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Abstract—This brief deals with the robust filtering problem for uncer-
tain linear systems with delayed states and outputs. Both time-invariant

This brief presents a novel approach to design an optimal dig?d time-varying cases are considered. For the time-invariant case, an al-

ital regulator for continuous-time two-dimensional (2-D) syste ebraic Riccati matrix inequality approach is proposed to design a robust
- filter such that the filtering process remains asymptotically stable for

described by linear partial differential equations (PDES). The basiagmissible uncertainties, and the transfer function from the disturbance
idea is to convert a system of PDEs into the linear 2-D state-spagguts to error state outputs satisfies the prespecifiedHf.. norm upper

form with both horizontal and vertical states. By gridding the finitéound constraint. We establish the conditions under which the desired ro-
space-time domain of interest and assuming piecewise-const%lr'ﬁt H_. filters exist, and derive the explicit expression of these filters. For

. . . time-varying case, we develop a differential Riccati inequality method
control input over a each gridded rectangular zone, the equ'val%%esignthe robust filters. A numerical example is provided to demonstrate

discrete version of this linear continuous-time 2-D state-space mo@g! validity of the proposed design approach.

results in a Rogsser quel. To solve the Optimal digital regulator ndex Terms—Dbifferential Riccati inequality, H . filtering, parameter
for the discrete-time equivalent SyStem descnbed_by Roesser moglﬁ ertainty, quadratic matrix inequality, robuét fiIt:ring, timé-delay sys-
the paper transforms the 2-D model into an equivalent 1-D modedms.

which is in the descriptor form. With this 1-D descriptor state space

model, we are able to apply Bellman’s principle of optimality from

the concept dynamic programming to derive the optimal control law I. INTRODUCTION

for the 2-D system. Also, whenever the sampling time intervals aregne of the problems with optimal Kalman filters, which has now

sufficiently small enough, it almost preserves the identical responsgsen well recognized, is that they can be sensitive to the system data and
between the discretized quadratic optimal controlled system and {g spectral densities of noise processes, or in other words, they may
well-designed continuous-time system. The proposed approach in {isk robustness [1]. Therefore, in the past decade, a number of papers
paper is able to achieve the goal of preserving the original syst@{Bye attempted to develop robustfilters that are capable of guaranteeing

V. CONCLUSIONS

performance in the optimally controlled hybrid 2-D systems. satisfactory estimation in the presence of modeling errors and unknown
signal statistics.
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is affected by parameter uncertainties. A lot of papers have appeared\ssumption 2: The matrixD- is of full row rank.

on this topic, see e.g., [2], [6]. In this brief, the full order linear filter is of the form
In the case when there exist plant parameter uncertainties and the . . i
disturbance inputs are assumed as zero mean white noises, the study B(t) = Gi(t) + Ky(t) Q)

of the so-calleo_l CQSI gl_Jarantt_ae_d f_llters has recently gained 9rowing \Where is the state estimate, and the constant matii¢esd ' are
terest. The main idea is to minimize an easy-to-compute upper bOLW :

. ter parameters to be designed.
on the worst performance. A lot of results have been obtained on such ) . .

o ) . efine the error estimate a%t) = =(t) — #(¢). It follows from
robustH- or H»/H filtering problem, and the corresponding appll-( —(3), and (5) that
cations in signal processing have also been reported, see [3], [4], [111'?, '

[15]-{17], [20]. é(t) = Ge(t) + [(A+ AA) — K(C+ AC) — Gla(t)
On the other hand, in addition to the system uncertainties, it is well , e
known that the time delay is also often the main cause of instability +[(Aa+ Ada) - K (?“ +AC]
and poor performance of systems [9]. In the past few decades increased X x(t —h)+ (D1 — KD2)w(?). (6)
e_ltteptlon h_as been devoteo_l to the problem of robust stability and St.ab"Letz(t) — Le(t) represent the output error state whiris a known
lization of linear systems with delayed state and parameter uncertalntg . . X S
cohstant matrix. We now give the following definitions:

see [10] for a survey. However, the “dual” filter/observer design prob-

lems of uncertain time-delay systems have recemadh lessttention [2(t)
although they are important in control design and signal processing ap- wy(t) = e(t) }
plications. In [18], the robusH ., observer design problem has been r Ay 0
studied fordiscretetime-delay systems. Very recently, Pila et al. [11] Ay = A — KC, 0}
have considered the problem &, filtering for linear time-varying - 4 0
system with time-delay measurements, but the system uncertainty has Aj = 1 I"'C G C‘} (7
not been taken into account. So far, the robist filtering problem LA - e i
for uncertain continuous-time systems with time-delaybath state Dy = Dy i }
and output equations has not been fully investigated and remains to be ’ | D1 — KDs
important and challenging. Vs e [ M, 8
In this brief, we are concerned with the robust filtering problem for T M - KM, (8)
uncertain linear system with delayed states and outputs. Both time-in- Ny = [-Nl 0]
variant and time-varying cases are considered. For the time-invariant Ads = MLFN
. . . L. . . Agp Myl Ny
case, an algebraic Riccati matrix inequality approach is proposed to
design a robustl .. filter such that the filtering process remains asymp- May := My ©)
totically stable for all admissible uncertainties, and the transfer function Ny =[Ny 0]
from the disturbance inputs to error state outputs satisfies the prespec- AAyp = My FNy
ified H.. norm upper bound constraint. We establish the conditions )
Cr:=[0 LJ. (20)

under which the desired robuBt,, filters exist, and derive the explicit

expression of these filters. For the time-varying case, we develop a dif'Combining (1)=(3), (4) and (6), we obtain the following augmented
ferential Riccati inequality method to design the robust filters. A nusstem:
merical example is provided to demonstrate the validity of the proposed
design approach. r = (A + AAf)es(t) + (Agf

i p . Tt c + Adap)xs(t = h) + Dyw(t) (11)

. PROBLEM FORMULATION FOR THE TIME-INVARIANT CASE
2(t) = C'f:cf(t). (12)
Consider a linear uncertain continuous time-delay system described ) )
by The transfer function from the disturbanegt) to the error state
outputCyrxs(t) is given by
2= (A+AA)x(t)+ (Aa+ AAy)x(t — h) + Dyw(t) (1)
w(t) = o), t€[-h.0] 2

y(t) = (C+ AC)x(t) + (Ca+ ACs)x(t — h) + Daw(t) (3)

H;,w(s) = Cf(SI — (Af + AAJ) — (Adf + A‘r’—’ld}')ei'gh)ilDf.
(13)

) o ) Our goal is to design the filter paramete¢sand &', such that for
wherex(t) € R" is the statew(t) € R’ is a square inte- 5 admissible parameter uncertaintidst, A4, AC, AC,, the aug-
grable exogenous disturbancg(t) € R™ is the measurement. mented system (11)-(12) is asymptotically stable and the following
A, A;,C,Cyq, Dy, Dy are known constant matrices with appmpriat%peciﬁedﬂm-norm upper bound constraiffi... (s)[|l« < = is si-
dimensionsh denotes the unknown state delay/) is a continuous mytaneously guaranteed, independent of the unknown time delay
vector valued initial functionAA, A4, AC, AC, are real valued where|| H. ., (5)]|co := SUP_cp Tmax[Hzw(jw)] andomax[-] denotes

constant matrices representing norm-bounded parameter uncertaiqﬁgqargest singular value pf]; and~ < 1 is a given positive constant.
and satisfy

{AA AAFI} B |:-A'f[1 ll. M AIN RESULTS FORTIME-INVARIANT CASE

7 T A
AC ACy MJ FINe 2] @

The following lemmas play a crucial role in designing a desired ro-
bustH .. filter for the uncertain linear time-delay system (1)—(3).

whereF € R"™ is a real uncertain time-invariant matrix and meets | emma 1 [19]: For an arbitrary positive scalar > 0 and a positive
FF" <T,andM;, M, N1, N> are known matrices with appropriate yefinite matrix? > 0, we have

dimensions.
Assumption 1: The system matrixl is asymptotically stable. (AA)T P+ P(AAy) < e PMyM| P+ 7' N/ Ny.
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Lemma 2 [19]: Let a positive scalat. > 0 and a positive definite Proof: By the Assumption 2, we kno® ' exists. From Lemma
maitrix @ > 0 be such thafV, Q™' N}} < g2I. Then 1 and Lemma 2, we have
(Agr + AAFldf)Q_] (Agr + AAdf)T (Af + AAf)TP + P(Af + Ady)

+ P(Agr + AAgp) Q™ (Ags + AAgy)" P
< A[P+PAy+2PM;M|P+c7' N/ Ny

=1 AT -1 AT y el
+ P | Ay (Q . Adidf) Al 4 es My MY | P.

