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for behaviour change suggestions
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Abstract
Background: Behaviour changes by end-users have been seen as an effective action to tackle the global climate
crisis and improve indoor and outdoor environmental quality, while energy and carbon savings and promoting
health and well-being are notably observed. However, indoor environmental quality predictive modelling for
participatory research has not been developed yet due to the lack of a user-friendly method.
Purpose: We present a framework to predict indoor air temperature, air change for ventilation efficacy and
indoor illuminance for daylight by correlating indoor and outdoor climates.
Research Design: The method integrates indoor-outdoor climate correlation models, bioclimatic design, and
occupant-centric control decision-making processes. The predictive modelling was developed from a series of pre-
defined boundary conditions, and the case studies were demonstrated using an occupied multi-family apartment
building in Switzerland.
Result: The presented method uses real-time and forecasted outdoor weather to predict indoor environmental
conditions and provides results for different building operation actions.
Conclusions: Recommendations for practical applications are discussed according to Fogg’s behaviour model in
developing the participatory research for the eco-feedback approach to applying the framework to behaviour
interventions, considering increasing the ability, opportunities and motivation of end-users in predicting indoor
environmental quality.
Practical application: The method facilitates occupant-centric control decision-making processes. A
dynamic thermal simulation model of the building is created, and correlations are derived between external
and internal conditions by a person familiar with thermal modelling. The correlations are used to derive
instructions for the occupants on using their space. The instructions can be automatic in graphical form if
weather forecast input is continuously provided, requiring a subscription to a weather forecast online
provider. The approach follows bioclimatic principles and Fogg’s Behaviour Change Model to encourage the
“ability” of end-users to predict their homes’ IEQ with no in-depth building physics knowledge.
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Introduction

In recent years, the implications of behavioural
science have been seen as an effective action to tackle
global emergencies - the climate crisis, energy crisis
and fuel poverty.1 Despite having a design to
maintain acceptable indoor environmental quality
(IEQ) using natural cooling and passive heating,
without careful operation by the end users, the
mechanical-assisted heating, ventilation and air-
conditioning (HVAC) systems will be required and
associated energy costs and carbon emissions will be
increased. Studies which focus on post-occupancy
evaluation showed that building performance gaps
cause higher energy consumption than predicted
design, and this is often driven by the way the end-
users operate the building inappropriately and due to
a lack of understanding of maintaining the IEQ in
passive design measures.2 Changes in household
behaviour can lead to 5-15% savings in energy use.3

If the building occupants are informed of predicted
indoor environmental conditions for the next 1-
2 days according to the real-time outdoor weather, an
occupant-centric control approach could be a part of
energy-efficient building operations to adjust indoor
environmental conditions by integrating passive
design strategies.4 To promote pro-environmental
behaviours for the end-users, simple, effective and
easy-to-understand feedback systems are required5;
however, even less is known about how indoor
condition predictions can be incorporated into be-
haviour change suggestions to develop behaviour
change interventions.

Behaviour interventions are often developed from
three components - ability (psychological and
physical abilities), opportunities (physical and social
factors) and motivation (attitudes, habits, etc.).6 A
behaviour model for persuasive design can be de-
veloped when these three elements occur at the same
moment, as found in Fogg’s Behaviour Model.7 The
eco-feedback approach to behaviour change in the

housing sector is one of the most needed and feasible
options to reduce operational carbon emissions and
meet net-zero targets.8 Eco-feedback is a method
which delivers feedback to occupants to encourage
energy conservation and reduce environmental
impacts.5,9,10 Making health behaviour changes to
improve indoor environmental quality can be chal-
lenging in some cases; for example, personal ex-
posure monitoring to improve asthma-related health
requires additional support from healthcare profes-
sionals.11 A simple, effective and user-friendly
method, which can inform occupants about their
understanding of, and interaction with, both me-
chanical systems and passive strategies opportuni-
ties, can increase the “ability” of end-users to predict
the IEQ of their homes with no in-depth building
physics knowledge.12

The physics-based dynamic models are capable of
building energy and thermal models according to the
physical component of a system, whereas a data-
driven model is capable of uncovering other hidden
dynamics.13 Physics-informed ensemble models for
joint prediction are another promising approach of
physics-informed machine learning (PIML).14

Combining indoor environmental data with
weather forecasts using a hybrid physics-based ar-
tificial neural network model could be implemented
widely to provide location-specific indoor condition
predictions to improve health warning systems.15

The significances of contextual factors in the pre-
diction models are required to evaluate advanced
deep learning architectures that demand extensive
historical databases for machine learning to train
data, while using local indoor measurements could
be time-demanding.16 However, the biggest chal-
lenge of PIML is that it requires the effective inte-
gration of prior physical knowledge in modelling and
the evaluation of developed PIML methods to in-
crease model generalizability and ensure the physical
plausibility of results.17
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A simple method, in contrast to a deep learning
indoor prediction model, which informs occupants to
correlate outdoor climate conditions to their time–
microenvironment–activity by predicting indoor air
temperatures, could be beneficial to alter their indoor
environments appropriately without a significant
reliance on building physics knowledge.18 A
correlation-based prediction is, however, context-
dependent, and the results of IEQ prediction rely
on the time-dependent nature of the buildings, oc-
cupants and weather-related boundary conditions of
a room. Furthermore, utilising a bioclimatic ap-
proach with passive design opportunities can reduce
energy consumption and improve the indoor
environment.19–22 As discussed in 13, handcrafted
selection of physics knowledge and a lack of
benchmarks and evaluations are some of the chal-
lenges in developing machine learning prediction
models. In addition, using those machine learning
prediction models in participatory research requires
further simplification to communicate with building
users who might have limited knowledge of com-
plicated prediction models. However, the simple IEQ
predictions framework from a correlation study to
incorporate into behaviour change suggestions has
not been developed yet. This study aims to fill this
research gap.

