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Abstract—Automatic polyp segmentation is a crucial technique
of computer aided clinical diagnosis. However, some current
polyp segmentation methods cannot accurately extract polyps
from colonoscopy images due to the diversity of polyp shapes and
sizes, as well as the blurry boundaries caused by the adhesion
between polyps and surrounding tissues. To address this issue,
we propose a multi-scale decoupled Expectation-Maximization
attention, namely MSD-EMA. There are two advantages of MSD-
EMA. Firstly, we design the decoupled Expectation-Maximization
attention, which decouples attention weights into the sum of
pairwise term representing inter regional features and unary
term representing salient boundary features, thereby extracting
boundary features between polyps and surrounding tissues while
reducing computational complexity. Secondly, we propose the
parallel collaborative strategy, which enables MSD-EMA to
simultaneously extract sparse and dense feature maps using lower
computational complexity. Sparse features are suitable for seg-
menting small polyps due to filtering out noise interference. Dense
features are suitable for capturing large polyps that contain more
location information. Comparative experiments are conducted
with currently excellent polyp segmentation networks on five pub-
licly available datasets, and the experimental results demonstrate
that MSD-EMA can effectively improve polyp segmentation
performance. Moreover, MSD-EMA is a plug-and-play module
that can be applied to other types of segmentation tasks. The
source code is available at https://github.com/EmarkZOU/MSD-
EMA.

Index Terms—Deep learning, Medical image segmentation,
Attention mechanism, Multi-scale features, Neural networks,
Automatic Polyp Segmentation.
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COLORECTAL cancer is one of the most common and
deadly cancers in the world [1]. Generally, the patient has

small polyps inside colon, some of which may transform into
colorectal cancer over time. Therefore, it is crucial to discover
and remove the polyps to reduce the risk of colorectal cancer
in the early stages. Polyp segmentation, as a research task for
accurately locating polyps, is of great significance for clinical
diagnosis and treatment of colorectal cancer [2].

In the past decade, with the development of deep learning,
the polyp segmentation method based on Convolutional Neural
Networks (CNNs) has gradually become a very important
technology of the aided polyp diagnosis [3], [4], [5]. However,
there are still two drawbacks. First, since the shapes, textures
and colors of polyps and surrounding normal tissues are very
similar, it is difficult to distinguish the features between polyps
and the different features between polyps and similar surround-
ing tissues through the limited receptive field of convolution,
resulting in the loss of small polyps. Secondly, due to the dif-
ferent shapes and sizes of polyps, the limited training dataset
makes it challenging for segmentation models to accurately
locate polyps, and insufficient generalization ability of some
models leads to inaccurate segmentation results.

It is of great significance for improving the segmentation
accuracy of polyps to solve the above two issues. For the
first issue, to extract the inherent features between polyps and
the boundary features between polyps and similar surrounding
tissues, firstly, by introducing the Expectation-Maximization
(EM) attention [6] to capture long-distance dependencies in
polyp images, we improve the feature representation capacity
within the polyp region while reducing computational com-
plexity. Secondly, the attention weights are decoupled to obtain
the salient boundary features of the image. For the second
issue, when locating small polyps, we use a small number
of image pixels as key points in the self-attention mechanism
to avoid introducing unnecessary noise. When locating large
polyps, the opposite is true. Therefore, to address these issues,
inspired by EM attention, we propose the multi-scale decou-
pled EM attention, namely MSD-EMA. The contributions of
this work are summarized as follows:

• We propose a decoupled EM attention branch, called D-
EMA, by introducing the disentangled non-local oper-
ation in the EM attention. The proposed D-EMA can
decouple attention weights into the sum of the pairwise
and unary terms. The pairwise term represents features
between polyps and the unary term represents salient
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boundary features. Therefore, the proposed D-EMA can
extract these two non-interfering features, effectively dis-
tinguishing polyps from their similar surroundings.

• We propose a Parallel Collaborative Strategy (PCS) to
construct multi-scale attention feature maps. Each D-
EMA branch in MSD-EMA generates attention feature
maps with different sparsities from different numbers of
key pixels. The sparse attention feature maps reduce noise
interference and are suitable for segmenting small polyps.
The dense attention feature maps contain more location
information and are suitable for capturing large polyps.
Through the integration of these distinct attention feature
maps, the PCS improves the generalization capacity of
the segmentation network for polyps of different shapes
and sizes.

The rest of this paper is organized as follows. Section II re-
views the related work of attention mechanism and multi-scale
feature fusion for polyp segmentation. Section III proposes the
MSD-EMA and introduces the structure of the D-EMA and
the PCS. In Section IV, we demonstrate the ablation studies
and comparative experimental results, and provide reliability
and generalization evaluations. In Section V, we discuss the
applicability of MSD-EMA. Finally, we conclude this work in
Section VI.

II. RELATED WORK

With the development of deep learning, image segmentation
methods based on CNN have gradually become the main
development trend of polyp segmentation task [8], [9], [10],
[11], [12]. However, because the receptive field of the convolu-
tion operation is limited, there are limitations in learning the
long distance dependencies between pixels. In recent years,
many excellent polyp segmentation networks have employed
attention mechanisms [13] and multi-scale feature fusion [14]
to overcome these limitations. Therefore, in this section, we
review related work from two aspects: attention mechanism
and multi-scale feature fusion.

A. Attention mechanism

In recent years, scholars have proposed many polyp segmen-
tation methods based on deep learning [15], [16], [17]. Some
current popular polyp segmentation methods employ specific
attention mechanisms [18], [19], [20] to address the problem
of polyps being difficult to accurately segment due to low
contrast between polyps and surrounding tissues and different
shapes and sizes of polyps.

