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Stochastic Reliable Control of a Class of Uncertain
Time-Delay Systems with Unknown Nonlinearities

Zidong Wang, Biao Huang, and K. J. Burnham

Abstract—This paper investigates the robust reliable control problem for
a class of nonlinear time-delay stochastic systems. The system under study
involves stochastics, state time-delay, parameter uncertainties, possible ac-
tuator failures and unknown nonlinear disturbances, which are often en-
countered in practice and the sources of instability. Our attention is focused
on the design of linear state feedback memoryless controllers such that, for
all admissible uncertainties as well as actuator failures occurring among a
prespecified subset of actuators, the plant remains stochastically exponen-
tially stable in mean square, independent of the time delay. Sufficient con-
ditions are proposed to guarantee the desired robust reliable exponential
stability despite possible actuator failures, which are in terms of the solu-
tions to algebraic Riccati inequalities. An illustrative example is exploited
to demonstrate the applicability of the proposed design approach.

Index Terms—Exponential stability, nonlinear systems, reliable control,
robust control, stochastic control, time-delay systems.

I. INTRODUCTION

The dynamic behavior of many industrial processes contains inherent
time delays. Control of time-delay systems has been a subject of great
practical importance which has attracted a great deal of interest for sev-
eral decades [1]. Moreover, due to the unavoidable parameter uncertain-
ties in modeling dynamical systems, in the past few years, considerable
attention has been given to both the problems of robust stabilization and
robust control for linear systems with certain types of time-delays, see
[3] for a survey. On the other hand, since the traditional feedback control
designs for a multiple input multiple output (MIMO) plant may result
in unsatisfactory system performance, the study on the reliable control
problem has received much attention in the past decade, see [6], [8] and
the references therein.

It is now well known that stochastic modeling has come to play an
important role in many branches of engineering applications. An area
of particular interest has been the control of stochastic systems, with
consequent emphasis being placed on the stabilization of the stochastic
model in terms of various definitions of stochastic stability [2], [5]. So
far, there are very few papers dealing with the reliable stabilization for
general stochasticsystems, not to mention the consideration of the case
where time-delay, parameter uncertainty and nonlinear disturbance si-
multaneously exist in the system model, due to the complexity of such
a challenging problem. This motivates us to investigate the multiob-
jective realization problem of robustness and reliability for stochastic
uncertain time-delay systems with nonlinear disturbances, that is, to
generalize the results of [6] to the stochastic case.
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In this paper, we consider the problem of robust reliable control de-
sign for a class of stochastic nonlinear uncertain state delayed sys-
tems. The class of the stochastic time-delay systems is described by
a state-space model with real time-varying norm-bounded parameter
uncertainties and nonlinear disturbances meeting the boundedness con-
dition. Here, attention is focused on the design of state feedback con-
trollers which guarantee, for all admissible uncertainties as well as ac-
tuator failures occurring among a prespecified subset of actuators, the
stochastical exponential stability of the nonlinear plant, independent of
the time delay. We show that the problem addressed can be solved in
terms of some algebraic Riccati matrix inequalities, and the resulting
nonlinear time-delay control systems provide guaranteed robust reli-
able exponential stability despite possible actuator failures.

Notation: The notations in this paper are quite standard.n and
n�m denote, respectively, then dimensional Euclidean space and the

set of alln �m real matrices. The superscript “T ” denotes the trans-
pose and the notationX � Y (respectively,X > Y ) whereX and
Y are symmetric matrices, means thatX �Y is positive semi-definite
(respectively, positive definite).I is the identity matrix with compat-
ible dimension. We leth > 0 andC([�h; 0]; n) denote the family
of continuous functions' from [�h; 0] to n with the normk'k =
sup�h���0 j'(�)j, wherej � j is the Euclidean norm in n. If A is a
matrix, denote bykAk its operator norm, i.e.,kAk = supfjAxj : jxj
= 1g = �max(ATA) where�max(�) [respectively,�min(�)] means
the largest (respectively, smallest) eigenvalues ofA. l2[0; 1] is the
space of square integrable vector. Moreover, let(
; F ; fFtgt�0; P )
be a complete probability space with a filtrationfFtgt�0 satisfying the
usual conditions (i.e., the filtration contains allP -null sets and is right
continuous). Denote byLpF ([�h; 0]; n) the family of allF0-mea-
surableC([�h; 0]; n)-valued random variables� = f�(�) : �h �
� � 0g such thatsup�h���0 j�(�)jp < 1 where f�g stands for
the mathematical expectation operator with respect to the given prob-
ability measureP .

