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REVIEW ARTICLE

Model input verification of large scale simulations
Rumyana Neykova and Derek Groen

Department of Computer Science, Brunel University London, London, UK

ABSTRACT
Reliable simulations require accurate input data. Invalid values, missing data, and format 
inconsistencies can cause crashes or result distortions, compromising the findings. This paper 
presents a methodology for verifying the validity of input data in simulations, a process we 
term model input verification (MIV). We implement this approach in FabGuard, a toolset that 
uses established data schema and validation tools for simulation modelling. We formalize MIV 
patterns and create a verification pipeline for existing workflows. FabGuard’s applicability is 
demonstrated across three domains: conflict-driven migration, disaster evacuation, and disease 
spread models. We also explore Large Language Models (LLMs) for automating constraint 
generation. In a migration simulation case study, LLMs correctly inferred 22/23 developer- 
defined constraints, identified errors in existing constraints, and proposed new, valid ones. Our 
evaluation demonstrates that MIV is feasible on large datasets, with FabGuard processing 300 
input files in 140 seconds and maintaining consistent performance across file sizes.
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1. Introduction

Simulations have become an indispensable tool across 
various scientific disciplines, offering insights into 
complex systems ranging from epidemiology and 
environmental science to social dynamics and engi
neering in many different ways (Epstein, 2008). Recent 
advancements in computational power and data ana
lytics have enabled researchers to develop and apply 
more realistic and actionable simulation approaches 
that deliver benefits in a growing number of areas. For 
instance, epidemiological simulations have been used 
to inform public health interventions during the 
COVID-19 pandemic on the national level (Ferguson 
et al., 2020), as well as hospital-level allocation deci
sions on the local level (Mahmood et al., 2022). 
Furthermore, in environmental science, simulations 
have provided insights into ecosystem interactions 
and biodiversity under changing climate conditions 
(Dada & Mendes, 2011; Geary et al., 2020; Jahani 
et al., 2023).

These simulations increasingly operate at large 
scales, characterized by extensive computational 
requirements, and in agent-based models, millions of 
interacting agents. For example, epidemiological mod
els on the city level or larger may track billions of 
individual interactions (Epstein, 2008), while migration 
simulations like Flee (Suleimenova et al., 2017) can 
involve hundreds of thousands of agents moving across 
multiple countries, and require thousands of input files 

with location data and movement patterns when used 
to account for different conflict and intervention sce
narios. These simulations increasingly operate at large 
scales, characterized by extensive computational 
requirements, and in agent-based models, millions of 
interacting agents. For example, epidemiological mod
els on the city level or larger may track billions of 
individual interactions (Epstein, 2008), while migration 
simulations like Flee (Suleimenova et al., 2017) can 
involve hundreds of thousands of agents moving across 
multiple countries, and require thousands of input files 
with location data and movement patterns when used 
to account for different conflict and intervention 
scenarios.

Particularly when simulation results inform critical 
decision-making processes, their reliability and repro
ducibility becomes of paramount importance (Coveney 
et al., 2016). Here, the open-source software movement 
has played a crucial role in promoting software sustain
ability and reproducibility, particularly in scientific 
simulations (Coveney et al., 2021). Free and Open 
Source Software (FOSS) helps to facilitate reliable simu
lation, because open source models can be freely scruti
nized by the wider community. In addition, it stimulates 
software sustainability in general because external main
tainers and contributors deliver a public benefit when 
contributing to a FOSS project (Coveney et al., 2021). 
Initiatives such as the Journal of Open Source Software 
(JOSS) (Smith et al., 2018) and the increasing number of 
journals requiring code availability demonstrate the
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scientific community’s recognition of the critical role 
that software plays in research reproducibility. In the 
context of simulation, open-source practices not only 
facilitate peer review of the underlying code but also 
enable researchers to verify and extend existing models, 
fostering compounded scientific progress (Benureau & 
Rougier, 2018). Significant challenges remain, however, 
as a main barrier to reproducible research is that many 
of the tools required for reproducibility, such as version 
control, unit testing, and automation, are often seen as 
being of interest only to professional coders (Alhozaimy 
et al., 2017). This perception gap highlights the need for 
solutions that can make these essential practices more 
accessible, easy to use and relevant to domain experts 
who may not have extensive software engineering 
backgrounds.

While verification, validation and uncertainty 
quantification have received clear attention from 
researchers in recent years (see e.g., Coveney et al. 
(2021)), a crucial and often overlooked aspect of 
ensuring simulation reliability and reproducibility is 
the process of validating and verifying model input 
data. In particular, few generic approaches exist that 
verify that model input data adheres to predefined 
constraints that ensure correct simulation execution 
and that it correctly represents the real-world scenar
ios being modelled. We call this process Model Input 
Verification (MIV). This step is essential in guarding 
against simulation results being corrupted by human 
data input errors or poorly formatted raw input, and 
helps to prevent cascading errors or crashes that can 
arise from such flawed or misrepresented inputs. The 
implications of inadequate input verification in simu
lations can be severe. For instance, in 1999 a mistaken 
unit type in one of the ground software sub-models led 
to the NASA Mars Climate Orbiter having an incor
rect trajectory and burning up in the Martian atmo
sphere (Stephenson et al., 1999). Similarly, in Flee 
migration simulations it occasionally happens that 
developers retrieve GPS coordinates for locations in 
their simulation, and accidentally insert the coordi
nates of identically named places that reside in an 
entirely different country.

Recent years have seen a growing emphasis on 
testing data and ensuring data quality, forming the 
basis for test-driven data analysis and “unit tests” for 
data (Schelter, Lange, et al., 2018). Libraries such as 
Pandera,1 Great Expectations,2 and Cerberus3 have 
emerged to verify data constraints and validate sche
mas. These tools have proven valuable in fields such as 
data science and business intelligence, where they help 
maintain data integrity and detect errors early in the 
analysis pipeline (Bantilan, 2020).

However, simulation development often occurs in 
environments quite different from traditional software 
engineering. Typically, these simulations are created 
by domain experts—scientists, researchers, and 

analysts—who, while highly skilled in their fields, 
may not have extensive programming backgrounds 
(Merali, 2010). This gap between domain expertise 
and software engineering practices has long been 
a challenge in ensuring the reliability and verifiability 
of scientific simulations (Roy & Oberkampf, 2011; 
Thacker et al., 2004). Moreover, the tools and 
approaches for data validation have not been widely 
translated to simulations, are often unavailable to 
simulation practitioners, and the simulation inputs 
often require constraints that go beyond simple data 
validation. For example, in agent-based models of 
population displacement, input verification must 
ensure not only that population values are non- 
negative but also that the sum of populations across 
different locations matches the total simulated popu
lation. Furthermore, temporal consistency in the input 
data is crucial; in disease spread models, the order and 
timing of intervention measures must be aligned with 
the simulation timeline.

To address the aforementioned challenges and 
improve the reliability of simulations, this paper 
presents FabGuard,4 an integrated set of tools and 
methods for Model Input Verification. Our work is 
guided by several key research questions: How can 
we effectively adapt existing data validation tools to 
the unique needs of simulation modelling? What are 
the types of input verification constraints that 
a model should support? How can we incorporate 
input verification into existing simulation work
flows? How does the performance and scalability of 
MIV tools hold up when processing large-scale 
simulation datasets with varying complexities? To 
what extent can Large Language Models help 
domain experts adopt MIV by assisting with con
straint generation? How does the performance and 
scalability of MIV tools hold up when processing 
large-scale simulation datasets with varying com
plexities? To what extent can Large Language 
Models help domain experts adopt MIV by assisting 
with constraint generation?

In addressing these questions, our work offers sev
eral novel contributions to the field.

§ 3.1 Introduces Fabguard, a streamlined verifica
tion pipeline that can be easily integrated into CI/CD 
workflows of simulation models, promoting auto
mated input verification.

§ 3.2 Formalizes model input verification require
ments for simulation modelling. We present 
a framework categorizing constraint types across var
ious dimensions of simulation input data, offering 
a systematic approach to address verification needs.

§ 4 Demonstrates the practical applicability of 
FabGuard across three diverse simulation domains: 
conflict-driven migration, disaster evacuation, and 
disease spread models. This showcases the adaptability
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of off-the-shelf tools for input verification in complex 
simulation scenarios.

