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Robust Filtering for Bilinear Uncertain
Stochastic Discrete-Time Systems

Zidong Wang, Member, IEEE,and Hong Qiao, Member, IEEE

Abstract—This paper deals with the robust filtering problem
for uncertain bilinear stochastic discrete-time systems with esti-
mation error variance constraints. The uncertainties are allowed
to be norm-bounded and enter into both the state and measure-
ment matrices. We focus on the design of linear filters, such that
for all admissible parameter uncertainties, the error state of the bi-
linear stochastic system is mean square bounded, and the steady-
state variance of the estimation error of each state is not more
than the individual prespecified value. It is shown that the design
of the robust filters can be carried out by solving some algebraic
quadratic matrix inequalities. In particular, we establish both the
existence conditions and the explicit expression of desired robust
filters. A numerical example is included to show the applicability
of the present method.

Index Terms—Bilinear stochastic systems, discrete-time systems,
quadratic matrix inequalities, robust filtering, uncertain systems.

I. INTRODUCTION

K ALMAN filtering is one of the celebrated filtering
approaches that is widely used in various fields of signal

processing and control; see [2]. This filtering approach assumes
that the system under consideration has known dynamics
described by certain well-posed model, and its disturbances are
Gaussian noises with known statistics. These assumptions limit
the application scope of the Kalman filtering technique when
there are uncertainties in either the exogenous input signals or
the system model. It has been known that the standard Kalman
filtering algorithms will generally not guarantee satisfactory
performance when there exists uncertainty in the system model
[2]. This has led to the recent development of alternative design
methods for filters and robust filters.

For uncertain stochastic systems, it is reasonable to evaluate
the filter performance in terms of mean square error and strive
for a suitable robustification of the classical Kalman filter.
Therefore, the study of the so-called cost guaranteed filters
that minimizean easy-to-compute upper bound on the worst
performance has recently gained growing interest, and many
papers have been published in this area; see [11], [15] and the
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references therein. A common feature of these papers is that
they have focused on designing a filter that first provides an
upper bound on the variance of the estimation error for all
admissible parameter perturbations and then minimizes this
bound. It is remarkable that in this case, the associated upper
bound is not specifieda priori, and the resulting optimal robust
filters are often unique in certain cases.

On the other hand, it is quite common in filtering problems to
have performance objectives that are expressed as upper bounds
on the variances of the estimation error. For example, in the
problem of tracking maneuvering target, it is often desired to ob-
tain the filter gain such that the estimation value of system state
is situated in the prespecified effective region. Clearly, this per-
formance requirement can be described as upper bounds on the
estimation error variances of the states; see e.g., [19] and [30].
In this case, the steady-state error variance is not required to be
minimal but should not be more than a prescribed upper bound.
Note that it is usually difficult to utilize traditional methods to
deal with this class ofvariance-constrainedfiltering problems.
For instance, the theory of weighted least-squares estimation [2]
minimizes a weighted scalar sum of the error variances of the
state estimation, but minimizing a scalar sum does not ensure
that the multiple variance requirements will be satisfied.

Fortunately, the error covariance assignment (ECA) theory
developed in [30] provides an alternative and more straight-
forward methodology for designing filter gains that satisfy the
above performance objectives. This methodology could pro-
vide a closed-form solution fordirectly assigning the specified
steady-state estimation error covariance. Subsequently, the
ECA theory has been extended to the sampled-data systems
in [24], to the bilinear systems in [22], and to the parameter
uncertain systems in [23], [25], and [26], where upper bound
constraints are imposed on the steady-state estimation error
variance. Unlike scalar objective designs, which often lead to
unique solutions, such as linear quadratic techniques in which
only one gain matrix minimizes a scalar cost function, the
variance-constrained filter designs often lead to nonunique
solutions since the addressed problems are multiobjective
design tasks. As can be seen in the ECA theory, the set of
desired variance-constrained filters is usually large. Therefore,
after assigning to the estimation error a specified variance
upper bound, there exists much freedom that may be used to
attempt to achieve other desired performance requirements,
such as robustness.

Among many practical systems, plants may be modeled by
bilinear systems (BLSs) since some characteristics of nonlinear
systems can be closely approximated by bilinear models rather
than linearized models. The bilinear system is a kind of “nearly
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linear” yet nonlinear system. The related problems of bilinear
systems, such as the state analysis and the parameter estimation,
are much more difficult to solve than those of the linear systems.
Up to now, it has been known that BLSs could describe many
real processes in the fields of socioeconomics, ecology, agri-
culture, biology, and industry, etc. (see, e.g., [5], [6], [13], [16],
[17], [20], [21], [28], and [29]). In particular, bilinear models are
widely used to model nonlinear processes in signal and image
processing, as well as communication systems analysis, such
as channel equalization, echo cancellation, nonlinear tracking,
electroencephalogram (EEG) signal classification, multiplica-
tive disturbance tracking, etc.; see [13] and references therein.