To address this issue, Fan et al. [3] proposed a reverse
attention module to improve the ability of network to extract
boundary features. This module can establish the relationships
between polyps and boundaries, thereby improving the seg-
mentation accuracy. Besides, due to high similarity between
some polyps and surrounding tissues, it is challenging to seg-
ment the boundaries of these polyps. To solve this drawback,
Nguyen et al. [21] proposed the cascading context module
and attention balance module to better integrate local and
global features, thereby effectively focusing on the boundaries
of polyps. The above methods primarily focus on feature

selection rather than network structure design, thus limiting
their generalization capacity. Zhang et al. [22] used lesion-
aware cross-attention to enhance the feature contrast between
polyps and background regions, and designed an efficient self-
attention module to capture long-distance contextual relation-
ships, further improving segmentation accuracy.

Zhang et al. [23] argued that the segmentation of polyps
with different sizes relies on different local and global contex-
tual information for regional comparative analysis. Therefore,
to accurately segment polyps of different sizes, they proposed
the local context attention to transfer local contextual features
from the encoder to the decoder, increasing attention to the
key regions in the previous prediction map. However, this
method focuses on easily segmented regions while ignoring
those that are difficult to segment. To address this issue, Shen
et al. [5] designed an information context enhancement module
to improve feature representation capacity under the guidance
of the difficulty-ware attention module, thereby improving
segmentation accuracy. However, these methods improve the
performance of the network by using additional network
layers, but increase the model complexity. To reduce model
complexity, Tomar et al. [24] used a text-guided attention to
encode attributes such as the number and size of polyps using
simple bytes. Wei et al. [25] proposed a shallow attention
module, which filters out background noise from shallow
features and preserves the features of small polyps.

B. Multi-scale feature fusion

Multi-scale feature fusion is the process of fusing and
exchanging information between low-level and high-level
features during encoding and decoding. Multi-scale feature
fusion is also an important solution for accurately segmenting
objects with different shapes and sizes. In many classical im-
age segmentation networks, scholars have employed different
multi-scale feature fusion modules to improve segmentation
performance [26], [27], [28]. For the polyp segmentation task,
scholars have used multi-scale feature fusion to effectively
improve the features encoding and decoding prediction ca-
pabilities of polyp segmentation networks.

To improve the feature encoding of networks for polyps,
Srivastava et al. [14] introduced the Dual-Scale Dense Fusion
(DSDF) block in the multi-scale residual fusion network. The
DSDF block uses different scale features from two encoders as
inputs, establishing a fusion strategy between high-level and
low-level features, which helps to enhance shallow features
using high-level features. To supplement specific boundary
information during the encoding process, Qiu et al. [29]
proposed BDG-Net to generate boundary distribution maps,
which are as supplementary spatial information and sent to
the decoder to guide polyp segmentation. Inspired by the idea
of enhancing boundary features in BDG-Net, Cheng et al. [30]
first calculated eight directional derivatives for each pixel, and
then selected pixels with large directional derivatives to form
candidate boundary regions for polyps. Finally, boundary fea-
tures and high-level semantic features were fused to improve
the segmentation accuracy of polyp boundaries. To enhance the
multi-scale context feature representations, Zhong et al. [31]
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proposed Adaptive Scale Context (ASC) module and Semantic 
Global Context (SGC) module. The ASC aggregates multi-
scale contextual information to focus on the target region. 
The SGC filters o ut b ackground n oise i n l ow-level features 
by fusing high-level and low-level features in the decoder.

To improve the predictive capacity of the decoder, Wang et 
al. [32] proposed a selective feature aggregation module and 
inserted it into the convolutional layer between the encoder and 
decoder, which can adaptively extract features using kernels 
of different sizes. However, the above methods directly use 
element-wise addition or concatenation to fuse the features of 
different levels of the encoder. These operations do not pay 
more attention to the differential information between different 
levels, which not only generates redundant information but 
also weakens the characteristics of specific l evel f eatures. To 
address this issue, Liu et al. [33] utilized the domain specific 
batch normalization layer units in the encoder and decoder 
to preserve the feature differences between adjacent levels, 
thereby preserving the localization information and subtle 
boundary information of polyps.

III. MULTI-SCALE DECOUPLED EM ATTENTION

A. The overall structure

The convolution operation with limited receptive field can-
not effectively extract key features of polyps from similar
surroundings. We propose MSD-EMA to improve the per-
formance of CNN in segmenting polyps with different sizes
from similar surrounding tissues. The overall structure of the
proposed MSD-EMA is shown in the figure 1. In the figure 1,
MSD-EMA is a multi-scale attention consisted of multiple D-
EMA branches and a residual connection. We design D-EMA
to extract distinct features intra- and inter-classes, and propose
PCS to parallelize multiple D-EMA branches for generating
multi-scale attention feature maps.

Initially, we design a D-EMA module to accurately segment
polyps from surrounding tissues. D-EMA establishes long-
distance dependency relationships in polyp images through
efficient self-attention. D-EMA has two advantages as follows.

(1) D-EMA utilizes the EM algorithm to extract attention
feature maps, thereby capturing the long-distance dependency
relationships between polyps, which can reduce the original
computational complexity O(N2) to O(NK), K ≪ N , where
K is the size of the compact subset and N is the number
of pixels in the original input feature map. Specifically, the
key idea of D-EMA is to find a compact base subset that
can represent all pixels, rather than directly using all pixels
themselves. Therefore, EMA uses this compact base subset to
calculate attention maps, effectively reducing computational
complexity. Assuming that the input feature map has N pixels,
the size of the compact base subset is K (K ≪ N ), and the
number of iterations is T , the computational complexity of
D-EMA is O(NKT ). Due to the small number of iterations
T , usually T = 3, the computational complexity of EMA can
be approximated as O(NK). Furthermore, due to K ≪ N ,
O(NK) is much smaller than O(N2).

