MIV 4.C.ii example). It can be possible that a MIV
pattern draws from multiple sources, such as the target
file (1) and simulation configuration files (4). In this
case the Arabic numerals can be appended in numer-
ical order, giving the value “‘14’” for the first compo-
nent in this case. MIV can be of different types,
because they can be applied in different ways. These
types include specifications that are statically applied
to check a file (A, as in our MIV 1.A.i example),
specifications that may be modified depending on
specific criteria (B), specifications that may or may
not be applied depending on specific criteria (C, as
in our MIV 4.C.ii example), or (BC) specifications that
may be modified or not be applied depending on
specific criteria. Normally, MIV of type A tends to be
done either using only the target file as source (1.A.*)
or the simulation configuration (4.A.*).

Lastly, MIV patterns may differ in which aspect of
the input file they verify, i.e., what they target. For
instance, they may target an individual column in
a tabular data file (i, as in our MIV 1.A.i example),
multiple static columns in a tabular data file (ii, as in
our MIV 4.C.ii example), a dynamic number or
arrangement of columns in a tabular data file (iii).
There are also MIV patterns that target files as
a whole, and may target non-tabular model input
files (v and higher). This may be done specifically to
verify the syntax of the input file (vi), the nesting
structure (vii, particularly useful for YAML-based
input files) and the adherence to a predefined schema
(viii, useful for both XML and YAML files for
instance).

Given the three components and their variations, we
are therefore able to define a total of at least 72 MIV
patterns, and more if we include patterns that rely on
multiple Source types. However, the range of MIV

patterns is not intended to be exhaustive, and there are
valuable input verification checks that we chose to leave
outside of this formalism to retain simplicity. Most of
these verification checks are checks that operate on 0 or
multiple files, such as verification checks that operate on
network-fed input data, checks that verify the number of
input files present or checks that verify the non-
existence of redundant or possible disruptive input files.

3.3. MIV in the context of HPC

Our MIV tool can be applied to any application that
requires input files in one of the supported formats.
For large-scale HPC simulations, where millions of
agents execute in parallel, it provides essential safe-
guards against input errors that could waste computa-
tional resources and invalidate results across parallel
runs. This value is amplified when applications and
input files are shared among multiple users.

The SEAVEA project (Software Environment for
Actionable VVUQ-enabled Exascale Applications,
https://www.seavea-project.org), has established tools
where this is the case. The toolkit itself provides facil-
ities for the verification, validation and uncertainty
quantification of HPC applications, and is an exten-
sion of the VECMA toolkit (Groen et al., 2021). For
instance, within FabSim3 (Groen et al., 2023) there are
established plugins that contain sample input files for
a range of different application domains. There are
plugins available for applications in various domains,
such as migration, Covid-19, climate, materials and
fusion. Here, our tool allows users to verify the input
files present in the shared repository, and improve the
quality of the input configurations for all other users.

The SEAVEA toolkit, and in particular FabSim3,
also provides facilities to simplify the use of the MIV

Figure 2. Overview of the MIV formalism.

JOURNAL OF SIMULATION 7

https://www.seavea-project.org

tool. For instance, FabSim3 enables external tools to be
used through simple one-liner bash commands, auto-
matically locating the relevant configuration files for
the user’s application using its internal database. In
addition, invocations of the MIV tool can be directly
integrated into existing FabSim3 commands. Through
this integration, users can choose to apply input file
verification automatically for their own daily simula-
tion workflows. Although such automated MIV
checking introduces a performance overhead of sev-
eral seconds, it ensures that any input files that the
user requires are verified without additional human
effort.

4. Exemplars

This section demonstrates the capabilities of the MIV
toolchain by going through common input verifica-
tion scenarios. To showcase the general nature of our
tool, we present three exemplars on: (i) conflict-driven
migration, (ii) disaster evacuation and (iii) disease
spread.

These exemplars were selected to illustrate a range
of input verification challenges commonly encoun-
tered in simulation modelling. They progress from
basic data type checks to more complex multi-file
validations and domain-specific constraints. By pre-
senting these diverse scenarios, we aim to demonstrate
FabGuard’s capability in handling various types of
input data, file formats, and validation requirements.
By presenting real-world applications, we demonstrate
how the tool integrates into existing simulation work-
flows. These exemplars serve not only as proof of
concept but also as guidance for potential users, illus-
trating how FabGuard can be adapted to different
domains and specific verification needs.

We chose to focus on agent-based models (ABMs)
for our exemplars due to their diverse applications
across scientific disciplines, complex input require-
ments, and sensitivity to input errors. ABMs typically
involve multiple, interconnected input files describing
agent characteristics, environment properties, and
simulation parameters, providing an excellent testbed
for FabGuard’s capabilities. Moreover, ABMs are
often developed by researchers from diverse back-
grounds, aligning with FabGuard’s goal of making
input verification more accessible to domain experts.
While we focus on ABMs in our examples, FabGuard’s
is extensible to other simulation types. For instance,
molecular dynamics simulations using the Large-scale
Atomic/Molecular Massively Parallel Simulator
(LAMMPS) 11 contain input files with specialized key-
value style commands that define simulation units,
atomic masses, force fields and parameters for mole-
cular interactions. Though these files require a custom
parser and validation functions due to their specialized
command-line format, the underlying validation

requirements align naturally with our MIV patterns.
For example, parameters must have valid values and
relationships (following similar principles to MIV 1.A.
i for single-value validation), and data must be con-
sistent across linked input files (similar to MIV 2.A.ii
principles). These examples demonstrates how the
MIV methodology presented here is adaptable and
applies to different simulation paradigms, and the ad-
hoc tests and plugins in Figure 1 reflect exactly this
scenario.

The techniques demonstrated here highlight
FabGuard’s ability to improve input verification across
diverse computational modelling and simulation
scenarios.

4.1. Exemplar 1: Conflict-driven migration
modeling with flee

As already mentioned in x 3, Flee (Suleimenova et al.,
2017) is a simulation tool designed to model displace-
ment and migration patterns. Flee simulates hundreds
of thousands of agents moving simultaneously across
multiple countries Flee simulates hundreds of thou-
sands of agents moving simultaneously across multi-
ple countries. It enables researchers to create
simulations based on conflict and disaster scenarios,
helping to predict how populations move in response
to various crises.

Flee models agents that move across a location
graph: here, the location graph is defined using two
input CSV files (locations.csv and routes.csv). Errors
in the location graph input files not only lead to
inaccuracies in the simulation, but can also lead to
agents getting stuck in certain locations or to Flee to
crash altogether. Another important input file for Flee
version 3 (Ghorbani et al., 2024) is simsetting.yml,
which is used to configure the set of assumptions
used in the simulation. Lastly, there are a range of
CSV files that define attributes for the spawned agents,
as well as for specific locations and routes.

The code snippet in Listing 1 defines a schema
for a pandas DataFrame using the pandera class
DataFrameModel. It specifies that the DataFrame
should have a “population” column with floating-
point numbers greater than 0, which can also be
null, and a “location_type” column with string
values that must be one of “conflict_zone”,
“town”, or “camp”. The Check function is used to
enforce these constraints, with Check.greater_than
(0) ensuring the “population” values are positive
and Check.isin([“conflict_zone”, “town”, “camp”])
ensuring the “location_type” values are within the
specified set. This schema validates the
DataFrame’s structure and data integrity by check-
ing that the columns match the defined types and
conditions.

8 R. NEYKOVA AND D. GROEN

We can refine the schema further as to accom-
modate domain-specific constraints that span mul-
tiple columns.

MIV 1.B.ii Multi-column constraint

Locations that are conflict zones require a population
value strictly higher than 0 (one needs persons to
create conflict-driven displacement):

The provided code snippet in Listing 2 defines
a custom validation function for a pandas
DataFrame using the pandera library. The @pa.data-
frame_check() annotation designates the function
population_gt_0 as a custom DataFrame validation
check. This function ensures that rows with “loca-
tion_type” equal to “conflict_zone” do not have
a “population” value less than or equal to 0. It
creates a boolean mask to identify these invalid
rows and raises a ValueError with the indices of
any invalid rows found. The function then returns
a boolean Series indicating which rows are valid. By
using the @pa.dataframe_check() annotation, this
custom check is integrated into a pandera schema,
allowing it to be used in the validation process to
enforce specific data constraints.