—1alar \T' 4T 1
< Ay (Q - Mf“df) Aay + 22 May Mg

The following lemma is easily accessible.
Lemma 3: For a given negative definite matix< 0 (I' € R™"*™),

there always exists a matri € R"*?(p < n) such thal’ + SS” < (25)
0.
The next lemma can be readily proved along the same line of thePut
proof for Theorem 1 in [8]. P 0 Q1 0
Lemma 4: For a given positive constant and a positive definite P= { 0 PJ >0 @= { 0 0’[:| . (26)
matrix @, if there exists a positive definite matriX satisfying the in-
equality Using the definitions (7)—-(10) and (15)—(20), we get
. — AT . v —1a7T A7
(A; + AA)TP 4+ P(Ay + AAy) + P(Ay Y = Ay P+ PA;+ 1 PMyM; P+¢c, 'Nj Ny
_ 7 -1,
+ AAdf)Q YAg + A"‘ldf)ﬁl‘ P +P |:Adf (Q — & lNdeNdf) A+ 52A[dj'A[}}:| P
+Q+C{Cs+~°PD;D;P <0 (14) _—
o . +Q+CTCr+~+*PD;DIP := {;1; 1‘} (27)
for all admissible parameter uncertaintiesd, and AAy, then Yl Xy
the system (11)—(12) is robustly asymptotically stable and meghere
1 Hew(3)]loe < . )
For presentation convenience, we make the following definitions: 11 = ATP 4 Pl A4 e PIM MY Py 467 NY VS
i - . + P®P + Q.1+~ *PiD.D{ Py (28)
= Aq (Qr -3 NN ) AL 42D (15 £ (A- G- KC)'Py 4+ s PRML(M: — KAL)TP)
Ao A e Al AT =2 T , 1
:}. =A =+ ,1}{1 M'l P1 —+ ;_I)P1 =+ Y D1D1 P: ., 1 (16) + P1 |:Ad (Ql _ 5;11\721"1\72) (Jild _ IXer)T
C:C+(6‘1+€2)A/[zj\[1 P1+CC[(Q1—€2_ ZVQ [Vz)_
x ATP, 4+~ ?D;DT P, (17) b oMy (M — KMs )T} I
R:=(c14 ) MaMy + Ca(Q1 — 23 "N No) 1O ‘
( 172 ) lz 2 cl(Ql 2 2 2) d —|—')"7ZP1D1(D1—GD2)TPH) (29)
4+~ "Dy D, (18) T .
2, T _9 T 222 =G P2 +P2G+€1P2(.Z\Il — Ixﬂé[z)
@: IC +(61+€2)A/[2[\/[1 P2 +’7’ D2D1 P2 +CJ(Q1 N P T
e T X (My — KM;)" P+ L' L
—gy Ny No) Ay P (19) .
Q: = (21 + 22) Mo M + 47 ?DoDY + P [(Ad - KCuq) (Q1 - e;lNzTNz)
+Ca(Qr — 25 " NS Ny~ AL (20) » , y
’ b X (Ag — KCy)" 4 e2(My — K M) (M, — I{Ab)l}
We are now ready to give our main results. . ) o
Theorem 1: Let & be a sufficiently small positive constant agd X Py+ol+~ "P(Dy— KD2)(D1 — KDy)" Ps.
be a positive definite matrix. Assume that there exist positive scalars (30)

€1, €2 such thatV. Q7' N4 < «.T and the following two Riccati ma-

trix inequalities: From (21) we immediately see thdt; < 0. Now we consideE,;.