(2) We introduce the Disentangled Non-Local (DNL) block
[7] into the EM framework of D-EMA, which decomposes

the original attention weights into the sum of the pairwise
and unary terms, avoiding the degradation of attention feature
representations. The pairwise term can learn the relationships
between the features of the object regions in the image, while
the unary term can learn the salient boundary information in
the image. Therefore, the attention feature maps calculated by
D-EMA include both polyp features and salient boundary fea-
tures, which can more accurately locate and segment polyps.

To better segment polyps of varying shapes and sizes, we
propose the PCS to construct multi-scale attention feature
maps. Parallel D-EMAs generate attention feature maps with
different sparsities by initializing matrices of different spatial
dimensions as subsets µi, i ∈ {0, 1, 2}. Sparse attention fea-
ture maps are low rank and filter out input noise information,
making them suitable for capturing small polyp features. On
the contrary, a dense attention feature maps include as many
features of large polyps as possible. When performing small
polyp segmentation, the value of K is correlated with N , and
the computational complexity of MSD-EMA will degrade to
O(N2). Compared with the original Non-Local block, there
is still no increase in computational complexity under the
premise of extracting multi-scale long-range dependencies.

B. Decoupled EM Attention

Due to the similarity between polyps and surrounding
tissues, the segmentation results of polyps in colonoscopy
images often include non-polyp areas, leading to the problem
of over-segmentation. To solve this problem, the proposed
D-EMA is capable of simultaneously extracting intra-class
correlation features within polyps and inter-class differential
features between polyps and boundaries. The structure of D-
EMA is illustrated in the figure 2.

In the step E of D-EMA, D-EMA randomly initializes a
compact subset µ of size (B,C,K), where B represents the
batch size and C represents the number of channels in the
feature map. Here, K is the size of the compact subset, which
is much smaller than the number of pixels N in the original
input feature maps X ∈ RB×C×K . The subset µ is inputted
into the ADecoupled

E and Unary modules for calculation, and
the attention weights as hidden variables in the EM algorithm
are decoupled into the sum of pairwise and unary terms. These
two terms are added pixel by pixel to obtain new attention
weights, as shown in (1):

ω = ωp + ωu, (1)

where ω ∈ RB×N×K represents the attention weights, ωp ∈
RB×N×K represents the values of pairwise term, and ωu ∈
RB×N×K represents the values of unary term. The ADecoupled

E

and Unary modules are separately illustrated in the figure 3.
In the figure 3, the ADecoupled

E module in the left box generates
and outputs the pairwise term, while the Unary module in the
right box generates and outputs the unary term.

In the ADecoupled
E module, the feature maps X and a ran-

domly initialized subset µ are used as inputs to the ADecoupled
E

module. The feature maps X are mapped to the matrix Wq to
obtain the feature matrix Query ∈ RB×N×C , and the subset
µ is mapped to the matrix Wk to obtain the feature matrix
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Fig. 1. The structure of MSD-EMA. MSD-EMA is a multi-scale attention mechanism consisting of three D-EMA branches and a residual connection. We
design three D-EMA branches with different numbers of compact subset µ to extract feature maps with different sparsities. Then through PCS, the feature
maps of the three branches are finally integrated to capture polyps of different sizes. Notably, MSD-EMA is a plug-and-play module that can be inserted into
the appropriate position of segmentation networks, not just between the encoder and decoder.
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Fig. 2. The structure of D-EMA. D-EMA effectively extracts internal and boundary features of polyps by decoupling the attention weights into pairwise and
unary terms, thereby improving segmentation accuracy.

Key ∈ RB×C×K . After the whitening without the mean,
matrix multiplication, and Softmax normalization operations,
the feature matrices Key and Query are output as the pairwise
term of size (B,N,K). The calculation process of the pairwise
term are shown in (2):

ωp(Xi, µ
j) = σ((qi − q)T (ki − k)), (2)

where Xi represents the feature value at the position i of
the input feature maps, and µj represents the feature value
at the subset position j, and j ∈ {0, 1, ...,K − 1}. qi and
ki are the feature values at the corresponding positions of the
matrices Query and Key obtained by using 1×1 convolution

for Xi and µj , respectively. q and k represent the mean
values of features on the spatial dimensions of matrices Query
and Key, respectively. σ(·) represents Softmax normalization
operation. qi − q and ki − k represent whiten operations that
remove the mean, respectively.

In the Unary module, we first reduce the channel dimension
of the subset µ from C to 1, then expand the channel of
the subset µ to N through channel expansion, and finally
normalize to obtain the unary term of size (B,N,K). The
calculation process is shown in (3):

ωu(Xi, µ
j) = σ(Wmµj), (3)

where Wm is essentially a 1 × 1 convolution used to fuse
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Unary generates the unary term to highlight distinct boundary features.
The combination of these two terms results in the attention weights, which
represents both the internal features of regions and the boundary features.

features in the channel dimension of subsets µ, allowing unary
term to focus more on spatial features and effectively capture
boundary features of polyps.