Indoor environmental predictions for a room are
built on condition-based feedback, which heavily
relies on several scenarios through the end-user’s
actions in operating the room according to future
weather. In this regard, predictive modelling can be
developed from statistical techniques that use his-
torical data to predict future outcomes by using a
correlation study.23,24 Predicting the IEQ of a room
could be varied by a number of factors, including
location context, building envelope design, building
operation modes and occupant-related factors, which
altogether influence the boundary conditions of the
building.25–27 For an existing building, if its orien-
tation, built form, size of windows, and fabric energy
efficiency are known and unchanged, the IEQ per-
formance could be mainly altered by three factors: (i)
the external climate, (ii) building operation modes
(e.g., natural, and mechanical mechanisms for ven-
tilation or the use of shading) and (iii) occupancy
presence and their behaviours. Occupants at the

centre of building operation have more benefits in
maintaining comfort and indoor air quality (IAQ), as
can be seen in an active house design approach.28

However, a challenging question for an occupant-
centric approach is how to simplify predicting indoor
environmental conditions for the next 24 hours or a
few days, according to real-time weather outdoors
and appropriate building operation modes. This
engagement needs to be aligned with occupants’
understanding of building operations and their pre-
ferred decision-making for the IEQ needs in their
building.

An empirical study based on a hot-summer humid
continental climate of Massachusetts found that the
relationship between indoor and outdoor tempera-
tures is non-linear in 16 homes, revealing that there is
a strong temperature correlation at warmer outdoor
temperatures and a weak temperature correlation at
cooler outdoor temperatures.29 A sensitivity analysis
based on the temperate climate of Switzerland found
that wind speed variation did not significantly impact
IAQ throughout the year, while the still air had a high
sensitivity to temperature and humidity level dif-
ferences.30 A mobile app study based on the Danish
climate found that a simple correlation method can
provide indoor air temperature predictions, while the
accuracy of the IEQ predictions heavily relies on the
context-dependent boundary conditions of a room
and time-dependent weather.31 Researchers often use
indoor-outdoor climate correlations as non-
experimental research to predict IEQ; however, a
framework that can inform the participatory research
by designers to use the indoor-outdoor climate
correlations for IEQ predictions, particularly to
promote pro-environmental behaviours for the end-
users, has not yet been developed.

This work developed a framework to promote
pro-environmental behaviours from the correlation
between indoor condition parameters and outdoor
climatic parameters to predict indoor air tempera-
tures, ventilation and indoor illuminance of an ex-
isting room, considering suggestions for different
passive measures. A comparison of different
boundary conditions for the correlation study pro-
vides inferences from different evidence that help to
make fair judgements about using IEQ predictions
for further behaviour interventions. The
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methodology was evaluated to set the control setting
of a room and establish the reference case. The focus
of the work, in addition to the statistical correlation,
is to demonstrate how the correlation model can be
applied to behaviour change suggestions. Recom-
mendations for practical implications are thus dis-
cussed from the findings of this work and other
statistical tests; the latter primarily worked to un-
derstand the impacts of boundary conditions on the
prediction frameworks. Therefore, this work will
contribute to participatory design researchers and
PIML-based indoor environmental prediction model
developers.

Methodology

The proposed frameworkwas designed to promote pro-
environmental behaviours through the results of the
IEQ predictions using the indoor-outdoor climate
correlation model and predictive modelling. This work
was tested using an occupied multi-family apartment
building in Switzerland as a case study. The base-case
simulation model was validated with measured indoor
environmental data. This calibration was aimed at
evaluating the control setting of the apartment to es-
tablish a reference case for further statistical regression

studies. The framework consists of four stages
(Figure 1). Using the base-case model, in the first stage,
the predictive modelling approach was considered to
use the indoor-outdoor correlation models in IEQ
prediction. In the second stage, the modelling processes
were developed to understand the impacts of boundary
conditions on statistical regression by comparing the
correlation results of statistical tests. In the third stage,
the prediction benchmarks were defined to predict
optimal adaptive thermal comfort, optimal indoor
daylight illuminance and required indoor air quality. In
the final stage, behaviour change suggestions were
discussed by comparing the prediction results; there-
fore, the occupant would be able to alter the operation
of the rooms to maintain the necessary IEQ. In practical
terms, the framework can be applied as follows in two
stages, which include four steps:

Stage 1: Preliminary work carried out once per
building:

(1) Create a dynamic thermal, ventilation and
daylighting model of the specific building.

(2) Carry out simulations and derive daylight,
thermal and ventilation correlations.

Stage 2: Prediction work carried out for the
specific time needed for the building operation:

Figure 1. A schematic representation of the proposed indoor-outdoor correlation model and predictive modelling
approach for behaviour change suggestions.
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(3) Have access to forecasted hourly external
conditions.

(4) Use the correlation equations to calculate
hourly indoor temperature, air flow rate, and
daylight illuminance. Use the air flow rate to
calculate contaminant concentration.

Step 1 requires preliminary works carried out for
the specific building. It involves the creation of
thermal, ventilation and daylighting models for
the building, considering the impacts of
physics-driven, occupants-driven and sensi-
tivity data-driven results on the boundary
conditions.

Step 2 carries out dynamic hourly simulations for
one whole year using a typical weather file for
the location to calculate its hourly indoor
condition values. Parameters of interest are
internal operative temperatures, air flow rates
and illuminance levels. This step also requires
the generation of correlation equations for the
specific buildings and uses the simulated hourly
indoor condition values to be correlated with
the external weather data used in the simula-
tions to generate the correlation equations,
which consist of independent variables (out-
door weather data) and dependent variables
(indoor condition data).