In the light of (24), replacing? by A — K C in (30) gives

AP+ PLA+ Pi(si MM+~ °DiD{ + )P,
+ 7' NINL+ Q<0 (21)
F:=(A-Q"R'CY' P+ P(A-Q"R™'() X P+ LL" +0l+ P [eng M
+ P, (51Mi MY +47DiDf + @

S0 = APy + PoA + P (Sl_/lfl ML+ fZDlD'{’)

P -1
’ R X + Ay (Q1 - ' Ny Nz) 44 P - (RRK)
- QTR*IQ) P+ L"L—CTR'C+ol<0 (22)
. [é + et Mo M{ Py + 2o Mo M\ Py +~ °DoD{ P
have positive definite solution®, > 0 and P > 0, respectively,

where the matricesh, 4, ', R,0,(2 are defined respectively in +Cy (Q1 —‘:”SleNz)_lAsz}
(15)—(20). Furthermore, le/ € RP*? be an arbitrary orthogonal
matrix (i.e.,UUT = I)andS € R™*? be an arbitrary matrix meeting — [é + e Mo ME Py + es MoMEP, + v 2D, DI P,

'+ SS57 < 0 (see Lemma 3). Then, the filter (5) with parameters

. 1T -1 7 g T
K =P (@R_l T SUR_”2> (23) +Ca (Q‘ —& N2 “2) Ad PQ} (P K)
N A T 17T -1 7
G=A-KC (24) + (PK) {gle Ml 4+, (Q1 — '] Ng) cl

will be such that, independent of the time defayl) the augmented

—2 T o T "/T ) T T
system (11)—(12) is asymptotically stable, and| 2. (s)||c < 7. +7 " DaDy + e MMy } (RK)". (1)
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Noticing the definitions ofR, ®, T, respectively, in (18), (19), and
(22), we can rewrite (31) as

Yoo =T+ [(PQI{)RL/Q _ @TR—l/Z]

x [(P.K)RY? —0TR 7. (32)
Using the expression df in (23), we can see that

[(R,K)R? - 0"R™?%
x [(P,K)RY? —©TR™Y?)T = 557, (33)

Therefore, it follows from the definition of in this theorem that
Y2 < 0. Itis also not difficult to verifyX,>, = 0 by putting (24) into
(29). We now arrive at the conclusion that< 0. By Lemma 4, the
system (11)—(12) is robustly asymptotically stable 4B .. (s)||cc <
~. This completes the proof of this theorem. ]

Remark 1: Theorem 1 shows that the robust,, stability constraint

on the uncertain time system (1)—(3) can be guaranteed when two pos-
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Consider a filter for the system (34)—(36) of the form

G(t)e(t) + K(t)y(t)
L(6)#(t)

i(t) = (38)
2(t) = (39)

wherez € R" is the state estimate, € R™ is an estimate for
z(t), G(t) and K (t) are filter parameters to be determined.

We denote the state estimate error, the output estimate error, and an
augmented state vector lyt), e. () andx (), respectively, which
are defined as follows:

e(t) = x(t) — 2(¢)
e-(t) = 2(t) — 2(¢)

xy(t) = {28} .

From (34)—(36) and (38)—(39), we can obtain an augmented system

ip(t) =[Ap(t) + AAp ()]s (t) + [Aap(t)

itive definite solutionsP;, P, respectively to the the quadratic matrix
inequalities (QMIs) (21)—(22) are known to exist for some positive def-
inite scalarg, > 0,=2 > 0 and positive definite matrig). For general

solving algorithm of QMIs, we refer the reader to [12] and referencgv%ere

+ AAg ()]st —h)+ Dy(t)w(t)
ex(t) = Cp(t)wy(t)

(40)
(41)

therein.
Remark 2: It is worth mentioning that the result of Theorem 1 ma

be conservative due to the use of the inequalities in Lemma 1, Lemm
and Lemma 4. However, the conservatism can be significantly reduc

by properly selecting the parametersand=- in a matrix norm sense.

