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The Impact of Alternative Specifications

of Uncertainty Relating to Extrapolation
in Decision Models
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Abstract

Economic evaluations that incorporate value-of-information analysis frequently conclude that the greatest informa-
tion value relates to replicating short-term clinical trials. This study builds on recent guidance relating to extrapola-
tion in economic evaluation by assessing the impact of alternative approaches to representing the uncertainty around
unobserved/extrapolated data with respect to incremental outcomes and value of information. When the uncertainty
over unobserved and observed data is considered distinct but correlated (i.e., has a joint distribution), it is demon-
strated that the value to replicating short-term clinical studies is lessened and that further studies relating to the unob-
served periods likely provide more value.

Highlights

� Current practice in economic evaluation often involves the inappropriate specification of uncertainty with
respect to unobserved data.

� Appropriate specification of uncertainty will lead to more pertinent recommendations over future clinical
studies.
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Introduction

Guidelines for the economic evaluation of health care
interventions recommend that the time horizon should
adequately capture all relevant costs and benefits.1,2 This
typically necessitates the adoption of a lifetime horizon.
Analysts frequently have to incorporate assumptions
relating to the long-term clinical progression for disease
due to the limited length of follow-up in the available
evidence base.3,4

To overcome the limited duration of clinical data,
methods for extrapolation are adopted to allow the

estimation of unobserved data based on establishing the
relationship between observed data for a parameter and
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time.5–7 Extrapolation is typically required for both the
long-term natural history of the disease and the effect of
treatment on the disease course. Parametric survival
models are frequently adopted within economic evalua-
tion with respect to survival or time-to-event analysis as
a means of establishing the relationship between time
and the parameters of interest.8,9 Prior to the use of
parametric survival analysis, a common approach
involved analysts adopting an estimate of a parameter
for a specific period of time and then assuming that the
parameter could be applied for the full time horizon.10,11

Alternatively, analysis was restricted to a presentation of
the costs and outcomes for the period covered by the
clinical study.12,13 Although these methods have become
less common, they are still adopted in some studies,
despite not being recommended within guidelines.1,2

Parametric survival analysis is particularly relevant to
analyses that are based on a direct comparison of 2 treat-
ment options and where patient-level data from an
appropriate clinical trial are available.14 When patient-
level data are not available, methods for deriving such
data from summary statistics have been developed.15,16

Parametric models have the advantage over nonpara-
metric methods as they allow extrapolation beyond the
time horizon of the available data, incorporating any
variation in parameter estimate over this time horizon.
The estimated survival function relates to interpolation
of the observed values within a clinical data set. Thus,
the uncertainty around the function relates only to how
good the model fits the data for the observed period and
does not provide information regarding the uncertainty
over how well the model can be used to provide reason-
able values for the extrapolation period.17

In many studies, the same parameter is applied to both
the periods for which data are observed and unobserved.
This approach to considering uncertainty contradicts stan-
dard mathematics, in which the uncertainty around unob-
served data should be considered both separately from
and greater than the uncertainty around observed data.

The Canadian Agency for Drugs and Technologies in
Health (CADTH) has recently provided guidance regard-
ing the extrapolation of short-term clinical data.18 A spe-
cific recommendation is that different parameters should
be adopted for the period for which data are available
and are unavailable and that uncertainty should be
assumed to be greater for the period for which data are
unavailable.

In this technical note, we explore alternative
approaches to representing the uncertainty around unob-
served data through assuming a joint distribution
between observed and unobserved parameters. The

impact of adopting alternative approaches is assessed in
terms of the potential impact on incremental outcomes
and on the expected value of perfect partial information
per patient (ppEVPPI) for model parameters.

Methods

Case Study

We designed a decision model relating to a progressive
disease that can be represented by a simple Markov
model with 3 states: moderate, severe, and dead. A clini-
cal trial with a maximum follow-up of 1 year is assumed
to suggest that treatment slows progression to severe dis-
ease from moderate disease but has no direct effect on
mortality. Thus, analysis can address the decision prob-
lem relating to whether a public payer should reimburse
the new treatment for patients with moderate disease.

The analysis adopted a lifetime horizon with a cycle
length of 1 year. Data for the annual treatment manage-
ment cost, utility weights, and mortality rates associated
with both moderate and severe disease were assumed
available (Table 1). The probability of progression to
severe disease without treatment and the relative effect
of treatment on progression were assumed to be derived
from an appropriate parametric analysis of the clinical
trial data. For simplicity, analysis assumed an exponen-
tial functional form for the rate of progression over time
(rProg) without treatment and that the proportional
hazards assumption was appropriate with respect to the
relative effect (hrProg) of the new treatment on
progression.