§ 5 Presents the first exploration of LLMs Presents 
the first exploration of LLMs for constraint generation 
and inference in the context of Model Input 
Verification, investigating their potential to assist 
simulation practitioners with initial adoption.

§ 6 Evaluates FabGuard’s performance providing 
insights into its scalability and efficiency in various 
scenarios.

Section 2 discusses related work, and Section 7 
concludes with a summary of contributions and future 
directions.

2. Related work

The problem of reproducibility in computational 
science has been identified as a critical issue 
(Coveney et al., 2016), and there are ongoing efforts 
to address it (Coveney et al., 2021). Automated testing 
is needed to systematically verify computer simula
tions, a precondition to ensuring that the results they 
produce are sufficiently robust to inform decision- 
making in the real world (Coveney & Highfield,  
2021). This section contextualizes the role of input 
verification within the broader domain of simulation 
modelling and further explores solutions in the fields 
of data analytics and data workflows, which face simi
lar challenges.

Before discussing specific approaches, we clarify 
key terms as they are used in this paper, following 
established ASME5 definitions. Verification is “the 
process of determining that a computational model 
accurately represents the underlying mathematical 
model and its solution”. Validation refers to “deter
mining the degree to which a model accurately 
represents the real world”. Uncertainty quantifica
tion involves “identifying, quantifying, and asses
sing the impact of uncertainty sources in 
simulation”. While these processes form an inter
connected framework for simulation reliability, our 
work focuses on input verification as 
a foundational step.

Verification of simulations is crucial for ensur
ing that computational models accurately represent 
real-world scenarios and for enhancing reproduci
bility. Various approaches and tools have been 
developed to enhance this process. Code verifica
tion focuses on identifying programming errors 
and verifying numerical algorithms through 
Software Quality Assurance (SQA) procedures, 
ensuring software reliability and consistency 
(Thacker et al., 2004). Comprehensive frameworks 
for Verification, Validation, and Uncertainty 
Quantification (VVUQ) further improve predictive 
capabilities by incorporating methods to estimate 
and propagate uncertainties through models (Roy 

& Oberkampf, 2011). Several frameworks and large 
toolkits have been developed to address these chal
lenges. For example, the VECMA toolkit (Groen 
et al., 2021) offers a suite of tools for verification, 
validation, sensitivity analysis, and uncertainty 
quantification. Within VECMAtk, EasyVVUQ 
(Wright et al., 2020) streamlines VVUQ for com
putationally expensive simulations and extensive 
sampling spaces. FabSim3 (Groen et al., 2023), 
a Python-based automation toolkit, reduces 
human effort in simulation-based research and pro
vides an auto-validation tool for comparing simula
tion accuracy. The Model Verification Tools 
(MVT) framework (Russo et al., 2022) offers 
mechanisms for VVUQ assessment of agent-based 
models, including sensitivity analysis techniques. 
Uncertainpy (Tennøe et al., 2018) facilitates robust 
simulation modelling by offering uncertainty quan
tification and sensitivity analysis using quasi-Monte 
Carlo and polynomial chaos expansions methods. 
For a comprehensive overview of many works on 
verification, validation and especially for uncer
tainty quantification, readers are directed to 
(Coveney et al., 2021).

Beyond these specific tools, there are more gen
eral works addressing various aspects of simulation 
verification and validation. Gundersen (Gundersen,  
2021) emphasize the importance of transparency 
and openness as key drivers for reproducibility 
(Roungas et al., 2018). address the challenge of 
selecting appropriate V&V methods due to the 
abundance of available techniques, proposing 
a methodology for choosing the optimal methods 
based on simulation characteristics. In the realm of 
high-performance computing, Encinas et al. 
(Encinas et al., 2019) present a simulation model 
of HPC I/O systems using Agent-Based Modelling 
and Simulation (ABMS), providing insights into I/ 
O performance behaviour in different configura
tions. Farrell et al. (Farrell et al., 2011) highlight 
the importance of automated continuous testing in 
numerical modelling, demonstrating significant 
improvements in code quality and programmer 
efficiency (Sinisi et al., 2021). address interoperabil
ity challenges in Cyber-Physical System (CPS) 
simulation, presenting an implementation of FMI 
2.0 functions for improving efficiency in simula
tion-based V&V. These diverse approaches collec
tively contribute to ongoing efforts to improve the 
reliability, efficiency, and reproducibility of simula
tion-based research across various domains.

Despite these advancements, there remains 
a notable gap in addressing model input verification. 
Most existing tools and frameworks focus on verifying 
simulation code, quantifying uncertainties, or validat
ing outputs, rather than verifying input data. The 
current paper addresses this crucial aspect of
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simulation reliability by focusing specifically on model 
input verification, thus complementing existing 
VVUQ approaches.

Data validation and verification have gained sig
nificant attention in the data science and machine 
learning communities. Schelter et al. (Schelter, 
Lange, et al., 2018) introduced the concept of “unit 
tests” for data, providing a framework for describing 
data constraints. This has led to research on data 
schema generation, inference, and validation techni
ques for complex machine learning applications 
(Hynes et al., 2017; Pimentel et al., 2017; Schelter, 
Böse, et al., 2018). Modern machine learning plat
forms now incorporate explicit data validation com
ponents, addressing issues such as data drift, model 
performance degradation, and input data quality 
(Jha, 2019; Patel et al., 2023; Shankar et al., 2023; 
Siddiqi et al., 2023; Smith et al., 2018; Wong et al.,  
2023).

The growing emphasis on data quality and 
schema verification has led to the development of 
several tools and libraries aimed at streamlining 
these processes. Great Expectations (Great 
Expectations Team, 2024) has emerged as 
a popular tool for data validation and documenta
tion, allowing users to express their data expecta
tions in a declarative manner and facilitating 
automated testing of data quality. Pandera 
(Bantilan, 2020) provides a flexible and expressive 
API for performing data validation on pandas 
DataFrames, enabling the definition of schemas 
with column-level and dataframe-level validation 
rules, including complex statistical checks. Other 
tools like Cerberus (Iarocci, 2024) offer similar 
functionality, reflecting a broader trend towards 
more robust, automated approaches to data valida
tion across various domains. The TDDA Python 
module6 supports test-driven data analysis through 
various tools, including Reference Testing for 
managing complex data analysis pipeline tests and 
tools for discovering, validating and detecting 
anomalies in data constraints.

These developments in data validation techniques 
and tools provide a strong foundation for addressing 
similar challenges in the simulation domain. While 
the focus of these works has primarily been on data 
science and machine learning applications, many of 
these approaches and tools can be adapted or repur
posed for simulation input verification. In the con
text of the extensive literature on VVUQ for 
simulations, input verification is acknowledged but 
still not deeply explored. However, as simulations 
become more complex and reproducibility becomes 
a more pressing concern in scientific research, the 
role of input verification will become increasingly 
prominent.

3. MIV overview

This section provides an overview of Model Input 
Verification, its importance in simulation modelling, 
and introduces FabGuard as a comprehensive toolset 
for implementing MIV. We begin by explaining the 
concept and significance of MIV. We then present 
a formalism for categorizing different types of input 
verification tasks, which serves as a framework for 
understanding and implementing MIV processes. 
Finally, we introduce FabGuard, detailing its architec
ture and key features.

Model Input Verification is an important step in the 
simulation modelling process, ensuring that input data 
adhere to specified constraints and accurately represent 
the real-world scenarios being modelled. In essence, 
MIV allows users to write tests that check whether 
input files meet specific requirements and satisfy a set 
of predefined constraints. These tests help prevent cas
cading errors that can arise from flawed or misrepre
sented inputs, enhancing the reliability and 
reproducibility of simulation results. Common MIV 
tasks include checking data types, value ranges, inter
column relationships, and cross-file consistency.

To illustrate our approach and the main ideas 
behind model input verification, we use as a running 
example an agent-based simulation, called Flee 
(Suleimenova et al., 2017). Flee is designed for model
ling displacement and migration patterns, enables 
researchers to create simulations based on conflict 
and disaster scenarios and helps to predict how popu
lations move in response to various crises. It has been 
applied in major research initiatives such as the EU- 
funded HiDALGO7 and ITFLOWS8 projects. the EU- 
funded HiDALGO9 and ITFLOWS10 projects. Within 
Flee, agents move across a location graph defined by 
two primary input CSV files: locations.csv, which 
defines the nodes of the graph representing various 
locations such as towns, camps, and conflict zones, 
and routes.csv, which defines the edges of the graph, 
representing possible paths between locations.