Therefore, by incorporating (2) and (3) into (1), it can be
concluded that:

ω
(
Xi, µ

j
)
= σ

(
(qi − q)

T (
ki − k

))
︸ ︷︷ ︸

pairwise term

+σ
(
Wmµj

)︸ ︷︷ ︸
unary term

.
(4)

In (4), by matrix multiplication and normalization calcu-
lation, σ

(
(qi − q)

T (
kj − k

))
can maximize the normalized

difference between pixels in the feature matrix Query and
pixels in the Key to determine the whitening dot product.
Therefore, the pairwise term tends to learn pixel relationships
within the polyp region. σ

(
Wmµj

)
tends to learn the influence

of boundary pixels on all pixels, so the unary term can
capture the boundary features. Therefore, by decoupling the
original attention weights into the pairwise and unary terms,
the attention weights contain two different types of feature
weights.

In the step M of D-EMA, the attention weights and X are
inputted to the AM , thereby performing matrix multiplication.
As a result, the subset µ gradually converges to a subspace of
the input feature maps X , as shown in the (5):

µ = ω ×X. (5)

Finally, after T iterations of the E and M steps, both the
subset µ and attention weights converge to obtain the optimal
solution. The converged attention weights and subset µ are
input into the AR to generate an attention feature map with

rich long-distance dependencies. Besides, the input feature
maps X transmitted through residual connections are added
to obtain an output of the same size as the input feature maps.
The specific process is shown in (6):

Output = ω × µ+X. (6)

C. Parallel Collaborative Strategy
Due to the decoupling operation in D-EMA, the extracted

attention feature map contains feature relationships within the
target region and salient boundary features. However, since the
element number of subset µ in D-EMA is initialized to a fixed
size, the generated attention feature maps cannot adequately
meet the segmentation requirements for polyps with different
shapes and sizes. To address this issue, we propose the PCS
for constructing multi-scale attention feature maps based on a
parallel multi-branch architecture, as shown in the figure 1.

In the figure 1, MSD-EMA is consisted of three parallel
D-EMAs and a residual connection. Each D-EMA randomly
initializes a different element number of subset µi. For ex-
ample, the sizes of subsets µ0, µ1, and µ2 are (B,C, 1

8N),
(B,C, 1

4N), and (B,C, 1
2N), respectively. After three itera-

tions of each D-EMA, both the subset µi and attention weights
reach convergence. The converged subset µi is the subspace of
different sizes in the input feature maps X , which is multiplied
by the corresponding attention weight matrix. Each D-EMA
generates attention feature maps with different sparsities. The
D-EMA that initializes a small number of subsets µi generates
a sparse attention feature map, which is also low rank and
filters out most of the noise in the input feature maps, making
it suitable for extracting features of small polyps. The D-EMA
that initializes a large number of subsets µi generates a dense
attention feature map, which includes as many features of large
polyps as possible. After fusing all attention feature maps and
adding the original input feature maps X transmitted through
residual connections, MSD-EMA can construct and output the
multi-scale attention feature maps Y . The calculation process
is shown in (7):

Y = CBR(Output0 ⊕ Output1 ⊕ Output2) +X, (7)

where CBR denotes a combination of convolution, batch nor-
malization, and ReLU. ⊕ denotes the channel concatenation.

The multi-scale attention feature maps Y contain the fea-
tures enhanced by attention weights with different sparsities,
which can effectively enhance the generalization capacity
for the polyp segmentation task. In addition, in MSD-EMA,
the computational complexity of the attention weights gen-
erated by the three D-EMAs are O( 18TN

2), O( 14TN
2) and

O( 12TN
2), respectively, where T is the number of iterations

and T = 3.

IV. EXPERIMENTS

In this section, we first introduce five publicly available
datasets and data preprocessing. Secondly, we describe the
experimental environment and parameter settings. Thirdly, we
provide evaluation metrics for the experimental results. Finally,
we provide the detailed results and analysis of the ablation
study, comparative experiment, reliability and generalization
evaluation.
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A. Dataset and data preprocessing

To verify the effectiveness of MSD-EMA in the polyp seg-
mentation task, ablation studies and comparative experiments
are conducted on five datasets: Kvasir [34], ETIS [35], CVC-
ColonDB [36], CVC-ClinicDB [37], and CVC-300 [38]. The
details of these datasets are presented as follows.

(1) Kvasir: This dataset is part of the Medical Multimedia
Challenge and contains 1000 images of varying sizes, ranging
from 332×487 to 1920×1072. We use 900 images for training
and 100 images for testing, each image contains at least one
polyp. In the testing dataset, there are 13 images containing
multiple polyps.

(2) CVC-ClinicDB: This dataset comes from 31
colonoscopy sequences and contains 612 images with a
size of 384×288. We use 550 images for training and 62 for
testing, each image contains polyps. In the testing sample,
there are 5 images containing multiple polyps.

(3) CVC-300: This dataset comes from 44 colonoscopy
sequences and contains 912 images with a size of 574×500.
We use 60 images for testing. Each image contains only one
polyp. These images are all used for testing.

(4) CVC-ColonDB: This dataset comes from 15 different
colonoscopy sequences, with a total of 380 images and an
image size of 574×500 pixels. We use all 380 images for
testing. All images contain a single polyp, and the size of the
polyp varies greatly in the image.

(5) ETIS: This dataset comes from 34 colonoscopy videos,
containing 196 images with a size of 1225×966. We use all
196 images for testing. Although all images contain a single
polyp, there are significant differences in the size of polyps in
these images.

To ensure fairness in the experiments, the dataset parti-
tioning is consistent with MS-Net [33]. This data partition-
ing is currently the popular approach in the field of polyp
segmentation [3], [15], [22], [33]. Specifically, 900 samples
are randomly selected from the Kvasir, and 550 samples are
randomly selected from the CVC-ClinicDB, totaling 1450
samples to form the training dataset. The testing dataset
consists of the remaining 798 images from these five datasets.