Alternative Specification of Uncertainty for
Unobserved Data

In the base-case analysis, the same parameters are
adopted for rProg and hrProg for both the observed and
unobserved periods with appropriate probability distri-
butions (Figure 1a).

P rProgð Þ ; mrProg,s2
rProg

� �

P hrProgð Þ ; mhrProg,s
2

hrProg

� �

We examined 9 alternative specifications of uncertainty
for the observed versus unobserved periods for both
rProg and hrProg. We adopted 3 alternative estimates of
the variance within the unobserved period and 3 alterna-
tive specifications for the correlation between estimates
for the observed and unobserved periods.
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To incorporate the alternative specification of uncer-
tainty, the rate of progression and the hazard ratio were
represented by different parameters for the observed
period (the first cycle of the model) and for the unob-
served period (subsequent cycles), and the sampled esti-
mates for these parameters were assumed correlated.

Within these alternative scenarios, the same mean value
was adopted for all parameters with different assump-
tions relating to the variance for the unobserved period
and the correlation between parameter values for the 2
periods. Thus, parameters for the observed and unob-
served periods are jointly distributed.

Table 1 Data Inputs

Parameter Data Label Expected Value Probability Distribution

Utility values
Moderate disease uModerate 0.9 1 2 LN [Normal (22.31, 0.12)]
Severe uSevere 0.5 1 2 LN [Normal (20.69, 0.03)]

Costs
Cost of new treatment per month cTRTmonth CAN$450
Management of moderate disease cModerateNoTrt CAN$1,000 Gamma (2,500, 0.4)
Management of severe disease cSevere CAN$2,000 Gamma (1,600,1.25)

Baseline annual rates
Mortality rate in moderate disease rMortMod 0.1 Beta (20, 180)
Mortality rate in severe disease rMortSev 0.24 Beta (24, 76)
Rate of progression without treatment rProg 0.1 Beta (25, 225)

Clinical effectiveness
Hazard ratio of progression with treatment hrProg 0.5 LN [Normal (20.69, 0.35) ]

Model design features
Discount rate 0.015
Cycle length 1 year
Time horizon Lifetime

Joint distributions
Rate of progression without treatment

Base case rProgobs, rProgunobsð Þ ; 0:1, 0:1, 0:00036, 0:00036, 0:0ð Þ
Scenario 1a: same variance r = 0.0 rProgobs, rProgunobsð Þ ; 0:1, 0:1, 0:00036, 0:00036, 0:0ð Þ
Scenario 1b: same variance r = 0.2 rProgobs, rProgunobsð Þ ; 0:1, 0:1, 0:00036, 0:00036, 0:2ð Þ
Scenario 1b: same variance r = 0.6 rProgobs, rProgunobsð Þ ; 0:1, 0:1, 0:00036, 0:00036, 0:6ð Þ
Scenario 2a: higher variance r = 0.0 rProgobs, rProgunobsð Þ ; 0:1, 0:1, 0:00036, 0:00072, 0:0ð Þ
Scenario 2b: higher variance r = 0.2 rProgobs, rProgunobsð Þ ; 0:1, 0:1, 0:00036, 0:00072, 0:2ð Þ
Scenario 2c: higher variance r = 0.6 rProgobs, rProgunobsð Þ ; 0:1, 0:1, 0:00036, 0:00072, 0:6ð Þ
Scenario 3a: increasing variance r = 0.0 rProgobs, rProgunobsð Þ ; 0:1, 0:1, 0:00036, 0:00036 � 1:1t�1, 0:0

� �
Scenario 3b: increasing variance r = 0.2 rProgobs, rProgunobsð Þ ; 0:1, 0:1, 0:00036, 0:00036 � 1:1t�1, 0:2

� �
Scenario 3c: increasing variance r = 0.6 rProgobs, rProgunobsð Þ ; 0:1, 0:1, 0:00036, 0:00036 � 1:1t�1, 0:6