MIV 2.A.ii Constraints spanning multiple files

Within Flee, the countries featured in the model are
located in locations.csv, but any border closures are
defined in closures.csv. We must ensure closures link
to the correct countries. (and for instance do not have
typos in the country names)

We can apply the same ideas as above: create a boolean
mask that identified the invalid rows and raise an
errors if such entries are found. One caveat in com-
parison to the previous example is that we need to load
the locations.csv file. The final constraints is imple-
mented in Listing 3.

4.2. Exemplar 2: Disaster-driven evacuation
modelling with DFlee

Dflee (Jahani et al., 2023) is a variation of Flee which is
configured to model disaster-driven population dis-
placement with tens of thousands of agents respond-
ing to flood events with tens of thousands of agents
responding to flood events. The simulation tool cur-
rently is used for flood-driven migration, but exten-
sions to capture other events (such as storms) are in
progress.

Like Flee, DFlee relies on a location graph, but
depending on the context the location and route
attributed may be radically different. Errors in these
input files may result in problems similar to Flee, or in
a complete lack of spawned agents in the simulations.
DFlee also relies on a simsetting.yml, and a number of
fields in there need to be defined correctly for the
DFlee to be triggered, while other values need to be
lined up in a consistent manner to allow DFlee to work
in a manner that matches basic logic (e.g., that people
are more likely to flee from flooded areas than
unflooded ones). When used for flooding, DFlee also
requires a flood_level.csv file, which contains the pro-
gression of the flooding at each location during the
simulation period. Errors within this file may cause

flooding to occur at the wrong times, in the wrong
places, or with the wrong intensities.

MIV 3.A.i Custom-function columns constraints

Validating that a day column has valid rows for all
days in a month

The code in Listing 4 defines a custom check func-
tion check_day_increment using the pandera
library, annotated with @pa.check(“Day”) to specify
that it applies to the “Day” column of a DataFrame.
The function validates that the values in the “Day”
column are incremental integers within a specified
range. It sets a minimum value of 0, a maximum

Listing 1: Single-column constraints

Listing 2: Multi-column constraints

JOURNAL OF SIMULATION 9

value determined by reading the configuration file,
and a step increment of 1. The function returns
a boolean Series indicating whether each value in
the “Day” column meets these conditions: being an
increment of 1 from the minimum value, and lying
within the inclusive range from the minimum to
the maximum value. This ensures that the “Day”
column contains valid, sequential day values.

MIV 4.C.iii Dynamic columns constraints

When used for flooding, DFlee also requires a flood
level.csv file, which contains the progression of the
flooding at each location during the simulation per-
iod. Errors within this file may cause flooding to
occur at the wrong times, in the wrong places, or
with the wrong intensities

Listing 5 demonstrate another pattern which allows
for dynamic schema validation where the same
constraints should be applied to a varied number
of columns. In the schema defined below, the num-
ber of columns in the flood levels CSV file is
unknown, but all columns except the first specify
the same type of information: the intensity of the
flood for each day for different flood zones. where
the rows are the days, and the columns are the
flood zones. To realise these constraints, we have
defined a class method with_dynamic_columns

within a FloodLevelScheme class that dynamically
creates schema constraints for a pandas DataFrame.
The method reads configuration values to set max-
imum permissible values for the “Day” and other
flood levels columns. It generates fields with these
constraints, and specifying value ranges for all col-
umns. These constraints are added to a dictionary
and used to create a new class,
ExtendedFloodLevelScheme, which inherits from
FloodLevelScheme and includes the dynamically
generated attributes.

4.3. Exemplar 3: Disease spread modeling with
FACS

FACS (Flu And Coronavirus Simulator) (Mahmood
et al., 2022) is a computational modelling tool
designed to simulate the spread of influenza and cor-
onaviruses such as COVID-19 in various populations
and settings. It simulates millions of agents interacting
to model disease spread across metropolitan areas. It
simulates millions of agents interacting to model dis-
ease spread across metropolitan areas. It allows users
to explore the impact of different public health inter-
ventions, such as social distancing, vaccination, and
lockdown measures, on the spread of these infectious
diseases.

Listing 3: Constraints across files

Listing 4: Stepside checks

Listing 5: Schema with dynamic columns

10 R. NEYKOVA AND D. GROEN

To configure individual simulations, FACS relies in
a wide range of input files. These include input files to
provide geographical information (buildings.csv),
demographic information (age-distr.csv and needs.
csv), disease information (e.g., disease_covid19.yml
and mutations.yml) as well as information on inter-
ventions (measures.yml) and vaccination types and
strategies (vaccinations.yml). Users commonly edit
the measures.yml file to assess the efficacy of new
intervention scenarios, and this file is relatively com-
plex in terms of structure. Erroneous entries in mea-
sures.yml can have wide-ranging results. For instance,
interventions may not trigger at all or they may trigger
with the wrong intensity.

MIV 3.A.viii Schema-based summation check

All demographic files (e.g. demographic_age, demo-
graphic_gender, etc) for FACS and DFlee contains
columns which lists representative fractions of the
population. Respectively, the sum of all entries in
these columns should add up to 1. (the number
required could be modified for different use cases)

Listing 6 implements a DemographicScheme class,
which inherits from pa.DataFrameModel in the pan-
dera library, includes a custom validation method
all_but_first_column_sum_is_1 marked with the
@pa.dataframe_check decorator. This method ensures
that the sum of the values in all columns, except the
first one, equals 1. It iterates through each column
(excluding the first), calculates the sum of its values,
and checks if it equals 1. If any column’s sum is not
equal to 1, it appends the column name and its sum to
an errors list. If there are errors, the function would
report them; otherwise, it returns True, indicating the
DataFrame meets the validation criteria.

MIV 1.A.vii Nested entries yaml validation

In addition to having the correct types, yaml entries
should be correctly indented as to preserve the
intended meaning. For example, the partial_closure
section in the measures.yml allows nested entries,
such as for shopping centers, hospitals, etc., enabling
detailed specifications for various facilities.

A key insight in our FACS verification journey was
that the majority of the FACS yaml verification
requirements could be met through off-the-shelf
schema validation. Capitalizing on YAML’s

compatibility as a superset of JSON, we utilized a well-
known Python library designed for JSON schema vali-
dation. This schema not only specifies the types for
each data entry but also outlines the structure, includ-
ing the hierarchy of entries and the allowance for
nested entries.

An excerpt from the jsonschema for the measures.
yaml file is given below:

This JSON schema implements the require-
ments for correctly indented YAML entries with
nested structures in the partial closure section. It
defines partial closure as an object with specific
properties (e.g., “leisure”, “school”) as numbers
between 0 and 1. With “additionalProperties” set
to false, it strictly limits entries to these predefined
types. This ensures a YAML structure where
partial closure is the main section, with only the
specified facility types indented beneath it, directly
translating the schema’s hierarchy into proper
YAML indentation and preserving the intended
nested relationship.

Through these exemplars, we demonstrate how
FabGuard can handle a variety of input verification
scenarios, from simple data type checks to complex
multi-file validations and domain-specific constraints.
This range of examples illustrates the tool’s potential
to enhance the reliability and reproducibility of simu-
lations across different scientific domains.