3.1. MIV workflow

In Figure 1 we present the high-level methodology for 
writing MIV tests. Here the first two stages, selecting 
input files and identifying dependencies, are manual 
processes performed by the user. These manual steps 
are important for establishing the context and scope of 
the verification process, while FabGuard is designed to 
support and automate the subsequent stages, provid
ing a plugin-based architecture that accommodates 
various input file formats and validation methods.

3.1.1. Selection of input files
In this initial stage the user selects input files to verify. 
The format and content will vary and are simulation-
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specific. The files are categorized into configuration 
files, which provide necessary settings for running 
simulations, and input files that supply the data 
required to execute processes. For instance, in the 
Flee simulation tool, the input files might include 
locations.csv and routes.csv which contain tabular 
data, while the configuration file is simsettings.yml 
and contains key-value pairs of simulation parameters.

3.1.2. Identifying dependencies
In the next stage, the user must identify dependencies 
that are essential for parameterizing the inputs. This 
involves configurations that require specific settings, 
supplementary input files that provide context, and 
external resources such as databases or APIs needed 
for validation. For example, if simsetting.yml sets the 
simulation to start on January 1 2023, any closure 
events in closures.csv with earlier dates should be 
flagged as invalid.

3.1.3. Selecting MIV patterns
After identifying input files and their dependencies, 
users should determine which MIV patterns (as for
malized in Section 3.2) are appropriate for their ver
ification needs. For example, when verifying a single 
column in a tabular file, pattern MIV 1.A.i might be 
suitable. For checks involving configuration files, pat
terns like MIV 4.C.ii would be more appropriate. This 
pattern selection guides the type of specifications to be 
generated and helps ensure coverage of verification 
requirements. For instance, in Flee, verifying popula
tion values in locations.csv would use pattern MIV 1. 
A.i, while checking route consistency between loca
tions.csv and routes.csv would require pattern MIV 2. 
A.ii. The chosen patterns inform both the verification 
approach and the tools needed for implementation. 
After identifying input files and their dependencies, 
users should determine which MIV patterns (as for
malized in Section 3.2) are appropriate for their ver
ification needs. For example, when verifying a single 
column in a tabular file, pattern MIV 1.A.i might be 

suitable. For checks involving configuration files, pat
terns like MIV 4.C.ii would be more appropriate. This 
pattern selection guides the type of specifications to be 
generated and helps ensure coverage of verification 
requirements. For instance, in Flee, verifying popula
tion values in locations.csv would use pattern MIV 1. 
A.i, while checking route consistency between loca
tions.csv and routes.csv would require pattern MIV 2. 
A.ii. The chosen patterns inform both the verification 
approach and the tools needed for implementation.

3.1.4. Generating specifications
Once the user has identified the input files for verifica
tion and their potential dependencies, they can begin 
writing input verification tests. FabGuard supports 
two off-the-shelf libraries for schema validation 
(which is a type of verification and should not be 
confused with the validation in a simulation context), 
depending on the type and format of the data— 
Pandera and jsonschema. The former is a library for 
defining schemas and validating pandas DataFrames; 
which allows users to define column-level and data
frame-level validation rules, including data types, 
value ranges, and custom checks. The latter is 
a lightweight way to test your YAML/JSON files 
based on how they conform to a defined schema. 
FabGuard provides a thin wrapper over both 
Pandera and jsonschema libraries, enabling integra
tion with simulation tools, LLMs, and providing con
sistent documentation. Users can start writing tests 
using the library that best suits their case.

However, writing these tests can be a tedious pro
cess that requires programming skills, potentially hin
dering the tool’s applicability. To address this, we have 
explored two potential ways to bootstrap this stage:

(1) Schema Generators: FabGuard supports built- 
in schema generators—a custom YAML 
schema generator, and a Pandera inference 
module. These tools can automatically infer 
basic constraints such as data types, minimum

Figure 1. Methodology for model input files verification.
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and maximum values for most files. While not 
comprehensive, they create useful scaffolding 
that can later be refined by users. For instance, 
a schema generator might infer that the “popu
lation” column in locations.csv should contain 
non-negative integers.

(2) Large Language Models (LLMs): As reported in 
Section 5, we have explored the use of LLMs for 
constraint generation and inference. Our find
ings indicate that LLMs can not only create the 
scaffolding of the main tests but also suggest 
and infer novel constraints. For example, an 
LLM might suggest that the sum of populations 
across all locations should match the total 
simulation population, a constraint that might 
not be immediately obvious to users.

These automated approaches serve as a starting point, 
providing a basic scaffolding which can then be 
refined and expanded by domain experts. This stage 
significantly lowers the barrier to entry for using 
FabGuard, making it more accessible to researchers 
who may not have extensive programming experience.

3.1.5. Refining specifications
The test should be further refined, and most impor
tantly, themselves verified. This stage is important, 
especially if automated inference tools were used in 
the previous steps. As outlined in Section 5, some 
constraints, although they can be inferred, may 
require adjustments to accurately reflect the simula
tion’s requirements. For example, in Flee, an inferred 
constraint might correctly identify that the “popula
tion” field should be non-negative, but may need 
refinement to specify that conflict zones must have 
a non-zero population while other location types can 
have zero population.

The aforementioned previous stages of automated 
inference are optional, as developers could write all 
tests from scratch, tailoring them precisely to their 
simulation’s needs. Alternatively, they could write cus
tom checks for specific validation scenarios not cov
ered by standard tools or inferred constraints. For 
instance, in Flee, a custom check might be needed to 
ensure that all routes listed in routes.csv correspond to 
actual connections between nodes specified in loca
tions.csv, a relationship that may not be captured by 
automated inference tools.

3.1.6. Running tests
FabGuard input verification tests can be run in several 
ways, as it is integrated with FabSim3 (Groen et al.,  
2023), a Python-based automation toolkit for scientific 
simulation and data processing workflows. This inte
gration allows users to run FabGuard tests as part of 
simulation workflows within FabSim3 or execute them 
independently for focused input verification. 

Furthermore, FabGuard tests can be incorporated 
into Continuous Integration/Continuous 
Deployment (CI/CD) pipelines, such as GitHub 
Actions, enabling ongoing automated validation.

3.1.7. Report generation
In the final stage, FabGuard generates a report detail
ing test results, including the number of passed and 
failed tests. Counterexamples for failing tests are pro
vided, highlighting where and why certain tests failed 
and providing insights to guide corrective actions. If 
locations.csv fails validation due to missing entries, the 
report pinpoints these omissions, as well as the the 
exact rows and values which do not satisfy the 
constraints.

3.2. MIV conceptual overview

The MIV workflow described above encompasses 
a wide range of verification tasks, each with its own 
characteristics and requirements. To systematically 
address these diverse needs, we have developed 
a formalism that categorizes MIV tasks based on 
their sources, templates, and targets. This formalism 
not only provides a common language for discussing 
MIV tasks but also helps to identify patterns and best 
practices across different simulation domains.

In this formalism, we define MIV as the act of 
synthesizing data from one or more different Sources 
to dynamically generate a verification Template, which 
defines the content pattern required to pass verifica
tion. This verification Template is in turn applied to 
an input file (the Target) to perform the actual verifi
cation, returning a correct outcome if a match is 
achieved, and an error if not. Now the MIV task can 
be performed in different ways, and we provide 
a simple formalism in Figure 2 to help understand 
the different patterns that can be created.

Here, each pattern is described with a dot-delimited 
code, consisting of three components: the Source (or 
sources) using an Arabic numeral symbol, the 
Template Type using a capitalized letter symbol and 
the Target using a Roman numeral symbol. We pro
vide two example pattern definitions in Figure 2. For 
instance, a MIV 1.A.i pattern could be a check that all 
locations in a geographic location file have 
a population of at least 0, while a pattern of type 
MIV 4.C.ii might (i) check whether the simulation is 
configured to explicitly model flooding events and 
then (ii) check whether locations in that same geo
graphic file have, for example, an altitude and water 
holding capacity value defined if this is the case.