II. PROBLEM FORMULATION AND ASSUMPTIONS

We consider a nonlinear uncertain continuous-time state delayed sto-
chastic system described by

dx(t) = [(A +�A(t))x(t) + (Ad +�Ad(t))x(t� h)

+ Bu(t) + f (x(t))] dt+E dw(t) (1)

x(t) ='(t); t 2 [�h; 0] (2)

where
x(t) 2 n state;
u(t) 2 m control input;
f(�): n ! n unknown nonlinear function;
h unknowndeterministic state delay;
'(t) known continuous vector valued initial function.

Here,w(t) is a scalar Brownian motion defined on the probability space
(
; F ; fFtgt�0; P ).A; Ad; B; E are known constant matrices with
appropriate dimensions,�A; �Ad are real-valued matrix functions
representing norm-bounded parameter uncertainties.

Remark 1: Note, that the system (1) and (2) can be used to represent
many important physical systems subject to inherent state delays, pa-
rameter uncertainties, deterministic nonlinear disturbances (which may
result from linearization process of an originally nonlinear plant), and
stochastic exogenous noises with known statistics [3].

Assumption 1:The admissible parameter uncertainties are of the
norm-bounded form

[ �A(t) �Ad(t) ] =M�(t) [N1 N2 ] (3)
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whereM; N1 andN2 are known real constant matrices with proper di-
mensions and�(t) 2 n�j is an unknown time-varying matrix which
contains the uncertain parameters in the linear part of the system and is
bounded by�T (t)�(t) � I . The parameter uncertainty structure as in
(3) has been widely used in the problems of robust control and robust
filtering of uncertain systems.

Assumption 2:There exists a known real constant matrixG such
that the unknown nonlinear vector functionf(�) satisfies the bounded-
ness conditionjf(x(t))j � jGx(t)j for anyx(t) 2 n.

Next, let x(t; �) denote the state trajectory from the initial data
x(�) = �(�) on �h � � � 0 in L2F ([�h; 0]; n). Clearly, the
system (1) and (2) withu(t) � 0 admits a trivial solutionx(t; 0) � 0
corresponding to the initial data� = 0. We introduce the following
stability and stabilizability concepts.

Definition 1: For system (1) and (2) withu(t) � 0 and every
� 2 L2F ([�h; 0]; n), the trivial solution is asymptotically stable
in mean square iflimt!1 jx(t; �)j2 = 0; and the trivial solution is
exponentially stable in mean square if there exist constants� > 0 and
� > 0 such that jx(t; �)j2 � �e��t sup�h���0 j�(�)j2.

Definition 2: We say that the system (1) and (2) is asymptotically
stabilizable in mean square (respectively, exponentially stabilizable in
mean square) if, for every� 2 L2F ([�h; 0]; n), there exists a linear
feedback control lawu(t) = Kx(t) such that the resulting closed-loop
system is asymptotically stable in mean square (respectively, exponen-
tially stable in mean square).

We are now in a position to discuss the reliability with respect to ac-
tuator outages which are restricted to occur within a preselected subset
of the control channel. The set of actuators which are susceptible to
failures is denoted as� � f1; 2; . . . ; mg. The set of actuators which
are not subject to failure (i.e., robust to failures and essential to stabi-
lize the plant) is denoted as� � f1; 2; . . . ; mg � �. Introduce the
decompositionB = B� + B

�
whereB� denotes the control matrix

associated with the set� andB
�

denotes the control matrix associ-
ated with the complementary subset of control inputs. Furthermore, let
� � � correspond to a particular subset of susceptible actuators that
actually experience failures, and assume that the actuators failures are
modeled as control input failures, that isui = 0; i 2 �. To this end,
we give the notationB = B� +B� whereB� andB� have meanings
analogous to those ofB� andB

�
.

The problem addressed in this paper aims at designing a linear state
feedback memoryless controller of the formu(t) = Kx(t) such that,
for all admissible uncertainties as well as actuator failures occurring
among the prespecified subsetB�, the controlled system is robustly
exponentially stable in mean square, independent of the unknown time
delay.