An important note to make is the significance of
model- data alignment in the process of model-input
verification. The conceptual model of a simulation
fundamentally shapes its data requirements. Our case
studies illustrate this relationship. For example,
FACS’s epidemiological models require data valida-
tion based on disease characteristics, with COVID-19
requiring strict age distribution verification due to its
age-dependent outcomes. The importance of this con-
ceptual alignment becomes particularly evident when
combining models. For instance, the extension of Flee
into DFlee required a careful reconsideration of data
validation requirements to reflect the new conceptual
model while preserving relevant aspects of the origi-
nal. This process mirrors the broader challenge in
computational science of ensuring that data validation
evolves alongside our understanding of the systems

Listing 6: Schema across Multiple files

JOURNAL OF SIMULATION 11

being modelled. Through its flexible constraint sys-
tems and configuration-dependent validation rules,
FabGuard provides the means to clarify the assump-
tions of the system and verify data accordingly.

5. LLMs for constraints inference and
generation

The adoption of Model Input Verification practices
faces challenges due to the complexity of setting up
verification frameworks and the need for domain-
specific knowledge. To address these usability con-
cerns and lower the barrier to entry for MIV, we
explored the potential of Large Language Models
(LLMs) in bootstrapping the MIV process bootstrap-
ping the MIV process. LLMs, with their ability to
understand and generate human-like text, offer
a promising approach to inferring constraints from
existing data and generating new constraints based
on natural language descriptions. This section investi-
gates two key research questions:

(1) RQ1: Can LLMs be used for constraints
inference?

(2) RQ2: Can LLMs be used for constraints
generation?

While this exploration is preliminary it demonstrates
While this exploration is preliminary it demonstrates
how we can leverage LLMs to make MIV more acces-
sible to simulation practitioners who may not have

extensive programming backgrounds or in-depth
knowledge of data validation techniques

5.1. RQ1: Constraints inference

To address RQ1, we conducted an experiment using
Claude 3.5 Sonnet,12 a language model developed by
Anthropic13 and released in 2024. Claude’s ability to
understand and generate code makes it suitable for
our constraint inference experiment. We provided
Claude with input files for the Flee simulation, along
with explanations of the simulations and instructions
on using Pandera for validation.

5.1.1. Methodology
Our approach involved several key steps. First, we
supplied Claude with the contents of key input files,
including locations.csv, routes.csv, and closures.csv
for Flee. We then provided detailed explanations of
the simulation, including the purpose of each input
file. We introduced Claude to Pandera, explaining its
use for DataFrame validation and providing exam-
ples of how to create schemas and custom checks.
Finally, we asked Claude to infer and generate
Pandera schemas and checks based on the provided
information.

5.1.2. Findings
Table 1 presents a comparison of key constraints
inferred by Claude against our manual tests. We
categorized the constraints into four types: simple

Table 1. Comparison of constraints in manual tests vs. LLM-Inferred tests.
Category Manual Test LLM-Inferred Test Status

Single-
column

Coordinates within [−180, 180] Latitude [−90, 90], Longitude [−180, 180] Improved(Corrected)
Location type in [“conflict_zone”, . . ., “marker”,

“idpcamp”]
Location type in [“conflict_zone”,

“town”, . . .]
Partial (missing “marker” and

“idpcamp”)
Route distance > 0 Route distance � 0 Improved(Corrected)
Forced redirection in [0, 1, 2] Forced redirection in [0, 1, 2] Exact match
Closure type in [“location”, “country”, “links”, “camp”,

“idpcamp”]
Closure type in [“country”, “camp”] Partial (missing “location”,

“links”, “idpcamp”)
Multi-column Population > 0 for camp, town, conflict; = 0 for markers;

� 0 for forwarding hub
Population � 0 for all location types Requires adjustment (less

specific)
Conflict zones must have a conflict date Conflict zones must have a conflict date Exact match
First country in country column applies to all conflict

zones
– Not inferred

Location names must be unique Location names must be unique and non-
null

Match (Enhanced)

Multi-file Closure countries (name1, name2) must be valid
countries from locations file

Implemented cross-file check for valid
countries in closures

Exact Match

Location names must exist in routes file (as name1 or
name2)

Suggested cross-file check for location
names in routes

Exact Match

Listing 7: Json Schema

12 R. NEYKOVA AND D. GROEN

single-column, refined single-column, multi-
column, and multi-file. Simple single-column con-
straints, which only specify column data types, are
omitted from the table. Flee contained 12 such
constraints across its three input files. Claude pre-
cisely inferred 10 of these and enhanced two date-
related single-column constraints (represented as
integers) by adding a “greater than 0” restriction.
Refined single-column constraints involve valida-
tions beyond simple data types, such as ranges or
set memberships. Multi-column and multi-file con-
straints involve relationships between multiple col-
umns or files, respectively.

Our experiment revealed that Claude was cap-
able of inferring a wide range of constraints,
including some that were not present in our man-
ual tests. In the analysis of Flee’s constraints, 22
out of 23 constraints were correctly inferred, with
no wrong inferences. Specifically, 17 constraints
were precisely inferred, while one constraint was
not inferred at all. Two constraints were corrected
from their initial incorrect state, namely the long-
itude range and route checking. Another two con-
straints were improved and made stronger than
initially proposed. Lastly, one constraint was
inferred but was weaker than the actual con-
straint. This analysis suggests that the inference
process aligns closely with the constraints gener-
ated by an expert (the second author) working on
the tool, though some adjustments were needed to
fully capture all aspects of the constraints.

Claude generated several constraints absent from
manual tests. For routes.csv, it introduced checks for
distinct route endpoints, unique location names, and
prevention of duplicate routes. In closure.csv, it vali-
dated that end dates should be after the start dates and
that the non-null value of a column (name2) depends
on another column (closure type). Claude also devel-
oped two multi-file constraints: ensuring camp clo-
sures reference valid camps from the locations file, and
identifying isolated locations. The latter was imple-
mented as:

This check can reveal potential data errors or geo-
graphical inconsistencies in the simulation. These
AI-generated constraints demonstrate Claude’s abil-
ity to infer validation rules addressing data integrity,
consistency, and cross-file relationships in the Flee
system, potentially identifying errors overlooked in
manual testing.

5.1.3. Implications
LLMs can effectively infer a wide range of constraints,
potentially accelerating the initial stages of MIV devel-
opment. They can complement manual tests by identi-
fying additional checks that human developers might
overlook. However, the accuracy of LLM-inferred con-
straints can be improved by providing more detailed
configuration information, and data.

5.2. RQ2: Constraints generation

For RQ2, we explored Claude’s ability to generate
specific constraints when provided with clear descrip-
tions of the constraint.

5.2.1. Methodology
Our approach involved providing Claude with detailed
descriptions of constraints, using the same format as in
the Exemplars section of this paper. We then asked
Claude to implement these constraints using Pandera,
specifying that the implementation should include neces-
sary imports and class structures. Finally, we manually
reviewed the generated code to assess its correctness and
completeness in implementing the described constraints.

5.2.2. Findings
Claude demonstrated a high degree of accuracy in
generating constraints based on descriptions. Out
of 13 constraint descriptions provided, Claude
successfully generated 11 correct implementations.
Of the remaining two, both required minor adjust-
ments. Table 2 presents examples of constraint
descriptions and Claude’s implementations. In
both cases, Claude accurately translated the con-

Table 2. Examples of constraint descriptions and generated implementations.
Constraint Description Generated Implementation

“Route distances must be positive numbers” distance: Series[Float] = pa.Field(gt=0)
“The sum of all entries in demographic probability columns should add up to 1” @pa.dataframe_check

def probabilities_sum_to_one(cls,
df: pd.DataFrame) -> bool:
prob_columns = [col for col in
df.columns if col != ‘category’]
return all(df[prob_columns].sum(axis=1).between(0.99, 1.01))

JOURNAL OF SIMULATION 13

straint descriptions into functional Pandera
checks. The generated code not only implements
the logical constraints but also follows Pandera’s
syntax and best practices. However, we observed
that for more complex constraints, especially those
involving configuration-dependent values or spe-
cific simulation logic, Claude’s implementations
required minor adjustments. For example, in con-
straints involving maximum flood levels in DFlee,
Claude initially used hard-coded values, which we
needed to replace with configuration-dependent
variables.