The relevant discussion and corresponding optimization algorithm cp

be found in [20] and references therein.
Remark 3: It should be pointed out that, in the present design pr

(6]

flf (17), Df(f), ;44}' (17), 1\1]&' (17), [Vf (f), lVdf(f), Aflf (f), Ar’ldf (17),
%[éf(t), andC's(t) have the same forms as in (7)—(10) except that all
vea iables here should be time varying.

he robust filtering problem addressed here is to seek the filter
ert]rameter{?(t) and K'(t) such that for all admissible uncertainties
A(t), AA4(t), AC(t),ACq4(t), the system defined in (40) is
asymptotically stable.

Theorem 2: Given a constant positive definite matiix > 0. If the

cedure of robusH . filters for time-delay systems, there exists muciFOI
explicit freedom, such as the choices of the positive definite matrix
Q1 > 0,the free parametes(S € R™*? satisfied +557 < 0) and
orthogonal matriX’, etc. The remaining freedom provides the possi-
bility for considering more performance constraints (e.g., the transient
requirement and reliability behavior on the filtering process) which re-
quires further investigations.

lowing differential Riccati inequalities

TP+ 145 (1) + A4 ()" (1)
+ P()[Af(t) + AAp ()] + Q + P(t)[Ags (1)

+ AAF(BD]Q ™ Ay (1) + Adgy (D] P(1) <0 (42)

has a positive definite solutioR(¢) for all admissible uncertainties,
then the system (40) is robustly asymptotically stable.
Proof: Define a Lyapunov function as

IV. ROBUST FILTERING FOR UNCERTAIN TIME-VARYING SYSTEM
WITH TIME-DELAYS

Consider the following linear continuous uncertain time-varying

“t
Viap(t),t) = «t () P(t)x (t)—l—/ 25 (5)Qu (5) ds
system with state and output delays e )= (s t—h s (8)Qus(s) ds

with w(¢) = 0. The time derivative o¥ («;(¢),t) along a given tra-

(1) = [A(t) + AAD]a(1) + [Aa(t) jectory is obtained as

+ AA(O)]a(t — h) + Di(Hw(t) (34) ’ ,
2(8) = L(t)a(t) @8 Ly = [ AL } x [A; A} [ @r(®) }
5 = [C () + AC(D]a(t) « A TN
+ [Ca(t) + ACa(t)]x(t — h) + Da(t)w(t) (36)
where
where z(¢) and y(¢) have the same meanings as those in d - ,
Section 2.z(t) € R™ is a linear combination of the state A= P(t) + [Af(f)'i'ﬂflf (t)] P(t)

to be estimated andv(t) € R? is a disturbance signal.

+ P)[As (1) + AA (1) +Q

A(t), Aa(t), C(t), Ca(t), Di(t), D2(t), L(2) are known A — A A
time-varying matrices that describe the nominal system. Ae = PO)[Ag (1) + Adas ()]
AA(),AC(t),AA4(t), ACy(t) are parameter uncertainties that are Az = —Q.

time varying and satisfy the following constraints Itis easy to see from (42) that; — A A ' Ay < 0. Noting Az < 0,

we conclude from [5] that the matrix in (43) is negative definite, and
} { thus the system (40) is asymptotically stable according to the Lyapunov

stability theory. [ ]
whereM, (t), M2(t), N1(t), N2(t) are time-varying matrices with ap-  Following the same line of the proof of Theorem 1, we can obtain the
propriate dimensions anBl(t) € R**/ is a perturbation matrix with following parallel results for the robust filtering problem in the time-
Lebesgue measurable elements and satigfigsF? (1) < 1. varying case.

AAM) AA(H)
AC(H) ACH(H)

M ()
Mo (t)

} F(t)[N.(t) N2(t)] (37)
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Theorem 3: Let o be a sufficiently small positive constants ad M, =[-0.2 0.8]
be a positive definite matrix. Assume that there exist positive scalars Cy=1[05 1]
£1, €2 such thatVa (1)Q 7 N7 (1) < =21 and the following two differ-
ential Riccati matrix inequalities:

1 v _ {08 0 }
S Pit)+ AW P(t) + PUbA) M0 08
dt
- . T0.02 0.01
+ Pt [s My()ME (1) + @(t)] Pi(t) N = { 05 05 }
+e7' NU (N + Q1 <0 (44) S_{l}.
(t) = %PQ ) + [A(1) = QT R (O] Pat) 2