III. M AIN RESULTS AND PROOFS

It is shown in the following theorem that the robust stochastic ex-
ponential stability of the nonlinear time-delay system (1) and (2) can
be guaranteed if a positive definite solution to a modified algebraic
Riccati-like matrix inequality (quadratic matrix inequality) exists. This
theorem plays a key role in the design of the expected controllers.

Theorem 1: Let the controller gainF be given. If there exist positive
scalars"1, "2, "3, "4 > 0 and a positive definite matrixP > 0 such
that the following matrix inequality

(A+BF )TP + P (A+BF )

+ P ("1 + "2 + "3 + "
�1
4 )I P + "

�1
1 A

T
dAd

+ �max(M
T
M)("�12 N

T
2 N2 + "

�1
3 N

T
1 N1)

+ "4G
T
G < 0 (4)

holds, then the nonlinear uncertain stochastic state delayed system (1)
and (2) is exponentially stabilized (in mean square) by the state feed-
back control lawu(t) = Fx(t).

Proof: For simplicity, we make the definitions

A1(t) =A +BF +�A(t) = A+BF +M�(t)N1

A1d(t) =Ad +�Ad(t) = Ad +M�(t)N2: (5)

and then the closed-loop system is governed by

dx(t)=[A1(t)x(t)+A1d(t)x(t� h)+f (x(t))] dt+E dw(t): (6)

Fix � 2 L2F ([�h; 0]; n) arbitrarily and writex(t; �) = x(t). For
(x(t); t) 2 n � +, we define the Lyapunov function candidate

Y (x(t); t) = x
T (t)Px(t) +

t

t�h

x
T (s)Qx(s)ds (7)

whereP is the positive definite solution to the matrix inequality (4)
andQ > 0 is defined by

Q := "
�1
1 A

T
dAd + �max(M

T
M)"�12 N

T
2 N2: (8)

By Itô’s formula, the stochastic differential ofY along a given trajec-
tory is obtained as

dY (x(t); t) = x
T (t) (A+BF )TP + P (A+BF )

+ Q x(t)

+ x
T (t) (�A(t))T P + P (�A(t)) x(t)

+ x
T (t� h)AT

d Px(t) + x
T (t)PAdx(t� h)

+ x
T (t� h) (�Ad(t))

T
Px(t)

+ x
T (t)P (�Ad(t))x(t� h)

� x
T (t� h)Qx(t� h)

+ f
T (x(t))Px(t) + x

T (t)Pf (x(t)) dt

+ 2xT (t)PE dw(t): (9)

Let "1, "2, "3, "4 be positive scalars. Then the matrix inequality

"
1=2
1 x

T (t)P � "
�1=2
1 x

T (t� h)AT
d

� "
1=2
1 x

T (t)P � "
�1=2
1 x

T (t� h)AT
d

T

� 0

yields

x
T (t� h)AT

d Px(t) + x
T (t)PAdx(t� h)

� "1x
T (t)P 2

x(t) + "
�1
1 x

T (t� h)AT
dAdx(t� h): (10)

Moreover, noticing that�Ad(t) = M�N2 and�T� � I , it follows
from

(�Ad(t))
T (�Ad(t)) ��max(M

T
M)NT

2 (�
T�)N2

��max(M
T
M)NT

2 N2

	1 := "
1=2
2 x

T (t)P � "
�1=2
2 x

T (t� h) (�Ad(t))
T
; 	1	

T
1 � 0

that

x
T (t� h) (�Ad(t))

T
Px(t)

+ x
T (t)P (�Ad(t))x(t� h)

� "2x
T (t)P 2

x(t) + "
�1
2 �max(M

T
M)

� xT (t� h)NT
2 N2x(t� h): (11)
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Similarly, it results from

	2 := "
1=2
3

x
T (t)P � "

�1=2
3

x
T (t) (�A(t))T ; 	2	

T
2 � 0

that

x
T (t) (�A(t))T Px(t) + x

T (t)P (�A(t))x(t)

� "3x
T (t)P 2

x(t) + "
�1

3 �max(M
T
M)xT (t)NT

1 N1x(t):

(12)

Furthermore, from

"
1=2
4

f
T (x(t))� "

�1=2
4

x
T (t)P

� "
1=2
4

f
T (x(t))� "

�1=2
4

x
T (t)P

T

� 0

and the Assumption 2, we have

f
T (x(t))Px(t) + x

T (t)Pf (x(t))