5.2.3. Implications
LLMs can significantly speed up the initial implemen-
tation of MIV constraints, particularly for common
validation patterns and clearly described require-
ments. Our findings suggest that while LLMs may
not be ready for fully automated constraint genera-
tion, they can reduce initial setup complexity. For
instance, in our Flee case study, LLMs correctly
inferred basic constraints that could serve as starting
templates for domain experts.

5.3. Balancing Model assumptions and data
reality

While automation can accelerate MIV adoption, an
important challenge in data validation is the risk of
over-constraining data to match model assumptions
rather than adapting models when data consistently
challenges these assumptions. Data curation and vali-
dation have a rich history in simulation research
(Hassan et al., 2010; Macal, 2016; Sinclair et al.,
2023), yet a common pitfall remains: the tendency to
“clean” data to fit model assumptions instead of using
validation failures as signals to revisit these
assumptions.

Our experience with Flee illustrates this tension.
Initially, constraints required non-zero populations
in all conflict zones. However, real-world data
revealed that conflict zones could temporarily have
zero populations due to complete displacement.
Instead of forcing data conformity, these validation
failures guided us to refine the model’s assumptions.

FabGuard supports this balanced approach
through:

● Violation reporting which helps in distinguishing
between data quality issues and assumption
misalignment

● Configuration-dependent validation allowing
constraints to evolve with model refinements

● CI/CD pipeline integration making constraint
failures trackable, enabling systematic analysis
of whether failures indicate data or assumption
issues

The use of LLMs for constraint generation further
emphasizes this challenge. While LLMs can infer
constraints from existing data and documentation,
they may inadvertently codify implicit assumptions
that deserve scrutiny. This underscores the impor-
tance of human oversight in the constraint devel-
opment process, ensuring that validation rules
reflect well-reasoned model assumptions rather
than merely enforcing existing patterns in the
data.

5.4. On the potential use of LLMs in MIV

Our experiments with Claude on the Flee case
study demonstrate that LLMs have significant
potential in both inferring and generating con-
straints for Model Input Verification. They excel
at identifying a wide range of constraints and can
accurately translate natural language descriptions
into functional code. This capability is particularly
valuable for domain experts who may have deep
subject knowledge but limited programming
experience. Rather than needing to learn
Pandera’s API from scratch, experts can use LLM-
generated constraints as templates, modifying them
based on their domain understanding. This cap-
ability is particularly valuable for domain experts
who may have deep subject knowledge but limited
programming experience. Rather than needing to
learn Pandera’s API from scratch, experts can use
LLM-generated constraints as templates, modifying
them based on their domain understanding.

This capability is especially important in simulation
modelling, often developed by domain experts who
may lack extensive programming backgrounds. Our
preliminary analysis shows that LLMs, when provided
with the right setup—including appropriate structure,
classes, and examples—can bridge the gap between
domain expertise and software engineering practices,
at least in the context of input verification. They make
the process of writing constraints more accessible and
bring the power of formal specification to domain
experts who may not have deep programming
knowledge.

While LLMs show promise in MIV, their use
presents challenges. Our experience revealed a shift
from quick constraint generation to time-
consuming validation, emphasizing the need for
human expertise. Generating constraints with
LLMs was quick, taking less than an hour, but
validating their accuracy required a several hours
of work. LLM-generated constraints, though techni-
cally correct, often proved overly conservative,
missing potential valid types not present in sample
data. This highlights the importance of comprehen-
sive datasets and domain expert involvement when

14 R. NEYKOVA AND D. GROEN

using LLMs for constraint generation. While LLMs
can accelerate initial constraint generation, they
complement rather than replace human expertise
in the MIV process.

6. Evaluation

Our evaluation of FabGuard aims to demonstrate its
scalability and applicability. We conducted two sets of
tests: (1) Microbenchmarks with generated input files
and tests; (2) a real-world simulation using the Flee
system and custom test files. Section 6.3 presents the
microbenchmark results, while Section 6.2 shows the
results with FLEE. These tests provide insights into
FabGuard’s performance across various scenarios,
from controlled environments to practical applica-
tions. All scripts for generating the benchmarks, are
available from the electronic supplementary
material.14

6.1. Setup

Our evaluation was conducted on an Apple M2 Max
with 12–core CPU, 30–core GPU and 16–core Neural
Engine, 64 GB of RAM, and 1TB of HDD running
MacOS Ventura 13.5. We used Python 3.12.0. To
ensure accurate measurements, we employed warm-
up runs before collecting performance data. Warmup

runs are necessary in benchmarking to allow the sys-
tem to reach a steady state and minimize the impact of
initial system variations (e.g., cache warm-up, back-
ground processes). Following established benchmark-
ing methodologies (Georges et al., 2007), we
performed 5 warm-up runs to stabilize the JIT com-
piler, followed by 30 execution runs—a sample size
that ensures statistical validity while remaining com-
putationally practical. We report the average execu-
tion time across the execution runs. To ensure
accurate measurements, we employed warm-up runs
before collecting performance data. Warmup runs are
necessary in benchmarking to allow the system to
reach a steady state and minimize the impact of initial
system variations (e.g., cache warm-up, background
processes). Following established benchmarking
methodologies (Georges et al., 2007), we performed 5
warm-up runs to stabilize the JIT compiler, followed
by 30 execution runs—a sample size that ensures sta-
tistical validity while remaining computationally prac-
tical. We report the average execution time across the
execution runs.

6.2. Use case: Flee

We evaluate FabGuard’s performance by running our
test suite on the entire Flee conflicts dataset. The test
suite consists of three Pandera files implementing all

Figure 3. Analysis of code conflicts and resolution metrics.

JOURNAL OF SIMULATION 15

23 constraints from Flee, as outlined in Table 1 (col-
umn 2 - Manual constraints). Section 4.1 demon-
strates representative constraints from each category:
single-column constraints (e.g., population values
must be non-negative), multi-column constraints
(e.g., population requirements for different location
types), and multi-file validations (e.g., ensuring clo-
sure countries match valid countries from the loca-
tions file).

The evaluation covered diverse conflict scenarios
displayed in Figure 3(d) covering different conflicts
(mali, sudan, syria, etc) along with different scenarios
per conflict (e.g., mali_�). Each conflict (scenario)
requires three input files. The locations.csv file defines
nodes such as towns, camps, and conflict zones and
contains 14 constraints. The routes.csv file specifies
connections between locations with 5 constraints,
while closures.csv indicates border or route closures
with 4 constraints. This dataset allows us to assess
FabGuard’s efficiency and scalability across a wide
range of real-world scenarios, with locations.csv
requiring the most complex validation due to its cen-
tral role in the simulation.

The results of our evaluation are summarized in
Figure 3, each subfigure different aspects of
FabGuard’s performance. Upon analysing these
results, several key insights emerge which we have
summarised below.

6.2.1. Scalability
FabGuard demonstrates good overall scalability, pro-
cessing approximately 12,000 lines in about 140
seconds (Figure 3(a)).

6.2.2. Consistency
The majority of files are processed within a narrow
time range of 0.85 to 1.05 seconds, with a peak around
0.90 seconds (Figure 3(b)). This consistency across
different file sizes indicates a reliable performance
baseline for FabGuard.

6.2.3. Processing time vs. file size
Interestingly, there isn’t a strong linear relationship
between file size and processing time for most files
(Figure 3(c)). This suggests that FabGuard has
a relatively constant overhead for each file, with the
actual content verification time being comparatively
small. Moreover, the Flee dataset exhibits significant
variability in file sizes across different folders
(Figure 3(b)). Most folders contain files with fewer
than 200 lines, but some exceed 300 lines. Despite
this variability, FabGuard maintains relatively consis-
tent processing times. A few files with longer proces-
sing times (1.25–1.27 seconds) create a slight right
skew in the distribution (Figure 3(b)), suggesting fac-
tors beyond line count can affect processing time.