In the data preprocessing, the data augmentation operations
include: random scaling, horizontal flipping, vertical flipping,
and random rotation of 90 degrees. We apply four data
augmentation operations to each sample in the training dataset,
and use the enhanced images as training samples. The above
data augmentation methods are used for the training dataset
in the ablation study. Therefore, UNet [8], as a benchmark
network, performed better in the ablation study than in the
comparative experiment, which proves the effectiveness of the
data preprocessing.

B. Experimental environment and parameter settings

The main environment configuration for these experiments
is: Intel Xeon Gold 6226R CPU, 32GB memory, Nvidia
Geforce RTX 3090 GPU, and 24GB graphics memory. These
experiments are conducted on the Ubuntu 16.04.10. The deep
learning framework is PyTorch 1.7.

We employ the binary cross-entropy and Dice coefficient as
the loss function to guide model training. We used the Adam
optimizer in the training process of our model. The maximum
number of training epochs is set to 150. The batch size is 48.
The initial learning rate is 0.08. The learning rate adjustment
strategy is lr = lr × (1 − ( epoch

Epoch )
0.9), where epoch is the

current number of epochs, Epoch is the maximum number of
epochs, and Epoch = 150. The weight decay is 0.0005, and
the momentum is 0.9.

C. Evaluation metrics

We choose IoU and Dice as objective metrics to evaluate
the segmentation performance of MSD-EMA. IoU and Dice
are widely used evaluation metrics, both of which can measure
the similarity between segmentation results and Ground Truth.
IoU and Dice are calculated in (8) and (9), respectively:

IoU =
TP

TP + FP + FN
, (8)

Dice =
2× TP

2× TP + FP + FN
, (9)

where TP , TN , FP , and FN represent true positive, true
negative, false positive, and false negative, respectively.

D. Ablation study

To validate the effectiveness of the D-EMA and PCS for the
proposed MSD-EMA, ablation studies are conducted on five
publicly available polyp datasets. In addition, to demonstrate
that MSD-EMA can be used as a universal plug-and-play com-
ponent in the segmentation networks, we inserted MSD-EMA
behind the classical encoders of UNet [8] and ResNet101 [39]
and conducted two sets of ablation studies.

(1) The effectiveness of the D-EMA. To demonstrate the
effectiveness of D-EMA, we compare it with EM Attention
and DNL modules, and the visualization results are shown
in the figure 4. The figure 4 shows the feature maps and
segmentation results of UNet, UNet+EM, UNet+DNL, and
UNet+D-EMA on the Kvasir dataset, respectively. Firstly,
after introducing the EM attention, the generated feature maps
focus more effectively on polyp regions and represent the
global relationships of polyps. However, some feature maps
mistakenly focus on noisy areas due to similar surrounding
interference. Secondly, after introducing the DNL module,
the attention feature maps extract and retain more boundary
features from the original image. Although the segmentation
results are improved compared to UNet, there is an over-
segmentation phenomenon due to the fact that the DNL
module only focuses on the local features of polyps. Finally,
after introducing D-EMA, it is evident that the generated
attention feature maps focus more accurately on the segmented
polyps, and the segmentation results are also closer to the
Ground Truth.

To further evaluate the performance of D-EMA, the quan-
titative results are shown in Table I. As shown in the 4th and
7th rows of Table I, it can be seen that D-EMA significantly
improves the segmentation accuracy compared to the original
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Image/Label UNet UNet+EM UNet+DNL UNet+D-EMA UNet+MSD-EMA

Fig. 4. Visualization comparison of feature maps on the Kvasir dataset. In the ablation study, the incremental components allows the model to focus more
effectively on the critical regions. In the eighth row, the UNet+MSD-EMA exhibits a superior capacity to accurately capture the features of small polyps.

UNet and ResNet on all five polyp datasets. These results
prove that the D-EMA can not only focus on the polyps
through the established global relationships, but also extract
the boundaries of polyps, effectively improving segmentation
accuracy.

(2) The effectiveness of the PCS. To verify the effectiveness
of the PCS, the visualization of the multi-scale attention
feature maps and segmentation results after the introduction
of MSD-EMA are shown in the last column of the figure 4. In
the figure 4, compared to introducing D-EMA, the constructed
multi-scale attention feature maps can significantly increase
the attention in the polyp regions, reduce the attention in un-
related regions, thereby avoiding noise interference. Therefore,
it can be found that the segmentation results are also closer to
the Ground Truth.

In addition, since the downsampling process of the UNet
causes the resolution of feature maps to decrease, this may
make it difficult for the network to capture small polyps at
the end of the encoder. However, as depicted in the eighth
row of the figure 4, UNet+MSD-EMA demonstrates a superior
capacity to accurately capture the features of small polyps and
concentrate the attention on these regions. The main reason is
that MSD-EMA is able to generate multi-scale feature maps
with different sparsity levels through PCS, which can capture
both small and large polyps simultaneously. Meanwhile, MSD-
EMA utilizes self-attention to capture long-range dependen-
cies, which enables the network to capture features of small
polyps within a larger receptive field, even if these polyps
occupy fewer pixels in the downsampled feature map.

In Table I, while UNet is chosen as baseline, compared
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TABLE I
RESULTS OF ABLATION STUDIES ON THE POLYP DATASET. THE BEST VALUES ARE IN BOLD.