� "4f
T (x(t))f (x(t)) + "

�1

4 x
T (t)P 2

x(t)

� "4 jGx(t)j
2 + "

�1

4 x
T (t)P 2

x(t)

= "4x
T (t)GT

Gx(t) + "
�1

4 x
T (t)P 2

x(t): (13)

Noticing the condition (4) and definition (8), we denote

� := (A+BF )TP + P (A+BF )

+ P ("1 + "2 + "3 + "
�1

4 )I P

+ "
�1

1 A
T
dAd + �max(M

T
M)

� ("�12 N
T
2 N2 + "

�1

3 N
T
1 N1) + "4G

T
G < 0: (14)

Then, substituting (10)–(13) into (9) results in

dY (x(t); t) � x
T (t)�x(t) dt+ 2xT (t)PE dw(t)

���min(��)x
T (t)x(t)dt+ 2xT (t)PE dw(t)

(15)

which means that the nonlinear uncertain stochastic state delayed
system (1) and (2) is asymptotically stabilized (in mean square) by the
state feedback control lawu(t) = Fx(t).

The required exponential stability (in mean square) of the
closed-loop system can be proved by making some standard manipu-
lations on the relation (15), see [2].

Remark 2: The theoretical basis is provided in Theorem 1 for the
controller design of the nonlinear uncertain time-delay stochastic sys-
tems. The result may be conservative due to the use of the inequali-
ties (10)–(13). However, such conservativeness can be significantly re-
duced by properly selecting the parameters"1, "2, "3, "4 in a matrix
norm sense. The relevant discussion and corresponding numerical al-
gorithm can be found in [7] and references therein.

Remark 3: Compared to the existing results, this paper includes the
consideration of stochastic disturbances, and moreover, different tech-
niques are used to tackle the uncertainty�Ad in the delayed state term.
Accordingly, in Theorem 1 only one quadratic matrix inequality is in-
volved while in the similar result of [6] we need to solve two matrix
inequalities. We point out that the result of Theorem 1 can be easily
extended to the multiple state delayed case.

Remark 4: Note that the result of Theorem 1 is also applicable to
the more general case

dx(t) = [(A+�A(t))x(t) + (Ad +�Ad(t))x(t� h)

+Bu(t) + f (x(t))] dt+

r

i=1

Ei dwi(t) (16)

x(t) ='(t); t 2 [�h; 0] (17)

where(w1; w2; . . . ; wm) is anm-dimensional Brownian motion, in-
stead of a scalar one in system (1) and (2). The reason why we discuss
on the system (1) and (2) is just for simpler notations.

We are now ready to enforce the reliability requirement of the
closed-loop system subjected to possible actuator failures. In this
study, the outputs of faulty actuators are assumed to be zero, and
therefore the controlled system (1) and (2) can be expressed as

dx(t) = [(A +�A(t))x(t) + (Ad +�Ad(t))x(t� h)

+ B�u(t) + f (x(t))] dt+E dw(t) (18)

x(t) ='(t); t 2 [�h; 0]: (19)

The following theorem implies that the mixed robustness and relia-
bility constraints for the addressed nonlinear stochastic time-delay sys-
tems can be guaranteed when the positive definite solution to an alge-
braic Riccati matrix inequality is known to exist.

Theorem 2: If there exist positive scalars"1, "2, "3, "4, "5 > 0 such
that the following matrix inequality

A
T
P + PA + P ("1 + "2 + "3 + "

�1

4 )I � "
�1

5 B
�
B
T
�

P

+ "
�1

1 A
T
d Ad + �max(M

T
M)("�12 N

T
2 N2 + "

�1

3 N
T
1 N1)

+ "4G
T
G < 0 (20)

has a positive definite solutionP > 0, then the state feedback control
law

u(t) = Fx(t); F = �0:5"�15 B
T
P (21)

exponentially stabilizes (in mean square) the uncertain time-delay
system (1) and (2), independent of the unknown delayh, for all
admissible uncertainties as well as all actuator failures corresponding
to � 2 �.