6.2.4. Efficiency
Based on the overall processing of 12,000 lines in 140
seconds, FabGuard achieves an average processing
rate of approximately 85.71 lines per second. This
rate demonstrates FabGuard’s efficiency in handling
large datasets. FabGuard ability to process a large
number of files quickly makes it suitable for real-
world applications where rapid input verification and
makes it a viable part of a CI/CD pipeline.

6.3. Microbenchmarks

We designed a series of microbenchmarks aimed at
stress-testing our approach under various conditions.
Taking locations.csv and its corresponding tests as
a baseline due to their complexity, we evaluated
FabGuard’s behaviour across four key dimensions:
data types (1–10), number of columns (10–100),
rows (100–1000) per file, and total number of files
processed (1–100). For the column variation tests, we
augmented locations.csv with additional randomly
generated columns of different data types (int, float,
str, bool, date, etc), creating corresponding simple
constraints for validation. For file quantity and data
volume tests, we scaled our baseline by generating

Figure 4. Microbenchmark results showing FabGuard’s performance characteristics across different dimensions: (a) linear scaling
with number of files processed, (b) consistent performance across varying data complexity levels, and (c) stable execution time
regardless of the number of columns per file.

16 R. NEYKOVA AND D. GROEN

multiple variations of the file with randomized content
while preserving the data structure. These systemati-
cally generated tests allowed us to simulate diverse
scenarios FabGuard might encounter in real-world
applications.

Results, displayed in Figure 4 revealed consistent
performance across these input dimensions, with no
significant bottlenecks or scalability issues. While
slight fluctuations in execution time were observed
with changes in data complexity and file structure,
these variations were minimal, typically within
a range of 0.05 to 0.1 seconds (approximately 1–2%
of total execution time). The most notable finding was
a linear correlation between the number of files pro-
cessed and execution time, indicating predictable scal-
ing for large-scale simulations.

7. Discussion and conclusion

Previous research on validation and verification of
simulations has established robust frameworks for
model validation (Gürcan et al., 2013; Sargent, 2013a,
2013b, 2015), but these primarily focus on verifying
model structure and validating outputs rather than
systematically verifying input data. While approaches
like statistical methods (Cheng, 2006; Law, 2020),
independent verification frameworks (Robinson &
Brooks, 2010), credibility models (Yilmaz & Liu,
2022), and debugging approaches (R. Gore et al.,
2015; R. J. Gore et al., 2017) have advanced simulation
validation, they typically address input verification
only tangentially. For agent-based simulations specifi-
cally, Gürcan et al. (Gürcan et al., 2013) introduced
a testing framework with micro, meso, and macro
levels of validation, yet still focused primarily on
model behaviour rather than verification of input
data. In parallel, researchers have explored data gath-
ering and curation methods for agent-based models,
with Sinclair et al. (Sinclair et al., 2023) proposing
hybrid data gathering approaches for crowd simula-
tions, Bell and Mgbemena (Bell & Mgbemena, 2018)
demonstrating data-driven exploration of agent beha-
viour, and Zhong et al. (Zhong et al., 2022) surveying
data-driven crowd modelling techniques. Research on
simulation interoperability by Tolk (Tolk, 2024) and
composability frameworks by Benali and Ben Saoud
(Benali & Ben Saoud, 2011) has further highlighted the
importance of conceptual alignment in simulation
contexts.

Our Model Input Verification (MIV) framework
addresses a gap in simulation validation by offering
a methodology focused on input data quality and
consistency. Model input verification helps to run
simulation correctly, particularly when its configura-
tion is complex. Examples of such complex application
scenarios include forecasts that rely on ensemble
simulations (Ferguson et al., 2020), simulations

consisting of multiple models (Borgdorff et al., 2014)
or when a single model is heterogeneously distributed
in nature (Groen et al., 2011). While Sargent (Sargent,
2013a) identified data validity as one aspect of verifi-
cation and data gathering approaches and (Bell &
Mgbemena, 2018; Sinclair et al., 2023) have improved
approaches for data collection, systematic model input
verification has remained underdeveloped. MIV intro-
duces a formalization of verification patterns that can
be applied across diverse domains and modelling
paradigms, as well as an implementation showcasing
their added value. Our approach complements the
established model verification (and validation) meth-
ods proposed by Sargent (Sargent, 2013a) by providing
patterns for verifying input data for such models. That
being said, the emphasis of our work is somewhat
more applied, which means that the reader benefits
from a prototype tool that is shown to work with (and
provide added value for) several applications, at the
expense of a conceptual framework that might not
(yet) capture all possible types of model input
verification.

In terms of composability and interoperability,
Tolk (Tolk, 2024) in particular notes that conceptual
alignment is crucial for meaningful simulation inter-
operability. In this work, we partially achieved con-
ceptual alignment by proposing application-agnostic
model input verification patterns and by implement-
ing our MIV approach as a plugin for the FabSim3
automation toolkit, allowing its application for the
full FabSim3 application spectrum (Groen et al.,
2023). That being said, the design of our MIV
formalism is based on our experience with simula-
tions across disciplines, and it is conceivable that the
introduction of a new external application would
require the definition of a new MIV pattern (in
terms of sources, verification type or verification
target).

Overall, our primary contribution is
a methodology for MIV, implemented in the
FabGuard toolset. This methodology adapts estab-
lished data schema and validation tools to address
the unique challenges of simulation input verifica-
tion. We formalized MIV patterns, categorizing ver-
ification tasks based on their sources, template types,
and targets. This formalism provides a structured
approach to identifying and implementing input
verification requirements across diverse simulation
domains.

Our work goes beyond theoretical frameworks by
demonstrating the practical application of these MIV
patterns. We presented numerous examples across
three domains: conflict-driven migration, disaster eva-
cuation, and disease spread modelling. These case
studies showcase how FabGuard can handle a variety
of validation scenarios, from simple data type checks
to complex multi-file validations and domain-specific

JOURNAL OF SIMULATION 17

constraints. Furthermore, we conducted the first study
on using Large Language Models (LLMs) for con-
straint discovery and generation in the context of
MIV. Our results show that LLMs can accurately
infer existing constraints and even identify new, valid
constraints, potentially lowering the barrier to entry
for adopting robust MIV practices. This exploration of
LLMs, combined with our identified requirements for
MIV tools, establishes a foundational framework for
the future development of model input verification
systems. Our evaluation provided empirical evidence
of MIV’s feasibility for large-scale simulations, with
FabGuard efficiently processing 12,000 lines of data in
140 seconds while maintaining consistent perfor-
mance across varying file sizes and complexities.

These contributions establish a foundation for
more robust and trustworthy simulation practices.
We envision MIV becoming an integral part of the
simulation modelling workflow, akin to unit testing in
software development. Future research will focus on
expanding FabGuard’s capabilities to cover a broader
range of simulation paradigms and input formats. We
plan to conduct large-scale studies on the use of Large
Language Models, for automated constraint discovery
in complex, domain-specific relationships. This
research will aim to further lower the barrier for
MIV adoption and improve its effectiveness across
diverse simulation domains. We will work on
developing user-friendly interfaces to make MIV
more accessible to non-technical users, bridging the
gap between domain expertise and software engineer-
ing practices. We will further explore the integration
of MIV with other stages of the simulation life cycle,
such as output validation and uncertainty quantifica-
tion. This holistic approach could lead to a more
robust framework that can enable more reliable and
actionable simulations in a systematic and accessible
manner. Furthermore, we will undertake case studies
across diverse scientific domains to refine and validate
MIV methodologies, providing empirical evidence of
their effectiveness and generic application.

This research contributes to establishing input ver-
ification as a fundamental component of the simula-
tion modelling process, rather than an afterthought.
By integrating MIV into standard modelling practices,
we aim to enhance the reliability of simulations and,
consequently, the quality of scientific discoveries
based on these models. The broader adoption of sys-
tematic input verification techniques has the potential
to improve the overall robustness and credibility of
simulation-based research across various disciplines.