Methods
Datasets CVC-ColonDB ETIS Kvasir CVC-300 CVC-ClinicDB

IoU ↑ Dice ↑ IoU ↑ Dice ↑ IoU ↑ Dice ↑ IoU ↑ Dice ↑ IoU ↑ Dice ↑
UNet 0.525 0.614 0.344 0.430 0.747 0.827 0.688 0.774 0.811 0.823

UNet+EM 0.517 0.610 0.389 0.481 0.757 0.834 0.633 0.747 0.812 0.860
UNet+DNL 0.547 0.623 0.356 0.423 0.765 0.840 0.662 0.758 0.792 0.851

UNet+D-EMA 0.553 0.636 0.417 0.489 0.771 0.846 0.716 0.804 0.802 0.862
UNet+MSD-EMA 0.560 0.639 0.449 0.530 0.774 0.850 0.746 0.828 0.814 0.880

Res101+EMA 0.554 0.648 0.481 0.577 0.767 0.843 0.760 0.853 0.731 0.812
Res101+D-EMA 0.567 0.663 0.511 0.606 0.783 0.856 0.738 0.818 0.757 0.829

Res101+MSD-EMA 0.590 0.671 0.538 0.626 0.786 0.857 0.761 0.853 0.780 0.853

to a single D-EMA, PCS can significantly improve the seg-
mentation performance on the ETIS, CVC-300, and CVC-
ClinicDB. Concretely, on the ETIS, PCS increases Dice by
4.1% and IoU by 3.2% compared to a single D-EMA. On the
CVC-300, compared to a single D-EMA, PCS increases Dice
by 2.4% and IoU by 3%. On the CVC-ClinicDB, compared
to a single D-EMA, PCS increases Dice by 1.8% and IoU
by 1.2%. PCS utilizes three different D-EMA branches to
capture features of different sparsity levels. Notably, polyp
segmentation is a very challenging task due to the diversity
of polyp shapes and sizes, as well as the blurry boundaries. It
is significant to improve Dice and IoU by more than 2-4%
using UNet+MSD-EMA on these datasets. Therefore, in the
presence of polyps of different sizes, PCS effectively captures
details of large polyps while enhancing boundary detection for
small polyps. In the ETIS, CVC-300, and CVC-ClinicDB, the
sizes of polyps are more diverse, which can fully utilize the
feature extraction capacity of PCS. Additionally, on the CVC-
ColonDB and Kvasir, PCS shows relatively little improvement
in segmentation performance. Compared to a single D-EMA,
PCS increases Dice by 0.3% and IoU by 0.7% on the CVC-
ColonDB, Dice by 0.4% and IoU by 0.3% on the Kvasir.
Therefore, when using UNet as a baseline, PCS can effectively
improve the performance of polyp segmentation task.

In Table I, when Res101 is used as the baseline, PCS
achieves good performance gains on the CVC-ColonDB,
ETIS, CVC-300, and CVC-ClinicDB, significantly improv-
ing the segmentation performance. On the CVC-ColonDB,
compared to a single D-EMA, PCS increases Dice by 0.8%
and IoU by 2.3%. On the ETIS, compared to a single D-
EMA, PCS increases Dice by 2% and IoU by 2.7%. On
the CVC-300, compared to a single D-EMA, PCS increases
Dice by 3.5% and IoU by 2.3%. On the CVC-ClinicDB,
compared to a single D-EMA, PCS increases Dice by 2.4%
and IoU by 2.3%. PCS can fully utilize the D-EMA to
effectively extract features of polyps and their surrounding
tissues, and can better handle blurry boundaries. Therefore,
PCS can achieve good performance improvement on these four
datasets. On the Kvasir, PCS can not significantly improve
the segmentation performance, with Dice increasing by 0.1%
and IoU increasing by 0.3%. The reason may be that there
are more polyps in the test samples on this dataset. However,
PCS is less effective in handling samples with multiple polyps,
resulting in limited performance improvement. To summarize,

Images Labels Results MSD-EMAUnary

Fig. 5. The visualization results for extracting boundary features.

when using Res101 as the baseline, PCS can effectively
improve the performance of polyp segmentation task.

(3) The effectiveness of extracting boundary features. To
verify that MSD-EMA can independently extract the salient
boundary features of the objects, we first separately extract the
unary term through the Unary module in D-EMA. Secondly,
we apply it to the input images to generate the salient boundary
feature maps. Thirdly, we apply the attention weights, which
are finally extracted by MSD-EMA, to the input features to
generate the attention feature maps. To demonstrate that MSD-
EMA can effectively extract boundary features, we analyze
the results using heat map visualization, as illustrated in
the figure 5. It is evident that MSD-EMA can accurately
extract boundary features of polyps, thereby improving the
localization and segmentation accuracy of the polyps adhered
to surrounding tissues.

E. Comparative experiments

To evaluate the segmentation performance of MSD-EMA
on polyp datasets, we conduct experiments and compare it
with the popular polyp segmentation methods in recent years,
including UNet [8], UNet++ [9], EMA-Net [6], MS-Net [33],
PraNet [3], TGA-Net [24], ResUNet++ [15], and SA-Net [25].
To facilitate experimental comparison, we insert MSD-EMA
into the backend of the shallow attention module of SA-Net to
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Fig. 6. The segmentation results of popular networks on the Kvasir dataset.

construct a new model for polyp segmentation, which is called
our model. In next, we demonstrate the segmentation results
of our model and current state-of-the-art models on five public
available polyp datasets, which are shown in the figure 6.