Proof: It follows from B
�
BT
�

= B�B
T
� �B���B

T
��� that

B
�
BT
�
� B�B

T
� . Recall that the control inputu(t) acts only through

the normal actuators and the outputs of faulty actuators are known as
zero. Therefore, by applying the control law (21), we obtain that

(A+BF )TP + P (A+BF ) =A
T
P + PA� "

�1

5 B�B
T
�

�A
T
P + PA� "

�1

5 B
�
B
T
�

and

(A+BF )TP + P (A+BF )

+ P ("1 + "2 + "3 + "
�1

4 )I P + "
�1

1 A
T
dAd

+ �max(M
T
M)("�12 N

T
2 N2 + "

�1

3 N
T
1 N1) + "4G

T
G

� A
T
P + PA

+ P ("1 + "2 + "3 + "
�1

4 )I � "
�1

5 B
�
B
T
�

P

+ "
�1

1 A
T
d Ad + �max(M

T
M)("�12 N

T
2 N2 + "

�1

3 N
T
1 N1)

+ "4G
T
G < 0:

Finally, the proof of this theorem follows from that of Theorem 1
immediately.

Remark 5: Note that (20) is a quadratic matrix inequality (Ric-
cati-like inequality) and the relevant detailed discussion on the
existence of a positive definite solution to such a matrix inequality can
be found in [6].

Remark 6: The positive scalar"5 can be chosen to meet the low-en-
ergy control input requirement since a high-gain controller may be un-
stable for the state delayed systems. We may assume that the output of a
failed actuator to be any arbitrary energy-bounded signal different from
the normal controller output [4], and suppress the signals on the system
outputs caused by faulty actuators as well as other possible disturbance
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inputs below a given level. This gives one of the future research sub-
jects.

The following corollary, which results easily from [2], reveals that
for the linear delay stochastic control system (1) and (2), the exponen-
tial stabilizability in mean square implies the almost surely exponential
stabilizability.

Corollary 1: Under the conditions of Theorem 2, the state feedback
control law (21) almost surely exponentially stabilizes the uncertain
time-delay system (1) and (2), independent of the unknown delayh,
for all admissible uncertainties as well as all actuator failures corre-
sponding to� 2 �, that is, the trivial solutionx(t; �)of the closed-loop
system (18) is almost surely exponentially stable.

IV. A N UMERICAL EXAMPLE

Consider the nonlinear uncertain stochastic state delayed system (1)
and (2) with parameters as follows

A =

�2:5 0:2 �0:2

�0:3 �3 �0:4

1:5 �0:4 �5

Ad =

0:03 0:01 0:01

0:01 �0:04 0

�0:01 0:01 �0:02

B =

0:6 0:1 0:02

1:6 �2:1 0:03

1:1 1:4 1:2

E =

0:1

0:1

0:1

f(x) =

0:01 sinx2
0:01 sin x1

0:02 sinx1 + 0:02 sinx2

M =

0:45 0 0:05

0 0:45 0

0:15 0 0:15

N1 =

0:02 0:02 0

0 0 0:02

0 0:02 0

N2 =

0 0:06 0

0 0 0:06

0:02 0 0

G =

0:3 0 0:01

0 0:2 0

0:01 0 0:4

�(t) = sin tI3 h = 0:1 '(t) = 0:1 t 2 [�0:1 0]:

It is desired to design a linear state feedback memoryless controller
such that, for all admissible uncertainties as well as actuator failures
occurring among the prespecified subsetB�, the controlled system is
robustly exponentially stable in mean square, independent of the un-
known time delay.

Case 1: The third actuator is susceptible to failure. We have� =
f3g. Set"1; . . . ; "5 as follows

"1 =8:2375; "2 = 1:9836; "3 = 2:0065;

"4 =0:2523; "5 = 0:6045:

Fig. 1. x (solid),x (point),x (dashed).

Fig. 2. x (solid),x (point),x (dashed).

Subsequently, the symmetric positive definite solutionP to the Ric-
cati matrix inequality (20) and the feedback gain matrixF in (21) can
be obtained as

P =

1:2960 4:3672 �1:1492

4:3672 22:8177 �5:1367

�1:1492 �5:1367 2:4548

F =

�5:3772 �27:6908 5:1348

8:8093 45:2207 �11:6699

1:0109 4:4600 �2:2900

:

With the feedback gain matrix obtained above, simulation results
show that the resulting closed-loop system is guaranteed to have desired
robust faculty staff member [exponential stability (in mean square).
When there are no actuator failures (i.e., all actuators are normal), the
state responses are shown in Fig. 1, and when there is a failure of third
actuator (i.e., an actuator failure corresponding to� 2 � = f3g oc-
curs), the state responses are displayed in Fig. 2.
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Fig. 3. x (solid),x (point),x (dashed).