Notes

1. https://www.union.ai/pandera
2. https://greatexpectations.io/
3. https://pypi.org/project/Cerberus/

4. Upon acceptance, the code will be made available on
zenodo.

5. https://www.asme.org/codes-standards/publications-
information/verification-validation-uncertainty

6. https://github.com/tdda/tdda
7. HiDALGO (https://hidalgo-project.eu/)
8. ITFLOWS (https://www.itflows.eu/)
9. HiDALGO (https://hidalgo-project.eu/)

10. ITFLOWS (https://www.itflows.eu/)
11. https://www.lammps.org/
12. claude.ai.
13. https://www.anthropic.com/
14. The electronic supplementary material will be made

available on Zenodo upon paper acceptance.

Disclosure statement

No potential conflict of interest was reported by the
author(s).

Funding

The work was supported by the Engineering and Physical
Sciences Research Council [EP/W007762/1]; the SEAVEA
ExCALIBUR project, which has received funding from
EPSRC under grant agreement EP/W00771/1.

References

Alhozaimy, S., Mawdsley, D., Mulholland, D., &
Wikfeldt, T. (2017). Towards reproducibility in research
software. Software Sustainability Institute. Retrieved
April 30, 2025, from https://www.software.ac.uk/blog/
towards-reproducibility-research-software

Bantilan, N. (2020). Pandera: Statistical data validation of
pandas dataframes. In M. Agarwal, C. Calloway, D.
Niederhut, & D. Shupe (Eds.), Proceedings of the 19th
Python in Science Conference 2020 (SciPy 2020) (pp.
116–124). https://doi.org/10.25080/Majora-342d178e-
010

Bell, D., & Mgbemena, C. (2018). Data-driven agent-based
exploration of customer behavior. Simulation, 94(3),
195–212. https://doi.org/10.1177/0037549717743106

Benali, H., & Ben Saoud, N. B. (2011). Towards a
component-based framework for interoperability and
composability in modeling and simulation. Simulation,
87(1–2), 133–148. https://doi.org/10.1177/
0037549710373910

Benureau, F. C. Y., & Rougier, N. P. (2018). Re-run, repeat,
reproduce, reuse, replicate: Transforming code into
scientific contributions. Frontiers in Neuroinformatics,
11, 69. https://doi.org/10.3389/fninf.2017.00069

Borgdorff, J., Mamonski, M., Bosak, B., Kurowski, K.,
Belgacem, M. B., Chopard, B., Groen, D.,
Coveney, P. V., & Hoekstra, A. G. (2014). Distributed
multiscale computing with muscle 2, the multiscale cou-
pling library and environment. Journal of Computational
Science, 5(5), 719–731. https://doi.org/10.1016/j.jocs.
2014.04.004

Cheng, R. C. H. (2006). Validating and comparing simula-
tion models using resampling. Journal of Simulation, 1(1),
53–63. https://doi.org/10.1057/palgrave.jos.4250009

Coveney, P. V., Dougherty, E. R., & Highfield, R. R. (2016).
Big data need big theory too. Philosophical Transactions
of the Royal Society A: Mathematical, Physical and

18 R. NEYKOVA AND D. GROEN

https://www.union.ai/pandera
https://greatexpectations.io/
https://pypi.org/project/Cerberus/
https://www.asme.org/codes-standards/publications-information/verification-validation-uncertainty
https://www.asme.org/codes-standards/publications-information/verification-validation-uncertainty
https://github.com/tdda/tdda
https://hidalgo-project.eu/
https://www.itflows.eu/
https://hidalgo-project.eu/
https://www.itflows.eu/
https://www.lammps.org/
https://www.anthropic.com/
https://www.software.ac.uk/blog/towards-reproducibility-research-software
https://www.software.ac.uk/blog/towards-reproducibility-research-software
https://doi.org/10.25080/Majora-342d178e-010
https://doi.org/10.25080/Majora-342d178e-010
https://doi.org/10.1177/0037549717743106
https://doi.org/10.1177/0037549710373910
https://doi.org/10.1177/0037549710373910
https://doi.org/10.3389/fninf.2017.00069
https://doi.org/10.1016/j.jocs.2014.04.004
https://doi.org/10.1016/j.jocs.2014.04.004
https://doi.org/10.1057/palgrave.jos.4250009

Engineering Sciences, 374(2080), 20160153. https://doi.
org/10.1098/rsta.2016.0153

Coveney, P. V., Groen, D., & Hoekstra, A. G. (2021).
Reliability and reproducibility in computational science:
Implementing validation, verification and uncertainty
quantification in silico. Philosophical Transactions of the
Royal Society A: Mathematical, Physical and Engineering
Sciences, 379(2197), 20200409. https://doi.org/10.1098/
rsta.2020.0409

Coveney, P. V., & Highfield, R. R. (2021). When we can trust
computers (and when we can’t). Philosophical
Transactions of the Royal Society A: Mathematical,
Physical and Engineering Sciences, 379(2197), 20200067.
https://doi.org/10.1098/rsta.2020.0067

Dada, J. O., & Mendes, P. (2011). Multi-scale modelling and
simulation in systems biology. Integrative Biology, 3(2),
86–96. https://doi.org/10.1039/c0ib00075b

Encinas, D., Naiouf, M., De Giusti, A., Mendez, S.,
Rexachs, D., & Luque, E. (2019). On the calibration,
verification and validation of an agent-based model of
the hpc input/output system. Proceedings from The
Eleventh International Conference on Advances in
System Simulation (SIMUL 2019), Valencia, Spain.

Epstein, J. M. (2008). Why model? Journal of Artificial
Societies and Social Simulation, 11(4), 12.

Farrell, P. E., Piggott, M. D., Gorman, G. J., Ham, D. A.,
Wilson, C. R., & Bond, T. M. (2011). Automated contin-
uous verification for numerical simulation. Geoscientific
Model Development, 4(2), 435–449. https://doi.org/10.
5194/gmd-4-435-2011

Ferguson, N. M., Laydon, D., Nedjati-Gilani, G., Imai, N.,
Ainslie, K., Baguelin, M., Bhatia, S., Boonyasiri, A.,
Cucunubá, Z., & Cuomo-Dannenburg, G., et al. (2020).
Report, 9: Impact of non-pharmaceutical interventions
(NPIs) to reduce COVID-19 mortality and healthcare
demand (Vol. 16). Imperial College London.

Geary, W. L., Bode, M., Doherty, T. S., Fulton, E. A.,
Nimmo, D. G., Tulloch, A. I. T., Tulloch, V. J. D., &
Ritchie, E. G. (2020). A guide to ecosystem models and
their environmental applications. Nature Ecology &
Evolution, 4(11), 1459–1471. https://doi.org/10.1038/
s41559-020-01298-8

Georges, A., Buytaert, D., & Eeckhout, L. (2007). Statistically
rigorous java performance evaluation. OOPSLA ‘07:
Proceedings of the 22nd annual ACM SIGPLAN confer-
ence on Object-oriented programming systems and appli-
cations (pp. 57–76). ACM, ACM, New York, NY, USA.