The observer design problem has been intensively studied in
[29] for discrete-time stochastic bilinear systems (also called
“state-dependent noise systems” because the structured param-
eter perturbationson the system matrix are modeled as zero
mean white noises; see [4], [20], [28], and [29]). In [7], a finite-
dimensional linear filter has been proposed for a class of contin-
uous-time bilinear stochastic systems, which could provide sub-
optimal state estimate instead of the conditional statistics. The
control problems for bilinear stochastic continuous- and dis-
crete-time systems with state covariance assignment have been
investigated in [28] and [20], respectively. Recently, in [22], the
state estimation problem has been tackled for discrete-time bi-
linear stochastic systems with error covariance placement. Nec-
essary and sufficient conditions have been derived for the ex-
istence of the desired estimators, and the analytical expression
of these estimators has been provided in [22]. However, so far,
the issue of variance-constrained filtering forbilinear uncertain
stochastic systems has not been fully investigated and remains
important.

This paper is concerned with the design of robust filters for
bilinear uncertain stochastic discrete-time systems subjected to
the upper bound constraints on the estimation error variance.
The purpose of the problem addressed is to design the filters for
the bilinear uncertain stochastic discrete-time systems such that
the steady-state estimation error variances are less than the pre-
specified upper bounds. A simple, effective matrix inequality
approach is developed to solve this problem. Specifically, a set
of the upper bounds on estimation error covariance that certain
bilinear error dynamic processes may obey are first presented,
all filters that assign these upper bounds to the estimation error
variances are then explicitly characterized, and finally, the solv-
ability of the assignability conditions is discussed. An illustra-
tive example is used to demonstrate the effectiveness of the pro-
posed design procedure.

The remainder of this paper is organized as follows. In Sec-
tion II, the robust Kalman filtering problem for discrete bilinear
stochastic systems subject to norm-bounded parameter uncer-
tainty is formulated. An algorithm for the filter design is de-
veloped in Section III, which guarantees the prespecified upper
bound on the steady-state state estimation error variance. An il-
lustrative example is given in Section IV, and some concluding
remarks are drawn in Section V.

Notation: The notations in this paper are quite standard.
and denote, respectively, the dimensional Euclidean
space and the set of all real matrices. The superscript
“ ” denotes the transpose, and the notation (respec-

tively, ), where and are symmetric matrices, means
that is positive semi-definite (respectively, positive def-
inite). is the identity matrix with compatible dimension. Let

be a complete probability space with a fil-
tration satisfying the usual conditions (i.e., the filtra-
tion contains all -null sets and is right continuous). stands
for the mathematical expectation operator with respect to the
given probability measure . Sometimes, the arguments of a
function will be omitted in the analysis when no confusion can
arise.

II. PROBLEM FORMULATION AND PRELIMINARY RESULTS

Consider the following bilinear uncertain discrete-time sto-
chastic system.

(1)

and the measurement equation

(2)

where is the state, is the measurement
output, and and are uncorrelated sta-
tionary zero mean white noise sequences with respective covari-
ance and . The stochastic sequence

is a vector satisfying

if

if

for , where is the mathematical expec-
tation operator. The initial state is a random vector
that is independent of and .
and are known constant matrices with appropriate dimen-
sions.

The matrices and , which may be time-varying, rep-
resent the norm-bounded parameter uncertainties and satisfy

(3)

where is a real uncertain matrix with Lebesgue mea-
surable elements and meets

(4)

and are known real constant matrices of appro-
priate dimensions that specify how the uncertain parameters
in enter the nominal matrices and . The uncertainties

are said to be admissible if both (3) and (4) are satis-
fied.

Remark 1: The kind of bilinear stochastic discrete-time
systems formulated by (1) and (2)without uncertainties has
been extensively studied in many papers (see, e.g., [4], [20],
[29], and the references therein) and is sometimes called the
“state-dependent noise system.” It can be noticed that there are
two kinds of “uncertainties” posing on the nominal matrix,
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namely, thedeterministicuncertainty that can be regarded
as the additive energy-bounded noise and thestochasticper-
turbation that is the multiplicative noise with
known statistics. Both kinds of uncertainties have been well
investigated in the literature.