Steps 1 and 2 are carried out once for the specific
building and require knowledge of dynamic thermal
modelling (DTM) and access to a DTM and day-
lighting tool, as well as a good command of Excel for
deriving correlations.

Step 3 requires access to the “forecasted” hourly
weather data for the period that the prediction
of internal conditions will be worked on;
usually, 1 day up to 1 week. Weather
forecasts are more accurate for shorter periods,
as one or two days will give better predic-
tions. Weather forecasts can be obtained from
open access information; external tempera-
tures, wind speeds and wind directions are
forecasted for a large number of locations,
usually by meteorological services in the region
of interest. The forecasted hourly weather data

are used as independent variables in the cor-
relation equations created in Step 2.

Step 4 requires the use of the programmed Excel
spreadsheet to investigate the optimum opening
of windows and shading to create the most
comfortable internal environment. Occupants
also need some indication of why these are the
optimum conditions. We used the evaluation
methods as described in Section Prediction
benchmarks to predict air temperature, CO2

concentration and illuminance levels in the
space.

Modelling framework

Boundary conditions. For the correlation study, the
predictability and accuracy are limited by the
boundary conditions. The boundary condition of a
room can be varied by different attributes such as
building geometry, building operations through ac-
tive and passive mechanisms, and the fabric energy
efficiency of construction. By defining a specific
boundary condition using historical weather, a base
case could be set as a control group and produce a
statistical regression for relevant prediction equa-
tions. As the IEQ of a room could be varied by time-
dependent functions and several factors involved in
the boundary condition of the room, random sam-
pling techniques for correlation could be challenging
to identify the relationship that exists between two
variables. To enable the correlation patterns, context-
based or boundary-based samples are essential, while
this approach in itself consists of challenges to match
the correlation samples and prediction scenarios to
obtain more trustworthiness of the correlation pre-
dictions. Therefore, the statistical tests were per-
formed in this work using pre-defined scenarios.

Case study apartment. The selected building was
built in 1962 and renovated in 2020, located in
Geneva’s urban district. Geneva is located in the
eastern part of Switzerland and is characterised by a
continental climate (Köppen climate classification:
Cfb) with mild temperatures, fully humid and warm
summer. July and August are the months with the
highest outdoor dry bulb temperatures. We selected a
one-bedroom apartment on the 8th floor of the
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building, shown in Figure 1, which is a multifamily
housing with 56 apartments. The apartment has a
total area of 65 m2, and there is cross-ventilation for
the living room and single-sided ventilation for the
bedroom. The construction details of the apartmentwere
obtained from the PRELUDEH2020 project, indicating
highly insulated external envelopes due to the given
climate.32 For validation purposes, the indoor air tem-
peratures and outdoor air temperatures were measured
in April-June 2023. The EnergyPlus simulation pro-
gram33 was used to perform base-case modelling.

Indoor-outdoor correlations

Correlation is a systematic pattern that determines
whether a relationship exists between two variables.
The correlation patterns can be analysed from lon-
gitudinal and cross-sectional views of correlations.
For the building performance review, longitudinal
studies are useful to identify the seasonal correlation
and change over time in the building performance,
while a cross-sectional study is beneficial to compare
multiple variables and outcomes by taking “a
snapshot” of selected samples at a single moment in
time.34 Therefore, in this work, one whole year that
yielded 8760 samples was used to consider seasonal
variations, whereas the 24-h profile was used to
predict the IEQ conditions for a day.

Temperature correlation. The statistical regression
studies and previous studies29,31 showed that a good
coefficient of determination can be expected by
correlating internal operative temperatures and ex-
ternal air temperatures. If the room was modelled
using heat-balance mode by applying the heating set
point temperatures, the response of fabric efficiency
of the building envelopes to the external climates
caused a smaller amount of variability in correlation
plots while a strong positive linear temperature
correlation can be observed. If the room was mod-
elled using free-running mode by applying natural
ventilation through the windows but the window
opening time was controlled consistently for the
whole year, the strength of temperature correlation
was stronger in window opening scenarios against
heat-balance scenarios. In this work, the prediction
equations for indoor temperatures were generated by

correlating internal operative temperatures and ex-
ternal air temperatures for different window-opening
scenarios.

Ventilation estimations. In line with wind or buoyancy
forces calculation equations from natural ventila-
tion,35 previous statistical regression studies showed
a strong correlation between the airflow rate of a
room, dry bulb temperatures, wind speed and the
inverse of internal/external temperature.36 In this
case study, the ventilation correlations were weak
and therefore estimations of natural ventilation were
used based on the range indicated by the simulations
varying between 2 ACH (Air Change Rate) and 5
ACH (to include infiltration).

Daylight correlation. Indoor illuminance is influenced
by time-dependent direct, diffuse and global radia-
tions. The Perez model uses the transition from an
overcast sky to a low turbidity clear sky based on
solar irradiance values to estimate daylight illumi-
nation.37 This work referred to the Perez luminous
efficacy model and calculated daylight from time
step calculation with specified daylighting reference
points to provide a single lux value of a room based
on its associated weather file. The results of the
single-node analysis of daylight simulation are useful
to correlate with outdoor solar radiation; however,
the results of daylight illuminance are within the limit
of boundary conditions as the illuminance of a room
could be significantly changed by the room and
window designs such as orientation, building form,
room size, fenestration design, glazing properties,
shading obstructions and reflections on site and in-
side the room. It was found that a strong daylight
illuminance correlation can be obtained by grouping
samples from the same hours, this gives 24 daylight
prediction equations for 24 hours and each equation
consists of 365 samples for the whole year.38

Predictive analytics. For the statistical regressions for
tested scenarios, historical outdoor weather data from
Meteonorm39 which contained hourly data for one
whole year was used to generate the prediction
equations for the location of Geneva. For the model
calibration, external dry bulb temperatures, humidity
and solar radiation data were obtained from April to
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June 2023, from the nearby weather station which is
1.1 km away from the case study building.