Sources that may be used to generate the template 
may be content from the target file itself (1, as in our 
MIV 1.A.i example), from other input files (2), exter
nal reference information such as a lookup table or 
calendar (3) or simulation configuration files (4, as in
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our MIV 4.C.ii example). It can be possible that a MIV 
pattern draws from multiple sources, such as the target 
file (1) and simulation configuration files (4). In this 
case the Arabic numerals can be appended in numer
ical order, giving the value “‘14’” for the first compo
nent in this case. MIV can be of different types, 
because they can be applied in different ways. These 
types include specifications that are statically applied 
to check a file (A, as in our MIV 1.A.i example), 
specifications that may be modified depending on 
specific criteria (B), specifications that may or may 
not be applied depending on specific criteria (C, as 
in our MIV 4.C.ii example), or (BC) specifications that 
may be modified or not be applied depending on 
specific criteria. Normally, MIV of type A tends to be 
done either using only the target file as source (1.A.*) 
or the simulation configuration (4.A.*).

Lastly, MIV patterns may differ in which aspect of 
the input file they verify, i.e., what they target. For 
instance, they may target an individual column in 
a tabular data file (i, as in our MIV 1.A.i example), 
multiple static columns in a tabular data file (ii, as in 
our MIV 4.C.ii example), a dynamic number or 
arrangement of columns in a tabular data file (iii). 
There are also MIV patterns that target files as 
a whole, and may target non-tabular model input 
files (v and higher). This may be done specifically to 
verify the syntax of the input file (vi), the nesting 
structure (vii, particularly useful for YAML-based 
input files) and the adherence to a predefined schema 
(viii, useful for both XML and YAML files for 
instance).

Given the three components and their variations, we 
are therefore able to define a total of at least 72 MIV 
patterns, and more if we include patterns that rely on 
multiple Source types. However, the range of MIV 

patterns is not intended to be exhaustive, and there are 
valuable input verification checks that we chose to leave 
outside of this formalism to retain simplicity. Most of 
these verification checks are checks that operate on 0 or 
multiple files, such as verification checks that operate on 
network-fed input data, checks that verify the number of 
input files present or checks that verify the non- 
existence of redundant or possible disruptive input files.

3.3. MIV in the context of HPC

Our MIV tool can be applied to any application that 
requires input files in one of the supported formats. 
For large-scale HPC simulations, where millions of 
agents execute in parallel, it provides essential safe
guards against input errors that could waste computa
tional resources and invalidate results across parallel 
runs. This value is amplified when applications and 
input files are shared among multiple users.

The SEAVEA project (Software Environment for 
Actionable VVUQ-enabled Exascale Applications, 
https://www.seavea-project.org), has established tools 
where this is the case. The toolkit itself provides facil
ities for the verification, validation and uncertainty 
quantification of HPC applications, and is an exten
sion of the VECMA toolkit (Groen et al., 2021). For 
instance, within FabSim3 (Groen et al., 2023) there are 
established plugins that contain sample input files for 
a range of different application domains. There are 
plugins available for applications in various domains, 
such as migration, Covid-19, climate, materials and 
fusion. Here, our tool allows users to verify the input 
files present in the shared repository, and improve the 
quality of the input configurations for all other users.

The SEAVEA toolkit, and in particular FabSim3, 
also provides facilities to simplify the use of the MIV

Figure 2. Overview of the MIV formalism.
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tool. For instance, FabSim3 enables external tools to be 
used through simple one-liner bash commands, auto
matically locating the relevant configuration files for 
the user’s application using its internal database. In 
addition, invocations of the MIV tool can be directly 
integrated into existing FabSim3 commands. Through 
this integration, users can choose to apply input file 
verification automatically for their own daily simula
tion workflows. Although such automated MIV 
checking introduces a performance overhead of sev
eral seconds, it ensures that any input files that the 
user requires are verified without additional human 
effort.

4. Exemplars

This section demonstrates the capabilities of the MIV 
toolchain by going through common input verifica
tion scenarios. To showcase the general nature of our 
tool, we present three exemplars on: (i) conflict-driven 
migration, (ii) disaster evacuation and (iii) disease 
spread.

These exemplars were selected to illustrate a range 
of input verification challenges commonly encoun
tered in simulation modelling. They progress from 
basic data type checks to more complex multi-file 
validations and domain-specific constraints. By pre
senting these diverse scenarios, we aim to demonstrate 
FabGuard’s capability in handling various types of 
input data, file formats, and validation requirements. 
By presenting real-world applications, we demonstrate 
how the tool integrates into existing simulation work
flows. These exemplars serve not only as proof of 
concept but also as guidance for potential users, illus
trating how FabGuard can be adapted to different 
domains and specific verification needs.

We chose to focus on agent-based models (ABMs) 
for our exemplars due to their diverse applications 
across scientific disciplines, complex input require
ments, and sensitivity to input errors. ABMs typically 
involve multiple, interconnected input files describing 
agent characteristics, environment properties, and 
simulation parameters, providing an excellent testbed 
for FabGuard’s capabilities. Moreover, ABMs are 
often developed by researchers from diverse back
grounds, aligning with FabGuard’s goal of making 
input verification more accessible to domain experts. 
While we focus on ABMs in our examples, FabGuard’s 
is extensible to other simulation types. For instance, 
molecular dynamics simulations using the Large-scale 
Atomic/Molecular Massively Parallel Simulator 
(LAMMPS) 11 contain input files with specialized key- 
value style commands that define simulation units, 
atomic masses, force fields and parameters for mole
cular interactions. Though these files require a custom 
parser and validation functions due to their specialized 
command-line format, the underlying validation 

requirements align naturally with our MIV patterns. 
For example, parameters must have valid values and 
relationships (following similar principles to MIV 1.A. 
i for single-value validation), and data must be con
sistent across linked input files (similar to MIV 2.A.ii 
principles). These examples demonstrates how the 
MIV methodology presented here is adaptable and 
applies to different simulation paradigms, and the ad- 
hoc tests and plugins in Figure 1 reflect exactly this 
scenario.

The techniques demonstrated here highlight 
FabGuard’s ability to improve input verification across 
diverse computational modelling and simulation 
scenarios.

4.1. Exemplar 1: Conflict-driven migration 
modeling with flee

As already mentioned in x 3, Flee (Suleimenova et al.,  
2017) is a simulation tool designed to model displace
ment and migration patterns. Flee simulates hundreds 
of thousands of agents moving simultaneously across 
multiple countries Flee simulates hundreds of thou
sands of agents moving simultaneously across multi
ple countries. It enables researchers to create 
simulations based on conflict and disaster scenarios, 
helping to predict how populations move in response 
to various crises.

Flee models agents that move across a location 
graph: here, the location graph is defined using two 
input CSV files (locations.csv and routes.csv). Errors 
in the location graph input files not only lead to 
inaccuracies in the simulation, but can also lead to 
agents getting stuck in certain locations or to Flee to 
crash altogether. Another important input file for Flee 
version 3 (Ghorbani et al., 2024) is simsetting.yml, 
which is used to configure the set of assumptions 
used in the simulation. Lastly, there are a range of 
CSV files that define attributes for the spawned agents, 
as well as for specific locations and routes.

The code snippet in Listing 1 defines a schema 
for a pandas DataFrame using the pandera class 
DataFrameModel. It specifies that the DataFrame 
should have a “population” column with floating- 
point numbers greater than 0, which can also be 
null, and a “location_type” column with string 
values that must be one of “conflict_zone”, 
“town”, or “camp”. The Check function is used to 
enforce these constraints, with Check.greater_than 
(0) ensuring the “population” values are positive
and Check.isin([“conflict_zone”, “town”, “camp”]) 
ensuring the “location_type” values are within the 
specified set. This schema validates the 
DataFrame’s structure and data integrity by check
ing that the columns match the defined types and 
conditions.
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We can refine the schema further as to accom
modate domain-specific constraints that span mul
tiple columns.