Ghorbani, M., Suleimenova, D., Jahani, A., Saha, A., Xue, Y.,
Mintram, K., Anagnostou, A., Tas, A., Low, W.,
Taylor, S. J. E., & Groen, D. (2024). Flee, 3: Flexible
agent-based simulation for forced migration. Journal of
Computational Science, 81, 102371. https://doi.org/10.
1016/j.jocs.2024.102371

Gore, R. J., Lynch, C. J., & Kavak, H. (2017). Applying
statistical debugging for enhanced trace validation of
agent-based models. SIMULATION, 93(4), 273–284.
https://doi.org/10.1177/0037549716659707

Gore, R., Reynolds, P. F., Jr., Kamensky, D., Diallo, S., &
Padilla, J. (2015). Statistical debugging for simulations.
ACM Transactions on Modeling and Computer
Simulation, 25(3), 1–26. https://doi.org/10.1145/2699722

Great Expectations Team. (2024). Great expectations.
Retrieved April 30, 2025, from https://greatexpectations.
io/

Groen, D., Arabnejad, H., Jancauskas, V., Edeling, W. N.,
Jansson, F., Richardson, R. A., Lakhlili, J., Veen, L.,
Bosak, B., Kopta, P., Wright, D. W., Monnier, N.,

Karlshoefer, P., Suleimenova, D., Sinclair, R.,
Vassaux, M., Nikishova, A., Bieniek, M. . . . Piontek, T.
(2021). Vecmatk: A scalable verification, validation and
uncertainty quantification toolkit for scientific
simulations. Philosophical Transactions of the Royal
Society A: Mathematical, Physical and Engineering
Sciences, 379(2197), 20200221. https://doi.org/10.1098/
rsta.2020.0221

Groen, D., Arabnejad, H., Suleimenova, D., Edeling, W.,
Raffin, E., Xue, Y., Bronik, K., Monnier, N., &
Coveney, P. V. (2023). Fabsim3: An automation toolkit
for verified simulations using high performance
computing. Computer Physics Communications, 283,
108596. https://doi.org/10.1016/j.cpc.2022.108596

Groen, D., Zwart, S. P., Ishiyama, T., & Makino, J. (2011).
High-performance gravitational n-body simulations on a
planet-wide-distributed supercomputer. Computational
Science & Discovery, 4(1), 015001. https://doi.org/10.
1088/1749-4699/4/1/015001

Gundersen, O. E. (2021). The fundamental principles of
reproducibility. Philosophical Transactions of the Royal
Society A: Mathematical, Physical and Engineering
Sciences, 379(2197), 20200210. https://doi.org/10.1098/
rsta.2020.0210

Gürcan, Ö., Dikenelli, O., & Bernon, C. (2013). A generic
testing framework for agent-based simulation models.
Journal of Simulation, 7(3), 183–201. https://doi.org/10.
1057/jos.2012.26

Hassan, S., Pavón, J., Antunes, L., & Gilbert, N. (2010).
Injecting data into agent-based simulation. In
K. Takadama, C. Cioffi-Revilla, & G. Deffuant (Eds.),
Simulating interacting agents and social phenomena (pp.
177–191). Springer.

Hynes, N., Sculley, D., & Terry, M. (2017). The data linter:
Lightweight automated sanity checking for ml data sets.
NIPS MLSys Workshop, 1(5), 10.

Iarocci, N. (2024). Cerberus: Lightweight, extensible data
validation library for python. https://pypi.org/project/
Cerberus/

Jahani, A., Jess, S., Groen, D., Suleimenova, D., & Xue, Y.
(2023). Developing an agent-based simulation model to
forecast flood-induced evacuation and internally dis-
placed persons. International Conference on
Computational Science (pp. 550–563). Springer.

Jha, S. (2019). Data infrastructure for machine learning.
International Journal for Research in Applied Science
and Engineering Technology, 7(4), 740–742. https://doi.
org/10.22214/ijraset.2019.4133

Law, A. M. (2020). Statistical analysis of simulation output
data: The practical state of the art. 2020 Winter
Simulation Conference (WSC) (pp. 1117–1127). IEEE,
Orlando, FL, USA.

Macal, C. M. (2016). Everything you need to know about
agent-based modelling and simulation. Journal of
Simulation, 10(2), 144–156. https://doi.org/10.1057/jos.
2016.7

Mahmood, I., Arabnejad, H., Suleimenova, D., Sassoon, I.,
Marshan, A., Serrano-Rico, A., Louvieris, P.,
Anagnostou, A., Taylor, S. J., Bell, D., & Groen, D.
(2022). FACS: A geospatial agent-based simulator for
analysing COVID-19 spread and public health measures
on local regions. Journal of Simulation, 16(4), 355–373.
https://doi.org/10.1080/17477778.2020.1800422

Merali, Z. (2010). Computational science: . . .error. Nature,
467(7317), 775–777. https://doi.org/10.1038/467775a

Patel, H., Guttula, S., Gupta, N., Hans, S., Sharma Mittal, R.,
& Lokesh, N. (2023). A data-centric AI framework for

JOURNAL OF SIMULATION 19

https://doi.org/10.1098/rsta.2016.0153
https://doi.org/10.1098/rsta.2016.0153
https://doi.org/10.1098/rsta.2020.0409
https://doi.org/10.1098/rsta.2020.0409
https://doi.org/10.1098/rsta.2020.0067
https://doi.org/10.1098/rsta.2020.0067
https://doi.org/10.1039/c0ib00075b
https://doi.org/10.5194/gmd-4-435-2011
https://doi.org/10.5194/gmd-4-435-2011
https://doi.org/10.1038/s41559-020-01298-8
https://doi.org/10.1038/s41559-020-01298-8
https://doi.org/10.1016/j.jocs.2024.102371
https://doi.org/10.1016/j.jocs.2024.102371
https://doi.org/10.1177/0037549716659707
https://doi.org/10.1177/0037549716659707
https://doi.org/10.1145/2699722
https://greatexpectations.io/
https://greatexpectations.io/
https://doi.org/10.1098/rsta.2020.0221
https://doi.org/10.1098/rsta.2020.0221
https://doi.org/10.1016/j.cpc.2022.108596
https://doi.org/10.1088/1749-4699/4/1/015001
https://doi.org/10.1088/1749-4699/4/1/015001
https://doi.org/10.1098/rsta.2020.0210
https://doi.org/10.1098/rsta.2020.0210
https://doi.org/10.1057/jos.2012.26
https://doi.org/10.1057/jos.2012.26
https://pypi.org/project/Cerberus/
https://pypi.org/project/Cerberus/
https://doi.org/10.22214/ijraset.2019.4133
https://doi.org/10.22214/ijraset.2019.4133
https://doi.org/10.1057/jos.2016.7
https://doi.org/10.1057/jos.2016.7
https://doi.org/10.1080/17477778.2020.1800422
https://doi.org/10.1080/17477778.2020.1800422
https://doi.org/10.1038/467775a

automating exploratory data analysis and data quality
tasks. Journal of Data and Information Quality, 15(4),
1–26. https://doi.org/10.1145/3603709

Pimentel, J. F., Murta, L., Braganholo, V., & Freire, J. (2017).
noWorkflow: A tool for collecting, analyzing, and mana-
ging provenance from python scripts. Proceedings of the
VLDB Endowment, 10(12), 1841–1844. https://doi.org/
10.14778/3137765.3137789

Robinson, S., & Brooks, R. J. (2010). Independent verifica-
tion and validation of an industrial simulation Model.
Simulation, 86(7), 405–416. https://doi.org/10.1177/
0037549709341582

Roungas, B., Meijer, S. A., & Verbraeck, A. (2018).
A framework for optimizing simulation model validation
& verification. International Journal on Advances in
Systems and Measurements, 11(1), 137–152.

Roy, C. J., & Oberkampf, W. L. (2011). A comprehensive
framework for verification, validation, and uncertainty
quantification in scientific computing. Computer Methods
in Applied Mechanics and Engineering, 200(25–28),
2131–2144. https://doi.org/10.1016/j.cma.2011.03.016

Russo, G., Parasiliti Palumbo, G. A., Pennisi, M., &
Pappalardo, F. (2022). Model verification tools:
A computational framework for verification assessment
of mechanistic agent-based models. BMC Bioinformatics,
22(S14), 626. https://doi.org/10.1186/s12859-022-04684-0

Sargent, R. G. (2013a). Verification and validation of simu-
lation models. Journal of Simulation, 7(1), 12–24. https://
doi.org/10.1057/jos.2012.20

Sargent, R. G. (2013b). An introduction to verification and
validation of simulation models. 2013 Winter Simulations
Conference (WSC) (pp. 321–327). IEEE, Washington, DC,
USA.