These data were replaced with the historical
outdoor weather file. When we plotted the correlation
using scatter plots, it was noted that polynomial
linear regressions fit a wide range of curvatures by
minimising squared error and maximising the co-
efficient of determination (R2). That also showed a
non-linear relationship between the outdoor weather
data and the indoor environmental data. In a pre-
dictive modelling approach, the forecasted outdoor
weather can be applied to the statistical regression
equations, as suggested in Refs. 23,24.

Prediction benchmarks

The correlation equations generated from this work
were expected to predict indoor temperatures, indoor
illuminances and air change rate. Therefore, three
post-data processing approaches were applied to this
work to evaluate the IEQ predictions by the algorithms
produced from the indoor-outdoor correlation models.

Adaptive thermal comfort bands. In a free-running
condition of spaces, whether the predicted indoor
operative temperatures are acceptable in that hour can
be evaluated using the adaptive thermal comfort
equations which suggest bands of thermal comfort
indoors related to external ambient temperatures. For
European and North American buildings, these have
been integrated into current standards BS EN 16798-
140 using equations (1) and (2). In this work, the

acceptable indoor operative temperature was calcu-
lated from upper and lower limits using running mean
outdoor temperatures considering free-running modes
when the windows were expected to be opened.

Ɵc ¼ 0:33Ɵrm þ 18:8 (1)

where,

Ɵc = Optimal operative temperature for adaptive
thermal comfort

Ɵrm = The exponentially weighted running mean
of the daily mean outdoor air temperature

Ɵ(ed-1) = External outdoor air temperature of the
day before.

Indoor illuminances. The illuminance value for a room
is usually considered as the daylight quality of a
room; for instance, it is recommended as 100 lux for
bedrooms and 50 to 300 lux for living rooms in a
dwelling.41 Particularly in the UK context, BS EN
17037 recommends that the room overheating in a
dwelling should be checked if a daylight illuminance
of 500 lux is exceeded on 50% of the grid points for
more than half of the daylight hours.42 In this study, a
500-lux maximum threshold was considered to re-
view the overheating of the rooms. However, this
threshold alone is not directly applicable for the cut-
off point to shade the room as detailed investigations
should be performed to meet both indoor visual and
thermal comfort requirements, considering seasonal
and daily variations of multiple environmental fac-
tors to balance the daylight and overheating, as
suggested in Refs. 40–43.

Indoor pollutant concentration. For a building occupier
who may not be aware of the airflow rate, the nar-
rative to communicate with them is important in
providing feedback on the indoor condition predic-
tion results. In every occupied space, carbon dioxide
(CO2) is affected by occupancy; therefore,

metabolic-based indoor CO2 is often used to review
whether there are sufficient air change rates and
whether the indoor air quality of a room is ac-
ceptable. In this work, the maximum acceptable
indoor CO2 concentration was considered as
900 ppm.40 For the calculation of internal con-
taminant concentration, a single-zone mass balance
model was used44,45 as described in equations (3)
and (4). For the evaluation of IAQ, the limits of

Ɵrm ¼ Ɵed�1 þ 0:8Ɵed�2 þ 0:6Ɵid�3 þ 0:5Ɵed�4 þ 0:4Ɵed�5 þ 0:3Ɵed�6 þ 0:2Ɵed�7

3:8
(2)
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concentration of internal pollutants are needed so a
decision can be made. Similarly, other contaminants
apart from CO2 can be calculated if the emission
rate indoors is known.

CðtÞ ¼ Cð0Þ e
�qv
Vr

 t þ Css
�
1� e �

qv
Vr

 t
�

(3)

Css ¼ Cout þ G
qv

(4)

C(t) = the concentration in the room at time t in mg
m�3

C(0) = the indoor concentration at time 0 in mg
m�3

C(out) = Outdoor concentration
Css = The steady-state CO2 concentration
qv = the volume flow rate of supply air in m3 s�1

G = the mass flow rate of emission in the room in
mg s�1

t = the time in s
Vr = the volume of air in the room in m3

Scenarios for behaviour change suggestions

For the simulation and prediction experiments, as-
sumptions were made to calculate the internal con-
dition of the apartment. Heating operations scenarios
and potential time for window operations were
proposed to investigate their effect on the correlation
models, considering how the occupants could react to
the weather outdoors. This mechanism and back-
ground ventilation through trickle ventilators in the
windows were considered in the correlation models
to achieve fresh air with minimum heat loss. The
internal heat load (occupancy and equipment) and
heat gain profiles were assumed as one-bedroom
apartments with living room and kitchen occu-
pancy, as suggested in TM59.46 The metabolic CO2

emission rate of 13 L/h was considered as the average
metabolic CO2 emission rate is 11.0 ± 1.4 L/h per
person while sleeping and about 8% higher for males
than for females.47 The outdoor ambient CO2 levels
are assumed to be 400 ppm. In Table 1, three thermal
and ventilation scenarios were defined to propose

future behaviour change suggestions. A daylighting
scenario was then added to Scenario Awithout using
shading. For the passive measures, window modes
(open and close) were considered for the boundary
conditions of the room; therefore, their impacts on
thermal and ventilation performances were calcu-
lated as a control setting. In the control groups, the
statistical regression equations were produced from
annual simulation results therefore the impacts of
seasonal variations were included in the longitudinal
correlation format based on the fixed boundary
conditions. Using those statistical regression equa-
tions, behaviour change suggestions were expected
to be made by presenting 24-h prediction profiles
where the end-users could alter daily heating hours,
windows opened hours and shading application time.