MIV 1.B.ii Multi-column constraint 

Locations that are conflict zones require a population 
value strictly higher than 0 (one needs persons to 
create conflict-driven displacement):

The provided code snippet in Listing 2 defines 
a custom validation function for a pandas 
DataFrame using the pandera library. The @pa.data
frame_check() annotation designates the function 
population_gt_0 as a custom DataFrame validation 
check. This function ensures that rows with “loca
tion_type” equal to “conflict_zone” do not have 
a “population” value less than or equal to 0. It 
creates a boolean mask to identify these invalid 
rows and raises a ValueError with the indices of 
any invalid rows found. The function then returns 
a boolean Series indicating which rows are valid. By 
using the @pa.dataframe_check() annotation, this 
custom check is integrated into a pandera schema, 
allowing it to be used in the validation process to 
enforce specific data constraints.

MIV 2.A.ii Constraints spanning multiple files 

Within Flee, the countries featured in the model are 
located in locations.csv, but any border closures are 
defined in closures.csv. We must ensure closures link 
to the correct countries. (and for instance do not have 
typos in the country names)

We can apply the same ideas as above: create a boolean 
mask that identified the invalid rows and raise an 
errors if such entries are found. One caveat in com
parison to the previous example is that we need to load 
the locations.csv file. The final constraints is imple
mented in Listing 3.

4.2. Exemplar 2: Disaster-driven evacuation 
modelling with DFlee

Dflee (Jahani et al., 2023) is a variation of Flee which is 
configured to model disaster-driven population dis
placement with tens of thousands of agents respond
ing to flood events with tens of thousands of agents 
responding to flood events. The simulation tool cur
rently is used for flood-driven migration, but exten
sions to capture other events (such as storms) are in 
progress.

Like Flee, DFlee relies on a location graph, but 
depending on the context the location and route 
attributed may be radically different. Errors in these 
input files may result in problems similar to Flee, or in 
a complete lack of spawned agents in the simulations. 
DFlee also relies on a simsetting.yml, and a number of 
fields in there need to be defined correctly for the 
DFlee to be triggered, while other values need to be 
lined up in a consistent manner to allow DFlee to work 
in a manner that matches basic logic (e.g., that people 
are more likely to flee from flooded areas than 
unflooded ones). When used for flooding, DFlee also 
requires a flood_level.csv file, which contains the pro
gression of the flooding at each location during the 
simulation period. Errors within this file may cause          

flooding to occur at the wrong times, in the wrong 
places, or with the wrong intensities.

MIV 3.A.i Custom-function columns constraints 

Validating that a day column has valid rows for all 
days in a month

The code in Listing 4 defines a custom check func
tion check_day_increment using the pandera
library, annotated with @pa.check(“Day”) to specify 
that it applies to the “Day” column of a DataFrame. 
The function validates that the values in the “Day” 
column are incremental integers within a specified 
range. It sets a minimum value of 0, a maximum 

Listing 1: Single-column constraints

Listing 2: Multi-column constraints
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value determined by reading the configuration file, 
and a step increment of 1. The function returns 
a boolean Series indicating whether each value in 
the “Day” column meets these conditions: being an 
increment of 1 from the minimum value, and lying 
within the inclusive range from the minimum to 
the maximum value. This ensures that the “Day” 
column contains valid, sequential day values.

MIV 4.C.iii Dynamic columns constraints 

When used for flooding, DFlee also requires a flood 
level.csv file, which contains the progression of the 
flooding at each location during the simulation per
iod. Errors within this file may cause flooding to 
occur at the wrong times, in the wrong places, or 
with the wrong intensities

Listing 5 demonstrate another pattern which allows 
for dynamic schema validation where the same 
constraints should be applied to a varied number 
of columns. In the schema defined below, the num
ber of columns in the flood levels CSV file is 
unknown, but all columns except the first specify 
the same type of information: the intensity of the 
flood for each day for different flood zones. where 
the rows are the days, and the columns are the 
flood zones. To realise these constraints, we have 
defined a class method with_dynamic_columns 

within a FloodLevelScheme class that dynamically 
creates schema constraints for a pandas DataFrame. 
The method reads configuration values to set max
imum permissible values for the “Day” and other 
flood levels columns. It generates fields with these 
constraints, and specifying value ranges for all col
umns. These constraints are added to a dictionary 
and used to create a new class, 
ExtendedFloodLevelScheme, which inherits from 
FloodLevelScheme and includes the dynamically 
generated attributes.

4.3. Exemplar 3: Disease spread modeling with 
FACS

FACS (Flu And Coronavirus Simulator) (Mahmood 
et al., 2022) is a computational modelling tool 
designed to simulate the spread of influenza and cor
onaviruses such as COVID-19 in various populations 
and settings. It simulates millions of agents interacting 
to model disease spread across metropolitan areas. It 
simulates millions of agents interacting to model dis
ease spread across metropolitan areas. It allows users 
to explore the impact of different public health inter
ventions, such as social distancing, vaccination, and 
lockdown measures, on the spread of these infectious 
diseases.

Listing 3: Constraints across files

Listing 4: Stepside checks

Listing 5: Schema with dynamic columns
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To configure individual simulations, FACS relies in 
a wide range of input files. These include input files to 
provide geographical information (buildings.csv), 
demographic information (age-distr.csv and needs. 
csv), disease information (e.g., disease_covid19.yml 
and mutations.yml) as well as information on inter
ventions (measures.yml) and vaccination types and 
strategies (vaccinations.yml). Users commonly edit 
the measures.yml file to assess the efficacy of new 
intervention scenarios, and this file is relatively com
plex in terms of structure. Erroneous entries in mea
sures.yml can have wide-ranging results. For instance, 
interventions may not trigger at all or they may trigger 
with the wrong intensity.

MIV 3.A.viii Schema-based summation check 

All demographic files (e.g. demographic_age, demo
graphic_gender, etc) for FACS and DFlee contains 
columns which lists representative fractions of the 
population. Respectively, the sum of all entries in 
these columns should add up to 1. (the number 
required could be modified for different use cases)

Listing 6 implements a DemographicScheme class, 
which inherits from pa.DataFrameModel in the pan
dera library, includes a custom validation method 
all_but_first_column_sum_is_1 marked with the 
@pa.dataframe_check decorator. This method ensures 
that the sum of the values in all columns, except the 
first one, equals 1. It iterates through each column 
(excluding the first), calculates the sum of its values, 
and checks if it equals 1. If any column’s sum is not 
equal to 1, it appends the column name and its sum to 
an errors list. If there are errors, the function would 
report them; otherwise, it returns True, indicating the 
DataFrame meets the validation criteria.

MIV 1.A.vii Nested entries yaml validation 

In addition to having the correct types, yaml entries 
should be correctly indented as to preserve the 
intended meaning. For example, the partial_closure 
section in the measures.yml allows nested entries, 
such as for shopping centers, hospitals, etc., enabling 
detailed specifications for various facilities.

A key insight in our FACS verification journey was 
that the majority of the FACS yaml verification 
requirements could be met through off-the-shelf 
schema validation. Capitalizing on YAML’s 

compatibility as a superset of JSON, we utilized a well- 
known Python library designed for JSON schema vali
dation. This schema not only specifies the types for 
each data entry but also outlines the structure, includ
ing the hierarchy of entries and the allowance for 
nested entries.

An excerpt from the jsonschema for the measures. 
yaml file is given below:

This JSON schema implements the require
ments for correctly indented YAML entries with 
nested structures in the partial closure section. It 
defines partial closure as an object with specific 
properties (e.g., “leisure”, “school”) as numbers 
between 0 and 1. With “additionalProperties” set 
to false, it strictly limits entries to these predefined 
types. This ensures a YAML structure where 
partial closure is the main section, with only the 
specified facility types indented beneath it, directly 
translating the schema’s hierarchy into proper 
YAML indentation and preserving the intended 
nested relationship.

Through these exemplars, we demonstrate how 
FabGuard can handle a variety of input verification 
scenarios, from simple data type checks to complex 
multi-file validations and domain-specific constraints. 
This range of examples illustrates the tool’s potential 
to enhance the reliability and reproducibility of simu
lations across different scientific domains.

An important note to make is the significance of 
model- data alignment in the process of model-input 
verification. The conceptual model of a simulation 
fundamentally shapes its data requirements. Our case 
studies illustrate this relationship. For example, 
FACS’s epidemiological models require data valida
tion based on disease characteristics, with COVID-19 
requiring strict age distribution verification due to its 
age-dependent outcomes. The importance of this con
ceptual alignment becomes particularly evident when 
combining models. For instance, the extension of Flee 
into DFlee required a careful reconsideration of data 
validation requirements to reflect the new conceptual 
model while preserving relevant aspects of the origi
nal. This process mirrors the broader challenge in 
computational science of ensuring that data validation 
evolves alongside our understanding of the systems

Listing 6: Schema across Multiple files
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being modelled. Through its flexible constraint sys
tems and configuration-dependent validation rules, 
FabGuard provides the means to clarify the assump
tions of the system and verify data accordingly.