Sargent, R. G. (2015). An interval statistical procedure for
use in validation of simulation models. Journal of
Simulation, 9(3), 232–237. https://doi.org/10.1057/jos.
2014.30

Schelter, S., Böse, J.-H., Kirschnick, J., Klein, T., & Seufert, S.
(2018). Declarative metadata management: A missing
piece in end-to-end machine learning.

Schelter, S., Lange, D., Schmidt, P., Celikel, M.,
Biessmann, F., & Grafberger, A. (2018). Automating
large-scale data quality verification. Proceedings of the
VLDB Endowment, 11(12), 1781–1794. https://doi.org/
10.14778/3229863.3229867

Shankar, S., Fawaz, L., Gyllstrom, K., & Parameswaran, A.
(2023). Automatic and precise data validation for
machine learning. Proceedings of the 32nd ACM
International Conference on Information and Knowledge
Management (pp. 2198–2207). ACM, Birmingham
United Kingdom.

Siddiqi, S., Kern, R., & Boehm, M. (2023). SAGA: A scalable
framework for optimizing data cleaning pipelines for
machine learning applications. Proceedings of the ACM
on Management of Data, 1(3), 1–26. https://doi.org/10.
1145/3617338

Sinclair, J., Suwanwiwat, H., & Lee, I. (2023). A hybrid data
gathering and agent based cognitive architecture for rea-
listic crowd simulations. Journal of Simulation, 17(2),
121–148. https://doi.org/10.1080/17477778.2021.1954487

Sinisi, S., Alimguzhin, V., Mancini, T., & Tronci, E. (2021).
Reconciling interoperability with efficient verification
and validation within open source simulation
environments. Simulation Modelling Practice and
Theory, 109, 102277. https://doi.org/10.1016/j.simpat.
2021.102277

Smith, A. M., Niemeyer, K. E., Katz, D. S., Barba, L. A.,
Githinji, G., Gymrek, M., Huff, K. D., Madan, C. R.,
Mayes, A. C., Moerman, K. M., Prins, P., Ram, K.,
Rokem, A., Teal, T. K., Guimera, R. V., &
Vanderplas, J. T. (2018). Journal of open source software
(JOSS): Design and first-year review. PeerJ Computer
Science, 4, e147. https://doi.org/10.7717/peerj-cs.147

Stephenson, A. G., LaPiana, L. S., Rutledge, P. J.,
Mulville, D. R., Bauer, F. H., Folta, D., Dukeman, G. A.,
Sackheim, R., & Norvig, P. (1999). Mars climate orbiter
mishap investigation board phase i report. November 10,
1999.

Suleimenova, D., Bell, D., & Groen, D. (2017). A generalized
simulation development approach for predicting refugee
destinations. Scientific Reports, 7(1), 13377. https://doi.
org/10.1038/s41598-017-13828-9

Tennøe, S., Halnes, G., & Einevoll, G. T. (2018).
Uncertainpy: A python toolbox for uncertainty quantifi-
cation and sensitivity analysis in computational
neuroscience. Frontiers in Neuroinformatics, 12(49).
https://doi.org/10.3389/fninf.2018.00049

Thacker, B. H., Doebling, S. W., Hemez, F. M.,
Anderson, M. C., Pepin, J. E., & Rodriguez, E. A.
(2004). Concepts of Model verification and validation.
https://inis.iaea.org/records/egfyy-d4t03

Tolk, A. (2024). Conceptual alignment for simulation inter-
operability: Lessons learned from 30 years of interoper-
ability research. Simulation, 100(7), 709–726. https://doi.
org/10.1177/00375497231216471

Wong, S., Barnett, S., Rivera-Villicana, J., Simmons, A.,
Abdelkader, H., Schneider, J.-G., & Vasa, R. (2023).
Mlguard: Defend your machine learning Model!
Proceedings of the 1st International Workshop on
Dependability and Trustworthiness of Safety-Critical
Systems with Machine Learned Components (pp. 10–13).
ACM, San Francisco CA USA.

Wright, D. W., Richardson, R. A., Edeling, W.,
Lakhlili, J., Sinclair, R. C., Jancauskas, V.,
Suleimenova, D., Bosak, B., Kulczewski, M.,
Piontek, T., Kopta, P., Chirca, I., Arabnejad, H.,
Luk, O. O., Hoenen, O., Węglarz, J., Crommelin, D.,
Groen, D., & Coveney, P. V. (2020). Building confi-
dence in simulation: Applications of easyvvuq.
Advanced Theory and Simulations, 3(8), 1900246.
https://doi.org/10.1002/adts.201900246

Yilmaz, L., & Liu, B. (2022). Model credibility revisited:
Concepts and considerations for appropriate trust.
Journal of Simulation, 16(3), 312–325. https://doi.org/
10.1080/17477778.2020.1821587

Zhong, J., Li, D., Huang, Z., Lu, C., & Cai, W. (2022). Data-
driven crowd modeling techniques: A survey. ACM
Transactions on Modeling and Computer Simulation, 32
(1), 1–33. https://doi.org/10.1145/3481299

20 R. NEYKOVA AND D. GROEN

https://doi.org/10.1145/3603709
https://doi.org/10.14778/3137765.3137789
https://doi.org/10.14778/3137765.3137789
https://doi.org/10.1177/0037549709341582
https://doi.org/10.1177/0037549709341582
https://doi.org/10.1016/j.cma.2011.03.016
https://doi.org/10.1186/s12859-022-04684-0
https://doi.org/10.1057/jos.2012.20
https://doi.org/10.1057/jos.2012.20
https://doi.org/10.1057/jos.2014.30
https://doi.org/10.1057/jos.2014.30
https://doi.org/10.14778/3229863.3229867
https://doi.org/10.14778/3229863.3229867
https://doi.org/10.1145/3617338
https://doi.org/10.1145/3617338
https://doi.org/10.1080/17477778.2021.1954487
https://doi.org/10.1016/j.simpat.2021.102277
https://doi.org/10.1016/j.simpat.2021.102277
https://doi.org/10.7717/peerj-cs.147
https://doi.org/10.1038/s41598-017-13828-9
https://doi.org/10.1038/s41598-017-13828-9
https://doi.org/10.3389/fninf.2018.00049
https://doi.org/10.3389/fninf.2018.00049
https://inis.iaea.org/records/egfyy-d4t03
https://doi.org/10.1177/00375497231216471
https://doi.org/10.1177/00375497231216471
https://doi.org/10.1002/adts.201900246
https://doi.org/10.1002/adts.201900246
https://doi.org/10.1080/17477778.2020.1821587
https://doi.org/10.1080/17477778.2020.1821587
https://doi.org/10.1145/3481299

	Abstract
	1. Introduction
	2. Related work
	3. MIV overview
	3.1. MIV workflow
	3.1.1. Selection of input files
	3.1.2. Identifying dependencies
	3.1.3. Selecting MIV patterns
	3.1.4. Generating specifications
	3.1.5. Refining specifications
	3.1.6. Running tests
	3.1.7. Report generation

	3.2. MIV conceptual overview
	3.3. MIV in the context of HPC

	4. Exemplars
	4.1. Exemplar 1: Conflict-driven migration modeling with flee
	4.2. Exemplar 2: Disaster-driven evacuation modelling with DFlee
	4.3. Exemplar 3: Disease spread modeling with FACS

	5. LLMs for constraints inference and generation
	5.1. RQ1: Constraints inference
	5.1.1. Methodology
	5.1.2. Findings
	5.1.3. Implications

	5.2. RQ2: Constraints generation
	5.2.1. Methodology
	5.2.2. Findings
	5.2.3. Implications

	5.3. Balancing Model assumptions and data reality
	5.4. On the potential use of LLMs in MIV

	6. Evaluation
	6.1. Setup
	6.2. Use case: Flee
	6.2.1. Scalability
	6.2.2. Consistency
	6.2.3. Processing time vs. file size
	6.2.4. Efficiency

	6.3. Microbenchmarks

	7. Discussion and conclusion
	Notes
	Disclosure statement
	Funding
	References