In the figure 6, there are some significant differences
between the segmentation results of UNet and the Ground
Truth. The main reason is that the encoder structure of UNet is
relatively simple, which leads to insufficient feature extraction
for complex polyps. UNet++ slightly improves the segmenta-
tion accuracy compared to UNet due to the addition of dense
skip connections between the encoder and decoder. MS-Net

captures the differential information between different levels
of features by adding dense differential modules between the
encoder and decoder, resulting in a significant improvement in
segmentation results compared to UNet++. However, from the
segmentation results in columns 1 and 5 of the figure 6, it can
be seen that MS-Net is very sensitive to noise and prone to
incorrect segmentation. EMA-Net reduces the computational
complexity of self-attention by initializing a small element
number of subset µ. But as a result, it loses many key
shape features of polyps, resulting in under-segmentation of
large polyps with complex shapes. TGA-Net enhances the
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TABLE II
COMPARATIVE RESULTS WITH EXCELLENT SEGMENTATION NETWORKS ON THE FIVE POLYP DATASETS. THE BEST VALUES ARE IN BOLD.

Methods
Datasets CVC-ColonDB ETIS Kvasir CVC-300 CVC-ClinicDB

IoU ↑ Dice ↑ IoU ↑ Dice ↑ IoU ↑ Dice ↑ IoU ↑ Dice ↑ IoU ↑ Dice ↑
UNet(MICCAI’15) [8] 0.454 0.547 0.248 0.319 0.665 0.766 0.621 0.727 0.756 0.824
UNet++(TMI’19) [9] 0.483 0.410 0.335 0.398 0.743 0.821 0.627 0.710 0.729 0.794

EMA-Net(CVPR’19) [6] 0.554 0.648 0.481 0.577 0.767 0.843 0.760 0.853 0.731 0.812
ResUNet++(ISM’19) [15] - - - - 0.793 0.813 - - 0.796 0.796
PraNet(MICCAI’20) [3] 0.645 0.716 0.664 0.719 0.840 0.898 0.804 0.873 0.858 0.902
MS-Net(TMI’20) [33] 0.651 0.722 0.585 0.644 0.839 0.894 0.788 0.841 0.879 0.921

SA-Net(MICCAI’21) [25] 0.675 0.754 0.683 0.763 0.841 0.897 0.831 0.893 0.861 0.913
TGANet(MICCAI’22) [24] 0.633 0.707 0.578 0.653 0.839 0.894 0.819 0.886 0.855 0.907

APCNet(TIM’23) [40] 0.679 0.758 0.648 0.726 0.842 0.899 0.827 0.893 0.859 0.911
Ours 0.684 0.763 0.691 0.775 0.846 0.903 0.849 0.912 0.863 0.914

extraction of features related to the size and quantity of polyps
by introducing text-guided attention, resulting in a signifi-
cant improvement in segmentation results compared to EMA-
Net. PraNet gradually integrates the deep contextual semantic
features into the decoder, guiding the decoding process and
restoring local detail features, and utilizes a reverse attention
module to extract the boundary features of polyps. There-
fore, PraNet improves segmentation results for small polyps
compared to EMA-Net. Compared to MS-Net, PraNet has
more accurate segmentation results under noise interference
such as lighting. However, the segmentation results are still
inaccurate when polyps are similar to surrounding tissues. SA-
Net uses deep contextual semantic features to continuously
guide the decoder to recover detailed information, improving
the accuracy of segmenting polyps from similar surrounding
tissues. After inserting MSD-EMA into the backend of SA-
Net, our model can better extract the features of polyp regions
and boundaries. From the visualization results in the figure 6,
it can be seen that MSD-EMA further improves the accuracy
of polyp segmentation.

The quantitative results of the comparative experiment are
shown in Table II. On the CVC-ColonDB, ETIS, Kvasir, and
CVC-300, the IoU scores of our model are 0.684, 0.691,
0.846, and 0.849, respectively, and the Dice scores of our
model are 0.763, 0.775, 0.903, and 0.912, respectively. Our
model achieves the best segmentation performance on these
four datasets. On the CVC-ClinicDB, the IoU and Dice scores
of our model are 0.863 and 0.914, respectively, which are only
slightly lower than the results of MS-Net, but still better than
the results of other methods. Therefore, the proposed MSD-
EMA can improve the performance of the polyp segmentation
network and demonstrate excellent segmentation accuracy on
five polyp datasets.

F. Reliability evaluation

To further verify the stability and reliability of our model,
we conduct a 5-fold cross validation experiment. Specifically,
we randomly split the entire dataset into five equal sized
subsets. One subset is retained as the test dataset, while the
remaining four subsets are used to train our model. In addition,
while conducting cross validation, we retain the original five
independent test datasets, which are not used throughout

the entire training and validation process and are used to
ultimately evaluate reliability of our model. The evaluation
results are shown in Table III.

In Table III, the evaluation results for each fold are very
close, indicating that our model performs consistently across
different data partitions. Additionally, the average values of the
evaluation metrics across all folds are very close to the results
obtained from training on the entire dataset (Compare with the
last row of Table II), further verifying the good reliability of
our model.

G. Generalization evaluation

We also insert MSD-EMA between the encoder and decoder
of PMR-Net [41] and conduct generalization evaluation on
nine medical segmentation datasets, which include the five
polyp datasets mentioned above, as well as retinal vessel
dataset DRIVE [42], macular retinal vessel dataset STARE
[43], skin lesion dataset ISIC2018 [44], and cell nucleus
dataset DSB2018 [45]. The experimental visualization results
are shown in the figure 7. In the figure 7, the segmentation
results of introducing MSD-EMA into PMR-Net are better
than PMR-Net on these datasets. Therefore, the proposed
MSD-EMA can improve segmentation performance.

The experimental results of inserting MSD-EMA into PMR-
Net and quantitatively comparing it with PMR-Net on five
polyp datasets are shown in Table IV. In Table IV, it can
be seen that inserting MSD-EMA into PMR-Net resulted in
improved segmentation results compared to PMR-Net on all
five polyp datasets. Therefore, MSD-EMA is a plug-and-play
module that can improve segmentation accuracy.