5. LLMs for constraints inference and 
generation

The adoption of Model Input Verification practices 
faces challenges due to the complexity of setting up 
verification frameworks and the need for domain- 
specific knowledge. To address these usability con
cerns and lower the barrier to entry for MIV, we 
explored the potential of Large Language Models 
(LLMs) in bootstrapping the MIV process bootstrap
ping the MIV process. LLMs, with their ability to 
understand and generate human-like text, offer 
a promising approach to inferring constraints from 
existing data and generating new constraints based 
on natural language descriptions. This section investi
gates two key research questions:

(1) RQ1: Can LLMs be used for constraints 
inference?

(2) RQ2: Can LLMs be used for constraints 
generation?

While this exploration is preliminary it demonstrates 
While this exploration is preliminary it demonstrates 
how we can leverage LLMs to make MIV more acces
sible to simulation practitioners who may not have          

extensive programming backgrounds or in-depth 
knowledge of data validation techniques

5.1. RQ1: Constraints inference

To address RQ1, we conducted an experiment using 
Claude 3.5 Sonnet,12 a language model developed by 
Anthropic13 and released in 2024. Claude’s ability to 
understand and generate code makes it suitable for 
our constraint inference experiment. We provided 
Claude with input files for the Flee simulation, along 
with explanations of the simulations and instructions 
on using Pandera for validation.

5.1.1. Methodology
Our approach involved several key steps. First, we 
supplied Claude with the contents of key input files, 
including locations.csv, routes.csv, and closures.csv 
for Flee. We then provided detailed explanations of 
the simulation, including the purpose of each input 
file. We introduced Claude to Pandera, explaining its 
use for DataFrame validation and providing exam
ples of how to create schemas and custom checks. 
Finally, we asked Claude to infer and generate 
Pandera schemas and checks based on the provided 
information.

5.1.2. Findings
Table 1 presents a comparison of key constraints 
inferred by Claude against our manual tests. We 
categorized the constraints into four types: simple 

Table 1. Comparison of constraints in manual tests vs. LLM-Inferred tests.
Category Manual Test LLM-Inferred Test Status

Single- 
column

Coordinates within [−180, 180] Latitude [−90, 90], Longitude [−180, 180] Improved(Corrected)
Location type in [“conflict_zone”, . . ., “marker”, 

“idpcamp”]
Location type in [“conflict_zone”, 

“town”, . . .]
Partial (missing “marker” and 

“idpcamp”)
Route distance > 0 Route distance � 0 Improved(Corrected)
Forced redirection in [0, 1, 2] Forced redirection in [0, 1, 2] Exact match
Closure type in [“location”, “country”, “links”, “camp”, 

“idpcamp”]
Closure type in [“country”, “camp”] Partial (missing “location”, 

“links”, “idpcamp”)
Multi-column Population > 0 for camp, town, conflict; = 0 for markers; 

� 0 for forwarding hub
Population � 0 for all location types Requires adjustment (less 

specific)
Conflict zones must have a conflict date Conflict zones must have a conflict date Exact match
First country in country column applies to all conflict 

zones
– Not inferred

Location names must be unique Location names must be unique and non- 
null

Match (Enhanced)

Multi-file Closure countries (name1, name2) must be valid 
countries from locations file

Implemented cross-file check for valid 
countries in closures

Exact Match

Location names must exist in routes file (as name1 or 
name2)

Suggested cross-file check for location 
names in routes

Exact Match

Listing 7: Json Schema
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single-column, refined single-column, multi- 
column, and multi-file. Simple single-column con
straints, which only specify column data types, are 
omitted from the table. Flee contained 12 such 
constraints across its three input files. Claude pre
cisely inferred 10 of these and enhanced two date- 
related single-column constraints (represented as 
integers) by adding a “greater than 0” restriction. 
Refined single-column constraints involve valida
tions beyond simple data types, such as ranges or 
set memberships. Multi-column and multi-file con
straints involve relationships between multiple col
umns or files, respectively.

Our experiment revealed that Claude was cap
able of inferring a wide range of constraints, 
including some that were not present in our man
ual tests. In the analysis of Flee’s constraints, 22 
out of 23 constraints were correctly inferred, with 
no wrong inferences. Specifically, 17 constraints 
were precisely inferred, while one constraint was
not inferred at all. Two constraints were corrected 
from their initial incorrect state, namely the long
itude range and route checking. Another two con
straints were improved and made stronger than 
initially proposed. Lastly, one constraint was 
inferred but was weaker than the actual con
straint. This analysis suggests that the inference 
process aligns closely with the constraints gener
ated by an expert (the second author) working on 
the tool, though some adjustments were needed to 
fully capture all aspects of the constraints.

Claude generated several constraints absent from 
manual tests. For routes.csv, it introduced checks for 
distinct route endpoints, unique location names, and 
prevention of duplicate routes. In closure.csv, it vali
dated that end dates should be after the start dates and 
that the non-null value of a column (name2) depends 
on another column (closure type). Claude also devel
oped two multi-file constraints: ensuring camp clo
sures reference valid camps from the locations file, and 
identifying isolated locations. The latter was imple
mented as:

This check can reveal potential data errors or geo
graphical inconsistencies in the simulation. These 
AI-generated constraints demonstrate Claude’s abil
ity to infer validation rules addressing data integrity, 
consistency, and cross-file relationships in the Flee 
system, potentially identifying errors overlooked in 
manual testing.

5.1.3. Implications
LLMs can effectively infer a wide range of constraints, 
potentially accelerating the initial stages of MIV devel
opment. They can complement manual tests by identi
fying additional checks that human developers might 
overlook. However, the accuracy of LLM-inferred con
straints can be improved by providing more detailed 
configuration information, and data.

5.2. RQ2: Constraints generation

For RQ2, we explored Claude’s ability to generate 
specific constraints when provided with clear descrip
tions of the constraint.

5.2.1. Methodology
Our approach involved providing Claude with detailed 
descriptions of constraints, using the same format as in 
the Exemplars section of this paper. We then asked 
Claude to implement these constraints using Pandera, 
specifying that the implementation should include neces
sary imports and class structures. Finally, we manually 
reviewed the generated code to assess its correctness and 
completeness in implementing the described constraints.

5.2.2. Findings
Claude demonstrated a high degree of accuracy in 
generating constraints based on descriptions. Out 
of 13 constraint descriptions provided, Claude 
successfully generated 11 correct implementations. 
Of the remaining two, both required minor adjust
ments. Table 2 presents examples of constraint 
descriptions and Claude’s implementations. In 
both cases, Claude accurately translated the con

Table 2. Examples of constraint descriptions and generated implementations.
Constraint Description Generated Implementation

“Route distances must be positive numbers” distance: Series[Float] = pa.Field(gt=0)
“The sum of all entries in demographic probability columns should add up to 1” @pa.dataframe_check 

def probabilities_sum_to_one(cls, 
df: pd.DataFrame) -> bool: 
prob_columns = [col for col in 
df.columns if col != ‘category’] 
return all(df[prob_columns].sum(axis=1).between(0.99, 1.01))
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straint descriptions into functional Pandera 
checks. The generated code not only implements 
the logical constraints but also follows Pandera’s 
syntax and best practices. However, we observed 
that for more complex constraints, especially those 
involving configuration-dependent values or spe
cific simulation logic, Claude’s implementations 
required minor adjustments. For example, in con
straints involving maximum flood levels in DFlee, 
Claude initially used hard-coded values, which we 
needed to replace with configuration-dependent 
variables.

5.2.3. Implications
LLMs can significantly speed up the initial implemen
tation of MIV constraints, particularly for common 
validation patterns and clearly described require
ments. Our findings suggest that while LLMs may 
not be ready for fully automated constraint genera
tion, they can reduce initial setup complexity. For 
instance, in our Flee case study, LLMs correctly 
inferred basic constraints that could serve as starting 
templates for domain experts.