We focus on designing the robuBt,, filter of structure (5) which

. . s
+ P (1)[A() - Q7 (HRT(HC ()] depend on neither the uncertainties nor the time-delay, such that for all

+ P (t) [al M, (t)MlT(t) + ®(¢) admissible parameter perturbations, the filtering process is asymptot-
" . ically stable and the transfer function from exogenous disturbance to

- QR (f)-Q(t)] Py(t) error state output meets the prespecifféd, -norm upper bound con-

— ORI OC(H) + 0T <0 (45) straints|| H. . (5)||« < v = 0.8.

Considering the constrainV. Q7' Ny < =1, we chooses; =
have positive definite solution®;, > 0 and» > 0, respectively, 0.1,22 = 0.4,0 = 10,Q = L. Solving the QMI (21), we obtain the
where positive definite solution?;, and subsequentlyl, C' and R, respec-

B(t): = Au(t) (Ql _ eglNzT(t)Nz(t)>_1 AT () tively, as follows:

1.3101  —0.1123
+ eo M, (1) M (t) P = { ° }

—0.1123  0.7524

Aty = A + =My (DM (HPL(1) + DO P (1) o [-0346 13501
C(t): = C(t) + (21 + 22) Ma () My (1) Pr(2) T { 2.9935 1.0506}
1 ~
+ Cult) (Q1 — NI ()N t)) AT (O Pu() ¢ =[-0.3445 —3.3018]
R(t): = (21 + 22) Mo () M (#) + Ca(t) It = 5.0868.
» -1 .
« (Q1 — 'V (t)AE(t)) clt) Then, solve the QMI (22) to obtain
, . \ . - 005
O(t): = C(t) + (1 + c2) Mo (1) M (£) Pa(t) P, = { 3'9{301 10.'0;91} © =[-5.7490 —9.8341].
+Cult) (Ql TN () \E(f))il AT (1) Po(t) —0.059 .3823
Y A — £ 2 L) iNo T Ay A P A ) ) . . .
? . - ! Note that the dimensiop = 1, the only choices fof’ satisfying
Qt): = (a1 + 22) Ma (1) My (1) UUT = I arelU = 1 (case 1) and/ = —1 (case 2). In these two
. . . - _
T Cult) (Ql — 5l \,T(t)N2 (t)) ) 5@)‘ cases, we get the following two set of solutions forandG:
. [-0.3402]7 ., [1.1929 0.1963
Furthermore, lel/ € RP*? be an arbitrary orthogonal matrix (i.e., Casell =| | -6 = 154900 —3.9068
UUT = I)andS € R"*” be an arbitrary matrix meeting(¢) + ' e ' . ' -
SST < 0. Then, the filter (38)—(39) with parameters Case 2K — {‘g(;;ié} - nggg ‘83292}
—J. . —J.x i
K(t)= Py ' (h[O()R™'(t TR™V2 (1)),
v 2 Ll )y( )}?, (#)+SUR ()] It is not difficult to verify that the specified robust stability as well
G(t) = A(t) — K(t)C(t) (46)  asH.. disturbance rejection constraints are achieved.

will be such that, independent of the time delaythe augmented
system (40) is robustly asymptotically stable in the presence of all ad- VI. CONCLUSION

missible uncertainties. The robust filtering problem of uncertain linear time-invariant (time-

varying) system with delay states and outputs has been studied in this
V. A NUMERICAL EXAMPLE paper. For the time-invariant case a linear filter structure which does

In this section, we shall give a numerical example to demonstrate #h@t depend on the uncertainties has been proposed, and a matrix Ric-
theoretical result obtained. Consider the system (1)—(3) with syst&&fi inequality approach has been used to solve the problem. The effec-

data given as follows: tiveness of the designed filter has been demonstrated by a numerical
_ example. For the time-varying case, a differential Riccati inequality ap-
A= -2 0 } proach has been developed to design the robust filter. We point out that
L 1 -3 the results obtained can also be extended to the discrete-time system
Ay = -1 0 } and sampled-data systems within the same framework.
|—-0.8 -1
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