Furthermore, MSD-EMA is inserted into PMR-Net and
comparative experiments are conducted on four publicly avail-
able medical image datasets, DRIVE, STARE, ISIC2018, and
DSB2018. The experimental results are shown in Table V.
Therefore, MSD-EMA can be applied to many medical image
segmentation tasks and has good generalization capacity.

V. DISCUSSION

In the above experiments, we attempt different insertion
positions of MSD-EMA in other segmentation networks. For
example, inserting MSD-EMA into the encoder of UNet,
inserting MSD-EMA after the shallow attention, and inserting
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TABLE III
THE EVALUATION RESULTS USING 5-FOLD CROSS VALIDATION. THE AVERAGE RESULTS ARE IN BOLD.

Methods
Datasets CVC-ColonDB ETIS Kvasir CVC-300 CVC-ClinicDB

IoU ↑ Dice ↑ IoU ↑ Dice ↑ IoU ↑ Dice ↑ IoU ↑ Dice ↑ IoU ↑ Dice ↑
Fold 1 0.673 0.758 0.686 0.769 0.841 0.895 0.848 0.913 0.862 0.915
Fold 2 0.685 0.762 0.692 0.774 0.837 0.892 0.841 0.907 0.864 0.913
Fold 3 0.682 0.765 0.689 0.777 0.848 0.901 0.847 0.914 0.860 0.908
Fold 4 0.686 0.761 0.694 0.781 0.844 0.905 0.851 0.910 0.865 0.911
Fold 5 0.681 0.757 0.688 0.776 0.849 0.907 0.846 0.915 0.859 0.917

Average 0.681 0.760 0.690 0.776 0.844 0.899 0.846 0.912 0.861 0.912

TABLE IV
THE GENERALIZATION EVALUATION ON THE FIVE POLYP DATASETS. THE BEST VALUES ARE IN BOLD.

Methods
Datasets CVC-ColonDB ETIS Kvasir CVC-300 CVC-ClinicDB

IoU ↑ Dice ↑ IoU ↑ Dice ↑ IoU ↑ Dice ↑ IoU ↑ Dice ↑ IoU ↑ Dice ↑
PMR-Net [41] 0.493 0.578 0.351 0.414 0.736 0.814 0.666 0.755 0.763 0.797

PMR-Net+MSD-EMA 0.520 0.602 0.369 0.420 0.752 0.827 0.671 0.768 0.786 0.838

TABLE V
THE GENERALIZATION EVALUATION ON FOUR AVAILABLE MEDICAL IMAGE DATASETS. THE BEST VALUES ARE IN BOLD.

Methods
Datasets ISIC 2018 DRIVE STARE DSB2018

IoU ↑ Dice ↑ IoU ↑ Dice ↑ IoU ↑ Dice ↑ IoU ↑ Dice ↑
PMR-Net [41] 0.811 0.886 0.650 0.787 0.606 0.749 0.817 0.888

PMR-Net+MSD-EMA 0.823 0.893 0.665 0.797 0.614 0.756 0.823 0.894

Image Label PMR-Net
PMR-Net +

MSD-EMA

Fig. 7. The visualization results of generalization evaluation of MSD-EMA.

MSD-EMA between the encoder and decoder of PMR-Net.
These different insertion positions bring different improve-
ments to the segmentation performance of the network. There-
fore, MSD-EMA has good plug-and-play performance.

The MSD-EMA lies in its excellent plug-and-play perfor-
mance, providing tremendous convenience for existing polyp
segmentation networks. MSD-EMA can be easily embedded
into existing polyp segmentation networks without structural
adjustments. Researchers can fine-tune MSD-EMA according
to specific task requirements to achieve better performance

without delving into the details of the module. This enables
researchers to achieve performance improvement with minimal
effort while maintaining the original network framework.

MSD-EMA is suitable for various polyp segmentation tasks,
whether targeting specific disease types or diverse datasets.
This generalization ensures that the MSD-EMA can demon-
strate its excellent performance in different polyp application
scenarios, making it a widely applicable tool.

More importantly, as a plug-and-play module, MSD-EMA
can achieve high accuracy in the polyp segmentation task and
be widely applied to other segmentation tasks such as retinal
vessel, skin lesion, and cell nuclei, etc.

VI. CONCLUSION

In this work, we have proposed MSD-EMA and applied
it to the polyp segmentation task. Firstly, we have designed
the D-EMA module, which represents attention weights as
the sum of the pairwise term representing the intra-class
relationships of polyps and the unary term representing bound-
ary information of polyps. The new attention feature maps
include both polyp features as well as features between polyp
and surrounding tissues, thus effectively extracting polyps
from similar surroundings. Secondly, we have proposed the
PCS for constructing multi-scale attention feature maps based
on multi-branch D-EMA. By fusing attention feature maps
with different sparsities, the attention on segmented objects
with different shapes and sizes has been improved, while the
attention on unrelated regions has been reduced, resulting
in accurately localizing and segmenting objects. We have
applied the proposed MSD-EMA to classical segmentation
networks and achieve more accurate segmentation results
on publicly available polyp segmentation datasets. More im-
portantly, MSD-EMA is a universal plug-and-play attention
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module that can be widely applied in many popular medical 
image segmentation networks.

In future work, we will further investigate the reduction of 
the parameters of MSD-EMA as a plug-and-play lightweight 
module without sacrificing p erformance. I n a ddition, w e will 
continue to explore the application of MSD-EMA in other 
image segmentation tasks.
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