Results

Validating the base case simulation model

The measured indoor temperatures of the living room
and bedroom were obtained from April to June 2023.
This period can be considered representative of the
intermediate and warm season in Switzerland in
terms of external temperature and solar radiation.

Figure 2 presents external air temperature and solar
radiation from a typical weather year obtained from
Meteonorm36; it can be seen that during June, external
temperatures approach typical values of summer
monthswhile solar radiation is at its peak. DuringApril,
typical spring temperatures prevail when heating is not
needed for some periods; it also has temperatures very
close to the annual average temperature of 11.2°C.
Therefore, calibrating the model April-June (for which
internal measurements were available), periods of the
year susceptible to overheating are included as well as
periods requiring intermediate heating.

The outdoor weather data for the simulation model
were obtained from the nearby weather station, which
is 1.1 km away from the case study building. The inter-
building effect was not applied in the simulation.
Therefore, some discrepancies between the simulation
model and the actual microclimate data around the
building could be expected. The model was run and
the accuracy was checked by comparing it with
measured air temperature data on an hourly and
monthly basis for 3 months (April 2023 -June 2023)
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by calculating MAE, NMBE, RMSE and CvRMSE
values, as suggested in ASHRAE Guideline 1448 and
CIBSE TM63:2020.49 Figure 3 presents the com-
parison of measured and simulated temperatures.

MAE (mean absolute error) is the arithmetic av-
erage of the absolute errors between the simulated and

measured values. NMBE (normalisedmean bias error)
is the average error between the simulated and mea-
sured values, which is normalised by the mean of the
measured values. RMSE (root mean square error)
represents the sample standard deviation of the dif-
ferences between measured and simulated values.

Table 1. Scenarios for statistical regression models and behaviour change suggestions.

Scenarios Heating hours Cooling Windows opened hours Shading

Case - A 05:00 – 23:00 n/a Closed For thermal simulation, during the
winter, shading is on at night-time
and off during daytime; during the
summer, shading is on when the
solar radiation incident on the
window exceeds the solar set point
of 120 W/m2

Case - B 05:00 – 23:00;
turned it off when
windows were
open

n/a Oct - Apr (2 hours): 08:00 - 09:
00 and 17:00 - 18:00; May - Sep
(6 hours): 8:00 - 11:00 and 17:00
- 20:00

Case - C 05:00 – 23:00;
turned it off when
windows were
open

n/a Oct - Apr (2 hours): 08:00 - 09:
00 and 17:00 - 18:00; May – Sep
(night): 00:00 - 08:00 and 20:00 -
24:00

Figure 2. Geneva, Switzerland – Daily outdoor dry bulb temperature and solar horizontal radiation.
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Cv(RMSE) (coefficient of variation of the root mean
square error) is derived by normalising the RMSEwith
the mean of the measured values. ASHRAEGuideline
14 recommends an MBE of less than 10% and a
CVRMSE of less than 30% relative to hourly cali-
bration data48 which was achieved in this study (see
Figure 2). It can be seen that the error was minimum in
April and increased in May and June for all statistical
values. This was due to the constraints in tracking
window operations at the apartment at that time, when
the increased summertime temperatures caused the
extended time of using passive cooling.

Statistical regressions for tested scenarios

Using the base model, the statistical regression corre-
lations were generated for the proposed scenarios
(Table 1); therefore, the whole-year simulation results
that yielded 8760 samples as hourly resolution data for
indoor temperature, air change rate and indoor illumi-
nance can be obtained. The longitudinal correlations
between outdoor (independent) and indoor (dependent)

temperature and ventilation variables were grouped from
window-opened andwindow-closedmodes, as shown in
Figure 4.When the windows were closed in Scenario A,
the correlations between outdoor dry bulb temperatures
and infiltration rate can be obtained; however, the in-
filtration rate is almost constant at around 0.7 ACH to
include the trickle ventilators. When the windows were
opened in Scenarios B and C, the correlations of air flow
rate with external conditions were not forthcoming due
to the location of the apartment at the corner of the
building. The simulations demonstrated that airflow
rates of up to 5 ACH are established in the space.
The range was between 2 ACH and 5 ACH to in-
clude infiltration. In this case, these values will be
used to guide the occupants.

The daylight correlations were generated con-
sidering there was no shading in the apartment.When
the illuminance values were grouped for each hour,
as shown in Figure 5, it was noted that strong cor-
relations between global solar radiation and indoor
illuminance occurred in the early morning and late
evening, while diffuse radiation was more

Figure 3. Simulation model validation by comparing simulated and measured temperatures.
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Figure 4. Example of thermal and ventilation correlations for the living room and bedroom.
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appropriate to correlate for mid-day hours. The
equations which were used to predict indoor illu-
minance are shown in Figure 5. According to the
correlation scatter plots, the outdoor temperature of
33°C and radiation of 1400 Wh/m2 were set as the
maximum limits (x-values in the polynomial equa-
tions) for further prediction exercises using the
correlation equations generated for scenarios A, B
and C.