� �
Hazard rate of progression with treatment

Base case lnhrProgobs, lnhrProgunobsð Þ ; �0:69, � 0:69, 0:123, 0:123, 1ð Þ
Scenario 1a: same variance r = 0.0 lnhrProgobs, lnhrProgunobsð Þ ; �0:69, � 0:69, 0:123, 0:123, 0:0ð Þ
Scenario 1b: same variance r = 0.2 lnhrProgobs, lnhrProgunobsð Þ ; �0:69, � 0:69, 0:123, 0:123, 0:2ð Þ
Scenario 1b: same variance r = 0.6 lnhrProgobs, lnhrProgunobsð Þ ; �0:69, � 0:69, 0:123, 0:123, 0:6ð Þ
Scenario 2a: higher variance r = 0.0 lnhrProgobs, lnhrProgunobsð Þ ; �0:69, � 0:69, 0:123, 0:246, 0:0ð Þ
Scenario 2b: higher variance r = 0.2 lnhrProgobs, lnhrProgunobsð Þ ; �0:69, � 0:69, 0:123, 0:246, 0:2ð Þ
Scenario 2c: higher variance r = 0.6 lnhrProgobs, lnhrProgunobsð Þ ; �0:69, � 0:69, 0:123, 0:246, 0:6ð Þ
Scenario 3a: increasing variance r = 0.0 lnhrProgobs, lnhrProgunobsð Þ ; �0:69, � 0:69, 0:123, 0:123 � 1:1t�1, 0:0

� �
Scenario 3b: increasing variance r = 0.2 lnhrProgobs, lnhrProgunobsð Þ ; �0:69, � 0:69, 0:123, 0:123 � 1:1t�1, 0:2

� �
Scenario 3c: increasing variance r = 0.6 lnhrProgobs, lnhrProgunobsð Þ ; �0:69, � 0:69, 0:123, 0:123 � 1:1t�1, 0:6

� �

P rProgobs, rProgunobsð Þ ; mrProgobs
,mrProgobs

,s2
rProgobs

,s2
rProgunobs

, rrProgobs
, rProgunobs

� �

P hrProgobs, hrProgunobsð Þ ; mhrProgobs
,mhrProgobs

,s2
hrProgobs

,s2
hrProgunobs

, rhrProgobs
, hrProgunobs

� �
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The 3 alternative scenarios regarding the variance were
as follows:

� Scenario 1: the same variance in both the observed
and unobserved period (but distinct parameters for
each period) (Figure 1a)

varunobs = varobs

� Scenario 2: the variance for the unobserved period was
assumed to be higher than in the observed period (for
this example, the variance was doubled) (Figure 1b)

varunobs = 2�varobs

� Scenario 3: the variance for the unobserved period
increases with the time from the observed period.

The variance for each cycle is a function of the var-
iance in the observed period, the cycle time (t) and
the duration (d) that the evidence relates to (for this
example, the cycle-specific variance is assumed to be
10% greater than in the previous cycle) (Figure 1c)

varunobst
= varobs�1:1t�d

For each of the above, further distinct assumptions were
made relating to the correlation between the sampled
probabilities for the observed period and the unobserved
period: r = 0, 0.2, and 0.6. The 9 alternative specifica-
tions for the joint distribution are provided in Table 1.

It is important to note that standard practice when
analyzing survival or time-to-event data is to estimate a
single survival function for the observed period and
assume that the survival function can be applied to the
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Figure 1 Uncertainty around the probability of progression: no treatment: (a) base case and scenario 1, (b) scenario 2, and
(c) scenario 3.
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extrapolated period.6 This approach does assume a joint
distribution but with specific assumptions that are likely
indefensible. First, that the uncertainty within the extra-
polated period is the same as the uncertainty within the
observed period and, second, that the values for the
extrapolated period and observed period are perfectly
correlated. Thus, the current approach assumes the fol-
lowing joint distribution:

P rProgobs, rProgunobsð Þ ;

mrProgobs
,mrProgobs

,s2
rProgobs

,s2
rProgobs

, 1
� �

The alternative scenarios considered in this article chal-
lenge these 2 implicit assumptions.

Analysis

For each scenario, costs and QALYs associated with
each treatment, the incremental cost per QALY gained
(ICER), and the net health benefit (NHB) were estimated
through a Monte Carlo simulation of 5,000 replications
using a common random seed for all analyses.19 Costs

are expressed in Canadian dollars. The ppEVPPI for the
parameters were estimated using the Sheffield accelerated
value-of-information method assuming a threshold value
of a QALY of CAN$50,000.20–22

Results

In the base-case analysis, the new treatment was associ-
ated with incremental QALYs of 0.75, incremental costs
of $28,878, an ICER of $38,728, and an NHB of 0.19
QALYs (Table 2). Under scenario 1, the results were
consistent with the base case; incremental QALYs ranged
from 0.74 to 0.75, and incremental costs ranged from
$28,747 to $28,891, with ICERs between $38,652 and
$38,814 and NHBs of 0.17 QALYs. Under scenario 3,
for all 3 analyses, there were slightly lower incremental
QALYs (range of 0.72 to 0.73) with little change in incre-
mental costs (range of $28,808 to $28,842), with ICERs
between $39,567 and $39,794 and NHBs of 0.15 QALYs.
Scenario 2 found the largest divergence from the base
case in terms of incremental QALYs (0.71 for all levels
of correlation), although incremental costs were broadly
consistent with the base case (range of $28,709 to