5.3. Balancing Model assumptions and data 
reality

While automation can accelerate MIV adoption, an 
important challenge in data validation is the risk of 
over-constraining data to match model assumptions 
rather than adapting models when data consistently 
challenges these assumptions. Data curation and vali
dation have a rich history in simulation research 
(Hassan et al., 2010; Macal, 2016; Sinclair et al.,  
2023), yet a common pitfall remains: the tendency to 
“clean” data to fit model assumptions instead of using 
validation failures as signals to revisit these 
assumptions.

Our experience with Flee illustrates this tension. 
Initially, constraints required non-zero populations 
in all conflict zones. However, real-world data 
revealed that conflict zones could temporarily have 
zero populations due to complete displacement. 
Instead of forcing data conformity, these validation 
failures guided us to refine the model’s assumptions.

FabGuard supports this balanced approach 
through:

● Violation reporting which helps in distinguishing 
between data quality issues and assumption 
misalignment

● Configuration-dependent validation allowing 
constraints to evolve with model refinements

● CI/CD pipeline integration making constraint 
failures trackable, enabling systematic analysis 
of whether failures indicate data or assumption 
issues

The use of LLMs for constraint generation further 
emphasizes this challenge. While LLMs can infer 
constraints from existing data and documentation, 
they may inadvertently codify implicit assumptions 
that deserve scrutiny. This underscores the impor
tance of human oversight in the constraint devel
opment process, ensuring that validation rules 
reflect well-reasoned model assumptions rather 
than merely enforcing existing patterns in the 
data.

5.4. On the potential use of LLMs in MIV

Our experiments with Claude on the Flee case 
study demonstrate that LLMs have significant 
potential in both inferring and generating con
straints for Model Input Verification. They excel 
at identifying a wide range of constraints and can 
accurately translate natural language descriptions 
into functional code. This capability is particularly 
valuable for domain experts who may have deep 
subject knowledge but limited programming 
experience. Rather than needing to learn 
Pandera’s API from scratch, experts can use LLM- 
generated constraints as templates, modifying them 
based on their domain understanding. This cap
ability is particularly valuable for domain experts 
who may have deep subject knowledge but limited 
programming experience. Rather than needing to 
learn Pandera’s API from scratch, experts can use 
LLM-generated constraints as templates, modifying 
them based on their domain understanding.

This capability is especially important in simulation 
modelling, often developed by domain experts who 
may lack extensive programming backgrounds. Our 
preliminary analysis shows that LLMs, when provided 
with the right setup—including appropriate structure, 
classes, and examples—can bridge the gap between 
domain expertise and software engineering practices, 
at least in the context of input verification. They make 
the process of writing constraints more accessible and 
bring the power of formal specification to domain 
experts who may not have deep programming 
knowledge.

While LLMs show promise in MIV, their use 
presents challenges. Our experience revealed a shift 
from quick constraint generation to time- 
consuming validation, emphasizing the need for 
human expertise. Generating constraints with 
LLMs was quick, taking less than an hour, but 
validating their accuracy required a several hours 
of work. LLM-generated constraints, though techni
cally correct, often proved overly conservative, 
missing potential valid types not present in sample 
data. This highlights the importance of comprehen
sive datasets and domain expert involvement when 
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using LLMs for constraint generation. While LLMs 
can accelerate initial constraint generation, they 
complement rather than replace human expertise 
in the MIV process.

6. Evaluation

Our evaluation of FabGuard aims to demonstrate its 
scalability and applicability. We conducted two sets of 
tests: (1) Microbenchmarks with generated input files 
and tests; (2) a real-world simulation using the Flee 
system and custom test files. Section 6.3 presents the 
microbenchmark results, while Section 6.2 shows the 
results with FLEE. These tests provide insights into 
FabGuard’s performance across various scenarios, 
from controlled environments to practical applica
tions. All scripts for generating the benchmarks, are 
available from the electronic supplementary 
material.14

6.1. Setup

Our evaluation was conducted on an Apple M2 Max 
with 12–core CPU, 30–core GPU and 16–core Neural
Engine, 64 GB of RAM, and 1TB of HDD running 
MacOS Ventura 13.5. We used Python 3.12.0. To 
ensure accurate measurements, we employed warm- 
up runs before collecting performance data. Warmup 

runs are necessary in benchmarking to allow the sys
tem to reach a steady state and minimize the impact of 
initial system variations (e.g., cache warm-up, back
ground processes). Following established benchmark
ing methodologies (Georges et al., 2007), we 
performed 5 warm-up runs to stabilize the JIT com
piler, followed by 30 execution runs—a sample size 
that ensures statistical validity while remaining com
putationally practical. We report the average execu
tion time across the execution runs. To ensure 
accurate measurements, we employed warm-up runs 
before collecting performance data. Warmup runs are 
necessary in benchmarking to allow the system to 
reach a steady state and minimize the impact of initial 
system variations (e.g., cache warm-up, background 
processes). Following established benchmarking 
methodologies (Georges et al., 2007), we performed 5 
warm-up runs to stabilize the JIT compiler, followed 
by 30 execution runs—a sample size that ensures sta
tistical validity while remaining computationally prac
tical. We report the average execution time across the 
execution runs.

6.2. Use case: Flee

We evaluate FabGuard’s performance by running our 
test suite on the entire Flee conflicts dataset. The test 
suite consists of three Pandera files implementing all 

Figure 3. Analysis of code conflicts and resolution metrics.
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23 constraints from Flee, as outlined in Table 1 (col
umn 2 - Manual constraints). Section 4.1 demon
strates representative constraints from each category: 
single-column constraints (e.g., population values 
must be non-negative), multi-column constraints 
(e.g., population requirements for different location 
types), and multi-file validations (e.g., ensuring clo
sure countries match valid countries from the loca
tions file).

The evaluation covered diverse conflict scenarios 
displayed in Figure 3(d) covering different conflicts 
(mali, sudan, syria, etc) along with different scenarios 
per conflict (e.g., mali_�). Each conflict (scenario) 
requires three input files. The locations.csv file defines 
nodes such as towns, camps, and conflict zones and 
contains 14 constraints. The routes.csv file specifies 
connections between locations with 5 constraints, 
while closures.csv indicates border or route closures 
with 4 constraints. This dataset allows us to assess 
FabGuard’s efficiency and scalability across a wide 
range of real-world scenarios, with locations.csv
requiring the most complex validation due to its cen
tral role in the simulation.

The results of our evaluation are summarized in 
Figure 3, each subfigure different aspects of 
FabGuard’s performance. Upon analysing these 
results, several key insights emerge which we have 
summarised below.

6.2.1. Scalability
FabGuard demonstrates good overall scalability, pro
cessing approximately 12,000 lines in about 140  
seconds (Figure 3(a)).

6.2.2. Consistency
The majority of files are processed within a narrow 
time range of 0.85 to 1.05 seconds, with a peak around 
0.90 seconds (Figure 3(b)). This consistency across 
different file sizes indicates a reliable performance 
baseline for FabGuard.

6.2.3. Processing time vs. file size
Interestingly, there isn’t a strong linear relationship 
between file size and processing time for most files 
(Figure 3(c)). This suggests that FabGuard has 
a relatively constant overhead for each file, with the 
actual content verification time being comparatively 
small. Moreover, the Flee dataset exhibits significant 
variability in file sizes across different folders 
(Figure 3(b)). Most folders contain files with fewer 
than 200 lines, but some exceed 300 lines. Despite 
this variability, FabGuard maintains relatively consis
tent processing times. A few files with longer proces
sing times (1.25–1.27 seconds) create a slight right 
skew in the distribution (Figure 3(b)), suggesting fac
tors beyond line count can affect processing time.

6.2.4. Efficiency
Based on the overall processing of 12,000 lines in 140  
seconds, FabGuard achieves an average processing 
rate of approximately 85.71 lines per second. This 
rate demonstrates FabGuard’s efficiency in handling 
large datasets. FabGuard ability to process a large 
number of files quickly makes it suitable for real- 
world applications where rapid input verification and 
makes it a viable part of a CI/CD pipeline.