Fig. 4. x (solid),x (point),x (dashed).

Case 2: The second actuator is susceptible to failure. In this case,
it is clear that� = f2g. We choose

"1 =6:2365 "2 = 1:8076 "3 = 2:0156

"4 =0:3368 "5 = 1:0045:

and the it follows from (20) and (21) that

P =

0:5536 0:0549 �0:1507

0:0549 0:8630 0:3568

�0:1507 0:3568 1:3390

F =

�0:1265 �0:8991 �0:9723

0:1348 0:6507 �0:5526

0:0837 �0:2266 �0:8036

:

The simulation results imply that the desired goal is achieved. Fig. 3
shows the state responses with respect to the case when there are no
actuator failures, and Fig. 4 illustrates the state responses with respect
to the case when there is a failure of second actuator.

Case 3: The first actuator is susceptible to failure. Similar to the
previous cases, we have� = f1g and then obtain

P =

0:9137 1:5977 �1:7559

1:5977 7:8571 �6:8633

�1:7559 �6:8633 7:9023

F =

�0:8375 �4:2699 2:3864

4:0855 18:5270 �18:0641

1:4571 5:6892 �6:5984

:

V. CONCLUSIONS

We have investigated the reliable stabilization problem for a class of
uncertain nonlinear state delayed stochastic systems. A robust reliable
static control design methodology has been presented to achieve the ex-
ponential stability (in mean square or almost surely) for all admissible
parameter uncertainties, independent of the time-delay, not only when
the system is operating properly, but also in the presence of certain
actuator failures. The nonlinearities are assumed to satisfy the bound-
edness condition, and the parameter uncertainties are allowed to be
time-varying unstructured. We have constructed the desired state feed-
back gains in terms of a positive definite solution to a parameter-de-
pendent algebraic Riccati-like inequality. The existing results on ro-
bust and/or reliable control for linear systems have been extended to
the nonlinear time-delay stochastic systems.

ACKNOWLEDGMENT

Z. Wang is grateful to Prof. H. Unbehauen of Ruhr-Univer-
sity Bochum of Germany for detailed comments, and to Prof. D.
Prätzel-Wolters of University of Kaiserslautern of Germany for helpful
suggestions.

REFERENCES

[1] M. Malek-Zavarei and M. Jamshidi,Time-Delay Systems: Analysis, Op-
timation and Application. Amsterdam, The Netherlands: North-Hol-
land, 1987.

[2] X Mao, Stochastic Differential Equations and Applica-
tions. Chichester, U.K.: Horwood, 1997.

[3] S.-I. Niculescu, E. I. Verriest, L. Dugard, and J. M Dionet al., “Stability
and robust stability of time-delay systems: A guided tour,” inStability
and Control of Time-Delay Systems. ser. Lect. Notes Control Inf. Sci., L.
Dugardet al., Eds. Berlin, Germany: Springer-Verlag, 1998, vol. 228,
pp. 1–71.

[4] C.-J. Seo and B. K. Kim, “Robust and reliableH control for linear
systems with parameter uncertainty and actuator failure,”Automatica,
vol. 32, no. 3, pp. 465–467, 1996.

[5] P. Shi, E.-K. Boukas, and R. K. Agarwal, “Control of Markovian jump
discrete-time systems with norm-bounded uncertainty and unknown
delay,” IEEE Trans. Automat. Contr., vol. 44, pp. 2139–2144, Nov.
1999.

[6] Z. Wang, B. Huang, and H. Unbehauen, “Robust reliable control for a
class of uncertain nonlinear state delayed systems,”Automatica, vol. 35,
no. 5, pp. 955–963, 1999.

[7] L. Xie and Y. C. Soh, “Robust Kalman filtering for uncertain systems,”
Systems Control Lett., vol. 22, no. 2, pp. 123–129, 1994.

[8] G.-H. Yang, J. Lam, and J. Wang, “ReliableH control for affine non-
linear systems,”IEEE Trans. Automat. Contr., vol. 43, pp. 1112–1116,
Aug. 1998.

Authorized licensed use limited to: Brunel University. Downloaded on March 23, 2009 at 07:51 from IEEE Xplore.  Restrictions apply.