Remark 2: The parameter uncertainty structure as in (3) and
(4) has been widely used in the problems of robust control and
robust filtering of uncertain systems (see, e.g., [26]). Many prac-
tical systems possess parameter uncertainties that can be either
exactly modeled or overbounded by (4). The unknown matrix

in (3) can be time varying and can even be state depen-
dent, i.e., , as long as (4) is satisfied.

Throughout this paper, we will need the following assump-
tion.

Assumption 1:The matrix is Schur stable (i.e., all eigen-
values of are located inside the unit circle in the complex
plane) and are nonsingular.

In this paper, we adopt the following linear full-order filter

(5)

where stands for the state estimate, andand are filter
parameters to be designed.

Define the estimation error and the estimation error covari-
ance, respectively, as follows.

(6)

(7)

Then, it follows from (1) and (2) and from (5)–(7) that

(8)

Define

(9)

(10)

(11)

(12)

(13)

(14)

(15)

(16)

(17)

Considering (1) and (8), we obtain the following augmented
system.

(18)

where stands for a zero mean Gaussian white noise se-
quence with covariance.

Now, multiplying both sides of (18) by their transposes and
taking the expectation, we have

(19)

where , , and are defined in (15)–(17), respectively.
We know from [1], [8], and [9] that if the state of the system

(18) is mean square bounded (for the definition of mean square
boundedness, see [1], [8], and [9]), the steady-state covariance

of the system (18) defined by

exists and satisfies the following discrete-time modified
Lyapunov equation.

(20)

Remark 3: It is necessary to discuss the conditions for the
existence of the solution to (20). It follows from [1] that there
exists a unique symmetric positive semi-definite solution to (20)
if and only if

(21)

where is the spectral radius, and is the Kronecker product.
Furthermore, we know from [1] that (21) is equivalent to the
mean square boundedness of the state of the system (18), and
hence, (21) will guarantee the convergence of in (19) to a
constant value .

Define

The purpose of this paper is to design the filter parameters
and such that for all admissible perturbations and ,
the following requirements are met simultaneously.

1) The state of the augmented system (18) is mean square
bounded.
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2) The steady-state error covariance meets

(22)

where means the steady-state variance of theth
error state, and denotes the prespec-
ified steady-state error estimation variance constraint on
the th state.

III. M AIN RESULTS AND PROOFS

Let us first recall the some intermediate results that are intro-
duced in the sequel as lemmas.

Lemma 1 [27]: Let a positive scalar and a positive
definite matrix be such that

Then, we have that

(23)

holds for all admissible perturbations and .
Lemma 2 (Schur Complement):Given constant matrices

, , where and , then

if and only if

or equivalently

Lemma 3 (Matrix Inverse Lemma):Let , , , and be
given matrices of appropriate dimension with, , and

being invertible; then

holds.
The following lemma can be easily proved.
Lemma 4: For a given negative definite matrix

, there always exists a matrix such
that

For technical convenience, we define the following additional
notation.

(24)

(25)

(26)

(27)

(28)

(29)

(30)

Now, we are in a position to establish our main results in this
paper.

Theorem 1: Assume that there exists a positive scalarsuch
that the following two quadratic matrix inequalities

(31)

(32)

respectively, have positive definite solutions and , where
satisfies

Moreover, let be an arbitrary matrix satis-
fying (see Lemma 4), and let be an
arbitrary orthogonal matrix (i.e., ). Then, the filter (5)
with the parameters determined by

(33)

(34)

will be such that for all admissible perturbations and ,
we have the following.

1) The state of the augmented system (18) is mean square
bounded.

2) The steady-state error covariance satisfies

Proof: Since is assumed to be nonsingular, exists,
and the definitions (24)–(30) are meaningful. We set
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Then, by means of Lemma 1 and the definitions (24)–(30), it is
easily verified that

(35)

where

(36)

(37)

(38)

It follows immediately from the matrix inverse lemma (Lemma
3) that

and then, the inequality (31) implies that

To continue, by resorting to the definitions of, , , and
the expression in (34), we can rewrite (38) as

(39)

Noticing the expression of in (33)
and the fact of , we obtain

Thus, it follows from (39), the definition of the matrix (
), and the inequality (32) that

Moreover, substituting into (37) immediately
yields

To this end, we arrive at the conclusion that . Therefore,
it follows from (35) that

(40)

which leads to (21). As discussed in Remark 3, we know that
the state of the augmented system (18) is mean square bounded,
and there exists a symmetric positive semi-definite solution to
(20). This proves the first conclusion of this theorem.