6.3. Microbenchmarks

We designed a series of microbenchmarks aimed at 
stress-testing our approach under various conditions. 
Taking locations.csv and its corresponding tests as 
a baseline due to their complexity, we evaluated 
FabGuard’s behaviour across four key dimensions: 
data types (1–10), number of columns (10–100), 
rows (100–1000) per file, and total number of files 
processed (1–100). For the column variation tests, we 
augmented locations.csv with additional randomly 
generated columns of different data types (int, float, 
str, bool, date, etc), creating corresponding simple 
constraints for validation. For file quantity and data 
volume tests, we scaled our baseline by generating 

Figure 4. Microbenchmark results showing FabGuard’s performance characteristics across different dimensions: (a) linear scaling 
with number of files processed, (b) consistent performance across varying data complexity levels, and (c) stable execution time 
regardless of the number of columns per file.
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multiple variations of the file with randomized content 
while preserving the data structure. These systemati
cally generated tests allowed us to simulate diverse 
scenarios FabGuard might encounter in real-world 
applications.

Results, displayed in Figure 4 revealed consistent 
performance across these input dimensions, with no 
significant bottlenecks or scalability issues. While 
slight fluctuations in execution time were observed 
with changes in data complexity and file structure, 
these variations were minimal, typically within 
a range of 0.05 to 0.1 seconds (approximately 1–2% 
of total execution time). The most notable finding was 
a linear correlation between the number of files pro
cessed and execution time, indicating predictable scal
ing for large-scale simulations.

7. Discussion and conclusion

Previous research on validation and verification of 
simulations has established robust frameworks for 
model validation (Gürcan et al., 2013; Sargent, 2013a,  
2013b, 2015), but these primarily focus on verifying 
model structure and validating outputs rather than 
systematically verifying input data. While approaches
like statistical methods (Cheng, 2006; Law, 2020), 
independent verification frameworks (Robinson & 
Brooks, 2010), credibility models (Yilmaz & Liu,  
2022), and debugging approaches (R. Gore et al.,  
2015; R. J. Gore et al., 2017) have advanced simulation 
validation, they typically address input verification 
only tangentially. For agent-based simulations specifi
cally, Gürcan et al. (Gürcan et al., 2013) introduced 
a testing framework with micro, meso, and macro 
levels of validation, yet still focused primarily on 
model behaviour rather than verification of input 
data. In parallel, researchers have explored data gath
ering and curation methods for agent-based models, 
with Sinclair et al. (Sinclair et al., 2023) proposing 
hybrid data gathering approaches for crowd simula
tions, Bell and Mgbemena (Bell & Mgbemena, 2018) 
demonstrating data-driven exploration of agent beha
viour, and Zhong et al. (Zhong et al., 2022) surveying 
data-driven crowd modelling techniques. Research on 
simulation interoperability by Tolk (Tolk, 2024) and 
composability frameworks by Benali and Ben Saoud 
(Benali & Ben Saoud, 2011) has further highlighted the 
importance of conceptual alignment in simulation 
contexts.

Our Model Input Verification (MIV) framework 
addresses a gap in simulation validation by offering 
a methodology focused on input data quality and 
consistency. Model input verification helps to run 
simulation correctly, particularly when its configura
tion is complex. Examples of such complex application 
scenarios include forecasts that rely on ensemble 
simulations (Ferguson et al., 2020), simulations 

consisting of multiple models (Borgdorff et al., 2014) 
or when a single model is heterogeneously distributed 
in nature (Groen et al., 2011). While Sargent (Sargent,  
2013a) identified data validity as one aspect of verifi
cation and data gathering approaches and (Bell & 
Mgbemena, 2018; Sinclair et al., 2023) have improved 
approaches for data collection, systematic model input 
verification has remained underdeveloped. MIV intro
duces a formalization of verification patterns that can 
be applied across diverse domains and modelling 
paradigms, as well as an implementation showcasing 
their added value. Our approach complements the 
established model verification (and validation) meth
ods proposed by Sargent (Sargent, 2013a) by providing 
patterns for verifying input data for such models. That 
being said, the emphasis of our work is somewhat 
more applied, which means that the reader benefits 
from a prototype tool that is shown to work with (and 
provide added value for) several applications, at the 
expense of a conceptual framework that might not 
(yet) capture all possible types of model input 
verification.

In terms of composability and interoperability, 
Tolk (Tolk, 2024) in particular notes that conceptual 
alignment is crucial for meaningful simulation inter
operability. In this work, we partially achieved con
ceptual alignment by proposing application-agnostic 
model input verification patterns and by implement
ing our MIV approach as a plugin for the FabSim3 
automation toolkit, allowing its application for the 
full FabSim3 application spectrum (Groen et al.,  
2023). That being said, the design of our MIV 
formalism is based on our experience with simula
tions across disciplines, and it is conceivable that the 
introduction of a new external application would 
require the definition of a new MIV pattern (in 
terms of sources, verification type or verification 
target).

Overall, our primary contribution is 
a methodology for MIV, implemented in the 
FabGuard toolset. This methodology adapts estab
lished data schema and validation tools to address 
the unique challenges of simulation input verifica
tion. We formalized MIV patterns, categorizing ver
ification tasks based on their sources, template types, 
and targets. This formalism provides a structured 
approach to identifying and implementing input 
verification requirements across diverse simulation 
domains.

Our work goes beyond theoretical frameworks by 
demonstrating the practical application of these MIV 
patterns. We presented numerous examples across 
three domains: conflict-driven migration, disaster eva
cuation, and disease spread modelling. These case 
studies showcase how FabGuard can handle a variety 
of validation scenarios, from simple data type checks 
to complex multi-file validations and domain-specific 
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constraints. Furthermore, we conducted the first study 
on using Large Language Models (LLMs) for con
straint discovery and generation in the context of 
MIV. Our results show that LLMs can accurately 
infer existing constraints and even identify new, valid 
constraints, potentially lowering the barrier to entry 
for adopting robust MIV practices. This exploration of 
LLMs, combined with our identified requirements for 
MIV tools, establishes a foundational framework for 
the future development of model input verification 
systems. Our evaluation provided empirical evidence 
of MIV’s feasibility for large-scale simulations, with 
FabGuard efficiently processing 12,000 lines of data in 
140 seconds while maintaining consistent perfor
mance across varying file sizes and complexities.

These contributions establish a foundation for 
more robust and trustworthy simulation practices. 
We envision MIV becoming an integral part of the 
simulation modelling workflow, akin to unit testing in 
software development. Future research will focus on 
expanding FabGuard’s capabilities to cover a broader 
range of simulation paradigms and input formats. We 
plan to conduct large-scale studies on the use of Large 
Language Models, for automated constraint discovery 
in complex, domain-specific relationships. This 
research will aim to further lower the barrier for 
MIV adoption and improve its effectiveness across 
diverse simulation domains. We will work on
developing user-friendly interfaces to make MIV 
more accessible to non-technical users, bridging the 
gap between domain expertise and software engineer
ing practices. We will further explore the integration 
of MIV with other stages of the simulation life cycle, 
such as output validation and uncertainty quantifica
tion. This holistic approach could lead to a more 
robust framework that can enable more reliable and 
actionable simulations in a systematic and accessible 
manner. Furthermore, we will undertake case studies 
across diverse scientific domains to refine and validate 
MIV methodologies, providing empirical evidence of 
their effectiveness and generic application.

This research contributes to establishing input ver
ification as a fundamental component of the simula
tion modelling process, rather than an afterthought. 
By integrating MIV into standard modelling practices, 
we aim to enhance the reliability of simulations and, 
consequently, the quality of scientific discoveries 
based on these models. The broader adoption of sys
tematic input verification techniques has the potential 
to improve the overall robustness and credibility of 
simulation-based research across various disciplines.

Notes

1. https://www.union.ai/pandera
2. https://greatexpectations.io/
3. https://pypi.org/project/Cerberus/

4. Upon acceptance, the code will be made available on 
zenodo.

5. https://www.asme.org/codes-standards/publications- 
information/verification-validation-uncertainty

6. https://github.com/tdda/tdda
7. HiDALGO (https://hidalgo-project.eu/)
8. ITFLOWS (https://www.itflows.eu/)
9. HiDALGO (https://hidalgo-project.eu/)

10. ITFLOWS (https://www.itflows.eu/)
11. https://www.lammps.org/
12. claude.ai.
13. https://www.anthropic.com/
14. The electronic supplementary material will be made 

available on Zenodo upon paper acceptance.
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