Table 2 Expected Outcomes for Base-Case and Alternative Scenarios

Scenario 1: Different

Variance

Scenario 2: Higher

Variance

Scenario 3: Increasing

Variance

Base Case r = 0a r = 0.2a r = 0.6a r = 0a r = 0.2a r = 0.6a r = 0a r = 0.2a r = 0.6a

QALYs

No treatment 4.70 4.70 4.70 4.70 4.72 4.72 4.72 4.71 4.71 4.71

Treatment 5.45 5.45 5.45 5.45 5.43 5.43 5.43 5.44 5.44 5.44

Incremental 0.75 0.75 0.75 0.74 0.71 0.71 0.71 0.73 0.73 0.72

Costs

No treatment $7,945 $7,946 $7,946 $7,946 $7,942 $7,942 $7,941 $7,940 $7,940 $7,940

Treatment $36,819 $36,837 $36,827 $36,812 $36,688 $36,674 $36,651 $36,781 $36,768 $36,747

Incremental $28,873 $28,891 $28,881 $28,866 $28,747 $28,732 $28,709 $28,842 $28,828 $28,808

Incremental cost per QALY gained $38,728 $38,652 $38,718 $38,814 $40,225 $40,330 $40,488 $39,567 $39,658 $39,794

Net health benefit (QALYs) 0.19 0.17 0.17 0.17 0.13 0.14 0.14 0.15 0.15 0.15

EVPI per patient $3,010 $2,219 $2,394 $2,739 $4,336 $4,615 $4,967 $3,476 $3,682 $4,072

EVPPI per patient

uModerate $ 0 $ 0 $ 0 $ 0 $ 0 $ 0 $ 0 $ 0 $ 0 $ 0

uSevere $ 0 $ 0 $ 0 $ 0 $ 0 $ 0 $ 0 $ 0 $ 0 $ 0

cModerateNoTrt $ 0 $ 0 $ 0 $ 0 $ 0 $ 0 $ 0 $ 0 $ 0 $ 0

cSevere $ 0 $ 0 $ 0 $ 0 $ 0 $ 0 $ 0 $ 0 $ 0 $ 0

rMortMod $52 $47 $48 $52 $97 $101 $111 $69 $71 $78

rMortSev $1 $1 $1 $2 $2 $2 $4 $2 $2 $3

rProgobs– year 1 $73 $ 0 $ 0 $2 $ 0 $ 0 $78 $ 0 $ 0 $26

hrProgobs– year 1 $2,738 $32 $213 $1,269 $54 $679 $2,541 $44 $382 $2,017

rProgunobs - year 2+ N/A $11 $20 $47 $221 $209 $401 $115 $154 $245

hrProgunobs - year 2+ N/A $1,886 $2,044 $2,394 $2,942 $3,820 $4,577 $3,127 $3,337 $3,726

EVPI, expected value of perfect information; EVPPI, expected value of perfect partial information; QALY, quality-adjusted life-year.
aCorrelation between rProgobs and rProgunobs and between hrProgobs and hrProgunobs.
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$28,747). Under scenario 2, ICERs were higher, with a
range of $40,225 to $40,488 and NHBs lower, between
0.13 and 0.14 QALYs.

In the base-case analysis, ppEVPPI was greatest for
the parameters relating to the original clinical trial: rProg
($73 per patient) and hrProg ($2,738 per patient) (Table
2). However, for all alternative specifications of uncer-
tainty, the results were substantially different.

For all specifications assuming lower correlation (r =
0 and r = 0.2), the ppEVPPI for rProgobs was 0 (Table
2). When a higher correlation (r = 0.6) was assumed, the
estimates of EVPPI for rProgobs ranged from $2 to $78.
Within each specification of uncertainty, the ppEVPPI
for rProgunobs was substantially greater than that for
rProgobs. The estimated ppEVPPI for rProgunobs was
largest for scenario 2 (range of $209 to $401), followed
by scenario 3 (range $115 to $245) and then Scenario 1
(range $11 to $47). Within each scenario, the ppEVPPI
for rProgunobs was larger with high rates of correlation.

Across all scenarios, the ppEVPPI for hrProgobs
(range from $32 to $2,541) was lower than that for
hrProg in the base-case analysis and lower than for the
ppEVPPI for hrProgunobs (range $1,886 to $4,577) (Table
2). As above, the estimated ppEVPPI for both hrProgobs
and hrProgunobs was greater with a greater correlation
and was greater for scenario 2, followed by Scenario 3
and then Scenario 1.