Indoor temperatures and
illuminance predictions

The internal temperatures of the living room and
bedroom were predicted for 3 days in April and June
using the equations generated from the statistical re-
gressions for scenarios A, B and C. The internal tem-
peratures were to be predicted using the relevant
window opening modes over 24 hours. Adaptive

Time

Living room Bedroom

Polynomial equation R2 value Polynomial equation R2 value

10:00 y = �0.0081x2 + 5.3193x + 54.19 0.7816 y = �0.004x2 + 2.6992x + 42.545 0.8093
11:00 y = �0.0057x2 + 4.4504x + 97.83 0.7915 y = �0.0033x2 + 2.4317x + 73.522 0.7270
12:00 y = �0.0044x2 + 3.931x + 137.4 0.8099 y = �0.0025x2 + 2.1703x + 102.59 0.7200
13:00 y = �0.0032x2 + 3.5782x + 169.57 0.8455 y = �0.0016x2 + 1.9339x + 126.06 0.7647
14:00 y = �0.0024x2 + 3.7092x + 167.27 0.8942 y = �0.0013x2 + 2.0484x + 119.62 0.8423
15:00 y = �0.0016x2 + 4.3609x + 114.89 0.9156 y = �0.001x2 + 2.4896x + 80.705 0.8762
16:00 y = �0.0037x2 + 6.5262x + 30.03 0.8711 y = �0.0033x2 + 4.1317x + 26.196 0.7636

Figure 5. Example of daylighting hourly correlations for the living room and bedroom using no-shading and internal
shading conditions.
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comfort temperatures for lower and upper limits were
also calculated to understand whether the indoor tem-
peratureswerewithin acceptable limits. It was noted that
the external temperatures were below the maximum
limits of 33°C, which was noted in the regression plots.

In Figure 6, when the external temperatures reached
the upper limits of adaptive comfort temperatures in
April, the internal temperatures were above acceptable
adaptive temperatures. When the windows were closed
in Scenario A, higher indoor temperatures reached
above the upper limits of adaptive temperatures. When
the windows were opened in Scenario B, the indoor
temperatures could drop. These results showed evidence
to suggest a behavioural change scenario for the oc-
cupants to operate the rooms according to scenario B to
maintain necessary thermal comfort in April. In contrast
to April, the external temperatures were significantly

higher in June, and this also affected the internal
temperatures at that time. In this regard, the behaviour
change suggestions can be provided by informing the
results of Scenarios B and C. Night purge ventilation
used in Scenario C could provide a lower internal
temperature in the daytime; however, this could be
subject to the decision made by the occupants.

The area charts in Figure 7 demonstrate the indoor
illuminance predictions for 10:00 to 16:00 using diffuse
solar radiation values at that time. To understand the
relationship between indoor illuminance and other en-
vironmental parameters, external dry bulb temperatures,
global solar radiation values and predicted indoor tem-
peratures were superimposed on these charts. The out-
door climate data showed that the peak values of dry bulb
temperatures and diffuse solar radiations were found at
different hours, and there were no correlations between

Figure 6. Indoor operative temperature predictions with behaviour change suggestions, examples of 3-day comparisons
for April and June.
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each other. In scenario A, similar temperature profiles for
the internal and external conditions were observed as the
internal temperatures increased when the external tem-
peratures increased. Higher indoor illuminances were
found when the diffuse solar radiation dropped on the
13th and 15th of April, and a significant rise in indoor
illuminancewas found in the evening of the 14th ofApril,
as the orientations of the room (driven by solar altitude
and azimuth) had influenced the indoor illuminances. As
the living room has larger glazing areas for windows
compared to the bedroom, the indoor illuminance values
of the living room were higher than the bedroom.Whilst
hourly indoor illuminances were able to be predicted by
correlating diffuse solar radiation at the hour, this work
showed that the boundary conditions of the rooms had a
significant impact on the prediction results of indoor
conditions. While indoor illuminance values were
predicted above 500 lux on the 13th and 15th of April,
the prediction results for indoor temperatures showed
that the indoor temperatures at that time were below
the upper limit of adaptive comfort temperature. It was
noted that there were limitations and uncertainty in
using daylight correlations to predict acceptable

thermal comfort by indicating 500 lux limits as po-
tential overheating risks in the study climate.

Air change rate and indoor CO2

concentration predictions

The air change rates from the infiltration mecha-
nism were predicted for 3 days in April and June
using the equations generated from the statistical
regressions for scenario A; the variation of infil-
tration was limited between 0.69 and 0.78 ACH.
Negative correlation plots in Figure 4 showed that
the infiltration rate decreased when the outdoor
dry bulb temperature increased. As indoor CO2

concentrations were generated from the occu-
pancy profiles, the highest indoor CO2 concen-
trations were found in the early morning hours in
both predicted and measured data, as shown in
Figure 8.

Due to the uncertainty in the CO2 emission rate of
the occupant, which could vary subjectively, the
discrepancies between measured and predicted

Figure 7. Indoor illuminance predictions for 10:00 to 16:00 using diffuse solar radiation (external dry bulb temperatures,
global solar radiation values and predicted indoor temperatures are superimposed).
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indoor CO2 concentrations can be observed. The
concentrations in the room decayed exponentially
after the occupant left during the daytime. If similar
prediction exercises were performed for full occu-
pancy for Scenario A, higher indoor CO2 concen-
trations were observed throughout the days as
infiltration alone was not able to increase the rate of
decay. Besides the air change from infiltration, when
the room had ventilation, the indoor CO2 concen-
trations were above the 900-ppm benchmark due to
the occupancy of the room.