Furthermore, subtract (20) from (40) to give

(41)

which indicates again from Remark 3 that

and therefore

This completes the proof of this theorem.
Remark 4: It is clear from Theorem 1 that if the quadratic

matrix inequalities (31) and (32), respectively, have positive def-
inite solutions , ( meets , ),
then the filter (5) determined by (33) and (34) will be such that
1) the augmented system (18) is mean square bounded, and 2)

, . Hence, the design
task of variance-constrained robust filtering for the uncertain bi-
linear systems will be accomplished. Note that the existence of a
positive definite solution to (31) implies the asymptotical Schur
stability of the system matrix .

In practical applications, we can solve the quadratic matrix
inequalities (QMIs) (31) and (32) subject to the constraints

and then obtain the expected
filter parameters immediately from (33)–(34). When we deal
with the QMIs (31) and (32), the local numerical searching
algorithms suggested in [3] and [12] are very effective for a
relatively low-order model. The detailed discussion on the
solving algorithms for QMIs can be found in [18].

For relatively high-order model, the aforementioned algo-
rithms are no longer useful. Fortunately, the parameterof
(32) is not included in (31). Therefore, if we could first solve
(31) for and , then the inequality (32) is a standard
Riccati-like matrix inequality for and could be solved
by the generalized matrix Riccati inequality/equation approach
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(see [18]). We still need to focus on the algorithm for solving
(31). By using the Schur Lemma (Lemma 2), we can convert
(31) into the following linear matrix inequality (LMI).

(42)

where

The inequality (42), together with the inequality constraint

(43)

are both linear on and . Therefore, we can employ
the standard LMI techniques in [10] to check the solvability of
the original matrix inequality (31).

It is worth mentioning that since LMIs intrinsically reflect
constraints rather than optimality, they tend to offer more
flexibility for combining several constraints. LMIs can now be
solved efficiently via interior-point optimization algorithms,
such as those described in [10]. Moreover, software like
MATLAB LMI Toolbox are now available to solve such LMIs
efficiently.

Remark 5: We point out that in the present design procedure
of robust filters for bilinear systems, there exists muchexplicit
freedom, such as the choices of the free parameters( sat-
isfies ), the orthogonal matrix , etc. This re-
maining freedom provides the possibility for considering more
performance constraints (e.g., the transient requirement and re-
liability behavior on the filtering process), which requires fur-
ther investigations. Note that in [14], a similar freedom on an
arbitrary orthogonal matrix in the parameterization of the set of
filters was successfully employed to minimize the norm of
the filtering error transfer function by solving an unconstrained
parametric optimization problem over the set of filters.

IV. NUMERICAL EXAMPLE

Consider a bilinear discrete-time uncertain stochastic system
(1) and (2) with parameters as

The goal of this example is to design the robust filter (5) such
that the following filtering performance requirements are simul-
taneously satisfied.

1) The augmented system (18) is mean square bounded.

2) The steady-state error covariance meets

Now, solving the LMIs (42) and (43) for and ,
we obtain

and subsequently

Then, solve the QMI (32) to give

It is easily seen that and the constraints
(22) are satisfied. Next, select the parameter, which meets

[ is defined in (32)], as

Then, for the two cases of and , we obtain the
corresponding desired filter parameters from (33)–(34), respec-
tively, as

Case 1:

Case 2:
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It is not difficult to test that the prescribed performance objec-
tives are all realized.

V. CONCLUSIONS

We have studied the robust filtering problem for uncertain
bilinear stochastic discrete-time systems with estimation error
variance constraints. Attention has focused on the design
of a linear filter, such that for all admissible parameter
uncertainties, the error state of the bilinear stochastic system
is mean square bounded, and the steady-state variance of the
estimation error of each state is not more than the individual
prespecified value. We have established both the existence
conditions and the explicit expression of desired robust filters
in terms of the positive solutions to two quadratic matrix
inequalities. A numerical example has been used to show the
usefulness of the theory developed.

One of the future research topics would be the multiobjec-
tive nonfragile filter design for uncertain bilinear stochastic
systems with time delays. That is, the designed filters will
be able to tolerate not only the model uncertainty but small
changes of the filters themselves as well, while guaranteeing
some desired filtering performances. The general framework
will be established using the LMI approach in conjunction
with regional stability constraints and optimization
characterization. In addition, in our opinion, the results ob-
tained in this paper can also be extended to more complex
stochastic systems such as sampled-data systems and non-
linear systems. The results will appear in the near future.
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