Discussion

We adopted a hypothetical economic model to demon-
strate the impact of adopting alternative specifications of
uncertainty for time periods for which there are no
observed values for a data parameter. This approach has
been recommended in recent guidance from CADTH
and is consistent with accepted mathematical practice in
that uncertainty around unobserved data should be con-
sidered greater than observed data. The main finding is
that the information value from repeating short-term
clinical trials may be much lower than previously sug-
gested. The analysis did find that estimated ICERs will
vary by the assumptions around uncertainty, but in most
situations, this is unlikely to substantially alter decision
making.

The finding that there may be limited information
value from repeating short-term trials may be considered
obvious. The current practice of assuming that the
observed data for an input (e.g., rate and hazard ratio)
can be used to estimate the expected value and uncer-
tainty for a single input parameter, which relates to both
the observed and unobserved periods, necessarily implies

that there is no value from extending the time period for
observed clinical data. Thus, the alternative approaches
suggested within this article reach conclusions with
respect to information value that more accurately reflect
expectations than would be reached though adopting
current accepted practice.

There are limitations to the study. Assumptions
around the uncertainty for the unobserved data and the
correlation between estimates for the observed and
unobserved periods were subjective, although this will,
by nature, always be the case. For example, doubling the
variance around the rate of progression, which is equiva-
lent to halving the person-time used to inform the unob-
served period, may be considered too conservative.
Thus, we suggest that scenario 3, with an increasing var-
iance over the time horizon for unobserved parameters,
is likely the more realistic scenario and the approach that
we would advocate should be adopted within a base
case. However, the study is meant to be illustrative, and
the finding that conclusions around the information
value from further research will be different if different
specifications of uncertainty for the unobserved period
are adopted will hold regardless of the assumptions
adopted. What is clear from each of the scenarios is that
the finding of limited value to repeating short-term stud-
ies is repeated regardless of how uncertainty is specified.

The analysis focuses on the use of parametric survival
analyses within economic evaluations. Previously, a com-
mon approach would involve taking an estimate of a
parameter for a specific period of time and applying the
parameter for the full time horizon of the model. This
approach is still adopted in some studies, particularly in
relation to the effect of treatments on risk factors relat-
ing to future disease events.23 Although not recognized
as a form of extrapolation, the method by which it han-
dles data for unobserved periods is analogous to current
approaches with regard to handling the estimates from a
parametric survival analysis. Thus, when analyses are
conducted with this approach, alternative specifications
of uncertainty between the observed and unobserved
periods as explored in this article should be considered.

For ease of exposition, the analysis assumed that the
long-term time to event could be represented by an expo-
nential model. In most studies, more complex models are
required. The general approach suggested can still be
applied with more complex models, with uncertainty
characterized by a joint distribution incorporating more
than 2 parameters, that is, incorporating estimates of the
parametric model parameters for both the observed and
unobserved period and their underlying uncertainty and
correlation.
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In this article, 3 scenarios were considered with respect
to the uncertainty in the unobserved period: the same
variance, a higher variance, and an increasing variance.
The purpose of the article was to illustrate the potential
alternatives available and the impact of each of these.
The increasing variance approach is intuitively the most
appealing alternative as the uncertainty over a parameter
would increase the further in the future that data are
extrapolated. This has been demonstrated previously.24–27

Previous studies have adopted similar approaches to
modeling uncertainty within the unobserved period. In an
economic evaluation examining the cost-effectiveness of
screening for ovarian cancer among postmenopausal
women, Kearns et al. adopted a model discrepancy
method to assess the impact of alternative assumptions
relating to the size and uncertainty around the treatment
effect within the unobserved periods.28 Scenarios 2 and 3
explored in this study are analogous to this approach
without consideration of the potential of a waning of
treatment effect. Similarly, Mahon29 suggested the use of
a temporal parameter that considers how the uncertainty
over a parameter can change over the model’s time hori-
zon. The suggested adoption of a Weiner process is akin
to the approach within scenario 3 within this article.

Economic evaluations that incorporate value-of-
information analysis frequently conclude that the great-
est information value relates to estimates of transition
probabilities and clinical effectiveness. However, such
analyses do not distinguish between observed and unob-
served periods and are therefore falsely concluding that
‘‘more of the same’’ clinical data are required. When
uncertainty over unobserved and observed data are more
fully represented, there may be limited value to repeating
short-term studies, and further studies relating to the
unobserved periods are required. As studies adopt the
recent recommendations regarding unobserved data,
future value-of-information analyses will be less likely to
conclude that further clinical information of the same is
required. Further analysis can focus instead on the opti-
mal duration of further studies.
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