Behaviour changes suggestions for thermal
comfort and indoor air quality

The results of the predicted indoor temperatures are
shown in Figure 6 and this can be applied to evaluate
whether the tested scenarios can ensure the thermal
environment meets comfortable conditions. Figure 9
shows the box charts of the measured and predicted
indoor temperatures; the lower and upper adaptive
temperature limits are also indicated. Note that the
operation settings of measured data and scenario B

were the same; however, the discrepancies were
found due to the strength of correlation obtained in
Figure 4. In addition to Figure 6, the combined re-
sults of this comparison give different options for the
occupant to consider desirable behaviour change to
maintain the necessary thermal environment. For
instance, the application of night purge ventilation
could provide lower indoor temperatures than other
scenarios; however, some people may prefer daytime
ventilation.

Simulations showed achievable ventilation rates
between two and 5 ACH when the windows were
opened, and an average infiltration rate of about
0.7 ACH when the windows were closed. To
simplify the predictions for indoor air CO2 con-
centrations, air change rates of 2 ACH and 5 ACH
were considered for the window-opened scenario,
and 0.7 ACH for the infiltration rate was considered
for the window-closed scenario for the tests per-
formed (Figure 10).

The predicted indoor CO2 concentrations for the
window-closed scenarios (infiltration only) were
above the 900-ppm limit. For Suggestion 1, the
window was open for 3 hours in the morning and

Figure 8. Indoor CO2 concentration predictions using ventilation correlation equations and single-zone mass balance
model.

Zune et al. 15



3 hours in the evening. The indoor CO2 concentra-
tions are lower but still above the 900-ppm limit (but
less than 1000 ppm) before the window was opened
for 3 hours in the morning, as the metabolic CO2 built
up during sleeping hours. The difference between the
prediction values of scenario 1A and 1B was the air
change rate, and a higher air change could remove
the indoor CO2 concentration to the outdoor CO2

concentration level of 400 ppm after the window
opened for 3 hours in the evening before the room
was occupied. For Suggestion 2, the bedroom was
open for 3 hours after midnight. It was found that
metabolic CO2 was reduced during the night com-
pared to suggestion 1, but CO2 levels stay high

during the day because of the closed windows, and a
combination of suggestions one and two should be
proposed. Finally, similar to the behaviour change
suggestion for indoor thermal comfort, some occu-
pants may find it a challenge to use night purge
ventilation to maintain necessary indoor air quality,
although the presented work was able to demonstrate
different options.

Discussion

This work demonstrates how the indoor-outdoor
environmental variables correlation model can be
applied to predict the indoor environmental data for

Figure 9. Comparison of measured indoor temperatures and predicted indoor temperatures for Scenarios A, B and C
for the bedroom.

Figure 10. Comparison of indoor CO2 predictions using different window opening times.
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the next 24 hours. The base simulation model was
created by validating measured and simulated indoor
temperatures. The statistical regression models were
generated for three scenarios that allowed obtaining
correlation equations for prediction exercises. The
comparisons of predicted indoor temperatures, in-
door illuminances and indoor CO2 concentrations
were evaluated using comfort and indoor air quality
benchmarks; therefore, the potential use of indoor-
outdoor climate correlation models for further be-
haviour change intervention can be presented. This
section discusses how the findings of this work can
be translated into practical applications, which will
contribute to indoor environmental predictive mod-
elling and participatory design research.

Recommendation for predictive modelling

The presented method integrates indoor-outdoor
climate correlation models, bioclimatic design, and
occupant-centric control decision-making processes.
A framework for predicting indoor environments by
correlating the internal environmental and external
climatic variables is crucial for the daily operation of
low-technology buildings to improve indoor condi-
tions. Since correlation methods based on physics-
based modelling and data-driven approaches have
achieved great success in predicting indoor envi-
ronmental conditions, the following observations
from the studied apartment and recommendations on
practical applications could be of interest for future
physics-informed machine learning predictions for
different buildings and other scenarios.

Boundary condition. As presented in Figure 1, the
boundary conditions were defined by a physics-
driven model (to take into account the physics
rules, such as heat transfer and thermodynamics) and
an occupant-driven model (to take into account the
decision rules, such as the use of active heating and
passive cooling). As the prediction equations for
behaviour change suggestions are generated from the
pre-defined models and scenarios, they are typically
unreliable in out-of-boundary predictions (extrapo-
lation). For instance, active heating (Table 1) was
provided in the presented example; therefore, the

prediction equations were influenced by the heating
temperature setpoint values of 20°C, pre-defined
window scenarios and fabric energy efficiency of
the model. The results presented in this work agree
with the previous study31 that has shown that the
accuracy of the IEQ predictions heavily relies on the
context-dependent boundary conditions of a room and
time-dependent weather. Therefore, we recommend
observing the sensitivity of boundary conditions for
different building operation scenarios to provide a
wide range of options for behaviour change sugges-
tions. By doing this, the judgment can be made by the
participants for the behaviour change options.

Indoor condition prediction. The correlation equations
presented in this work were generated from the re-
sults of one-whole year of simulated model.
Therefore, it achieved good generalisation across the
whole year, and the correlation equations were able
to be applied to predict the indoor conditions at any
time of the year if the boundary condition which is
planned to be predicted is compatible with the ref-
erence samples used in the climate correlation model.
In the correlation study, a trend which moves in the
same direction does not mean there is a direct cor-
relation between them. Due to the strengths and
limitations of polynomial correlation equations, a
gap between predictions and measured data was
observed. Such correlation models have limitations
which simply rely on their monotonic association
between two variables. It does not inform the driver
of causation, and the results could be varied by the
confounding variables. Due to the limitations of a
polynomial correlation, despite providing good fits
within the range of data, it is expected that the
equations have poor extrapolatory properties, and
this could cause deterioration outside the range of the
data. Therefore, we recommend that the correlation
models require defining the maximum and minimum
acceptable limits for benchmarks to provide rea-
sonably acceptable predictions. Moreover, we must
stress that the validation work presented in this work
was based on 3 months of database. We therefore
recommend that further study be conducted to
compare and validate whether the prediction equa-
tions generated from monthly-based correlation
equations differ from annual-based correlation

Zune et al. 17



equations. Furthermore, developing the correlation
models for purely free-running stages without any
forms of active systems could be of interest to
compare their differences in the presented examples.

Prediction benchmark. In this work, the upper and
lower limits of adaptive thermal comfort were re-
ferred to BS EN 16798, considering the location of
Switzerland in Europe.40 The results of this work
showed that overheating was not observed while the
predicted indoor illuminance values reached above
500 lux in the studied climate. Therefore, providing
relevant benchmarks for the participants is essential for
the context-dependent IEQ predictions. For instance,
human subjects in tropical and European climates have
significant differences and thermal perception. Neces-
sary information for scenario selection and IEQ
benchmarks is thus required to provide for the par-
ticipants to use the correlation model effectively in
future participatory designs. Despite those limitations,
as the framework of the presented method can be
tailored to meet different contexts, it can conclude with
a call for more rigorous and pilot studies to evaluate the
impacts of correlation models in developing behav-
ioural change interventions.

Contribution towards participatory
design development

According to Fogg’s Behaviour Change Model, the
three components - ability, opportunities and
motivation – contribute to altering the actions of the
participants. Increasing these components, the par-
ticipants find it easy to change their behaviours.
Besides the process of applying the framework to the
indoor-outdoor correlation model to predict indoor
conditions, the recommendations from this experi-
mental work would be beneficial for future im-
plementation of behaviour change interventions.

Ability. In this work, the IEQ predictions were calcu-
lated using Excel, where the statistical regressions
were manually assigned for different scenarios by
using the forecasted weather and a series of correlation
equations. The judgments of the results were made by
the researchers, considering the benchmark discussed.

The convenience and user-friendly format are essential
for the end-users to predict the IEQ of their homes by
selecting a scenario from various possible occupants’
activities. Understandably, the end-users would not be
interested or able to select appropriate correlation
equations by themselves. Rather, they would prefer to
see how the indoor temperatures could change by
opening windows for one or 2 hours, and when the
indoor illuminance could reach more than 500 lux.
Therefore, the narrative of this method needs to be
translated into a user-friendly mobile app or desktop-
based software to increase the end-user’s “ability” to
select different options and be involved in future
participatory designs.

Opportunity. Forecasting indoor temperatures is of-
ten used in smart buildings to reduce energy use,50

whereas the use of sensors can provide real-time
prediction and historical measures of the IEQ data.
Besides energy savings, the end-users will also be
interested in knowing the predicted IEQ of their
rooms for different scenarios. The presented method
can help to encourage the end-user’s opportunity to
interact with their rooms without any privacy-related
concerns, by adding numerical values of the fore-
casted weather for the next day to the designed
mobile apps or desktop applications. This work
presents a correlation model to predict indoor en-
vironmental conditions by using three scenarios for
comparisons. In real-world scenarios, the occupants’
interaction with building operations could be dif-
ferent and different subjects could have different
operation modes for meeting their requirements.
Therefore, parametric simulation databases such as
scenarios for various windows and shading func-
tions, different heating and cooling hours, and fabric
energy efficiency variations could be added to in-
crease the opportunity for the occupants to select
necessary behaviour changes.

Motivation and triggers. In future participatory de-
signs, the information to “motivate” the interests of
end-users is essential for behaviour change. Pro-
viding feedback on their behaviours in terms of
energy cost increment, carbon emissions, and risks
associated with poor IEQ results is essential in the
development of participatory designs. For instance, a
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small temperature decrement by extending the
window opening could reduce cooling and ventila-
tion loads. Further information for rewards, such as
energy loads and cost-saving results by integrating
post-data results, can attract the participant’s moti-
vation to be involved in the behaviour change in-
terventions. Furthermore, this presented method can
be applied to the eco-feedback design to enhance the
implementation of the indoor condition prediction
model for occupant-centric innovation in building
control systems to promote sustainable behaviours.9

Research has shown that statistical visualisation
techniques, which often rely on mathematical data as
a communication medium, are essential in any en-
ergy eco-feedback system,10 as well as prediction
results to engage with the end-users. Using the
framework presented in this study, a further study
would consider incorporating textual information,
colour coding, and statistical visualisation techniques
with eco-feedback visualisation to enhance its ef-
fectiveness to motivate further behaviour change
suggestions.

Conclusion

This work aims to contribute towards participatory
research for IEQ predictions to promote pro-
environmental behaviours by the end-users to main-
tain acceptable IEQ with passive measures. The
framework of indoor-outdoor correlation models
consists of a narrative in translating the sophisticated
scientific principles underpinning the way buildings
and their systems are designed and operated as a
simplified correlation process for the end-users to alter
the building operation based on their knowledge. The
examples of IEQ predictions were presented for three
pre-defined scenarios, and the limitations of the
method were acknowledged. This presented method
can be used to design occupant-centric design strate-
gies in predicting thermal comfort and indoor air
quality of the existing building to improve the quality
of microclimates. The results of the presented methods
can produce easy-to-understand feedback systems, and
it will help to encourage the user’s ability to interact
with their rooms without any privacy-related concerns,
by adding numerical values of the forecasted weather
for the next day to the application developed for

participatory designs to predict the IEQ of their rooms
in different scenarios. To do so, recommendations for
future research and to refine the effectiveness of the
method are discussed. Therefore, the presented indoor
condition predictions framework can be integrated into
the eco-feedback participatory design and occupant-
centric control of indoor environments to enhance
behaviour-based efficiency measures through end-user
actions in the existing buildings.
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